
Efficient Algorithms for Verification of UML
Statechart Models

C.M. Prashanth1, K.C. Shet2
Dept. of Computer Engineering

National Institute of Technology Karnataka, Surathkal, INDIA
Email: {prashanthcm1, kchshet2 }@nitk.ac.in

Abstract— In this article, we present algorithms devised
for the automatic verification of UML(Unified Modeling
Language) statechart models. The basic algorithm checks
the safety property violation during the construction (on-
the-fly) of the state space graph and if any property
violation is found, it generates a counter example. The
second algorithm builds the state space considering only
those events, which could lead to the negative behavior
of the system. In other words, a set of relevant events is
generated first and state space is constructed considering
only the state transitions of the objects caused by these
relevant events. Thus search space is reduced in both the
methods. As a case study, we have verified UML statechart
model of the Generalized Railroad Crossing (GRC) system
using the proposed algorithms. The safety property “When
the train is at rail road crossing, the gate always remain
closed” is verified. We could detect property violation in the
initial UML statechart model of GRC and eventually it is
corrected with the help of the counter example generated
by the algorithms. The case study results show that event
based verification algorithm yields 59% reduction in the
state space for the GRC example.

Index Terms— Software verification, Model checking, State-
chart, Unified Modeling Language, Reactive systems

I. INTRODUCTION

Model driven software development has been a promi-
nent means to enhance the understandability of the sys-
tem’s structure and behavior. It has prompted industries
to develop tools which can generate the code from the
model in high level languages like C, C++ or JAVA
(IBM’s Rational Rose RT [1] is one such tool used
for the development of embedded real time systems).
Therefore ensuring model’s correctness becomes highly
essential. The traditional way of verifying software sys-
tems is through human inspection, simulation, and testing.
Though these methods are cost effective, unfortunately
these approaches provide no guarantee about the quality
of the software. The human inspection or code review is
limited by the abilities of the reviewers. Simulation and
testing can only explore a minuscule fraction of the state
space of any software system.

The commonly used formal model verification tech-
nique is model checking. Model checking is a pragmatic

This research work is partially supported by Center for Advance
Studies (CAS), IBM India Pvt. Ltd., Bangalore. Manuscript received
on 1st July 2008, revised on 21st Nov 2008 and accepted on 10th Feb
2009

technique that, given a finite-state model of a system and
a logical property, systematically checks whether model
holds the property or not. If the model does not hold
the expected property, an error trace (counter example)
is generated [2]. The original model can be refined by
leveraging information given by the counter example, this
approach is known as counter example guided model
refinement [3]. Several model checking tools like SPIN
(Simple Promela INterpreter) [4], SMV (Symbolic Model
Verifier) [5], SLAM [6] and RuleBase [7] are in existence.

The major drawback of using model checking tools
for verification is that, they expect system to be modeled
using their proprietary input language. The input language
of most of these tools are text based and lacks advan-
tages of visual representation. Therefore, UML satechart
diagrams (provides visual representation) are used for
designing the reactive systems. In this article, we describe
our approach for verifying the reactive systems modeled
using UML statechart diagrams and we do not take the
aid of model checking tool. The statechart diagrams for
describing dynamic behavior of systems is first proposed
by David Harel in 1987 [8]. The statechart diagrams
are extended state-transition diagrams with the notions of
hierarchy, concurrency and communication. The reactive
systems considered here are state oriented and respond
to the occurrence of internal or external events. The
response may result in change of state and also actions.
For example, in a client-server system, client’s request
message (event) will change server’s state from idle to
busy and the server responds with an acknowledgement
message (action). Therefore, a reactive (event-dreiven)
system’s behavior is specified by set of states, events and
actions.

The work described in this article is an extension of the
idea proposed in our earlier paper [9]. We have made a
critical inspection of related work in the section II. In the
section III, a brief introduction to the methodology fol-
lowed for verification is given. In section IV, algorithms
devised to verify safety properties of reactive systems
are presented. In section V, we have presented a case
study of verifying Generalized Rail road Crossing (GRC)
system. The results and performance of the verification
techniques are discussed in the section VI. The findings
of this investigation are summarized in section VII.

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 175

© 2009 ACADEMY PUBLISHER

II. RELATED WORK

In this section, we describe the existing works on veri-
fication of statechart models, which uses model checking
techniques. We begin with a discussion on earlier works
related to verification of variants of statechart models like
RSML (Requirements State Machine Language) [10] and
STATEMATE. Later, we discuss prior works related to
verification of UML statecharts and list out the research
challenges need to be addressed.

In 1998 William Chan et.al. demonstrated the applica-
tion of software model checking technique to verify prop-
erties of an aircraft Traffic alert and Collision Avoidance
System (TCAS-II) [10]. The requirements specification
written using RSML, is translated to input language of the
model checker SMV [5]. The SMV is used to success-
fully verify the robustness properties and safety critical
properties of the system. In the same year G.J.Holzman
et.al. described an approach for the verification of safety
properties of a hypothetical production cell system in [11].
The STATEMATE statechart representation of the produc-
tion cell system is verified using SPIN model checker.
The statechart representation is translated into EHA (Ex-
tended Hierarchical Automata) and then to PROMELA
(PROcess MEta LAnguage), the input language of the
SPIN. In recent times, UML has become defacto standard
for model driven development. The dynamic behavior of
the realtime systems is specified using UML statechart
diagrams. There are efforts to demonstrate application of
software model checking techniques to verify these dia-
grams ([12], [13] and [14]). In these articles, translation
of UML statechart models to input language of the model
checker is not emphasized. Subsequently, many tools
such as vUML [15], vPROMELA [16], HUGO [17] and
TABU [18] are developed. These tools gave importance
to translation process. vUML and HUGO tools use the
information contained in UML class diagrams, statechart
and collaboration diagrams of a UML model to construct
PROMELA specification and uses SPIN as verification
engine. The vPROMELA tool is a graphical user interface
to the SPIN. It allows us to describe the hierarchies of
behavior and of system structure. The visual notations
are then translated into PROMELA using translation
constructs described in [16]. The TABU (Tool for the
Active Behavior of UML) reads the UML specification
(statechart, class and activity diagrams) represented in
XMI format and translate it to SMV specification for
verification.

In a nutshell, there are two prevailing model checking
technologies, symbolic and explicit model checking. In
symbolic model checking, the state space graph is repre-
sented by Binary Decision Diagrams (BDD) and property
verification is done by searching the state space. BDDs are
directed acyclic graph obtained by removing isomorphic
sub trees [19]. The SMV is a BDD based model checker
for verifying the properties expressed in temporal Com-
putational Tree Logic (CTL) [20]. On the other hand, in
explicit model checking, states are explicitly enumerated
in the state space and property verification corresponds

to a systematic search of the state space. Explicit model
checking has proven to be very successful as it can handle
irregularly structured models. The significant question is,
can these model checking technologies be effectively used
for automatic verification of UML statechart models for
reactive systems. As discussed in the previous paragraph
there are two predominant steps for verifying the UML
models. Translate UML statecharts to the form expected
by existing off-the-shelf model checker and use model
checker to verify the correctness of the model. We feel
that selection of off-the-shelf model checker hinges on
capability of the checker to handle huge state space of
a complex system. The existing model checkers are not
developed with the intent of verifying the UML models
and performance of the verification techniques can be
improved if the model checking algorithms are modified.
In other words, models of complex reactive systems can
be efficiently verified. This fact has motivated us to
develop efficient algorithms for verification of reactive
and concurrent systems.

III. METHODOLOGY

A widely known approach for verifying the complex
systems is, by modeling them in the input language of the
off-the-shelf model checker and passing them on to model
checker. The property expected is specified in temporal
logic. Subsequently, the need of visual formalism to the
models is realized and UML statecharts are used for mod-
eling dynamic behavior of the system. The verification
of such models is done by first representing the UML
statecharts in Extended Hierarchical Automata (EHA) and
then mapping it to input language of the model checker.
This approach is well received and successful for less
complex systems. As the complexity of the system grows,
this technique of flattening (removal of abstraction) the
original model during verification would lead to ”state-
explosion” [21] and hence aborts the verification process.
The proposed method for verification of reactive systems
does not use off-the-shelf model checker. Fig.1 depicts
the architecture of the proposed method. The logics of
the UML statechart diagram are captured using suitable
data structure and then the state space graph is built.
Unlike most of the model checkers, here the data structure
preserves the abstraction and limits the state space to
be explored for finding safety violations. Thus, memory
required to hold the state space is reduced.

IV. PROPOSED VERIFICATION TECHNIQUES

A. Assumptions

It is assumed that, the system under consideration has
multiple cooperative objects. These objects communicate
via events. The dynamic behavior of the each object is
modeled using UML statecharts. The objects change their
state upon receiving an appropriate externally or internally
generated event and the corresponding guard condition
becoming true. The property to be verified is expressed
in temporal logic and represented by the symbol φ. The

176 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

UML statechart model

Initial state = S0
Next (S0) = S0 if (pc=0) v (pc=3) v (pc=4)

v (pc=6) v (pc = 1);
a=3, b=4, c=7, max =0

Next (S0) = S1 if (pc=2)
Next (S0) = S3 if (pc=7)
Next (S0) = S2 if (pc=5)
Next (S1) = S4 if (pc=8)
Next (S2) = S4 if (pc=8); max =7
…………………..
…………

Expected property

Statechart verifier
(Developed specifically for verifying UML statechart models)

Error trace/Counter example
(Model does not hold expected property)

Yes
(Model holds expected property) OR

FORMAL REPRESENTATION

Figure 1: Verification framework

verification process involves the translation of each UML
statechart to the form of a tuple {Si, Ei, Ti, Ii},

Where
i represents an object and varies from 1 to n

- where n is the number of objects.
Si is a non empty finite set of states
Ei is a set of events
Ti ⊆ Si X Si is a set of transitions
Ii ⊆ Si is a set of initial states
Et is a set of total events, Et = {E1 ∪ E2 ..En}

B. Basic verification approach

The basic verification algorithm is shown in Fig.2. The
verification process is divided into two phases: prepro-
cessing and state space search. In the preprocessing phase,
the logics of the UML statechart diagrams are captured
by converting them to formal intermediate representation.
The behavior of each object in the reactive system is
modeled using a statechart diagram. The UML editor
saves formal representation of each of the statechart chart
diagram in separate text files. The files are read indepen-
dently and the behavioral aspects of the object are stored
using graph data structure. The safety property being
verified is written using temporal logic. It is interpreted
and translated into AND/OR graph. The graph is traversed
in such a way that, probable error states are obtained from
the graph.

In the state space search phase, the tuple {Si, Ei,
Ti, Ii} is extracted from the formal representation of
behavior of individual objects. Once set Ei for all objects
are computed, the union of all these sets represented
by symbol Et is computed. Now, the state space is
constructed by combining (cartesian product) the state
transitions of all objects upon occurrence of each event
in Et. To begin with, all objects are assumed to be
in their respective initial states. During the construction
of the state space, we compare probable error states
with the states that are generated, if a match is found

(observed an invalid behavior), further exploration of the
state space is terminated. We then generate error trace,
a path from the initial state to the error state. If no
invalid behavior is observed, we continue the exploration
of the state space until all possible states are visited. The
complete exploration without error being detected implies
model behavior is satisfactory and as per expectation.
The algorithm does explicit checking, when the model
is flaw less and no memory is saved. This algorithm
can be further improved by finding the set of relevant
events and observing the behavior of the system only upon
occurrences of these relevant events. This event based
technique is explained in the next section.

1: Read ¬Ø (negative behavior or bad state) from the user;
2: for each object i of the system (model)
3: {
4: Get Si set of reachable states;
5: Get Ei set of all events;
6: Get Ti set of all transitions;
7: Get Ii set of initial states;
8: }
9: Compute Et;
 // Build the state space (synchronous product of all objects)//
10: Let found = false;
11: Start with state s (all objects are in their initial states);
12: for (each event e Є Et enabled in s & s not empty)
13: {
14: s* = set of all successor states of s after ei;
15: While (s* not empty)
16: {
17: If (state sj є s*, is not in state space)
18: {
19: add sj to state space;
20: push sj on to stack;
21: If (state sj is same as ¬Ø)
22: {
23: Set found flag to true;
24: Break;
25: }
26: Mark the state sj as visited;
27: }
28: sj = nextstate (sj);
29: }
30: If (found) Break;
31: s= pop ();
32: }
33: If (found)
34: Display “No negative behavior seen in the model”;
35: Else
36: {
37: Display “Negative behavior found”;
38: Display Error Trace / Counterexample;
39: }

Figure 2: Basic algorithm

C. Event based verification approach

The state transition of an object completely depends
on externally or internally generated events and any
technique which reduces the number of events to be
considered for constructing state space graph will ulti-
mately reduce the search space. The verification approach
described in this section is based on this idea. The
algorithm for the approach is shown in Fig.3.

This modified version of the previous algorithm finds
set of relevant events from the UML statechart model of

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 177

© 2009 ACADEMY PUBLISHER

1: Read ¬Ø (negative behavior or bad state) from the user;
2: for each object i of the system (model)
3: {
4: Get Si set of reachable states;
5: Get Eri set of all relevant events;
6: Get Ti set of all transitions;
7: Get Ii set of initial states;
8: }
9: for (i=1 to No. of objects)
10: Compute Ert= (Ert U Get_relevant_events (Oi));

// Build the state space (synchronous product of all objects)//
11: Start with state s (all objects are in their initial states);
12: for (each relevant_event eЄ Ert enabled in s & s not empty)
13: {
14: s

*
= set of all successor states of s after ei;

15: While (s
*
not empty)

16: {
17: If (state sj є s

*
, is not in state space)

18: {
19: add sj to state space;
20: push sj on to stack;
21: If (state sj is same as ¬Ø)
22: {
23: Set found - flag to true;
24: Break;
25: }
26: Mark the state sj as visited;
27: }
28: sj = nextstate (sj);
29: }
30: If (found) Break;
31: s= pop ();
32: }
33: If (found)
34: Display “No negative behavior seen in the model”;
35: Else
36: {
37: Display “Negative behavior found”;
38: Display Error Trace / Counterexample;
39: }

Figure 3: Event based algorithm

each object of the system. The union of all these set of
relevant events constitutes the set Ert. The relevant events
are computed based on the undesired behavior looked for
in the model and using the following rules:
R1: An event is relevant if

R 1.1: there is a transition associated and has current
sate as part of error state (⇁ φ).

R 1.2: there is a transition associated and has next
state as part of error state (⇁ φ).

R2: A set of events are relevant if
R 2.1: there is a sequence of transitions associated

and takes the object from the initial state to
a state, which is part of error state (⇁ φ).
In other words, all events that participate in
changing state of an object from its initial state
subsequently to a state, which is part of error
state.

After the set of relevant events is computed, UML state-
chart of each object is translated to from of a tuple {Si,
Eri, Ti, Ii}, where Eri is a set of relevant events of
an object Oi and Ert is set of total relevant events, i.e,
Ert = {Er1 ∪Er2 ∪Er3 ..Ern}. The state space of the
system is constructed considering only the events in Ert).
The moment error state is reached or all states are visited,
further state space exploration is terminated. Thus, it saves
the memory and handles systems with large state space.
This approach is very much suitable for verification of

safety property of a complex system, having considerable
number of non-relevant events.

In the next section, we illustrate verification proce-
dure by applying the above described algorithms to a
benchmark case study, the “Generalized Railroad Cross-
ing”(GRC) problem introduced by Heitmeyser et al [22].

V. A CASE STUDY

A. Generalized Railroad Crossing(GRC)

We have validated proposed algorithms by applying
them to verify UML statechart model for the “Generalized
Railroad Crossing”(GRC) system. The GRC system is
expected to operate a gate at a railroad crossing (RC).
The gate for two railroad tracks lies in an area of interest
(A). The trains move in both the directions (left to right,
right to left) through A on tracks T1 and T2. The trains
travel at different speeds and can pass each other. It
is assumed that no two trains are allowed to move in
opposite directions on the same track, at any point of
time. There are sensors (S1, S2, S3, S4 & S5) positioned
as shown in the Fig.4. The sensors indicate when a train
arrives at region A, leaves region A, enters RC and
exits RC. The sensor S5 indicate, whether gate is closed
or open. The “occupancy interval” is defined as the
maximal time interval during which one or more train(s)
in RC. The system is expected to satisfy the following
properties
1. The gate is closed during all occupancy intervals (Safety)
2. The gate is open during all non occupancy interval (Utility)
3. The gate is open as much as possible (Live ness)

 S5

Track1

S1

S2

S3

S4

Track2

Area of Interest (A)

GATE

RC

Figure 4: Railroad crossing

The dynamics of the GRC system is described by UML
statecharts for the objects Gate and Track. The safety
property looked for in the GRC model “When the train
is at RC on Track1 or Track2 the Gate should remain
closed” is expressed in temporal logic as follows:

(T1.Crossing ∨ T2.Crossing)=⇒ G.Closed

In our approach, this positive assertion is changed into
negative and treated as an invalid behavior (safety vio-
lation). This invalid behavior is then proved wrong or
correct by pruning the state space. If the claim is found
correct then the model has a flaw (error state) and counter
example is generated. The above stated assertion can be
written as follows in the negative form.

178 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

(T1.Crossing ∨ T2.Crossing) =⇒ ⇁ (G.closed)

This means, the train is crossing, when the gate is in open
or opening or closing state.

B. UML statechart model of GRC

The UML statechart model for the GRC system is
presented in the Fig. 5. The gate and track are the major
objects of the GRC system. The UML statechart for Gate
in Fig. 5(a) shows four simple states viz., Open, Closing,
Closed and Opening. Initially, the Gate is assumed to be
Open. The Gate reacts to external signals by opening and
closing. The UML statechart for Track in Fig.5(b) shows
concurrent composite state consisting of two orthogonal
regions for each track (Track1 & Track2), which are
again having sequential states (OR state). Each orthogonal
region has an initial sate and five simple states viz.,
No train, Approaching, Crossing, Stopped and Leaving.
The transition from source states to target states can be
possible, when an appropriate signal/event shown as label
on the arrows (see Fig. 5) is triggered. All the events
considered are listed in the table I.

TABLE I.: Events associated with GRC model

Event Code Description
tkevarrive 1 indicates train’s arrival
tkeventer 2 indicates that, the train enters RC
tkevexit 3 indicates that, train exits RC
tkevleave 4 indicates that, train leaves
gtevclose 5 indicates that, gate is closed
gtevopen 6 indicates that, gate is opened

C. State space construction

The state space is constructed from the description of
the system in UML statechart model. As explained in
sub section (IV-B), the dynamic behavior of all objects
are combined to generate state space graph. The notion
of ”Universe” (U) is useful in describing the construction
of state space. It is the set of all possible combinations of
local states of the objects of a system. The UML statechart
model of the GRC system (see Fig. 5) has two objects
Gate and Track, The Track object has two orthogonal
states Track1 and Track2. The Gate object has 4 local
states, Track1 has 5 local states and Track2 has 5 local
states. The U for GRC system will contain (4 X 5 X
5) 100 states. It is common that the model restricts the
number of reachable states. Thus set of possible states
of state space is always a subset of U. As per our UML
model the state space of the GRC system contains 46
states. The table II shows all possible states.

D. Basic algorithm applied to GRC

The basic algorithm checks the invalid behavior of the
system during the construction of the state space. The
construction process is terminated immediately when the
negative behavior is observed. We have applied the basic
verification algorithm to the generalized railroad crossing

OPENING

OPEN

CLOSING

CLOSED

tkevEnter()/

tkevExit()

gtevClose()

gtevOpen()

tkevEnter()/

tkevEnter()/

tkevEnter()/

(a) Statechart for the object GATE

TRACK 1

TRACK2

NO TRAIN
APPROACHING

tkevArrive()

CROSSING

C

tkevEnter()

IsgateClosed()
TRUE

STOPPED

gtevClose()

FALSE

tkevLeave()

LEAVING

tkevExit()

NO TRAIN
APPROACHING

tkevArrive()

CROSSING

C

tkevEnter()

IsgateClosed()
TRUE

STOPPED

gtevClose()

FALSE

tkevLeave()

LEAVING

tkevExit()

tkevEnter()

tkevEnter()

(b) Statechart for the object TRACK

Figure 5: UML state chart model for GRC

model and observed that the original UML statechart
model had an error state.

The Fig.6 shows the state space constructed. The
state space is searched for the violation of the safety
property “The gate is closed during all occupancy in-
tervals” (i.e, occurrence of any of the state in the set
{ S7, S9, S10, S14, S20, S23, S34, S38, S40, S41, S42, S45 }
upon an event listed in the table I). The initial state
S1 is a state representing the initial states of Gate,
Track1 and Track2 (i.e, Open, No train, No train). The
successive states (S2, S5, S6) upon occurrence of the event
“tkevarrive” (see table I) are computed. These states are
checked for safety violation. If violation is found further

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 179

© 2009 ACADEMY PUBLISHER

TABLE II.: State space

Sl.No. Gate status Track1 status Track2 status
S1. Open Notrain Notrain
S2. Open Notrain Approaching
S3. Open Notrain Crossing
S4. Open Notrain Leaving
S5. Open Approaching Notrain
S6. Open Approaching Approaching
S7. Open Approaching Crossing
S8. Open Approaching Leaving
S9. Open Crossing Notrain
S10. Open Crossing Approaching
S11. Open Crossing Leaving
S12. Open Leaving Notrain
S13. Open Leaving Approaching
S14. Open Leaving Crossing
S15. Open Leaving Leaving
S16. Closing Notrain Stopped
S17. Closing Stopped Notrain
S18. Closing Stopped Stopped
S19. Closing Stopped Approaching
S20. Closing Stopped Crossing
S21. Closing Stopped Leaving
S22. Closing Approaching Stopped
S23. Closing Crossing Stopped
S24. Closing Leaving Stopped
S25. Closed Notrain Crossing
S26. Closed Approaching Crossing
S27. Closed Crossing Notrain
S28. Closed Crossing Approaching
S29. Closed Crossing Crossing
S30. Closed Crossing Leaving
S31. Closed Leaving Crossing
S32. Opening Notrain Notrain
S33. Opening Notrain Approaching
S34. Opening Notrain Crossing
S35. Opening Notrain Leaving
S36. Opening Approaching Notrain
S37. Opening Approaching Approaching
S38. Opening Approaching Crossing
S39. Opening Approaching Leaving
S40. Opening Crossing Notrain
S41. Opening Crossing Approaching
S42. Opening Crossing Leaving
S43. Opening Leaving Notrain
S44. Opening Leaving Approaching
S45. Opening Leaving Crossing
S46. Opening Leaving Leaving

exploration is terminated. Otherwise, a state is randomly
selected for further exploration (for example state S2).
This process is continued until we detect a safety violation
or all possible states are explored. In the case of GRC,
exploration is terminated on reaching the state S45, which
is an error state. The state space graph constructed in the
afore mentioned way is used to generate counter example
or error trace shown in the Fig.7. We would explore all 46
states, if the model does not violate stated safety property.

E. Event based algorithm applied to GRC

In this approach, we compute the set of relevant
events from the UML statechart model by applying the
rules stated in the section IV-C. The relevant event sets
obtained are ErGate = {gtevopen, gtevclose}, ErTrack

= {tkevarrive, tkeventer, tkevexit} for objects Gate and
Track respectively. The total set of relevant events Ert =
{gtevopen, gtevclose, tkevarrive, tkeventer, tkevexit}. The

S16

S1

S5

S2 S6

S22 S25

S26 S18

S39 S29

S8 S21

S36

S21 S17

S30

S27

S46

S35

S43

S35

S12 S32
S44

S1 S13

S2

S24

S31

S16

S25

S46

S26

S35

S4
S39

S32

S8 S1

1
1

1

2

5 1

4

2

5

2
3

6

2

4

2
4

5
4

3
4

4
4

S6

1

6

3

1

4

1

4
2

5

4
4

3
1

3

6
1

4

1
4

Initial state

S1

S37

S6

S18

S22

S19

S42

S29

S30

S45

Error state

6

1

6 2

2 2

5
2

5

3

3

Figure 6: State space exploration

 Open, No train, No train

Open, No train, Approaching

Closing, No train, Stopped

Closing, Approaching, Stopped

Closed , Approaching ,Crossing

Opening, Approaching, Leaving

Open, Approaching, Leaving

Closing, Stopped, Leaving

Closed, Crossing, Leaving

Closed, No train, Crossing

Closed, Leaving, Crossing

Closing, Leaving, Stopped

Open, Leaving, Approacing

Open, Leaving, No train

Opening, Leaving, No train

Open, Approaching, Approacing

Closing, Stopped, Approaching

Closing, Stopped, Stopped

Closed, Crossing, Crossing

Opening, Leaving, Crossing

Opening, Leaving, Leaving

Opening, No train, Leaving

Opening, No train, Notrain Opening, Approaching, No train

Opening, Approaching, Approaching

tkevarrive

tkeventer

tkevarrive

gtevclose

tkevexit

gtevopen

tkeventer

gtevclose

tkevexit

tkevleave

gtevopen

tkevarrive

tkeventer

gtevclose

tkevleave

tkevexit

tkevleave

tkevarrive

tkevarrive

gtevopen

tkeventer

tkeventer

gtevclose

tkevexit

Figure 7: Error trace

“tkevleave”(see table I) is considered as the non relevant
event and ignored during the construction of the state
space. The Fig.8 shows the exploration of the state space
by considering only the events in the set Ert.

The exploration starts from the initial state S1 and
continues till a state is reached, which does not responds
to any of the relevant events. Then we backtrack to a state
which responds to one of the events in the set Ert. The
algorithm terminates when an error state is reached or no
state is left for further exploration.

In the Fig.8, state exploration starts with initial state
S1. The set of successive states (S2, S5, S6) upon event
“tkevarrive” are computed. The state S2 is then picked

180 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

randomly for further exploration, this is continued till the
state S15 is reached, which does not respond to any of
the relevant events. We then backtrack till the state S29 is
reached, which leads to state S42 on event “tkevexit”(see
table I). The state S42 is a bad state as it violates the safety
property(i.e, when one of the trains is at the crossing,
the gate starts to open). Once the state exploration is
terminated, the counter example or the error trace shown
in Fig.9 is generated.

S1

S2

S5

S6

S16

S25

S22

S26

S29

S29

S39

S21

S8

S21

S30

S46

S15

S30

S42

S45

1

1

1

2

5

1

2

5

2

3

2

6

5

2

5 3

6

3

3

INITIAL STATE

ERROR STATE

Figure 8: State space exploration

Open, No train, No train

tkevarrive

Open, No train, Approaching

tkeventer

Closing, No train, Stopped

tkevarrive

Closing, Approaching, Stopped

gtevclose

Closed, Approaching, Crossing

tkeventer

Closed, Crossing, Crossing

tkevexit

Opening, Crossing, Leaving

Figure 9: Error trace

VI. RESULTS AND DISCUSSION

A. Refinement of GRC model

The error trace in Fig.9 depicts that, the Gate is allowed
to open, when one of the trains crosses the RC and leads
to the bad state. This flaw in the model can be avoided

by making sure that no train is in the occupancy interval,
before allowing the Gate to open. The corrected UML
statechart of the Gate object is shown in the Fig.10. We
have added a global variable “train Count” to the model,
which is incremented every time a train enters the crossing
and decremented every time a train leaves the crossing.
There by we ensure that no trains are at crossing, when
the Gate begins to open. Thus the model’s correctness is
ensured.

trainCount=0

OPENING

OPEN

CLOSING

CLOSED

C

tkevEnter()/
trainCount++

tkevExit()/
trainCount--

Is trainCount==0?

TRUE

FALSE

gtevClose()

gtevOpen()

tkevEnter()/
trainCount++

tkevEnter()/
trainCount++

tkevEnter()/
trainCount++

Figure 10: Corrected UML statechart for GATE

B. Performance of basic and event based algorithms

The basic and event based verification algorithms are
evaluated based on the ability to reduce the state space
during the state space exploration. The results are shown
in table III. To detect safety property violation in the UML
statechart model of the GRC system with state space of
46, the event based algorithm explores 41% of the total
state space. The counter example generated is of length 6.
The basic algorithm explores 87% of the total state space
and the counter example generated is of legnth 24.

TABLE III.: Performance

Algorithm Complete
state
space

States
ex-
plored

Error
path
length

State
space
re-
duced

Basic 46 40 24 13%
Event based 46 19 06 59%

VII. CONCLUSIONS

In this article, we have described Basic & Event based
algorithms devised for the verification of UML statechart
models. The correctness of the verification techniques
has been illustrated taking “Generalized Railroad Cross-
ing(GRC) as a case study. The basic algorithm checks the

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 181

© 2009 ACADEMY PUBLISHER

safety violation during the construction (on-the-fly) of the
state space. This leads to the reduction in the state space
(13% for GRC example). There will be no reduction in
the state space if the verification is done on a flawless
model. This algorithm will not generate the error trace of
shortest length (24 for GRC).

The event based approach is modified basic approach,
which considers only relevant events for the construction
of the state space. This reduces state space significantly
(59 % for GRC example) and produces error trace of
shorter length (6 for GRC). The event based approach
gives 4.5 times better reduction in state space for GRC
example as compared to the basic approach. We have
verified the UML statechart model of the GRC system for
the compliance of the safety “The gate is closed during all
occupancy intervals” using the proposed techniques and
found a flaw in the initial model and we later corrected it
by attaching a global variable “train count” to the model.
The “train count” = 0 ensures no train is at crossing, when
gate is open.

REFERENCES

[1] IBM Rational Rose Real Time (RoseRT) instruction man-
ual,http://www.ibm.com/developerworks/rational/library
/797.html, visited on 01/12/2007

[2] Edmund M. Clarke,Jr., Orna Grumberg and Doron A.
Peled , Model Checking, The MIT press, 1999

[3] Edmund M Clarke, Ansgar Fehnker, et.al. ”Abstraction
and Counterexample refinement in model checking of
Hybrid Systems”, Vol.14, No 4, International journal of
foundations of computer science, (2003), 583-604

[4] Gerard J. Holzmann, ”The Model Checker Spin, IEEE
Trans. on Software Engineering”, Vol. 23, No. 5, (1997),
279-295

[5] Kenneth L. Mc. Millan, ”Symbolic Model Checking: An
approach to the state explosion problem”, Ph.D thesis
submitted to Carnegie Mellon University (CMU), 1992

[6] The SLAM project, http://research.microsoft.com/slam/
visited on 13/10/2007

[7] I. Beer, S. Ben-David, C. Eisner and Landvar, ” RuleBase-
an industry-oriented formal verification tool”, Proceedings
of 33rd Design Automation Conference (DAC), Asociation
for Computing Machinery Inc.,(1996), 655-660.

[8] D. Harel, ”Statecharts: A Visual Formalism for Complex
Systems, Science Computer Programming”,vol.8, no. 3, pp
231-274, 1987.

[9] C.M. Prashanth, Dr. K.C. Shet, Janees Elamkulam, “Ver-
ification Framework for Detecting Safety Violations in
UML statecharts”, Second Asia International conference
on Modeling and Simulation (AMS 2008), Kuala Lumpur,
Malaysia, 13-15 May 2008,pp 849-854. publisher: IEEE
computer society

[10] William Chan, Richard J. Anderson, Paul Beame, Steve
Burns et.al. ”Model Checking Large Software Specifica-
tions”, IEEE Transactions on Software Engineering, Vol-
ume 24, Issue 7, pp 498-520, July 1998

[11] G.J. Holzmann et.al., ”Implementing statecharts in
PROMELA/SPIN”, proc. workshop on industrial strength
formal specification techniques WIFT’98, USA, IEEE
computer society, 1998.

[12] Diego Latella, Istvan Majzik and Mieke Massink, ”Auto-
matic verification of a behavioural subset of UML stat-
echart diagrams using the SPIN model checker”, Formal
Aspects of Computing, volume 11(6), 1999, pages 637-
664.

[13] Stefania Gnesi, et. al., ”Model Checking UML statechart
diagrams using JACK”, The 4th IEEE international sympo-
sium on high assurance systems engineering, pages 46-55,
1999

[14] Janees Elamkulam, Ziv Glazberg, et.al., ” Detecting Design
Flaws in UML State Charts for Embedded Software”,
Haifa Verification Conference 2006: pp 109-121

[15] Johan Lilus, Ivan pores paltor, ” vUML: A tool for
verifying UML models”, Proceedings of the 14th IEEE
international conference on automated software engineer-
ing, 225-228, 1999

[16] Stefan leue, Gerard Holzmann, ”V-Promela: A Visual
object-oriented language for SPIN”, Proc. 2nd IEEE in-
ternational symposium on object-oriented real time dis-
tributed computing, 1999, pages 14-23.

[17] Adam Darvas et.al., ”Verification of UML statechart mod-
els of embedded systems” 5th IEEE design & diagnostics
of electronic circuits and systems workshop, April 2002,
pp 70 -77.

[18] M. Beato et. al., ”UML Automatic Verification Tool
(TABU)”, 12th ACM SIGSOFT symposium on the foun-
dations of software engineering, 2004

[19] Randal E. Bryant, ”Graph based algorithms for Boolean
function manipulation”, IEEE Trans. on Computers Vol.
C-35 No. 8, Aug 1986, Page(s):677 - 691

[20] Computational Tree Logic(CTL), Department of
Computer Science, University of Copenhagen -
visited in October 2007. http://www-i2.informatik.rwth-
aachen.de/Teaching/Course/MC/2005/mc lec22.pdf

[21] Valmari,A. ”The State explosion Problem”, Lectures on
Petri Nets I: Basic Models, LNCS 1491, Springer-Verlag
pp 429-528, 1998.

[22] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G.
Labaw, ”Comparing different approaches for Specifying
and Verifying Real-Time Systems”. In Proceedings of 10th
IEEE workshop on Real-Time Operating Systems and
Software, (1993), 122-129

C.M. Prashanth is currently a Ph.D. student in the depart-
ment of computer engineering, National Institute of Technology
Karnataka, surathkal, INDIA. His research interests include
Software Engineering, Computer Architecture and Operating
systems. He is a life member of Indian Society of Technical
Education. He has published papers in refereed journals and
international conference proceedings.

Dr. K. Chandrashekhar Shet is a Professor in the department
of Computer Engineering, National Institute of Technology
Karnataka, INDIA. He holds a Ph.D. from the Indian Institute
of Technology, Bombay, INDIA. He is a member of Computer
Society of India, and ISTE. He is a Fellow of Institution
of Engineers (INDIA). His research interests include software
testing, Security Solution for Web Services, Wireless Networks,
Ad hoc Networks. He has published more than 200 papers in
refereed journals and conference proceedings.

182 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

