
Assuring Structural Parallel Programs based on
Scoped Permissions

Yang Zhao, Ligong Yu, Gongxuan Zhang
School of Computer Science, Nanjing University of Science & Technology, Nanjing, China

Email: {yangzhao, yuligong, gongxuan}@mail.njust.edu.cn

Jia Bei
Software Institute, Nanjing University, Nanjing, China

Email: beijia@software.nju.edu.cn

Abstract— This paper proposes a “scoped permission” sys-
tem for a simple object-oriented language with shared-
memory and structural parallelism. The permission is ab-
stracted as a linear value associated with some piece of state
in a program and it is normally adopted in program analysis
and verification. In this paper, the permission nesting is
utilized to model the protection mechanism associated with
field instances, while the partial order among different locks
is specified when parallel executions start. By generating
and eliminating shared facts, the order in our system is
designed to be scoped and mutable. We show the operational
semantics as well as some permission rules, and demonstrate
how to interpret program annotations into permission rep-
resentations.

Index Terms— scoped permission, structural parallelism,
nesting, program annotations

I. INTRODUCTION

It is well known that multithreaded programming

greatly increases the performance of programs, but it also

provides some potential intermittent concurrency errors

that are hard to be detected using traditional program

analysis, because the effect of interactions among parallel

threads is usually undeterministic.

There are two common errors that often happen in

parallel programs. Data race happens when two or more

parallel threads sharing state try to access the same

location simultaneously and at least one of them is a

write operation. As a result, unexpected behaviors or

serious runtime exceptions may be exhibited. Assuming

two threads are trying to access an object through the

same pointer, one goes to dereference some field of the

object, while the other attempts to deallocate that object

at the same time, if the deallocation happens to win the

contention and be executed first, then the dangling pointer

This paper is based on “The Scoped Permission System for Structural
Parallel Programs,” by Y. Zhao, L. Yu, G. Zhang and J. Bei, which
appeared in the Proceedings of the 2nd IEEE International Conference
on Computer, Control & Communication (IEEE-IC4), Karachi, Pakistan,
Feb. 2009. c© 2009 IEEE.

This work was supported in part by National Natural Science
Foundation of China under Grant No. 60850002 and the Science and
Technology Development Fund of NUST under Grant No. XKF09017.

error appears and a null pointer exception may be throwed

out when the dereference start to take action.

Deadlock, however, occurs when two or more threads

are waiting on a condition that cannot be satisfied. Dead-

lock most often occurs when two (or more) threads are

each waiting for the other(s) to do something and the

whole program gets stuck. If multiple concurrent threads

are holding some resources but waiting for more that are

currently held by some others, then it is possible that none

of the parallel threads can make progress and the whole

program gets stuck.

Numerous static analysis techniques are designed to

ensure parallel programs are free of data races or dead-

locks [1]–[4], and some of them are based upon the

language’s type system with annotations [5]–[8].

Proposed by Boyland et al., the permission system

originates from comprehending program annotations into

a semantic foundation [9]. Within the permission system,

every expression will be checked to determine whether it

is permitted to be executed under certain permissions that

are granted Different operations in a program require dif-

ferent permissions, It has some advantages over previous

type systems. For instance, it is capable of distinguishing

reads from writes. In consequence, some safe interference

patterns, like parallel reads without lock, could be assured.

Furthermore, various nesting facts among permissions

could naturally be used to model lock protection relations

in parallel programs.

In the previous work, a fractional permission system is

designed for a non-synchronizing language [10] and adop-

tions (nestings) are used to connect effects and unique-

ness [9]. In this paper, we further extend the previous

work by proposing a scoped and shared permission, such

that the lock protection is modeled by permission nesting

as usual, while the partial order among locks is built by

shared facts which could be mutable. To demonstrate this

idea, we define a toy language with structural parallelism

as well as synchronization.

In the following text, Section II defines a simple object-

oriented language as well as its operational semantics. In

Section III, we introduce the scoped permission system

JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009 283

© 2009 ACADEMY PUBLISHER

P ::= defn∗

defn ::= class cn {field∗ meth∗}
field ::= [FAn]opt cn f
meth ::= [MAn]∗ cn m(arg∗) {e}
FAn ::= guarded by lock
MAn ::= reads e | writes e | requires lock

| uses lock | lock < lock
lock ::= this | g
cn ::= C<g∗>
arg ::= cn x
e ::= new cn | x | e.f | e.f=e | e;e | let x=e in e | e.m(e∗)

| synch e do e | parbegin (e||e) parend

C, f, m ∈ class, field, method names

Figure 1. Language syntax.

with some selected permission rules, based upon which

we show how to interpret program annotations into per-

mission representations and give several examples. Sec-

tion IV shows the consistency between permissions and

dynamic runtime states, based on which the soundness

property is established. Section V gives some related work

and We conclude in Section VI. The Appendix contains

all the rules mentioned in this paper.

II. A SIMPLE LANGUAGE

This section describes a simple object-oriented lan-

guage with parameterized classes and field/method anno-

tations. We adopt structural parallelism, but omit object

inheritance for simplicity.

A. Syntax

The language syntax is given in Figure 1. A shared-

memory program consists of several class definitions and

each class may be parameterized by zero or more formal

guard objects that could occur in the annotation clauses.

A “guarded by lock” clause for field f indicates that

the lock is designed to protect any access operation for

f. “reads” and “writes” are self-explanatory method

effects. A “requires lock” states the lock has already

been held at the method entry, while “uses lock” says

that the method body may acquire lock by itself. A partial

order between two locks is enforced inside of a method

body once a “lock1 < lock2” is specified.

Expressions include pure allocation 1, variable read,

field read, field write, sequential composition, local decla-

ration, method invocation, synchronization and structural

parallel composition. Figure 2 and 3 provide some code

examples using this syntax.

B. Operational Semantics

The operational semantics is defined in terms of a

small-step evaluation:

(μ; 〈e〉L) → (μ′; 〈e′〉L)

Given a memory μ, an expression e dynamically nested

most recently in a synchronized block holding L ($0 if

1A regular object allocation is normally implemented by a pure
allocation followed by a constructor call.

class Account<g> {
/**@guarded_by g*/
Int balance;

/**@reads m.All, requires this*/
void deposit(Int m) {
balance += m

}

/**@requires this*/
Int getbalance() {
return balance

}
......

Figure 2. Account class.

class Client {
Account<this> checking, saving;

/**@reads (m.All,checking,saving),
uses (checking, saving),saving<checking*/
void checking2saving(Int m) {
synch checking do {
checking.withdraw(m);
synch saving do
saving.deposit(m)

}
}

......

Figure 3. Client class.

none) can be one-step evaluated to e′ with the memory

being changed into μ′ accordingly, where memory μ is

defined as a mapping from locations (pairs of object

address and field name) to other addresses:

μ ∈ Memory = (O × F) ⇀ O

We choose several evaluation rules in Figure 8 and

give explanation in the following text, while other self-

explanatory rules are listed in the Appendix.

E-FORK

(μ; 〈parbegin (e1||e2) parend〉L) → (μ; 〈〈e1〉L||〈e2〉L〉L)

E-PARALLEL

(μ; 〈ei〉L) → (μi; 〈e′i〉L)
(e′′1 , e′′2) = (i == 1)?(e′1, e2) : (e1, e

′
2)

(μ; 〈〈e1〉L||〈e2〉L〉L) → (μi; 〈〈e′′1 〉L||〈e′′2 〉L〉L)

E-JOIN

(μ; 〈〈o1〉L||〈o2〉L〉L) → (μ; 〈o1〉L)

E-ACQ

μ(o1, m) = $0 μ′ = μ[(o1, m) �→ o1]

(μ; 〈synch o1 do e2〉L) → (μ′; 〈hold o1 do 〈e2〉o1〉L)

E-REL

μ(o1, m) = o1 μ′ = μ[(o1, m) �→ $0]

(μ; 〈hold o1 do 〈o2〉o1〉L) → (μ′; 〈o2〉L)

Figure 4. Selected evaluation rules

The E-FORK rule indicates that two sub-expressions e1

and e2 are going to be executed in parallel, both of which

have the same surrounding lock as the whole parallel

composition. Evaluating two expressions in parallel is

nondeterministic: either side may be evaluated one step

284 JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009

© 2009 ACADEMY PUBLISHER

further, based on which we use E-PARALLEL, such that i
could be 1 or 2. According to E-JOIN, once both sides are

done, two parallel expressions are then eliminated with

retaining the result from one side (we pick the left).

Every lock object is designed to include an implicit

monitor m indicating whether or not the object has

already been locked. If m is null, its object is in an

unlocked state and is free to be acquired (by setting

the m field to itself). E-ACQ shows the situation of

a lock acquisition 2, while E-REL applies when the

lock is released and the context thread exits from the

synchronized block.

III. SCOPED PERMISSIONS

Permission is used as a semantic foundation for differ-

ent annotations and hence is capable of verifying many

program properties [9]–[11].

A. Definition

A permission is an abstract token associated with some

piece of state in a program and it is designed to permit

certain operations. Every piece of state is associated with

exactly one permission which is used as the right to access

the associated state. Assuming the execution needs to

access a field f of object o which is currently pointing to

another o′, then it is required to be granted a permission

written as o.f : ref(o′).
In order to distinguish reads from writes, we associate

fractions ξ as well, such that a write permission is an

explicit whole permission 1o.f : ref(o′), while a read

permission is just some partial permission ξo.f : ref(o′)
where ξ is syntactically guaranteed to be positive.

object reference ρ ::= o | r
key k ::= ρ.f

fraction ξ ::= 1 | 1/2 | z | ξξ
dimension d ::= 0 | d ± 1 | p

type τ ::= ref(ρ)
fact Γ ::= ρ ∈ C | ρ=ρ | Π ≺ k | C(ρ∗)

| d<d | true | ¬Γ | Γ ∧ Γ
permissions Π ::= ∅ | ξk : τ | Γ | Π −+ Π | Π ⊕ Π

| Γ ⇒ Π | ∃r.(Π) | Ωd(ρ)
| Ωd(ρ<ρ)

Figure 5. Permission syntax.

The formal permission syntax is given in Figure 5.

Here, o and r are used to range literal addresses and

variables respectively. A permission could be empty,

fractional, a fact, a linear implication, a combination 3,

conditional, existential or shared.

A ξρ.f : τ indicates some kind of right (depending on

ξ) to access field instance ρ.f. The fraction ξ could be 1,

1/2, a variable z or a product. τ is a permission type

which is given a regular pointer ref(ρ).

2The special “hold e1 do e2” is an internal expression that is not
allowed to be used by program designers.

3Permissions are combined using the operator (⊕) which is seman-
tically commutative and associative with ∅ as the identity.

A conditional permission Γ ⇒ Π presents a possible

Π depending on the truth value of Γ.

A fact Γ uses a simple logic that can be represented by

boolean formulae over type assertions (ρ ∈ C), reference

equalities (ρ=ρ), nesting (Π ≺ k), object type predicates

(C(ρ∗)), dimension comparing (d<d) as well as some

standard boolean logic. In particular, the nesting expresses

a relation that some permission Π is nested into location k
(written Π ≺ k), which implies that the nested permission

is not available unless the nester one is granted.

The linear implication Π1 −+ Π2 indicates that one

has the rights of the consequent Π2, except for the ones

of the antecedent Π1. Given a nesting fact Π ≺ k, a nested

Π can be carved out from its nester 1k : τ . The carving

process is then:

Π ≺ k ⊕ 1k : τ � Π ≺ k ⊕ Π ⊕ Π −+ 1k : τ

A shared permission Ωd(. . .) has two forms:

• a wrapped permission Ωd(ρ) that will be transformed

into 1ρ.Prot : τ$0 (called unwrapped permission)

after acquiring lock ρ, but be resumed once the lock

is released as described later in rule SYNCH;

• a shared fact Ωd(ρ<ρ′) that enforces an order be-

tween two locks, such that it is not allowed to acquire

the ρ′ when ρ is currently held by the context thread.

The dimension d is used to remember the duplication:

a shared permission Ωd(. . .) increases its dimension by

one when it is duplicated at the beginning of two parallel

executions, but decreases by one when two parallel execu-

tions join afterwards. Any shared permission disappears

once its dimension becomes zero. The difference between

a normal fact and a shared fact is that the former is

able to be duplicated and eliminated arbitrarily, while the

latter should maintain its dimension explicitly, with which

we are capable of tracking the thread information and

implementing the thread-scope order among locks.

B. Permission Checking

Given an environment E and an expression e nested

most recently in a synchronized block holding ρL (dL is

the dimension of ΩdL(ρL) when it changes to ρL.Prot :
τ$0), if e can be permission checked using E, then it has

a permission type τ with the environment being changed

to E′, written as a judgment:

E �dL
ρL

e ⇓ τ � E′

An environment is composed by two parts: a type context

Δ which is a set of object variables r, fraction variables z
and dimension variables p; and a granted permissions Π.

For a well-formed environment E = (Δ;Π), we require

that all free variables used in Π are in Δ (FV (Π) ⊆ Δ).

1) Permission Checking Rules: Regular permission

rules, such as READ, WRITE, SEQ, CALL and so on are

given in the Appendix. We only explain the rules which

are related to the parallel execution and synchronization

in Figure 6.

For rule NEW, we pick a fresh variable r to represent

the new created object and initialize all its fields to be

JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009 285

© 2009 ACADEMY PUBLISHER

NEW

r fresh

fi ∈ Fields(C) Π′ = r ∈ C ⊕ Ω1(r) ⊕ 1r.fi : ref($0)

Δ;Π dL
ρL

new C ⇓ ref(r) � {r} ∪ Δ;Π ⊕ Π′

SYNCH

Δ;Π dL
ρL

e1 ⇓ ref(ρ1) � Δ′; Π′
1 ⊕ Π′′

Π′
1 = Ωd1(ρ1) ⊕ (1<d1 ∧ 1<dL) ⇒ Ωd2(ρ1<ρL)

Δ′; 1ρ1.Prot : τ$0 ⊕ Π′′ d1
ρ1 e2 ⇓ ref(ρ2) � Δ′′′; Π′′′

1

Π′′′
1 = 1ρ1.Prot : τ$0 ⊕ Π′′′

Δ;Π dL
ρL

synch e1 do e2 ⇓ ref(ρ2) � Δ′′′; Π′
1 ⊕ Π′′′

FORK

Π = Π1 ⊕ Π2 ⊕ ΠΩ

Πi contain no Ωd(. . .) permissions

Π′
Ω = ω(ΠΩ) ⊕ Gen<(ΠΩ)

{rTi} ∪ Δ;Πi ⊕ Π′
Ω dL

ρL
ei ⇓ ref(ρi) � Δ′

i; Π
′
i

E′ = Δ′
1 ∪ Δ′

2; ω
−1(Π′

1 ⊕ Π′
2)

Δ;Π dL
ρL

parbegin (e1||e2) parend ⇓ ref(ρ1) � E′

Figure 6. Selected permission rules

null. Moreover, we combine a type fact r ∈ C as well as

the wrapped permission Ω1(r) indicating it is thread-local

and free to be locked afterwards.
In SYNCH, there are several issues: (1) The lock

expression is permission-checked to make sure it has a

type ref(ρ1) for some ρ1. (2) The wrapped permission

Ωd1(ρ1) should be present right before entering the syn-

chronized block. It is also required to compare the latest

holding lock ρ1 with ρL to determine whether they follow

a descending order using a shared fact, but wait, what

if one of the two locks is thread-local? The conditional

permission (1<d1 ∧ 1<dL) ⇒ Ωd2(ρ1<ρL) shows that

only if neither locks is thread-local then the shared fact

appears. (3) The wrapped permission Ωp1(ρ1) is trans-

formed into an unwrapped one 1ρ1.Prot : τ$0 inside

of the synchronized block. (4) Finally, the unwrapped

permission goes back to the wrapped one when exiting the

synchronized block. Re-entering a synchronization with

the same lock (acquiring the same lock multiple times) is

not possible since we won’t get the wrapped permission

any more when holding the lock. The wrapped permission

Ωp1(ρ1) guarantees that none of the nested permissions

in ρ1.Prot is available without acquiring lock ρ1 first.
The FORK shows that a parallel composition can be

permission-checked based on an input Π only if the Π
can be split into three parts Π1, Π2, and ΠΩ, such that Πi

goes into a corresponding child thread while ΠΩ remains

shared. ΠΩ will undergo a transformation ω(ΠΩ) that is

explained below, and new partial order may be generated

for unshared objects. Results are then re-combined after

the shared parts are transformed back by ω−1.

→ ω ω−1

∅ ∅ ∅
Γ Γ Γ
Ψ Ψ Ψ

Ωd(. . .) Ωd+1(. . .) Ωd−1(. . .) with 1 < d
Π1 −+ Π2 ω(Π1) −+ ω(Π2) ω−1(Π1) −+ ω−1(Π2)
Γ ⇒ Π Γ ⇒ ω(Π) Γ ⇒ ω−1(Π)

Π1 ⊕ Π2 ω(Π1) ⊕ ω(Π2) ω−1(Π1) ⊕ ω−1(Π2)

The ω operation increases the dimension of sharing

on each shared permission, but leaves others immutable,

while ω−1 is an opposite relation except that an unshared

(d = 1) wrapped permission represents a locally created

object and is preserved, while a shared fact with one

dimension is discarded:

ω−1(Ω1(ρ)) = Ω1(ρ) ω−1(Ω1(ρ < ρ′)) = ∅
Essentially, the type for e1 is picked and we simply merge

the output permissions from two sides.

The Gen<(Ω1(ρ1), . . . ,Ω1(ρn),Πs) operation consid-

ers each unshared wrapped permission Ω1(ρ) in an ar-

bitrary order (not a lock order!) and for each one gen-

erates lock orders of one of the following cases (non-

deterministically):

• It places ρ lower than all previous ordered locks

(Ωd+1(ρ′) in Πs, or an earlierly considered unshared

lock).

• It places ρ higher than all previous ordered locks.

• It places ρ between an existing order (Ωd(ρ′ < ρ′′)
in Πs).

Furthermore, we need to make sure no cycle in the

(scoped) lock order is generated.
2) Field and Class Invariant: Permissions are granted

to permit certain operations and they are provided in two

cases: class invariants and method types.

A “guarded by lock” clause is modeled by nesting

the whole permission of its field into the Prot field of

lock which is an implicit location with an uninteresting

type τ$0, such as 1r.f : τ ≺ rlock.Prot for some τ .

Without this annotation, the whole permission of a field

goes into rthis.All, where the All is considered as a

location collecting all permissions except for those that

are protected by guard objects. Analogously, All field is

given the type τ$0 as well.

A class invariant is a conjunction of all included field

invariants. It is given as C(rthis, r∗g) where rthis repre-

sents the this object and r∗g is a sequence of variables for

the guards g∗ occurring as class parameters. For instance,

the Account in Figure 2 has a class invariant:

Account(rthis, rg) = (rthis ∈ Account) ∧ Γb where
Γb = ∃r.(1rthis.balance : ref(r)⊕

¬r = $0 ⇒ (Int(r) ⊕ 1r.All : τ$0)) ≺ rg.Prot

The first conjunct shows the static type for rthis, while

the second is a field invariant for the balance field.

Γb states that the whole permission of the field access

is nested in its protector rg.Prot. Moreover, if it is not

null, then its pointed-to object must be an Int object

with holding a class invariant and the whole permission

of r.All will also be nested in rg.Prot. In other words,

the guard object protects not only the field access but also

the field object.

Here, the class invariant for Client is in below, such

that both field permissions are nested into rthis.All
because no “guarded by” is attached.

Client(rthis) = (rthis ∈ Client) ∧ Γc ∧ Γs where
Γc = ∃r.(1rthis.checking : ref(r) ⊕ ¬r = $0 ⇒

(Account(r, rthis) ⊕ 1r.All : ref($0))) ≺ rthis.All
Γs = ∃r.(1rthis.saving : ref(r) ⊕ ¬r=$0 ⇒

(Account(r, rthis) ⊕ 1r.All : ref($0))) ≺ rthis.All

286 JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009

© 2009 ACADEMY PUBLISHER

3) Method Type in Permission: Method annotations

usually indicate the requirements and effects of method

calls. Besides traditional “reads” and “writes,” our

system further includes “requires,” “uses” as well

as “<.” Different annotations are interpreted in different

ways.

• “reads e.f ” and “writes e.f ”: The caller needs

to provide a read (fractional) and a write (whole)

permission respectively.

• “requires lock”: The lock is required to be held

at the method entry, so the caller is responsible to

provide an unwrapped permission 1rlock.Prot : τ$0

and the callee returns it back equally.

• “uses lock”: The lock will be acquired inside of

the method body. It needs the caller to provide a

wrapped Ωd(rlock) to allow a lock acquisition as well

as a shared Ωd′
(rlock<rholding), where rholding is the

surrounding lock when this call happens.

• lock < lock′: A partial order among two locks is

interpreted as a shared fact: Ωd(rlock<rlock′).

Each method type is a mapping from an input to an

output environment. Assuming the call happens in a latest

synchronized block with holding rholding (pholding is the

dimension of its wrapped permission when it becomes an

unwrapped one), then a method type Δ; Π
pholding−−−→
rholding

Δ′; Π′

is a polymorphic over variables in Δ. It accepts the input

Π and returns Π′ using perhaps some new variables in

Δ′ as well as the existing Δ. For instance, the type for

deposit is

{rthis, rg, rm, rholding, pholding, z};
Account(rthis, rg) ⊕ 1rthis.Prot : τ$0 ⊕ zrm.All : τ$0
pholding−−−−→
rholding

{rret};
Account(rthis, rg) ⊕ 1rthis.Prot : τ$0 ⊕ zrm.All : τ$0

⊕ rret=$0
where rthis, rg and rm represent this object, class parame-

ter, method parameter respectively; rholding and pholding are

the holding lock for the latest synchronized block and its

dimension (as mentioned before); z is a fraction; rret is

the returned object.

The input permission first assumes that the class in-

variant for Account is held, then gives an unwrapped

permission and a read permission coming from two

method annotations respectively. The output permission

additionally includes a fact that the return value is null.

If a method acquires locks by itself, then the input

permissions may include some shared facts to indicate

the order. For instance, the permission representations for

annotations in checking2saving are:

Π1 = zmrm.All : τ$0

Π2 = zcrthis.checking : ref(rc)
Π3 = zsrthis.saving : ref(rs)
Π4 = Ωpc(rc) ⊕ (1<pc ∧ 1<pholding) ⇒ Ωp1(rc<rholding)
Π5 = Ωps(rs) ⊕ (1<ps ∧ 1<pholding) ⇒ Ωp2(rs<rholding)
Π6 = (1<pc ∧ 1<ps) ⇒ Ωp3(rs<rc)

Π̂ = Π1 ⊕ Π2 ⊕ Π3 ⊕ Π4 ⊕ Π5 ⊕ Π6

where Π1,Π2,Π3 originate from three “reads” respec-

tively; Π4,Π5 are for two “uses”, while Π6 interprets

the “...<...”. Then its method type is:

{rthis, rm, rc, rs, rholding, pholding, zm, zc, zs, pc, ps, p1, p2, p3};
Client(rthis) ⊕ Π̂
pholding−−−−→
rholding

{rret}; Π̂ ⊕ rret=$0

All shared facts in Π4, Π5 and Π6 have been made

conditional since a thread-local lock 4 does not need the

ordering requirement.

4) Examples: We briefly show how the FORK rule

works for deadlock and deadlock-free methods

in Figure 7.

/**@reads (m.All,checking,saving)
uses (checking,saving), checking < saving*/
void saving2checking(Int m) {
synch saving do {
saving.withdraw(m);
synch checking do
checking.deposit(m)

}
}

/**@reads (m.All,checking,saving),
uses (checking,saving), saving<checking*/
Int deadlock(Int m) {

(1)
parbegin (

(2)
checking2saving(m)

(3) //Error!
saving2checking(m)

) parend
}

/**@reads (m.All,checking,saving),
uses (checking,saving), saving<checking*/
Int deadlock-free(Int m) {
let newa = new Account<this>(this) in {

(4)
parbegin (

(5)
synch checking do
synch newa do
...

(6)
synch checking do
synch newa do
...

) parend;
(7)

parbegin (
(8)

synch newa do
synch saving do
...

(9)
synch newa do
synch saving do
...

) parend
}

}

Figure 7. Other methods in Client.

Since both of them use the same annotation as

checking2saving, we borrow notations Π1,...,Π6

above for brevity.

At the beginning of method deadlock, all (con-

ditional) shared permissions are Π4, Π5, Π6 which

should be applied ω and Gen<. Then, Π6 shows up

at (1), while ω(Π6) which is (1<pc ∧ 1<ps) ⇒
Ωp3+1(rs<rc) will be at (2) and (3). The call of

checking2saving at (2) is perfectly fine with this

order, but the saving2checking call at (3) does need

4A thread-local object is an object that is created in the current thread
and it is recognized as Ω1(ρ) in our system.

JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009 287

© 2009 ACADEMY PUBLISHER

a different order expressed by a shared fact (1<p′c ∧
1<p′s) ⇒ Ωp′

(rc<rs) for some variables p′c, p′s and p′.
The caller can not provide the permission that the callee

requires, thus the permission checking fails.
At (4), the shared permissions are similar to the ones

at (1) except an additional Ω1(ra) representing a new

created local variable newa. The ω works as before,

but Gen< may produce two one-dimension shared facts

Ω1(ra<rc) and Ω1(ra<rs) at (5) and (6), with which

the ordering for the following two lock acquisitions is

satiable. New shared facts will be eliminated at (7) and

Gen< may produce different two one-dimension shared

facts at (8) and (9): Ω1(rs<ra) and Ω1(ra<rc), which also

fit for the code. Since the lock acquisition always follows

the order expressed by the shared facts, the deadlock

condition is excluded.

IV. CONSISTENCY AND SOUNDNESS

In order to make sure that a permission checked

program can never have data races and deadlock at

runtime, we need to match the static environment E
and dynamic runtime state μ according to pre-defined

operational semantics and permission rules. We call this

property “consistency”.

A. Prerequisite for Consistency
Any permission Π may use three kinds of variables:

object variables, fraction variables or dimension variables

which should be substituted by absolute addresses, num-

bers in (0..1] and nature numbers respectively. We define

a σ to substitute away all the variables (expressed as

σ : Δ → ∅) in Π.
Then, there are two assumptions to ‘witness” the con-

sistency:

• Ain for nesting predicates;

• AP for class invariant predicates.

They are paired as A = (Ain, AP), with which any fact

can be evaluated to get a truth value: A � Γ ⇓ bool.
Permissions are defined in complicated forms: frac-

tional, conditional, shared ..., but the memory μ is very

simple. How to match all kinds of permissions to the

memory? We use a fractional heap to bridge them which

maps every location to a pair of a positive fraction

and an object value. $0 is a particular object reference

represented as “null” pointer and uses 0 as its fraction:

h ∈ Fractional Heap = (O × F) → ((Q+, O) ∪ {(0, $0)})
We use l to range over addresses (o, f).

Definition 1.1 (Empty Fractional Heap): The empty

fractional heap (written ∅̂) maps every address to (0, $0):
∅̂(l) = (0, $0).

Definition 1.2 (Combination of Fractional Heaps):
Given two fractional heaps h1 and h2, then for any

l ∈ Dom(h1) ∪ Dom(h2),

(h1+̂h2)(l) =

⎧⎪⎪⎨
⎪⎪⎩

h1(l) if fst(h2(l)) = 0
h2(l) if fst(h1(l)) = 0
(q, snd(h1(l))) if snd(h1(l)) = snd(h2(l))

q = fst(h1(l)) + fst(h2(l))
undefined otherwise

h1 and h2 are compatible if their combination h1+̂h2 is

defined.

Any fractional heap must be consistent with the actual

memory.

Definition 1.3: A fractional heap h is consistent with

memory μ (written h ≤ μ) iff ∀l ∈ Dom(h).(fst(h(l)) ∈
[0..1])∧((fst(h(l)) > 0) ⇒ ((l ∈ Dom(μ))∧(snd(h(l)) =
μ(l)))).

Besides A, we need another assumption D to maintain

the dynamic orders among locks.

Definition 1.4 (Flattening): Given a memory μ with

assumptions A and D, if a permission Π with an obli-

gation permission Ψ can be modeled by a fractional heap

h such that h ≤ μ, then we say the permission Π can be

flattened (written h; Ψ |=(A,D)
μ Π), where the obligation Ψ

is treated as a restricted permission that can be discharged

symbolically from the Π.

Based on the flattening rules in Figure 11 in the

Appendix, a read permission ξl : ref(o) can be flattened

as:

 ξ ⇓ q
{l �→ o} (l) = o

{l �→ (1, o)} ; ∅ |=(∅,∅)
{l�→o} l : ref(o)

CP-FIELD

{l �→ (q, o)} ; ∅ |=(∅,∅)
{l�→o} ξl : ref(o)

CP-FRAC

Flattening wrapped permissions may depend on whether

the lock has already been held by some thread. If yes,

then it is flattened to an empty fractional heap by CP-

WRAPPEDHOLD since some other thread borrowed it. If

not, then it is flattened to the same fractional heap as

its unwrapped one by CP-WRAPPEDFREE. A shared fact

cannot be flattened if it does not follow the orders given

in D by CP-SHAREDFACT.

B. Consistency Checking

We use μ; (A, D) |= Π to indicate that a variable-free

permission Π is consistent with the memory μ assuming

A and D. This is given as a judgement:

� ∃(o1, ..., on).(∀i ∈ [1..n − 1].oi < oi+1 ∈ D) ∧ (on < o1 ∈ D)
(p(o∗) ∈ A) ⇒ A � [(r �→ o)∗]P (p) ⇓ true
FV (Π) = ∅ h; ∅ |=(A,D)

μ Π h ≤ μ

μ; (A, D) |= Π

Basically, there are three requirements for the consistency

between the memory μ with assumptions (A, D) and the

variable-free permissions Π:

• The assumption D is used to give orders among locks

and it must be acyclic;

• For any named predicate in A, its entire definition

(substitute object variables for object values) must

be true;

• Given the μ and (A, D), the permission Π can

be flattened to a fractional heap h such that h is

consistent with μ.

C. Soundness

The fundamental soundness of this permission type

system depends on a theorem:

288 JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009

© 2009 ACADEMY PUBLISHER

Theorem 3.1 (Progress and Preservation): If a well-

typed expression e dynamically nested most recently in

a synchronized block holding oL can be checked by

a variable-free permission Π such that ∅; Π �n
oL

e :
ref(ρ) � Δ′′; Π′′, and a memory μ with assumptions

(A, D) is consistent with Π, then either e is a value

of the form o or e can be evaluated one-step further

(μ; 〈e〉oL
) → (μ′; 〈e′〉oL

) and there exists Π′, σ and

(A′, D′) such that σ will substitute away some of the new

type variables (σ : Δ → ∅ with Δ ⊆ Δ′′), ∅; Π′ �oL
n e′ :

ref(σρ) � σΔ′′;σΠ′′ and μ′ with assumptions (A′, D′)
is consistent with Π′ where A ⊆ A

′.
proof(Sketch): We combine the permission type rules

with the operational semantics defined in section II and

prove by induction on permission checking rules case by

case. This is similar to our previous work [9], [10].

Soundness indicates that a well-typed program can

never go wrong. Here, we say a program is well-typed if

all the method’s bodies are well-typed and can be checked

by their method types in permission.

Theorem 3.2: A well-typed program is guaranteed to

be free of data races and deadlocks.

proof(Sketch): We distinguish four operations: read (R),

write (W), read with lock ([R]L), write with lock ([W]L).

In order to prove data-race free, it’s sufficient to show that

for any location:

• Case 1: if one W happens, none of the R, W , [R]L,

[W]L can happen in parallel threads;

• Case 2: if one [W]L happens, neither R nor W can

happen in parallel threads.

In addition, the maintenance of lock orders according to

the acyclic D in permission checking makes sure that any

lock with a higher level cannot be acquired when the

current thread is holding some lower orders.

V. RELATED WORK

Flanagan et al. [5], [12] introduce a static race detection

analysis for multithreaded Java programs using similar

annotations as ours. However, every field in their system

must have a guard, thus no state is delegated to the holder

of the reference. Boyapati et al. [6], [7] use a variant of

ownership types to prevent data races. They do not protect

individual fields directly. Instead, the object’s state is

protected by its owner. They also prevent deadlock albeit

with statically fixed lock levels. However, neither the

above related work includes a formally defined dynamic

semantics of synchronization, to our knowledge.

Kobayashi [8] introduces an advanced type systems

for linearity, deadlock-free using π-calculus. In order to

prevent deadlocks, he associated each input and output

action an obligation level and a capability level in order

to prevent cyclic dependencies between communications.

Brookes [1] defines a semantic of concurrency in

separation logic. He converts every command into action

traces and uses separation logic to prove all the possible

interleavings between parallel traces are race free. The

soundness property has been established, but there is no

method call and pointer alias in his language, since it

seems they are very hard to be handled and may cause

infinite recursion. Moreover, since he uses action traces to

simulate all the possibilities of interleavings, the number

may be exponential.

Greenhouse et al. [2], [13] uses annotations and policy

to express the concurrency-related design intents for a

Java-style shared-memory programs. They use annota-

tions to express some properties such as lock-state as-

sociations, uniqueness of some references and the aggre-

gations of some states. They use the concurrency policy

of a class implementation to specify which methods have

potential executions that can be interleaved with others

safely. A potential race condition exists if a conservative

analysis cannot assure consistent regard to the defined pol-

icy, while we use class invariants to indicate protections

associated to each field definition.

VI. CONCLUSION

This paper shows an ongoing work with focusing on

formalization of the permission system. We extend the

current permission system with shared permissions based

on a simple OO language with structural parallelism

and synchronization. Our permission type system requires

adding some additional annotations to express field pro-

tection mechanism as well as lock order. Furthermore,

some lock orders are allowed to be thread scoped, which

means they can be altered according to the creation

and elimination of parallel threads. We establish the

consistency between the runtime memory and the static

permission types, based on which we show the soundness.

A well-typed program is guaranteed to be free of data

races and deadlocks.

APPENDIX

E-WRITE1
(μ; 〈e1〉L) → (μ′; 〈e′1〉L)

(μ; 〈e1.f=e2〉L) → (μ′; 〈e′1.f=e2〉L)

E-WRITE2
(μ; 〈e2〉L) → (μ′; 〈e′2〉L)

(μ; 〈o1.f=e2〉L) → (μ′; 〈o1.f=e′2〉L)
E-WRITE

μ′ = μ[(o1, f) �→ o2]
(μ; 〈o1.f=o2〉L) → (μ′; 〈o2〉L)

E-INVOKE1
(μ; 〈e0〉L) → (μ′; 〈e′0〉L)

(μ; 〈e0.m(e∗)〉L) → (μ′; 〈e′0.m(e∗)〉L)
E-INVOKE2

(μ; 〈ei〉L) → (μ′; 〈e′i〉L)
(μ; 〈o0.m(o∗, ei, e

∗)〉L) → (μ′; 〈o0.m(o∗, e′i, e
∗)〉L)

E-INVOKE

mbody(class(o0), m) = ((cn x)∗, locks, e, α)
(μ; 〈o0.m(o∗)〉L) → (μ; 〈e[this �→ o0, xi �→ oi]〉L)

E-SEQ1

(μ; 〈e1〉L) → (μ′; 〈e′1〉L)
(μ; 〈e1;e2〉L) → (μ′; 〈e′1;e2〉L)

E-SEQ

(μ; 〈o1;e2〉L) → (μ; 〈e2〉L)
E-LOCAL

(μ; 〈let x=o1 in e2〉L) → (μ; 〈[x �→ o1]e2〉L)
E-LOCAL1

(μ; 〈e1〉L) → (μ′; 〈e′1〉L)
(μ; 〈let x=e1...〉L) → (μ′; 〈let x=e′1...〉L)

E-NEW

∀f ∈ fields(C).(o, f) /∈ Dom(μ)
(μ; 〈new C〉L) → (μ[(o, f) �→ $0]; 〈o〉L)

E-SYNC1
(μ; 〈e1〉L) → (μ′; 〈e′1〉L)

(μ; 〈synch e1...〉L) → (μ′; 〈synch e′1...〉L)

E-READ1
(μ; 〈e〉L) → (μ′; 〈e′〉L)

(μ; 〈e.f〉L) → (μ′; 〈e′.f〉L)
E-READ

o′ = μ(o, f)
(μ; 〈o.f〉L) → (μ; 〈o′〉L)

E-HOLD

μ(o1, m) = o1 (μ; 〈e2〉o1) → (μ′; 〈e′2〉o1)
(μ; 〈hold o1 do 〈e2〉o1〉L) → (μ′; 〈hold o1 do 〈e′2〉o1〉L)

Figure 8. Operational semantics.

REFERENCES

[1] S. Brookes, “A semantics for concurrent separation logic,”
in CONCUR ’04, Aug. 2004.

JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009 289

© 2009 ACADEMY PUBLISHER

VARIABLE

rx ∈ Δ

Δ; Π �dL
ρL

x : ref(rx) � Δ; Π

OBJLOC

Δ; Π �dL
ρL

o : ref(o) � Δ; Π

SEQ

Δ; Π �dL
ρL

e1 : ref(ρ1) � Δ′; Π′

Δ′; Π′ �dL
ρL

e2 : ref(ρ2) � Δ′′; Π′′

Δ; Π �dL
ρL

e1;e2 : ref(ρ2) � Δ′′; Π′′

READ

Δ; Π �dL
ρL

e : ref(ρ) � Δ′; Π′

Π′ = ξρ.f : ref(ρf),Π′′

Δ; Π �dL
ρL

e.f : ref(ρf) � Δ′; Π′

WRITE

Δ; Π �dL
ρL

e1 : ref(ρ1) � Δ′; Π′ �dL
ρL

e2 : ref(ρ2) � Δ′′; Π′′

Π′′ = 1ρ1.f : ref(ρf),Π′′′

Δ; Π �dL
ρL

e1.f=e2 : ref(ρ2) � Δ′′; 1ρ1.f : ref(ρ2),Π′′′

LOCAL

Δ; Π �dL
ρL

e1 : ref(ρ1) � Δ′; Π′ rx �∈ Δ′

{rx} ∪ Δ′; ρ1 = rx,Π′ �dL
ρL

e2 : ref(ρ2) � Δ′′; Π′′

Δ; Π �dL
ρL

let x=e1 in e2 : ref([rx �→ ρ1]ρ2) � Δ′′ \ {rx} ; [rx �→ ρ1]Π′′

PARALLEL

Π = Π1,Π2,ΠΩ

Δi; Πi,ΠΩ �dL
ρL

ei : ref(ρi) � Δ′
i; Π

′
i

Δ1 ∪ Δ2; Π �dL
ρL

〈e1〉ρL
||〈e2〉ρL

: ref(ρ1) � (Δ′
1 ∪ Δ′

2);ω
−1(Π′

1,Π
′
2)

HOLD

Δ; 1o1.Prot : τ$0,Π′ �d1
o1

e2 : ref(ρ2) � Δ′′; 1o1.Prot : τ$0,Π′′

Π′
1 = Ωd1(o1), (1<d1 ∧ 1<dL) � Ωd2(o1<ρL)

Δ; Π′
1,Π

′ �dL
ρL

hold o1 do e2 : ref(ρ2) � Δ′′; Π′
1,Π

′′

INVOKE

Δ; Π �dL
ρL

e0 : ref(ρ0) � Δ0; Π0 �dL
ρL

e1 : ref(ρ1) � Δ1; Π1

Δ1; Π1 �dL
ρL

... en : ref(ρn) � Δn; Πn Πn = ρ0 : C0,Π′
n

mbody(C0, m) = (x∗, e,Δ′
0; Π

′
0

pholding−−−→
rholding

Δ′′
0 ;σ2Π′′

0)

σ1 : Δ′
0 → Δn Δ′ fresh σ2 : Δ′ → Δ′′

0

Πn = σ1Π′
0,Π

′ ∀i ∈ [1..n].(σ1(rxi
) = ρi)

σ1(rthis) = ρ0 σ1(rholding) = ρL

σ1(pholding) = dL r′ ∈ Δ′ σ2(r′) = rret

Δ; Π �dL
ρL

e0.m(e1, ..., en) : ref(r′) � Δn ∪ Δ′;σ1Π′′
0 ,Π′

METHOD

Δ1;C(rthis, r
∗
g),Π1 �pholding

rholding e : ref(ρ) � Δ′;σ2(Π2)
{rx1 , ..., rxn

, rthis, rholding, pholding} ⊆ Δ1

Δ′ ∩ Δ2 = ∅
σ2 : Δ2 → Δ′ rret ∈ Δ2 σ2(rret) = ρ

� Δ1; Π1
pholding−−−→
rholding

Δ2; Π2 is the type for mn(x∗){e}in class C

Figure 9. Permission type rules.

[2] A. Greenhouse and W. L. Scherlis, “Assuring and evolving
concurrent programs: annotations and policy,” in ICSE ’02,
2002, pp. 453–463.

[3] D. Engler and K. Ashcraft, “Racerx: effective, static de-
tection of race conditions and deadlocks,” in SOSP ’03,
2003, pp. 237–252.

[4] Y. Yu, T. Rodeheffer, and W. Chen, “Racetrack: efficient
detection of data race conditions via adaptive tracking,” in
SOSP ’05, 2005, pp. 221–234.

[5] C. Flanagan and S. N. Freund, “Types-based race detection
for Java,” in PLDI ’00. ACM Press, 2000, pp. 219–232.

[6] C. Boyapati and M. Rinard, “A parameterized type system
for race-free Java programs,” SIGPLAN Not., vol. 36,
no. 11, pp. 56–69, 2001.

[7] C. Boyapati, R. Lee, and M. Rinard, “Ownership types for
safe programming: preventing data races and deadlocks,”
in OOPSLA ’02. ACM Press, Nov. 2002, pp. 211–230.

[8] N. Kobayashi, “Type systems for concurrent programs,” in
Proceedings of UNU/IIST 10th Anniversary Colloquium,
LNCS 2757. Springer, 2002, pp. 439–453.

[9] J. Boyland and W. Retert, “Connecting effects and unique-
ness with adoption,” in POPL ’05. New York, NY, USA:
ACM Press, 2005, pp. 283–295.

[10] J. Boyland, “Checking interference with fractional permis-
sions,” in SAS ’03, 2003, pp. 55–72.

[11] Y. Zhao and J. Boyland, “A fundamental permission in-
terpretation for ownership types,” in TASE ’08. IEEE
Computer Society, June 2008, pp. 65–72.

[12] C. Flanagan and M. Abadi, “Types for safe locking,” in
ESOP ’99, Mar. 1999.

[13] A. Greenhouse, “A programmer-oriented approach to safe
concurrency,” Ph.D. dissertation, CMU, 2003.

TR-SUBST

Π ⊕ r = ρ ≡ [r �→ ρ]Π ⊕ r = ρ
TR-DUPLICATE

Γ ≡ Γ ⊕ Γ

TR-SUBBAG

Π1 � Π′
1

Π1 ⊕ Π2 � Π′
1 ⊕ Π2

TR-BAGCOMM

Π1 ⊕ Π2 ≡ Π2 ⊕ Π1

TR-TRANS

Π � Π′ Π′ � Π′′

Π � Π′′

TR-IDENT

Π ≡ Π
TR-DROP

Π � ∅

TR-TRUE

true ≡ ∅
TR-CONDTRUE

Γ ⊕ Γ ⇒ Π ≡ Γ ⊕ Π
TR-CONDFALSE

¬Γ ⊕ Γ ⇒ Π ≡ ¬Γ
TR-SPLIT

Π ≡ 1/2Π ⊕ 1/2Π
TR-EMPTY

Π ≡ Π ⊕ ∅
TR-CONDSPLIT

Γ ⇒ (Π1 ⊕ Π2) ≡ Γ ⇒ Π1Γ ⇒ Π2

TR-CONDNEST

Γ ⇒ (Γ′ ⇒ Π) ≡ (Γ ∧ Γ′) ⇒ Π
TR-FRACEMPTY

ξ∅ ≡ ∅
TR-FRACFACT

ξΓ ≡ Γ
TR-FRACCOND

ξ(Π −+ Π′) ≡ (ξΠ) −+ (ξΠ′)
TR-FRACCOMB

ξ(Π1 ⊕ Π2) ≡ ξΠ1 ⊕ ξΠ2

TR-ZERODIM

Ω0(. . .) ≡ ∅
TR-FRACBASE

ξ(ξ′k : τ) ≡ (ξξ′)k : τ
TR-PACK

ξk : ref(ρ) ⊕ [r �→ ρ]Π � ξk : ∃r.(Π)
TR-UNPACK

r′ fresh Π′ = ξk : ref(r′) ⊕ [r �→ r′]Π
Δ; ξk : ∃r.(Π) � {r′} ∪ Δ; Π′

TR-ORDERNULL

Ωd(ρ1 < ρ2) � Ωd+1($0 < ρ2)

Figure 10. Transformation rules.

CP-FRAC

� ξ ⇓ q h; Ψ |=(A,D)
μ Π

qh; ξΨ |=(A,D)
μ ξΠ

CP-TRUEIMP

A � Γ ⇓ true h; Ψ |=(A,D)
μ Π

h; Ψ |=(A,D)
μ Γ � Π

CP-FALSEIMP

A � Γ ⇓ false

∅̂; Ψ |=(A,D)
μ Γ � Π

CP-IMP

h; Ψ′,Ψ |=(A,D)
μ Π

h; Ψ′ |=(A,D)
μ Ψ � Π

CP-WRAPPEDHOLD

μ(o, m) �= $0

∅̂; ∅ |=(A,D)
μ Ωd(o)

CP-SHAREDFACT

� d ⇓ n n > 0 o < o′ ∈ D

∅̂; ∅ |=(A,D)
μ Ωd(o < o′)

CP-COMBINE

hi; Ψi |=(A,D)
μ Πi

h1+̂h2; Ψ1,Ψ2 |=(A,D)
μ Π1, Π2

CP-FIELDUNPACK

μ(l) = o′ h; Ψ |=(A,D)
μ l : ref(o′), [r �→ o′]Π

h; Ψ |=(A,D)
μ l : ∃r.(Π)

CP-FIELD

μ(l) = o′ h = {[l �→ (1, o′)]}
h; ∅ |=(A,D)

μ l : ref(o′)

CP-TRUE

A � Γ ⇓ true

∅̂; ∅ |=(A,D)
μ Γ

CP-ADOPTER

Ψ =
∑

(li:τi≺l)∈A

Ψi hi; Ψi |=(A,D)
μ li : τi

(
∧∑

(li:τi≺l)∈A

hi)+̂ {[l �→ (1, $0)]} ; Ψ |=(A,D)
μ l : τ$0

CP-EMPTY

∅̂; ∅ |=(A,D)
μ ∅

CP-WRAPPEDFREE

μ(o, m) = $0
� d ⇓ n n > 0 h; ∅ |=(A,D)

μ o.Prot : τ$0

h; ∅ |=(A,D)
μ Ωd(o)

Figure 11. Flattening rules: h; Ψ |=(A,D)
μ Π.

Yang Zhao was born in 1978. He received his Ph.D. degree
in computer science from University of Wisconsin, Milwaukee
in 2007, his M.S. degree in computer science from Nanjing
University in 2003. He is currently an Assistant Professor at
Nanjing University of Sci.& Tech., China. His current research
interests include program analysis and software engineering.

Ligong Yu was born in 1980. He received his M.S. degree
in computer science from Zhejiang University in 2005. He is
currently a Ph.D. candidate at Nanjing University of Sci.&
Tech., China. His current research interests include software
engineering and computer music.

Gongxuan Zhang was born in 1961. He received his M.S. and
Ph.D. degrees in computer science from Nanjing University of
Sci.& Tech. in 1991 and 2005, respectively. He is currently
a Professor at Nanjing University of Sci.& Tech., China. His
current research interests include distributed system, dependable
computing and software engineering.

Jia Bei was born in 1979. He received his M.S. and Ph.D.
degrees in computer science from Nanjing University in 2003
and 2006, respectively. He is currently an Assistant Professor at
Nanjing University, China. His current research interests include
distributed system, network security and e-commerce.

290 JOURNAL OF SOFTWARE, VOL. 4, NO. 4, JUNE 2009

© 2009 ACADEMY PUBLISHER

