
Combining Model and Iterative Compilation for
Program Performance Optimization

Pingjing Lu
National Laboratory for Parallel and Distributed Processing, School of Computer, National University of Defense

Technology, Changsha 410073, China
Email: pingjinglu@gmail.com

Yonggang Che and Zhenghua Wang

National Laboratory for Parallel and Distributed Processing, School of Computer, National University of Defense
Technology, Changsha 410073, China

Email: {ygchecn, zhhwang}@nudt.edu.cn

Abstract—The performance gap for high performance
applications has been widening over time. High level
program transformations are critical to improve
applications’ performance, many of which concern the
determination of optimal values for transformation
parameters, such as loop unrolling and blocking. Static
approaches achieve these values based on analytical models
that are hard to achieve because of increasing architecture
complexity and code structures. Recent iterative
compilation approaches achieve it by executing different
versions of the program on actual platforms and select the
one that renders best performance, outperforming static
compilation approaches significantly. But the expensive
compilation cost has limited their application scope to
embedded applications and a small group of math kernels.
This paper proposes a combinative approach--Combining
Model and Iterative Compilation for Program Performance
Optimization (CMIC). Such an approach first constructs a
program optimization transformation model based on
hardware performance counters to decide how and when to
apply transformations, and then selects the optimal
transformation parameters using Nelder-Mead simplex
algorithm. Experimental results show that our approach can
effectively improve programs’ floating-point performance,
reducing programs’ runtime, therefore, lessening the
performance gap for high-performance applications.

Index Terms—Performance, Languages, Measurement,
Experimentation, Algorithms

I. INTRODUCTION

With the rapid development of processors following
Moore’s Law, the performance gap between memory and
processors is widening, which has influenced single
processors’ performance greatly. High-level
transformations such as loop unrolling, array tiling, and
array padding are effective ways to improve programs’
performance. Many of these transformations have
numerical parameters whose values must be carefully
selected to achieve optimal performance. There are
mainly two kinds of optimization methods to compute
optimal optimization parameters—model-driven

optimization and empirical optimization. A model-driven
method uses a simple model of the program and the
machine to select parameters, which might be not precise
due to the increasing complexity of architectures and
programs. Automated empirical optimization method
generates multiple versions of the program, runs them on
the actual machine, and selects the one that renders the
best performance [1]. With this empirical optimization
approach, ATLAS [1, 2], PHiPAC[3], and FFTW[4]
successively generate highly optimized libraries for dense,
sparse linear algebra kernels and FFT respectively. It has
been shown that empirical method is more effective than
model-driven method [5]. However, because the
optimization spaces (set of all possible program
transformations) are large, non-linear with many local
minima, finding a good solution may be long and non-
trivial, making iterative method quite time consuming. To
best optimize programs’ memory performance, it would
be a better choice to combine model-driven and empirical
optimization methods, which utilizes apriori information
to narrow the optimization space and uses some search
method to empirically search good optimization
parameters.

This paper proposes the approach of Combining Model
and Iterative Compilation for Program Performance
Optimization (CMIC), which first uses the performance
counter values collected from a few runs of the program
to determine the programs optimization model which
decides when and how to transform a loop to most
effectively optimize programs’ performance, and then
selects the optimal transformation parameters that renders
the least runtime using Nelder-Mead simplex algorithm.

This paper is organized as follows. The next section
describes the framework of CMIC. Section 3 presents the
Program Optimization Transformation Model based on
Hardware Performance Counters (POTraM), including
the performance metrics it used and how they can
characterize program behavior. Section 4 provides
Iterative Optimization of Transformation Parameters
based on Nelder-Mead Simplex Algorithm (ItOTraP)

240 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

used in CMIC. Section 5 describes the experimental setup
and the experimental results and analysis. This is
followed by concluding remarks and future work.

II. FRAMEWORK OF CMIC

CMIC includes two parts. 1) Generation of
parameterized optimization code based on analytical
models. In this part programmers transform and
parameterize the program based on POTraM which will
be described in Section 3. 2) Iterative optimization of
transformation parameters based on Nelder-Mead
Simplex algorithm. Iterative optimization selects the
optimal parameters for every optimized program. The
search engine selects performance data using
performance monitoring tools. In our approach we
evaluate the parameters using actual program execution
time, and generate new optimization parameters using
Nelder-Mead Simplex algorithm. Therefore, the program
using the selected optimal parameter will render least
runtime. In the next two sections, we will discuss the two
parts in detail. The framework of CMIC is illustrated in
Fig. 1.

III. PROGRAM OPTIMIZATION TRANSFORMATION MODEL
BASED ON HARDWARE PERFORMANCE COUNTERS

This section first looks at the performance counters
used in this paper, then illustrates how they can be used
to characterize well-known properties of programs, and
POTraM is finally presented.

A. Performance Counters
Modern processors are often equipped with a special

set of registers that allow for measuring performance
counter events with no disruption to the running program.
The information obtained from performance counters is a
compact summary of a program’s dynamic behavior. In
particular, they summarize important aspects of a
program’s performance, e.g., cache misses or floating
point unit utilization. Performance counters have been
extensively used for performance analysis in explaining
program behavior [6, 7]. One of the first papers to
investigate how they could be used systematically to
select optimizations [8] showed impressive performance
gains.

We use hardware performance monitoring tool PAPI
(Performance Application Programming Interface) [9] to
access these hardware performance counters, which is
developed at the University of Tennessee’s Innovative
Computing Laboratory in the Computer Science
Department. The performance counters used in this study
are shown in Table I. The first column lists the
performance counter acronyms, and the second column
gives a description.

B. Dynamic characterization of program behavior using
performance counters

This section lays the foundation for the application of
transformations that improve programs’ performance. In
this paper we optimize programs on Intel Pentium D

platform; therefore, we only consider L1 cache and L2
cache.

B.1. Cache miss rate

L1 data cache miss rate:

1 _ 1_ _ 1_L DMSR PAPI L DCM PAPI L DCA= (1)
L2 cache miss rate:

2 _ 2 _ _ 2 _LMSR PAPI L TCM PAPI L TCA= (2)
It is generally thought that below 5% is a fairly good

cache miss rate, and if certain level’s cache miss rate of
the program is smaller than 5%, it means that the program
has good cache access locality in this cache level.

B.2. Performance influence ratio

In modern processors, the memory and instruction
pipeline utilization of programs influences performance
most. Mo, et al [10, 11] present the concepts of Influence
Ratio for Memory Reference (mη) to quantify the impact

of memory and pipeline operations. mη represents the
impact degree of cache miss to performance, and the
higher the cache hit rate, the less mη will be. plη

represents the impact degree of instruction level
parallelization to performance, and it reflects whether
applications have fully utilized multi-function units and
super-scalar instruction pipeline architectures of
microprocessors. The higher reuse ratio of the operators
in the register, the less plη will be. fpη describes
applications’ utilization ratio of single processor peak
floating point performance, which relies on mη and plη .

Let C1 and C2 be L1 cache and L2 cache miss cost (in
cycles), F be processors’ frequency (in Hz), G be
machines’ peak floating-point performance (in Mflops), T
be program running time (in seconds), and Tm be the total
time cost of cache miss (in seconds), then we can
compute mη , plη and fpη as follows:

1 1_ 1_ *m PAPI L TCM C FT = (3)

2 2_ 2 _ *m PAPI L TCM C FT = (4)

1 2m m mT T T= + (5)

m mT Tη = (6)

TABLE I.
PERFORMANCE COUNTERS USED

Name Meaning
PAPI_L1_DCA L1 data cache accesses
PAPI_L1_DCM L1 data cache misses
PAPI_L1_TCM L1 total cache misses
PAPI_L2_TCA L2 total cache accesses
PAPI_L2_TCM L2 total cache misses
PAPI_FP_INS Floating-point instructions

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 241

© 2009 ACADEMY PUBLISHER

B
A

E

para
B

C

A’

B’

A

para

para2 para

C
D

O

N

Figure 3. The advance procedure of two parameters Nelder-Mead
simplex algorithm. (left) Reflection, contraction and expansion

operation (right) Shrink operation.

1. Run the program. Collect and compute memory dependent
metrics in Section B;

2. if (MSRL1D>5%)
 {Apply loop exchange transformation.}
3. if (ηm>30%)

{ 3.1 Apply loop tiling transformation;
 3.2 Apply array tiling transformation.}

else if (ηm>20%)
{Apply loop tiling transformation.}

4. if (ηpl>80%)
 {Unroll the innermost loop.}
5. Terminate, resulting in the optimal transformations.

Figure 2. Model of POTraM

_ _ (* (1))pl mPAPI FP INS G T Tη −= − (7)

 _ _ (*)fp PAPI FP INS G Tη = (8)

C. POTraM
Our approach obtains above-mentioned metrics using

information collected by hardware performance counters,
and achieves a program optimization transformation
model--POTraM based on these metrics computed. The
model we have presented can use them to provide source-
code level feedback to a programmer about what
transformations to concentrate on those most likely to
result in memory performance boost. POTraM determines
whether and how to apply various loop transformations,
and guides the restructure of program loops to achieve
high performance on specific target architectures. The
flowchart of POTraM is described in Fig. 2.

Ⅳ. ITERATIVE OPTIMIZATION OF TRANSFORMATION
PARAMETERS BASED ON NELDER-MEAD SIMPLEX

ALGORITHM

A. Theoretical Analysis
Iterative compilation optimization parameter selection

problem can be formalized as follows:

1 2min ((, , ,))

, 1, 2, ,

n

i i i

i

f x p p p

Subject to

low p up i n

p Z

f R

=

≤ ≤ =

∈

∈

⎧
⎪
⎨
⎪
⎩

 (9)

Where pi is one program transformation parameter; x is
the compositional parameter vector of all transformation
parameters, which is the search target of search algorithm;
f(x) is program execution time with parameter x , which is
the objective function to minimize. Therefore, the
optimization space includes

i i
1 i n

(up low)
≤ ≤

−∏ compositional parameter vectors. It’s

very huge, and highly non-linear.

Many researches focus on exploring search heuristics
in iterative compilation method; however, there has been
no suitable search strategy for exploring the large and
complex search space. Previous researches show that
genetic algorithm (GA) is successful to find the best
sequence of compiler passes [12], however, Kulkarni et al.
[13] find that simple techniques, such as local hill
climbing, when allowed running over multiple iterations,
can often outperform complex techniques such as GA.
Kisuki et al. [14] also show that in finding transformation
parameters, random search performs as well as other
sophisticated techniques such as GA and simulated
annealing. Recent works by Apan Qasem et al. [15] find
that direct search can be an effective technique for
finding good values for transformation parameters in a
reasonable time. Haihang You et al. [16] apply simplex
method to replace the ATLAS (Automatically Tuned
Linear Algebra Software) [1] search heuristics, and find
that simplex search scheme can produce parameters with
better performance.

The Nelder-Mead simplex method [17, 18] is a
classical and powerful direct search method for
optimization. It appears to be a good fit to the problem of
finding optimization parameters to minimize program
runtime. First, the space of possible sequences is quite
large when several optimizations are applied. This space
is too large to search completely. Second, we have a very
good evaluation function to assess the quality of a
solution. We simply perform the optimizations and test
programs runtime. Our objective function is discrete and
nonlinear, making the problem difficult to address with
more classical combinatorial optimization techniques.
Third, The Nelder-Mead simplex method is useful for
training parameters, especially for searching minima of
multi-dimensional functions when dimension is less than
20. It is mainly used to solve the minimization
problem: min ()f x , where : nf R R → , and the
gradient information is not available. Finally, the amount
of time spent by Nelder-Mead simplex algorithm is
flexible. More computation time may result in better
solutions, but the algorithm can be interrupted at any time
to return the best solution found. Therefore, we design the
Nelder-Mead simplex algorithm based optimization
parameter selection algorithm to solve iterative
compilation optimization parameters selection problem.
Our experiments show that Nelder-Mead simplex
algorithm is well suited to the problem of finding good

242 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

optimization parameters.

B. Introduction to Nelder-Mead Simplex Algorithm
Spendley, Hext, and Himsworth[17] introduced the

simplex method, which is a non-derivative based direct
search method. Nelder and Mead improved the method
by adding more moves and making the search more
robust and faster [18]. A “simplex” is a geometrical
figure consisting of n+1 point in n-dimensions, e.g. a 2-
dimension simplex is a triangle. Through a sequence of
elementary geometric transformations, the initial simplex
moves towards minimum, and away from maximum. It is
probably the most widely used optimization method. The
advance procedure of two parameters Nelder-Mead
simplex algorithm is demonstrated in Fig. 3. The original
simplex consists of A, B, C, and A>B>C. Therefore, A is
reflected through O, the centroid of B and C, generating
D. If D is better than B and C, then expansion point E is
generated. If E is better than D, A is replaced by E; else A
is replaced by D. If D is worse than A, contraction point
ND is generated. If it is better than A, A will be replaced
by it; else the simplex ABC will be shrunk as a smaller
simplex A’B’C which is demonstrated in Fig. 3 (right).

Considering that if one parameter vector performs
badly, it may be because the transformation parameter is
too big (or too small) and makes full use of cache,
register, pipeline, and etc. Through the reflection
operation in Nelder-Mead simplex method, a much
smaller (or much bigger) parameter will be generated,
and it is apt to perform well. If reflection results in new
minimum, we will consider that if it moves further along
the minimization direction would it perform even better?
So we do so through expansion operation. If the
reflection point is still the worst point, we will try a
smaller step with a contraction operation. If a simple
contraction doesn't improve things, then try moving all
points towards the current minimum through shrink
operation. We think the performance of new generated
parameter -- through a series of geometric transformation
in Nelder-Mead simplex algorithm -- is more likely better
than that of randomly generated parameters and that of
GA through mutation, and crossover operation. Therefore,
we design the Nelder-Mead simplex based optimization
parameter selection algorithm to search the optimal
optimization parameters.

C. Nelder-Mead Simplex Based Optimization Parameter
Selection Algorithm

For the simplicity of algorithm description, we first list
some notations in the Nelder-Mead simplex based
optimization parameter selection algorithm.

Notation：
()kS : The simplex in the thk iteration,

and ()
0 1(), , ,k k k k

nS x x x= ;
k
hx : The highest (worst) point,

i.e. max 0,1,() { () | , }= =k k
h i i nf x f x ;

inf
k

hx : The second highest point,

i.e. inf max and() { () | 0,1, , }, = = ≠k k
h i n hf x f x i i ;

k
lx : The lowest (best) point,

i.e. min() { () | 0,1, , }= =k k
h if x f x i n ;

kx : Average of all points, excluding the worst

(highest) point;

max iter : The maximum iteration number;

ε : The precision requirement;

, , ,α β γ ω : The coefficient of reflection, contraction,

expansion, and shrink.
The Nelder-Mead simplex based optimization

parameter selection algorithm is described as follows.

1.Initialization. For each parameter, we define an

empirical range Ω . Randomly generate a non-

degenerate initial simplex (1)S that belongs to R on nZ ,

then do a measurement at each point. Set

parameters: max ,iter ε , , , ,α β γ ω , and set k =1.

2. Find inf, ,k k k
h h lx x x , and calculate kx .

3. Reflection. where(1) , 0;= + − >k k k
r nx x xα α α if any

parameter of k
rx outreaches the rangeΩ, then randomly

regenerate a new one that belongs to it.

3.1 if () ()k k
r lf x f x≤

{ go to 4}

3.2 else if inf() () ()k k k
l r hf x f x f x≤ ≤

{replace k
nx with k

rx , and go to 7}

3.3 else if inf() ()k k
r hf x f x≥

{ go to 7}

4. Expansion. 1 where 1() , ; = + − >
kk k

e rx x xγ γ γ

 if any parameter of k
ex outreaches the rangeΩ, then

randomly regenerate a new one that belongs to it.

4.1 if () ()k k
e rf x f x≤

 { replace k
nx with k

ex , and go to 7;}

 4.2 else

{ replace k
nx with k

rx , and go to 7.}

5. Contraction.

5.1 if () ()k k
r nf x f x< ,

{ 1 where 1() , ;0= + − < <
kk k

c rx x xβ β β

if any parameter of k
cx outreaches the rangeΩ, then

randomly regenerate a new one that belongs to it. }

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 243

© 2009 ACADEMY PUBLISHER

5.1.1 if () ()k k
c rf x f x<

{ replace k
nx with k

cx , and go to 7; }

5.1.2 else

{go to 6. }

5.2 else

{ 1 where 1() , ; 0= + − < <
kk k

c nx x xβ β β

if any parameter of k
cx outreaches the rangeΩ, then

randomly regenerate a new one that belongs to it.}

5.2.1 if () ()k k
c nf x f x<

{replace k
nx with k

cx , and go to 7; }

5.2.2 else

{ go to 6.}

6. Shrink. All the points in the simplex except the lowest

point are shrunk, i.e. 0 0(),k k k k
i ix x x xω= + − where

1,ω0 < < 0,1, ,i n i l= ≠ .

7. Stop criterion check.

7.1 if k> max iter or
1

22

0

1

1
{ [() ()] }

i

n kk

in
f x f x ε

=+
− ≤∑

{ stop. lx is the final solution, and ()lf x is the

optimal object function. }

7.2 else

{ k=k+1, go to 2. }
Note that the most time-consuming part of the simplex

method is the measuring of the execution time. Also
notice that at least one set of parameters (the one with the
minimum execution time) remains unchanged from one
generation to the next. Therefore, there is no need to
recalculate the execution time for that set of parameters.
In the experiments, we found that more than half of
parameters already been executed previously. To improve
the running performance of the algorithm, we keep record
of the parameters and execution time of previously
executed points in a list. When measuring execution time,
we check the list to see if the execution time for that set
of parameters is already available. If so, there is no need
to recalculate it and we move on to the next set of
parameters.

Ⅴ. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CMIC
by comparing the program behavior of cache miss rate,
program balance Performance influence ratio
performance before and after optimization. Using
performance model POTraM, the optimization space has
been narrowed down which can be seen from Table III.
Experiments demonstrate the feasibility of our approach
by showing that CMIC method can produce parameter

values with excellent performance in reduced
optimization space.

A. Experimental Setup
(1) Platforms Our experiments are performed on

platform Intel Pentium D 820. Table II lists its salient
architectural parameters. Peak performance, BMi
(i=1,2,3), Ci (i=1,2) and bus speed of L1 cache / L2 cache
/ Memory are calculated using the method presented by
Jack Dongarra in [21].

(2) Benchmarks we test two different scale of three
typical numerical compute kernels, the matrix
multiplication program (mm) with scale 512 and 1024,
Successive Overrelaxation (sor) with scale 512 and 1024,
and Red-Black Successive Overrelaxation (rbSor) with
scale 192 and 512. In the next figures, we name the
program with small scale as the name of program
followed by 1, and that with large scale are named as the
name of program followed by 2. For example, program
mm with scale 512 and 1024 are named as mm1 and
mm2 respectively.

(3) Transformations We have tested program’s
behavior listed in Section III.B, and the experimental
results and responding transformations based on POTraM
are listed in Table III. T, P and U stand for loop tiling,
array padding and innermost loop unrolling respectively.

(4) Parameter Settings Let max iter be 150, ε be
0.0001. And set 1.0,α = 0.5β = , 2.0,γ = 0.5ω = [19].

B. Experimental Results
We compare the performance of original programs and

TABLE II.
SALIENT ARCHITECTURAL PARAMETERS OF THE EXPERIMENTAL

PLATFORM

Frequency 2.8 GHz
L1Data/ Instruction 2×16/2×12 (KB)
L2 cache 2×1024KB
Memory DDR2 1G
OS Ubuntu kernel 2.6.15-23-386
Compiler Intel Fortran Compiler 9.0 -O3
Peak performance 2.8Gflops
BM1 /BM2 /BM3 16 / 32 /2.3
C1 / C2 4 / 31 (cycles)
Bus speed of L1 cache
/L2 cache/Memory 44.8 / 89.6 / 6.4 (GB/s)

TABLE III.
DYNAMIC CHARACTERIZATION PERFORMANCE DATA OF ORIGINAL

PROGRAMS

 MSRL1D
(%)

MSRL2
(%) BL1 BL2 BL3

ηm
(%)

ηpl
(%)

ηfp

(%)
transfo
-mation

mm1 10.2 0.2 205 88 3.2 29.5 90.9 6.4 (T,U)

mm2 31.5 4.7 109 94 3.8 34.7 89.6 6.8 (T,P,U)

rbSor1 30.8 8.4 69 65 4.8 42.9 85.7 8.2 (T,P,U)

rbSor2 42.7 29.5 75 87 5.8 45.6 90.3 5.3 (T,P,U)

sor1 21.8 4.6 49 37 1.4 47.5 75.9 12.7 (T,P)

sor2 22.9 5.6 38 31 2.3 49.2 65.7 17.4 (T,P)

244 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

87.5%

79.9%

5.2%

5.1%

33.8%

26.1%

37.1%

43.6%

46.4%

42.9%

93.0%

92.3%

67.9%

94.1%

7.9%

3.3%

18.4%

18.3%

mm1

mm2

rbSor1

rbSor2

Sor1

Sor2

Performance influence ratio
ηm ηpl ηfp

Figure 6. Performance influence ratio before optimization

8.4%

29.5%

22.9%

21.8%

42.7%

30.8%

10.2%

31.5%

4.6%

5.6%

4.7%

2.0%
mm1

mm2

rbSor1

rbSor2

Sor1

Sor2

Cache miss ratio
MSRL1D MSRL2

Figure 4. Cache miss rate before optimization

7.2%

6.4%

2.1%

2.4%

3.6%

3.7%

3.0%

3.6%

25.9%

15.2%

0.4%

0.2%mm1

mm2

rbSor1

rbSor2

Sor1

Sor2

Cache miss ratio

MSRL1D MSRL2

Figure 5. Cache miss rate after optimization

51.9%

51.3%

47.8%

59.5%

59.9%

9.6%

8.7%

9.5%

9.5%

8.8%

8.3%

47.2%

34.7%

34.8%

47.8%

47.6%

44.1%

43.6%

mm1

mm2

rbSor1

rbSor2

Sor1

Sor2

Performance influence ratio
ηm ηpl ηfp

Figure 7. Performance influence ratio after optimization

optimized programs after transformations implemented in
POTraM as shown in Table III.

Fig. 4 and Fig. 5 show the dynamic characteristics
performance of cache. We can see that the original L1
data cache miss rate of all the programs are greater than
5%, therefore, it is necessary to optimize programs’
memory performance to fully utilize cache. After loop
exchange, cache miss rate of both L1 data and L2 cache
decrease, especially after loop transformation
implemented in POTraM.

Fig. 6 and Fig. 7 show the performance influence ratio
for memory reference, pipeline and floating-point
operation of the programs. The original ηm of all test
programs except mm1 are greater than 30%,
demonstrating that the memory utilization of programs is
very low, which will influence programs performance,
therefore, loop tiling and array tiling transformation are
carried out. The original mη of mm1 is greater than 20%,
but less than 30%, thus we just carried out loop tiling
transformation. After optimization, mη reduces to less
than 10%, therefore, programs’ memory performance has
increased greatly, thus narrowing the gap between
memory and processors. plη of mm and rbSor are greater
than 80%, demonstrating that the pipeline and registers
utilization of programs is very low, therefore, loop
unrolling transformation is carried out on them.
Meanwhile, plη of sor are lower than 80% (75.9 and
65.7), therefore, loop unrolling transformation is not
carried out on them. The improvement of memory

performance and pipeline will result in the boost of
program floating-point performance as seen in Figure 9.
The original fpη of all test programs except sor are less
than 10%, and that of sor are less than 20%, after
optimization, fpη of programs improved up to 58.5%.

Fig. 8 illustrates the benefits of CMIC—the reduction
of program execution time. Because the execution time of
different programs vary greatly and it’s hard to integrate
all these programs’ information in one graph, we
normalize them as the speedup relative to original
program, where speedup equals the running time of
original program divided by that of optimized program.

The results show that CMIC can effectively improve
programs’ floating-point performance, reducing
programs’ runtime, therefore, lessening the performance
gap for high-performance applications. Meanwhile the
optimization space has been reduced using performance
model POTraM. Experiments validate that CMIC
approach presented in this paper can be a practical and
portable means to implement architecture-aware
optimizations for high-performance applications.

.Ⅵ CONCLUSION AND FUTURE WORK

Present compilers fail to model the complex interplay
between different optimizations and their effect on code
on all the different processor architecture components.
Meanwhile the high cost of iterative compilation
approaches has limited their application scope to

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 245

© 2009 ACADEMY PUBLISHER

0

1

2

3

4

5

6

mm1 mm2 rbSor1 rbSor2 Sor1 Sor2

Figure 8. Speedup of tested programs

embedded applications and a small group of math kernels.
CMIC method presented in this paper combines program
optimization transformation model based on hardware
performance counters and iterative optimization to
improve the performance of programs. The
transformation model can effectively narrow down the
transformation parameter space, and the ability of the
Nelder-Mead simplex algorithm to discover good
solutions in relatively less iterations makes it a good
choice for an iterative compilation search strategy.
Experimental results show that our approach can greatly
reduce cache miss rate, program balance of all levels, and
the influence ratio for memory reference, effectively
improve programs’ floating-point performance, reducing
programs’ runtime, therefore, lessening the performance
gap for high-performance applications, which makes it a
practical and portable means to implement architecture-
aware optimizations for high-performance applications.

 In future, we plan to improve our strategy by adding
more architectural and program information to the model,
so as to better guide the application of program
transformations, and use training data sets during the
tuning process to cut down the program execution time.

ACKNOWLEDGMENT

This work was partially supported by the National
Natural Science Foundation of China under Grant
No.60603055 and the National High Technology
Development 863 Program of China under Grant No.
2007AA01Z116.

REFERENCES
[1] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated

empirical optimization of software and the ATLAS
project”, Parallel Computing, Vol. 27, No, 1--2, pp. 3--35,
Jan. 2001.

[2] Jim Demmel, Jack Dongarra, et al, “Self adapting linear
algebra algorithms and software”, Proceedings of the IEEE,
Special issue on “Program Generation, Optimization, and
Adaptation”, Vol. 93, No. 2, 2005.

[3] Jeff Bilmes, Krste Asanovic, et al, “Optimizing Matrix
Multiply Using PHiPAC: A Portable, High-Performance,
ANSI C Coding Methodology”, In International
Conference on Supercomputing, pp. 340–347, 1997.

[4] Matteo Frigo and Steven G. Johnson, “FFTW: An
Adaptive Software Architecture for the FFT”, In Proc.

1998 IEEE Intl. Conf. Acoustics Speech and Signal
Processing, Vol. 3, pp. 1381–1384, 1998.

[5] Kamen Yotov, Xiaoming Li, Gang Ren, et al, “A
Comparison of Empirical and Model-driven Optimization”,
In PLDI ’03: Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and
Implementation, pp. 63–76, 2003.

[6] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Z. Chrysos, “Profileme: Hardware support for
instruction-level profiling on out-of-order processors”, In
International Symposium on Microarchitecture, pp. 292–
302, 1997.

[7] R. Azimi, M. Stumm, and R. W. Wisniewski, “Online
performance analysis by statistical sampling of
microprocessor performance counters”, In ICS ’05:
Proceedings of the 19th annual international conference
on Supercomputing, pp. 101–110, 2005.

[8] D. Parello, O. Temam, A. Cohen, and J.-M. Verdun,
“Towards a systematic, pragmatic and architecture-aware
program optimization process for complex processors”, In
SC ’04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, pp. 15, 2004.

[9] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci,
“A portable programming interface for performance
evaluation on modern processors”, International Journal of
High Performance Computing Applications, Vol. 14, No. 3,
pp. 189–204, Aug 2000.

[10] Mo Zeyao, Liu Xingping, Liao Zhenmin, “Research on key
techniques for parallelization and optimization of applied
codes”, Proceedings of 6th International Parallel
Computing conference, National University of Defense
Technology Press, China, 2000.

[11] Mo Zeyao, “Realistic performance analysis methods for
parallel codes”, Journal of Numerical Computing and
Computer Applications, Vol. 21, No. 4, pp. 266-275, 2000.

[12] P. Knijnenburg, T. Kisuki, and M. O. Boyle, “Iterative
compilation”, In Embedded Processor Design Challenges
System Architecture, Modeling and Simulation (SAMOS),
Lecture Notes in Computer Science 2268, pages 171–187.
Springer Verlag, 2002.

[13] Peter M. W. Knijnenburg, Toru Kisuki, Kyle Gallivan,
Michael F. P. O'Boyle, “The effect of cache models on
iterative compilation for combined tiling and unrolling”,
Concurrency and Computation: Practice and Experience
16(2-3): 247-270, 2004.

[14] Kamen Yotov, Keshav Pingali, Paul Stodghill, “Think
Globally, Search Locally”, In ICS ’05: Proceedings of the
19th annual international conference on Supercomputing,
Boston, MA, USA, 2005.

[15] Apan Qasem, Ken Kennedy, John Mellor-Crummey,
“Automatic Tuning of Whole Applications Using Direct
Search and a Performance-based Transformation System”,
Proceedings of the LACSI Symposium, pp: 183-194, 2004.

[16] H. You, K. Seymour and J. Dongarra: An Effective
Empirical Search Method for Automatic Software Tuning.
UTK CS Technical Report, ICL-UT-05-02, 2005.

[17] J. A. Nelder and R. Mead, “A Simplex Method for
Function Minimization”, The Computer Journal, No.8, pp.
308-313, 1965.

[18] W. Spendley, G.R. Hext, and F.R. Himsworth, “Sequential
Application of Simplex Designs in Optimization and
Evolutionary Operation”. Technometrics, No. 4, pp. 441-
461, 1962.

[19] Jack Dongarra, “Performance Optimization for Cluster
Computing”, in Proceedings of the Myrinet Users Group
Conference, Vienna, Austria, 2002.

246 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

Pingjing Lu was born in Anhui Province of China in 1984.
She received the B.A’s and M.A’ s. degree in computer
architecture from the National University of Defense
Technology, Hunan, China, in 2004 and 2006 respectively.
Since 2006, she has been a Ph.D. student in computer science
from the National University of Defense Technology. Her
current research interests include computer systems
performance evaluation and compiler optimization.

Yong-Gang Che, born in Yunnan Province of China in 1973.
He received the B.A’s, M.A’ s and Ph.D.’s. degree in computer
architecture from the National University of Defense
Technology, Hunan, China, in 1997, 2000 and 2004
respectively. He has been an associate professor of computer
science at the National University of Defense Technology since
2006. His current research interests include computer
architecture and compiler optimization.

Zheng-Hua Wang, born in Hunan Province of China in
1962. He received the B.A’s, M.A’ s and Ph.D.’s. degree in
aerodynamics from the National University of Defense
Technology, Hunan, China, in 1983, 1986 and 1991
respectively. He has been a professor of computer science at the
National University of Defense Technology since 1999. His
research interests are in computer systems performance
evaluation and parallel processing.

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 247

© 2009 ACADEMY PUBLISHER

