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Abstract—The performance gap for high performance 
applications has been widening over time. High level 
program transformations are critical to improve 
applications’ performance, many of which concern the 
determination of optimal values for transformation 
parameters, such as loop unrolling and blocking. Static 
approaches achieve these values based on analytical models 
that are hard to achieve because of increasing architecture 
complexity and code structures. Recent iterative 
compilation approaches achieve it by executing different 
versions of the program on actual platforms and select the 
one that renders best performance, outperforming static 
compilation approaches significantly. But the expensive 
compilation cost has limited their application scope to 
embedded applications and a small group of math kernels. 
This paper proposes a combinative approach--Combining 
Model and Iterative Compilation for Program Performance 
Optimization (CMIC). Such an approach first constructs a 
program optimization transformation model based on 
hardware performance counters to decide how and when to 
apply transformations, and then selects the optimal 
transformation parameters using Nelder-Mead simplex 
algorithm. Experimental results show that our approach can 
effectively improve programs’ floating-point performance, 
reducing programs’ runtime, therefore, lessening the 
performance gap for high-performance applications. 
 
Index Terms—Performance, Languages, Measurement, 
Experimentation, Algorithms 
 

I.  INTRODUCTION 

With the rapid development of processors following 
Moore’s Law, the performance gap between memory and 
processors is widening, which has influenced single 
processors’ performance greatly. High-level 
transformations such as loop unrolling, array tiling, and 
array padding are effective ways to improve programs’ 
performance. Many of these transformations have 
numerical parameters whose values must be carefully 
selected to achieve optimal performance. There are 
mainly two kinds of optimization methods to compute 
optimal optimization parameters—model-driven 

optimization and empirical optimization. A model-driven 
method uses a simple model of the program and the 
machine to select parameters, which might be not precise 
due to the increasing complexity of architectures and 
programs. Automated empirical optimization method 
generates multiple versions of the program, runs them on 
the actual machine, and selects the one that renders the 
best performance [1]. With this empirical optimization 
approach, ATLAS [1, 2], PHiPAC[3], and FFTW[4] 
successively generate highly optimized libraries for dense, 
sparse linear algebra kernels and FFT respectively. It has 
been shown that empirical method is more effective than 
model-driven method [5]. However, because the 
optimization spaces (set of all possible program 
transformations) are large, non-linear with many local 
minima, finding a good solution may be long and non-
trivial, making iterative method quite time consuming. To 
best optimize programs’ memory performance, it would 
be a better choice to combine model-driven and empirical 
optimization methods, which utilizes apriori information 
to narrow the optimization space and uses some search 
method to empirically search good optimization 
parameters. 

This paper proposes the approach of Combining Model 
and Iterative Compilation for Program Performance 
Optimization (CMIC), which first uses the performance 
counter values collected from a few runs of the program 
to determine the programs optimization model which 
decides when and how to transform a loop to most 
effectively optimize programs’ performance, and then 
selects the optimal transformation parameters that renders 
the least runtime using Nelder-Mead simplex algorithm.  

This paper is organized as follows. The next section 
describes the framework of CMIC. Section 3 presents the 
Program Optimization Transformation Model based on 
Hardware Performance Counters (POTraM), including 
the performance metrics it used and how they can 
characterize program behavior. Section 4 provides 
Iterative Optimization of Transformation Parameters 
based on Nelder-Mead Simplex Algorithm (ItOTraP) 
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used in CMIC. Section 5 describes the experimental setup 
and the experimental results and analysis. This is 
followed by concluding remarks and future work. 

II.  FRAMEWORK OF CMIC 

CMIC includes two parts. 1) Generation of 
parameterized optimization code based on analytical 
models. In this part programmers transform and 
parameterize the program based on POTraM which will 
be described in Section 3. 2) Iterative optimization of 
transformation parameters based on Nelder-Mead 
Simplex algorithm. Iterative optimization selects the 
optimal parameters for every optimized program. The 
search engine selects performance data using 
performance monitoring tools. In our approach we 
evaluate the parameters using actual program execution 
time, and generate new optimization parameters using 
Nelder-Mead Simplex algorithm. Therefore, the program 
using the selected optimal parameter will render least 
runtime. In the next two sections, we will discuss the two 
parts in detail. The framework of CMIC is illustrated in 
Fig. 1. 

III.  PROGRAM OPTIMIZATION TRANSFORMATION MODEL 
BASED ON HARDWARE PERFORMANCE COUNTERS 

This section first looks at the performance counters 
used in this paper, then illustrates how they can be used 
to characterize well-known properties of programs, and 
POTraM is finally presented. 

A.  Performance Counters 
Modern processors are often equipped with a special 

set of registers that allow for measuring performance 
counter events with no disruption to the running program. 
The information obtained from performance counters is a 
compact summary of a program’s dynamic behavior. In 
particular, they summarize important aspects of a 
program’s performance, e.g., cache misses or floating 
point unit utilization. Performance counters have been 
extensively used for performance analysis in explaining 
program behavior [6, 7]. One of the first papers to 
investigate how they could be used systematically to 
select optimizations [8] showed impressive performance 
gains.  

We use hardware performance monitoring tool PAPI 
(Performance Application Programming Interface) [9] to 
access these hardware performance counters, which is 
developed at the University of Tennessee’s Innovative 
Computing Laboratory in the Computer Science 
Department. The performance counters used in this study 
are shown in Table I. The first column lists the 
performance counter acronyms, and the second column 
gives a description.  

B.  Dynamic characterization of program behavior using 
performance counters 

This section lays the foundation for the application of 
transformations that improve programs’ performance. In 
this paper we optimize programs on Intel Pentium D 

platform; therefore, we only consider L1 cache and L2 
cache. 

B.1. Cache miss rate 

L1 data cache miss rate:  

1 _ 1_ _ 1_L DMSR PAPI L DCM PAPI L DCA=   (1) 
L2 cache miss rate:  

2 _ 2 _ _ 2 _LMSR PAPI L TCM PAPI L TCA=    (2) 
It is generally thought that below 5% is a fairly good 

cache miss rate, and if certain level’s cache miss rate of 
the program is smaller than 5%, it means that the program 
has good cache access locality in this cache level. 

B.2. Performance influence ratio 

In modern processors, the memory and instruction 
pipeline utilization of programs influences performance 
most. Mo, et al [10, 11] present the concepts of Influence 
Ratio for Memory Reference ( mη ) to quantify the impact 

of memory and pipeline operations. mη  represents the 
impact degree of cache miss to performance, and the 
higher the cache hit rate, the less mη  will be. plη  

represents the impact degree of instruction level 
parallelization to performance, and it reflects whether 
applications have fully utilized multi-function units and 
super-scalar instruction pipeline architectures of 
microprocessors. The higher reuse ratio of the operators 
in the register, the less plη  will be. fpη  describes 
applications’ utilization ratio of single processor peak 
floating point performance, which relies on mη  and plη . 

Let C1 and C2 be L1 cache and L2 cache miss cost (in 
cycles), F be processors’ frequency (in Hz), G be 
machines’ peak floating-point performance (in Mflops), T 
be program running time (in seconds), and Tm be the total 
time cost of cache miss (in seconds), then we can 
compute mη , plη  and fpη  as follows: 

1 1_ 1_ *m PAPI L TCM C FT =               (3) 

2 2_ 2 _ *m PAPI L TCM C FT =             (4) 

1 2m m mT T T= +                               (5) 

m mT Tη =                                   (6) 

TABLE I.   
PERFORMANCE COUNTERS USED 

Name Meaning 
PAPI_L1_DCA L1 data cache accesses 
PAPI_L1_DCM L1 data cache misses 
PAPI_L1_TCM L1 total cache misses 
PAPI_L2_TCA L2 total cache accesses 
PAPI_L2_TCM L2 total cache misses 
PAPI_FP_INS Floating-point instructions 
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Figure 3.  The advance procedure of two parameters Nelder-Mead 
simplex algorithm. (left) Reflection, contraction and expansion 

operation (right) Shrink operation.  

1. Run the program. Collect and compute memory dependent
metrics in Section B; 

2. if (MSRL1D>5%) 
    {Apply loop exchange transformation.} 
3. if (ηm>30%) 

{ 3.1 Apply loop tiling transformation; 
  3.2 Apply array tiling transformation.} 

else if (ηm>20%)  
{Apply loop tiling transformation.} 

4. if (ηpl>80%) 
    {Unroll the innermost loop.} 
5. Terminate, resulting in the optimal transformations. 

Figure 2.  Model of POTraM 

_ _ ( * (1 ))pl mPAPI FP INS G T Tη −= −    (7) 

       _ _ ( * )fp PAPI FP INS G Tη =           (8) 

C.  POTraM 
Our approach obtains above-mentioned metrics using 

information collected by hardware performance counters, 
and achieves a program optimization transformation 
model--POTraM based on these metrics computed. The 
model we have presented can use them to provide source-
code level feedback to a programmer about what 
transformations to concentrate on those most likely to 
result in memory performance boost. POTraM determines 
whether and how to apply various loop transformations, 
and guides the restructure of program loops to achieve 
high performance on specific target architectures. The 
flowchart of POTraM is described in Fig. 2. 

Ⅳ.  ITERATIVE OPTIMIZATION OF TRANSFORMATION 
PARAMETERS BASED ON NELDER-MEAD SIMPLEX 

ALGORITHM 

A. Theoretical Analysis 
Iterative compilation optimization parameter selection 

problem can be formalized as follows: 

1 2min ( ( , , , ))

, 1, 2, ,

n

i i i

i

f x p p p

Subject to

low p up i n

p Z

f R

=   

  

≤ ≤   =

∈

∈

⎧
⎪
⎨
⎪
⎩

          (9) 

Where pi is one program transformation parameter; x is 
the compositional parameter vector of all transformation 
parameters, which is the search target of search algorithm; 
f(x) is program execution time with parameter x , which is 
the objective function to minimize. Therefore, the 
optimization space includes 

i i
1 i n

(up low )
≤ ≤

−∏ compositional parameter vectors. It’s 

very huge, and highly non-linear.  

Many researches focus on exploring search heuristics 
in iterative compilation method; however, there has been 
no suitable search strategy for exploring the large and 
complex search space. Previous researches show that 
genetic algorithm (GA) is successful to find the best 
sequence of compiler passes [12], however, Kulkarni et al. 
[13] find that simple techniques, such as local hill 
climbing, when allowed running over multiple iterations, 
can often outperform complex techniques such as GA. 
Kisuki et al. [14] also show that in finding transformation 
parameters, random search performs as well as other 
sophisticated techniques such as GA and simulated 
annealing. Recent works by Apan Qasem et al. [15] find 
that direct search can be an effective technique for 
finding good values for transformation parameters in a 
reasonable time. Haihang You et al. [16] apply simplex 
method to replace the ATLAS (Automatically Tuned 
Linear Algebra Software) [1] search heuristics, and find 
that simplex search scheme can produce parameters with 
better performance. 

The Nelder-Mead simplex method [17, 18] is a 
classical and powerful direct search method for 
optimization. It appears to be a good fit to the problem of 
finding optimization parameters to minimize program 
runtime. First, the space of possible sequences is quite 
large when several optimizations are applied. This space 
is too large to search completely. Second, we have a very 
good evaluation function to assess the quality of a 
solution. We simply perform the optimizations and test 
programs runtime. Our objective function is discrete and 
nonlinear, making the problem difficult to address with 
more classical combinatorial optimization techniques. 
Third, The Nelder-Mead simplex method is useful for 
training parameters, especially for searching minima of 
multi-dimensional functions when dimension is less than 
20. It is mainly used to solve the minimization 
problem: min ( )f x , where : nf R R → , and the 
gradient information is not available. Finally, the amount 
of time spent by Nelder-Mead simplex algorithm is 
flexible. More computation time may result in better 
solutions, but the algorithm can be interrupted at any time 
to return the best solution found. Therefore, we design the 
Nelder-Mead simplex algorithm based optimization 
parameter selection algorithm to solve iterative 
compilation optimization parameters selection problem. 
Our experiments show that Nelder-Mead simplex 
algorithm is well suited to the problem of finding good 
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optimization parameters. 

B. Introduction to Nelder-Mead Simplex Algorithm 
Spendley, Hext, and Himsworth[17] introduced the 

simplex method, which is a non-derivative based direct 
search method. Nelder and Mead improved the method 
by adding more moves and making the search more 
robust  and faster [18]. A “simplex” is a geometrical 
figure consisting of n+1 point in n-dimensions, e.g. a 2-
dimension simplex is a triangle. Through a sequence of 
elementary geometric transformations, the initial simplex 
moves towards minimum, and away from maximum. It is 
probably the most widely used optimization method. The 
advance procedure of two parameters Nelder-Mead 
simplex algorithm is demonstrated in Fig. 3. The original 
simplex consists of A, B, C, and A>B>C. Therefore, A is 
reflected through O, the centroid of B and C, generating 
D. If D is better than B and C, then expansion point E is 
generated. If E is better than D, A is replaced by E; else A 
is replaced by D. If D is worse than A, contraction point 
ND is generated. If it is better than A, A will be replaced 
by it; else the simplex ABC will be shrunk as a smaller 
simplex A’B’C which is demonstrated in Fig. 3 (right). 

Considering that if one parameter vector performs 
badly, it may be because the transformation parameter is 
too big (or too small) and makes full use of cache, 
register, pipeline, and etc. Through the reflection 
operation in Nelder-Mead simplex method, a much 
smaller (or much bigger) parameter will be generated, 
and it is apt to perform well. If reflection results in new 
minimum, we will consider that if it moves further along 
the minimization direction would it perform even better? 
So we do so through expansion operation. If the 
reflection point is still the worst point, we will try a 
smaller step with a contraction operation. If a simple 
contraction doesn't improve things, then try moving all 
points towards the current minimum through shrink 
operation. We think the performance of new generated 
parameter -- through a series of geometric transformation 
in Nelder-Mead simplex algorithm -- is more likely better 
than that of randomly generated parameters and that of 
GA through mutation, and crossover operation. Therefore, 
we design the Nelder-Mead simplex based optimization 
parameter selection algorithm to search the optimal 
optimization parameters. 

C.  Nelder-Mead Simplex Based Optimization Parameter 
Selection Algorithm 

For the simplicity of algorithm description, we first list 
some notations in the Nelder-Mead simplex based 
optimization parameter selection algorithm.  

Notation： 
( )kS : The simplex in the thk  iteration, 

and ( )
0 1( ), , ,k k k k

nS x x x= ; 
k
hx : The highest (worst) point, 

i.e. max 0,1,( ) { ( ) | , }= =k k
h i i nf x f x ; 

inf
k

hx : The second highest point, 

i.e. inf max and( ) { ( ) | 0,1, , },  = =   ≠k k
h i n hf x f x i i ; 

k
lx : The lowest (best) point, 

i.e. min( ) { ( ) | 0,1, , }= =k k
h if x f x i n ; 

kx : Average of all points, excluding the worst 

(highest) point; 

max iter : The maximum iteration number; 

ε : The precision requirement; 

, , ,α β γ ω : The coefficient of reflection, contraction, 

expansion, and shrink. 
The Nelder-Mead simplex based optimization 

parameter selection algorithm is described as follows. 

1.Initialization. For each parameter, we define an 

empirical range Ω . Randomly generate a non-

degenerate initial simplex (1)S  that belongs to R on nZ , 

then do a measurement at each point. Set 

parameters: max ,iter ε , , , ,α β γ ω , and set k =1. 

2. Find inf, ,k k k
h h lx x x , and calculate kx . 

3. Reflection. where(1 ) , 0;= + −    >k k k
r nx x xα α α if any 

parameter of k
rx outreaches the rangeΩ, then randomly 

regenerate a new one that belongs to it. 

3.1  if ( ) ( )k k
r lf x f x≤   

{ go to 4} 

3.2  else if inf( ) ( ) ( )k k k
l r hf x f x f x≤ ≤  

{replace k
nx with k

rx , and go to 7} 

3.3  else if inf( ) ( )k k
r hf x f x≥   

{ go to 7} 

4. Expansion. 1 where 1( ) , ; = + −    >
kk k

e rx x xγ γ γ  

 if any parameter of k
ex outreaches the rangeΩ, then 

randomly regenerate a new one that belongs to it. 

4.1  if ( ) ( )k k
e rf x f x≤  

 { replace k
nx with k

ex , and go to 7;} 

  4.2  else  

{ replace k
nx with k

rx , and go to 7.}    

5.  Contraction.  

5.1 if ( ) ( )k k
r nf x f x< , 

{ 1 where 1( ) ,  ;0= + −  < <
kk k

c rx x xβ β β  

if any parameter of k
cx outreaches the rangeΩ, then 

randomly regenerate a new one that belongs to it. } 
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5.1.1  if ( ) ( )k k
c rf x f x<  

{ replace k
nx with k

cx , and go to 7; } 

5.1.2  else  

{go to 6. } 

5.2  else  

{ 1 where 1( ) , ;  0= + −  < <
kk k

c nx x xβ β β   

if any parameter of k
cx outreaches the rangeΩ, then 

randomly regenerate a new one that belongs to it.} 

5.2.1  if ( ) ( )k k
c nf x f x<  

{replace k
nx with k

cx , and go to 7; } 

5.2.2  else 

{ go to 6.} 

6.  Shrink. All the points in the simplex except the lowest 

point are shrunk, i.e. 0 0( ),k k k k
i ix x x xω= + − where 

1,ω0 < <  0,1, ,i n i l=   ≠ . 

7.  Stop criterion check.  

7.1 if k> max iter or
1

22

0

1

1
{ [ ( ) ( )] }

i

n kk

in
f x f x ε

=+
− ≤∑  

{ stop. lx  is the final solution, and ( )lf x is the 

optimal object function. } 

7.2 else  

{ k=k+1, go to 2.  } 
Note that the most time-consuming part of the simplex 

method is the measuring of the execution time. Also 
notice that at least one set of parameters (the one with the 
minimum execution time) remains unchanged from one 
generation to the next. Therefore, there is no need to 
recalculate the execution time for that set of parameters. 
In the experiments, we found that more than half of 
parameters already been executed previously. To improve 
the running performance of the algorithm, we keep record 
of the parameters and execution time of previously 
executed points in a list. When measuring execution time, 
we check the list to see if the execution time for that set 
of parameters is already available. If so, there is no need 
to recalculate it and we move on to the next set of 
parameters. 

Ⅴ.  PERFORMANCE EVALUATION 

In this section, we evaluate the performance of CMIC 
by comparing the program behavior of cache miss rate, 
program balance Performance influence ratio 
performance before and after optimization. Using 
performance model POTraM, the optimization space has 
been narrowed down which can be seen from Table III.  
Experiments demonstrate the feasibility of our approach 
by showing that CMIC method can produce parameter 

values with excellent performance in reduced 
optimization space. 

A. Experimental Setup 
(1) Platforms Our experiments are performed on 

platform Intel Pentium D 820. Table II lists its salient 
architectural parameters. Peak performance, BMi 
(i=1,2,3), Ci (i=1,2) and bus speed of L1 cache / L2 cache 
/ Memory are calculated using the method presented by 
Jack Dongarra in [21]. 

(2) Benchmarks we test two different scale of three 
typical numerical compute kernels, the matrix 
multiplication program (mm) with scale 512 and 1024, 
Successive Overrelaxation (sor) with scale 512 and 1024, 
and Red-Black Successive Overrelaxation (rbSor) with 
scale 192 and 512. In the next figures, we name the 
program with small scale as the name of program 
followed by 1, and that with large scale are named as the 
name of program followed by 2. For example, program 
mm with scale 512 and 1024 are named as mm1 and 
mm2 respectively.  

(3) Transformations We have tested program’s 
behavior listed in Section III.B, and the experimental 
results and responding transformations based on POTraM 
are listed in Table III. T, P and U stand for loop tiling, 
array padding and innermost loop unrolling respectively. 

(4) Parameter Settings Let max iter be 150, ε be 
0.0001. And set 1.0,α = 0.5β = , 2.0,γ = 0.5ω =  [19]. 

B. Experimental Results 
We compare the performance of original programs and 

TABLE II.   
SALIENT ARCHITECTURAL PARAMETERS OF THE EXPERIMENTAL 

PLATFORM 

Frequency 2.8 GHz 
L1Data/ Instruction 2×16/2×12 (KB) 
L2 cache 2×1024KB 
Memory  DDR2 1G 
OS Ubuntu kernel 2.6.15-23-386 
Compiler Intel Fortran Compiler 9.0 -O3 
Peak performance 2.8Gflops 
BM1 /BM2 /BM3 16 / 32 /2.3 
C1 / C2 4 / 31 (cycles) 
Bus speed of L1 cache 
/L2 cache/Memory 44.8 / 89.6 / 6.4 (GB/s) 

 

TABLE III.   
DYNAMIC CHARACTERIZATION PERFORMANCE DATA OF ORIGINAL 

PROGRAMS 

 MSRL1D
(%) 

MSRL2
(%) BL1 BL2 BL3 

ηm 
(%) 

ηpl 
(%) 

ηfp

(%)
transfo
-mation

mm1 10.2 0.2 205 88 3.2 29.5 90.9 6.4 (T,U) 

mm2 31.5 4.7 109 94 3.8 34.7 89.6 6.8 (T,P,U)

rbSor1 30.8 8.4 69 65 4.8 42.9 85.7 8.2 (T,P,U)

rbSor2 42.7 29.5 75 87 5.8 45.6 90.3 5.3 (T,P,U)

sor1 21.8 4.6 49 37 1.4 47.5 75.9 12.7 (T,P) 

sor2 22.9 5.6 38 31 2.3 49.2 65.7 17.4 (T,P) 

 

244 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER



87.5%

79.9%

5.2%

5.1%

33.8%

26.1%

37.1%

43.6%

46.4%

42.9%

93.0%

92.3%

67.9%

94.1%

7.9%

3.3%

18.4%

18.3%

mm1

mm2

rbSor1

rbSor2

Sor1

Sor2

Performance influence ratio
ηm ηpl ηfp

Figure 6. Performance influence ratio before optimization  
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Figure 5.  Cache miss rate after optimization  
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Figure 7.  Performance influence ratio after optimization  

optimized programs after transformations implemented in 
POTraM as shown in Table III.  

Fig. 4 and Fig. 5 show the dynamic characteristics 
performance of cache. We can see that the original L1 
data cache miss rate of all the programs are greater than 
5%, therefore, it is necessary to optimize programs’ 
memory performance to fully utilize cache. After loop 
exchange, cache miss rate of both L1 data and L2 cache 
decrease, especially after loop transformation 
implemented in POTraM.  

Fig. 6 and Fig. 7 show the performance influence ratio 
for memory reference, pipeline and floating-point 
operation of the programs. The original ηm of all test 
programs except mm1 are greater than 30%, 
demonstrating that the memory utilization of programs is 
very low, which will influence programs performance, 
therefore, loop tiling and array tiling transformation are 
carried out. The original mη  of mm1 is greater than 20%, 
but less than 30%, thus we just carried out loop tiling 
transformation. After optimization, mη  reduces to less 
than 10%, therefore, programs’ memory performance has 
increased greatly, thus narrowing the gap between 
memory and processors. plη  of mm and rbSor are greater 
than 80%, demonstrating that the pipeline and registers 
utilization of programs is very low, therefore, loop 
unrolling transformation is carried out on them. 
Meanwhile, plη  of sor are lower than 80% (75.9 and 
65.7), therefore, loop unrolling transformation is not 
carried out on them. The improvement of memory 

performance and pipeline will result in the boost of 
program floating-point performance as seen in Figure 9. 
The original fpη  of all test programs except sor are less 
than 10%, and that of sor are less than 20%, after 
optimization, fpη  of programs improved up to 58.5%.  

Fig. 8 illustrates the benefits of CMIC—the reduction 
of program execution time. Because the execution time of 
different programs vary greatly and it’s hard to integrate 
all these programs’ information in one graph, we 
normalize them as the speedup relative to original 
program, where speedup equals the running time of 
original program divided by that of optimized program. 

The results show that CMIC can effectively improve 
programs’ floating-point performance, reducing 
programs’ runtime, therefore, lessening the performance 
gap for high-performance applications. Meanwhile the 
optimization space has been reduced using performance 
model POTraM. Experiments validate that CMIC 
approach presented in this paper can be a practical and 
portable means to implement architecture-aware 
optimizations for high-performance applications. 

.Ⅵ   CONCLUSION AND FUTURE WORK 

Present compilers fail to model the complex interplay 
between different optimizations and their effect on code 
on all the different processor architecture components. 
Meanwhile the high cost of iterative compilation 
approaches has limited their application scope to 
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Figure 8. Speedup of  tested programs 

embedded applications and a small group of math kernels. 
CMIC method presented in this paper combines program 
optimization transformation model based on hardware 
performance counters and iterative optimization to 
improve the performance of programs. The 
transformation model can effectively narrow down the 
transformation parameter space, and the ability of the 
Nelder-Mead simplex algorithm to discover good 
solutions in relatively less iterations makes it a good 
choice for an iterative compilation search strategy. 
Experimental results show that our approach can greatly 
reduce cache miss rate, program balance of all levels, and 
the influence ratio for memory reference, effectively 
improve programs’ floating-point performance, reducing 
programs’ runtime, therefore, lessening the performance 
gap for high-performance applications, which makes it a 
practical and portable means to implement architecture-
aware optimizations for high-performance applications. 

 In future, we plan to improve our strategy by adding 
more architectural and program information to the model, 
so as to better guide the application of program 
transformations, and use training data sets during the 
tuning process to cut down the program execution time. 
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