42

JOURNAL OF SOFTWARE, VOL. 4, NO. 1, FEBRUARY 2009

Tracking Unsatisfiable Subformulas from
Reduced Refutation Proof

Jianmin Zhang
Computer School, National University of Defense Technology, ChangSha, China
Email: jmzhang@nudt.edu.cn

Shengyu Shen and Sikun Li
Computer School, National University of Defense Technology, ChangSha, China
Email: {syshen, skli} @nudt.edu.cn

Abstract—Explaining the causes of infeasibility of Boolean
formulas has many practical applications in various fields.
A small unsatisfiable subformula provides a succinct
explanation of infeasibility and is valuable for applications.
In recent years finding unsatisfiable subformulas has been
addressed frequently by research works, mostly based on
the SAT solvers with DPLL backtrack-search algorithm.
However little attention has been concentrated on extraction
of unsatisfiable subformulas using incomplete methods. In
this paper, we present the definitions of refutation proof and
refutation parsing graph, and then propose a resolution-
based local search algorithm to track unsatisfiable
subformulas according to the reduced refutation proof of a
formula. This approach directly constructs the resolution
sequences for proving unsatisfiability with a local search
procedure, and then recursively derives unsatisfiable
subformulas from the resolve traces. We report and analyze
the experimental results on well-known and randomly
generated benchmarks.

Index  Terms—Boolean satisfiabiltiy, unsatisfiability
subformula, refutation proof, local search
1. INTRODUCTION
Many real-world problems, arising in formal

verification, electronic design, equivalence checking and
Auto Test Pattern Generation (ATPG), can be formulated
as constraint satisfaction problems, which are translated

into Boolean formulas in conjunctive normal form (CNF).

Boolean satisfiability (SAT) solvers, such as Chaff'" and
MiniSAT?!, are generally able to determine whether a
large formula is satisfiable or not. When a formula is
unsatisfiable, it is often required to find an unsatisfiable
subset of the original formula, because we are interested
in a small explanation of infeasibility that excludes
irrelevant information. Localizing an unsatisfiable
subformula is necessary to determine the underlying
reasons for the failure. Explaining the causes of
unsatisfiability of Boolean formulas is an essential
requirement in many applications. A paradigmatic
example is SAT-based model checking on predicate
abstraction”, where analysis of unsatisfiability is an
essential step for ensuring completeness of bounded

© 2009 ACADEMY PUBLISHER

model checking. Additional examples include fixing wire
routing in FPGAs™*), counterexample explanation'”, and
repairing inconsistent knowledge from a knowledge
base!®],

There have been many different contributions to
research on unsatisfiable subformulas extraction in the
last few years, owing to the increasing importance in
practical applications. Experimental works can be
grouped into complete search algorithms and incomplete
search algorithms. Most of previous works are complete
search approaches”'m, mostly on the basis of the SAT
solvers with DPLL backtrack-search algorithm. In the
recent past, a few researches have considered the problem
of finding the unsatisfiable subformulas by incomplete
methods. Gregoire et al."®! present an algorithm which
derives unsatisfiable subformulas from the trace of a
failed local search run for consistency checking. However,
this approach is essentially based on a typical local search
procedure for giving the formula a satisfiable interpreta-
tion. Two independent algorithms proposed in [19] and
[20] are the first known works on using local search
method for proving unsatisfiability of a formula. Whereas
to the best of our knowledge, there is no published work
in the literature devoted to the unsatisfiable subformulas
extraction from the proof of infeasibility utilizing a
randomized local search procedure.

In this paper, we propose the definitions of refutation
proof and refutation parsing graph, and tackle the
problem of extracting unsatisfiable subformulas from
refutation proof of Boolean formulas by a stochastic local
search algorithm. This approach is the first work we are
aware of to adopt resolution- based local search method
to find unsatisfiable subformulas. Firstly, a local search
procedure is employed to compute the resolution
sequences for proving unsatisfiability of a formula. The
process of resolving the empty clause is combined with
some Boolean reasoning techniques, such as unit clause
propagation, binary clause resolution and equality
reduction. While the resolvent is added to the formula,
the subsumption elimination procedure is used to
guarantee the CNF subsumption-free. Then each resolve
trace is constructed as a refutation parsing graph, and an
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effective method called refutation proof pruning is
applied to the graph on-the-fly to reduce the search space.
Finally, a recursive function is used to find all of the
leaves which correspond to the original clauses, and then
an unsatisfiable subformula is obtained, because the
original clauses involved in the derivation of the empty
clause are referred to as the unsatisfiable subformula.
Finally, we report and analyze the experimental results on
well-known pigeon hole and FPGA routing benchmarks,
and randomly generated 2-SAT and 3-SAT problem
instances.

The paper is organized as follows. The next section
introduces the basic definitions and theorems used
throughout the paper. Section 3 proposes the local search
algorithm for finding unsatisfiable subformulas. Section 4
presents some reasoning techniques to improve the
efficiency of our algorithm. Section 5 provides the
depiction of the subsumption elimination procedure.
Section 6 describes the refutation proof pruning technique.
Section 7 shows and analyzes experimental results on
well-known and randomly generated problem instances.
Finally, Section 8 concludes the paper and outlines future
research work

II. RELATED WORK

There have been many different contributions to
research on unsatisfiable subformulas extraction in the
last few years, owing to the increasing importance in
numerous practical applications. In [7], a method of
adaptive core search guided by clauses hardness is
employed to extract small unsatisfiable subformulas.
zCore!® is an algorithm for deriving small unsatisfiable
subformulas based on the ability of DPLL-based SAT
solvers to produce resolution refutations. In [9], an
algorithm of enumerating all possible subsets is suggested
to compute a minimum unsatisfiable subformula. Another
approach is called AMUSE"", in which selector variables
are added to each clause and the unsatisfiable subformula
is derived by a branch-and-bound algorithm on the
updated formula. A different algorithm existing in the
current literature that guarantees minimality is MUP',
MUP is mainly a prover of minimal unsatisfiability, as
opposed to an unsatisfiable subformula extractor.

Some research works, based on a strong relationship
between maximal satisfiability and minimal unsatisfi-
ability, have developed some sound techniques for
finding all minimal unsatisfiable subformulas'"” or a
minimum unsatisfiable subformula'>'. CoreTimmer!"”
iterates over each internal node that consumes a large
number of clauses and attempts to prove them without
these clauses. A scalable algorithm!!®, adopting a deeper
exploration of resolution refutation, is proposed for
minimal unsatisfiable subformulas extraction. A novel
algorithmm] to find minimal unsatisfiable subformula is
based on Brouwer’s fixed point approximation theorem to
satisfiability. In [18], the authors present an algorithm
which tracks minimal unsatisfiable subformulas
according to the trace of a failed local search run for
satisfiability checking.
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II. PRELIMINARIES

Resolution is a proof system for CNF formulas with
the following inference rule:

(Av x)(B v—.x), )
(Av B)

where 4 and B denote the disjunctions of literals. The
clauses (4vx) and (Bv—x) are the resolving clauses, and
(AvB) is the resolvent. The resolvent of the clauses (x)
and (—x) is the empty clause (L). Each application of the
inference rule is called a resolution step. The above
resolution step is represented as ((4 vx)A(Bv—x)) [=(AVB).

Definition 1. (Boolean Satisfiability) Given a CNF
formula @(X), where X is the set of variables, and a
Boolean function F(X): {0,1}"—{0,1}, the Boolean
satisfiability problem consists of identifying a set of
assignments X~ to the variables, such that F(X’)=1, or
proving that no such assignment exists.

Definition 2. (Unsatisfiable Subformula) Given a
formula ¢, v is an unsatisfiable subformula for ¢ if and
only if yis an unsatisfiable formula and w co.

Lemma 1. A CNF formula ¢ is unsatisfiable if and
only if there exists a finite sequence of resolution steps
ending with the empty clause.

It is well-known that a formula is unsatisfiable if it is
possible to generate the empty clause by resolution from
the original clauses. A sequence of resolution steps, each
one uses the result of the previous step or the clauses of
the original formula as the resolving clauses of the
current step, is called a resolution sequence.

Definition 3. (Refutation Proof) Given an
unsatisfiable formula ¢, a refutation proof R of ¢ is
defined as a resolution sequence in which the final
resolvent is the empty clause.

From the definition, it is concluded that a refutation
proof contains the explanation of infeasibility of the
formula. In other words, the causes of unsatisfiability can
be derived from the refutation proofs in the sense that
removing them will correct the infeasibility.

Theorem 1. Consider an unsatisfiable formula ¢, then
@ contains at least one refutation proof R. Given a set S:
S=C(@)NC(R), where C(¢) and C(R) respectively denote
the set of clauses in @ and R, then w=/\.csd=1, and yis
an unsatisfiable subformula of ¢.

Proof. The first conclusion can be directly proved by
the definition of refutation proof and Lemma 1. We next
try to prove the second conclusion.

The final resolvent of a refutation proof R is the empty
clause L. Suppose that there are » resolution steps in R.
Proof by the principle of mathematical induction
involving the integral variable n.

When n=1, the formula ¢ must contain two opposite
polarity unit clauses, and then the refutation proof can be
denoted as (xA—x)[=L, thus the conclusion is verified.

When n<m, suppose the conclusion is verified.

When n=m+1, there are two kinds of condition:

First condition: the first two steps of the refutation
proof R can be represented as C,AG,|=C4 and CsACy |=Cs,
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where {C,C,,C;}c@. Then the resolvent C, is replaced
by CiAG. According to the above supposition, the
remain m resolution steps can arrive at the empty clause
1.

Second condition: the first three steps of R can be
represented as C\AG|=Cs, GAC=Cs and CsAnCy|=C5,
where {C,,C,,G;,Cytcp. Then the resolvent Cs is
replaced by CiAC,, and the resolvent Cg is replaced by
C3nACy. According to the supposition, the remain m—1
resolution steps can arrive at L.

In conclusion, the original clauses included in a
refutation proof constitute an unsatisfiable subformula.

O

Definition 4. (Refutation Parsing Graph, RPG) A
refutation parsing graph corresponding to an
unsatisfiability proof by resolution, is a directed acyclic
graph G(V,E,s) with a single sink node s€/V, in which the
nodes denote CNF clauses: the leaf nodes represent
original clauses, the inner nodes represent clauses derived
by resolution, and the sink node represents the empty
clause L. Each node can be inferred from its parent nodes
according to a resolution step.

Given a refutation proof R of the Boolean formula ¢,
we build a refutation parsing graph G(V,E,s)
corresponding to R by the following rules: the only sink
node represents the empty clause Cs=_L1; We suppose there
is a resolution step in R: CyA Gy|=C,, then the clauses C,
C, and C, respectively denote three nodes {v,,v,,v,} SV,
and e, €FE or ¢, €k represents the directed edge which is
from the parent node p or ¢ to the child node r.
Complying with these rules, we can create a refutation
parsing graph step by step, starting from the empty clause
and backtracking to the original clauses.

Theorem 2. Consider a refutation proof R of an
unsatisfiable CNF formula ¢, and a refutation parsing
graph G(V,E,s) for R. Then all of clauses corresponding
to the leaf nodes in an RPG compose an unsatisfiable
subformula of ¢.

Proof. Proof by contradiction. Suppose that there is a
clause C¢ ¢ which corresponds to a leaf node ve V.

According to Definition 3, there exist two clauses C;
and C; in ¢, which satisfy CiAC, |=C.

Then according to Definition 4, there must be two
nodes v; and v,, which respectively correspond to C;and
C,. That is to say, the node v for the clause C is not a leaf
node.

However, the above supposition says that ve V' is a leaf
node. Therefore, it results in a contradiction, and the
supposition is false.

That is, all of the clauses corresponding to the leaf
nodes belong to the original formula ¢. Then from
Theorem 1, we can draw the conclusion that all of the
leaf clauses compose an unsatisfiable subformula of ¢.

O

From the theorems, the set of original clauses involved
in the derivation of the empty clause is referred to as the
unsatisfiable subformula. In other words, the clauses,
contained in the intersection of a refutation proof and the
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original formula, constitute an unsatisfiable subformula.
Then we illustrate the process of extracting unsatisfiable
subformulas from a formula according to the theorems.
For example, a CNF formula is

P =(x)A(=x,) A VX)) AX, V) A () (2)

The above formula is refuted by a series of resolution
steps ending with the empty clause. Two refutation proofs
to affirm the infeasibility of the formula ¢ are shown as
follows:

RoOCERVE) | ()g) )
x L)

2

R2 — (xl)(_'xl VX2) (-xz)(_'xz M x3) N (x3)(_'x3) (4)
X, (x;) (L)

From R, the resolvent (x») of the first resolution step
serves as one of the resolving clauses of the second step,
and the result of the second resolution step is the empty
clause. Similarly, the other sequence of resolution steps
also arrives at the empty clause. According to Theorem 1,
the original clauses included in the proof of infeasibility
belong to the unsatisfiable subformula. More specifically,
two unsatisfiable subformulas respectively corresponding
to the refutation proofs R; and R, are

v, =(x) A=y VX)) A=), (5)

W, = (%) A (=X VX)) A (=X, VX)) A=) (6)

In a word, this simple example demonstrates that our
local search algorithm to find the small unsatisfiable
subformulas is essentially based on Theorem 1 and
Theorem 2.

III. ALGORITHM OVERVIEW

In recent years, the complete methods have made great
progress in solving many real life problems including
Boolean satisfiability, but they usually cannot scale well
owing to the extreme size of the search space. One way to
solve the combinatorial explosion problem is to sacrifice
completeness, thus some of the best known methods
using this incomplete strategy are local search algorithms.
In general, the local search strategy starts from an initial
solution, which may be randomly or heuristically
generated. Then the search moves to a better neighbor
according to the objective function, and terminates if the
goal is achieved or no better solution can be found. Local
search methods are underlying some of the best-
performing algorithms for certain types of problem
instances, both from an empirical as well as from a
theoretical point of view. Consequently, this stochastic
strategy is adopted to tackle the problem of finding
unsatisfiable subformulas. We propose a resolution-based
local search algorithm based on Theorem 1 and Theorem
2.

The pseudo code of the local search algorithm, detailed
in the later, is given in Fig.1. The algorithm begins with
an input formula in CNF format. The objective function
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of this algorithm is to derive the empty clause, and a
necessary condition for this to occur is that the formula
contains at least some short clauses. We perform
resolution of two clauses heuristically or randomly, until
either of the following conditions is achieved: one is that
the Boolean formula is refuted, or the other is that the
upper limit of iterations is reached.

In Fig.1, the function called unit clause propagation
can determine whether the formula is unsatisfiable,
because the formula is refuted if and only if the empty
clause can be resolved by two unit clauses. If the current
formula contains binary clauses, some reasoning
strategies are employed in this algorithm, such as binary
clause resolution and equality reduction. The function
named Non Tautology deletes the clauses including two
opposite polarity literals. The function of No Same
Clause is to remove the duplicate clauses from the
formula. If there is no binary clause in the formula, two
clauses will be randomly chosen to resolve in accordance
with the inference rule shown in Equation 1. When the
resolvent is added into the formula, the subsumption
elimination procedure is employed to remove the
subsumed clauses. However, too many resolving clauses
increase the overhead of the search process, thus a clause
deletion scheme called refutation proof pruning is
proposed. When the updated formula exceeds the
maximum size, a clause is chosen and removed at random,
and then some redundant clauses on the source trace of
this clause are also deleted. The longer a clause is, the
greater is the probability that the clause is selected.

RbLSA (formula)

1 refuted = false

2 iteration =0

3 while ((iteration < MAXITER) and !refuted) do
4 if (Unit_Clause_Propagation() return UNSAT)
5 refuted = true

6 else if (there exist binary clauses) then

7  Binary Clause Resolution()

8 Non_Tautology()

9 Equality Reduction()

10 No_Same_ Clause()

11 else

12 Randomly choose two clauses to resolve
13 Subsumption_Elimination(resolvent)

14 Trace Updating(resolvent)

15  if (formula.size > MAXSIZE) then

16  Remove a clause C at random

17 Trace_Pruning(C)

18 iterationt+

19 if (refuted == true) then

20 print “unsatisfiable”

21 SmallUS = Compute US(sequence)

22 else

23 print “unresolved”

24 return SmallUS

Figure 1. Overview of the resolution-based local search algorithm.

When the algorithm proceeds, we record the sequences
of the clauses engaged in resolving the empty clause.
Then a refutation parsing graph is created with respect to
each refutation proof. If the formula is refuted, a
recursive function, called Compute US, shown in Fig.2,
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is employed to track an unsatisfiable subformula from the
formation of a treelike arrangement. According to
Theorem 2, we can conclude that all leaf nodes of an
RPG are actually referred to as the unsatisfiable
subformula.

Compute US (sequence)

1 C=last element of sequence

2 if (C is not the empty clause) then
3 print error and return

4 else

5 Traverse_graph(sequence.size—1)
6  Traverse_graph(sequence.size—2)
7 return SmallUS

Traverse_graph (ClausePos)

1 C=sequence[ClausePos]

2 if (C € original formula) then

3 Push Cinto SmallUS

4 else

5 pos = Find position of C in the sequence
6  Traverse graph(pos—1)

7  Traverse_graph(pos—2)

Figure 2. Procedure of tracking the unsatisfiable subformulas from a
refutation parsing graph

Fig.3 illustrates the process of deriving unsatisfiable
subformulas from the formula denoted by Equation 2. As
depicted in Fig.3, there are two refutation parsing graphs
corresponding to two refutation proofs, which are
respectively represented as Equation 3 and 4. The original
clauses located on the leaves of an RPG can be extracted
by a recursive algorithm to form the unsatisfiable
subformula. For example, in Fig.3(a), the sink node,
namely the empty clause, is resolved by an interim result
(x2) and a leaf node (—x2). If we treat the clause (x2) as a
sink node, the inner and leaf nodes with the sink node
also constitute an RPG, and then the recursive function
can be applied to this subgraph. The clause (x2) is
resolved by two leaf nodes (x;) and (—x;vx,). Thus an
unsatisfiable subformula is composed of the three leaf
clauses belonging to the original formula. Similarly, in
Fig.3(b), the unsatisfiable subformula consists of the four
leaf nodes (—ux3), (—x2Vvx3), (x1), and (—xvxz).

P Ny - <
y N, / \\
v’/ \ v v Al
X P N -

—X7 X3

- 2 3
/// ™ // N
/ ‘\ / \
v v v v
_ X2 - —X2 V X3
X1 X1 V X2 L N
/ \
/ \
v / \ v
X1

—X] VX,

(b)

P

(a)

Figure 3. Refutation Parsing Graphs(RPGs) of ¢. The solid edges
belong to the refutation parsing graph, and the dashed edges denote the
backtracking procedure to compute unsatisfiable subformulas.

1V. BOOLEAN REASONING TECHNIQUES

To improve the efficiency of the local search algorithm,
we implement some reasoning techniques. One of the
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techniques is unit clause propagation. A so-called unit
clause is the clause only containing one literal. Unit
clause propagation selects a unit clause from the original
formula, and then performs the reduction on the formula
by this unit clause. We achieve this reduction in two
kinds of situation: Firstly, if some clause contains a literal
which is negative of the literal in the unit clause, then this
literal is deleted from that clause; Secondly, we eliminate
the clauses which include the literal of the unit clause.
For example, consider the formula shown in Equation 2.
The clause (—x,) is a unit clause, and is propagated to the
whole formula. According to the reduction rule, the literal
(x,) is removed from the third clause (—x;vx,), and the
fourth clause (—x,vx;) is deleted. Consequently, the
formula is turned into

@'= () A=) A (=) - ™

After applying unit clause propagation, it is observed
that the formula may be strongly simplified and easily
refuted. Furthermore, because unit clause propagation
might generate new unit clauses, it is an iterative process
of executing reductions by unit clauses until the empty
clause is reached or no more unit clauses in the remain
formula. The order in which the unit clause reductions
occur is not important to the correctness of the local
search algorithm.

In general, a Boolean formula might also have many
binary clauses, which are defined as the clauses including
two literals. Then it is possible to do a lot of reductions
on the original formula by reasoning with these binary
clauses as well. The resolution of two binary clauses
arises if and only if there exists one pair of opposite
polarity literals, and abides by the resolution rule. For
instance, a Boolean formula in CNF is given as follows:

0, = (=X VX)) A (X, V) A(Y VX)) - (®

This formula contains three binary clauses, which can
be resolved by the inference rule. Then the process of
resolution between the binary clauses is

(—x, v x,)(=x, vx,) (=x, vx,)(x, vx,)
(x, vx,) T 9)
(=% vV X5) (=X v x)

(—x, v x,)

X3

Resolving these clauses produces two new binary
clauses (—ux;vx3), (,Vvx;) and one new unit clause (x;).
More generally, performing all possible resolutions of
pairs of binary clauses may generate new binary clauses
or new unit clauses. Therefore, binary clause resolution
can be done in conjunction with unit clause propagation
in a repeated procedure.

The third technique is equality reduction, which is also
a useful binary clause reasoning mechanism. Equality
reduction is essentially based on the following equation:

(xoN=@x=2>MA(y>x)=(=xVvy) A(=yVvx) (10)

If a formula contains two correlated clauses such as
(xv—y) and (xvy), we can form an updated formula by
equality reduction. Equality reduction is a three-step
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procedure: Firstly, all instances of y in the formula are
replaced by the literal x or vice versa; Secondly, all
clauses containing both x and —x are deleted; Finally, all
duplicate instances of x or —x are removed from the
clauses. For example, a Boolean formula in CNF is

Q= VO)A(GV)A(G VX,V XG)A

(11)

(x, v—=x, vx,) A(=x, VX,)

Obviously, one may conclude that x, is equivalent to x,.
We substitute x; for x» throughout the formula, and
perform reductions on the new clauses. Then the reduced
formula is obtained:

0= V) A (= Vv Xs) (12)

Similar to binary clause resolution, such -clause
reasoning approach might yield new binary clauses.
Consequently, equality reduction combined with unit
clause propagation and binary clause resolution can run
iteratively, until the empty clause is resolved or no new
clause is added.

V. SUBSUMPTION ELIMINATION METHOD

Given a clause C; in a CNF formula ¢, if a subset of its
literals constitutes another clause C, in ¢, that is,
L(C)2L(C,), where L(C) denotes the set of literals of a
clause C, we say C, is subsumed by C, and C, subsumes
C:. Furthermore, if the resolvent of two clauses subsumes
either of these two resolving clauses, this is called self-
subsumption. For example, let C=(x;vx,vx;) and
G =(—x1vx2), then resolving on x; will produce the
resolvent C=(x,vx3), which subsumes C;. Thus after
adding C into the formula, C; can be deleted. For a
formula in CNF, the clauses that are subsumed by other
clauses not only slow down the resolution process, but
also do not help to prune the search space. Particularly, a
subsumed clause never needs to be part of a proof of
infeasibility and may be removed without negative effect
on resolution. Consequently, we introduce the
subsumption detection and removal to shrink the formula
and decrease runtime and memory consumption of the
local search algorithm substantially. The pseudo code of
subsumption elimination procedure is shown in Fig.4.

Subsumption_Elimination(resolvent)
if (resolvent.size < one of resolving clauses C.size)
if (L(resolvent) — L(C))) then
Substitute resolvent for C in the formula
else
for (each clause C € formula)
if (I(C) < L(resolvent)) then
return
else if (L(resolvent) < L(C)) then
Remove C from the formula
0 Add resolvent into the formula

— 000 A LA W~

Figure 4. Subsumption Elimination Procedure

The process of subsumption elimination is: when a
resolvent is generated by performing resolution on a
variable, we first check whether the resolvent subsumes
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either of the two resolving clauses. If self-subsumption is
detected, the subsumed clause is replaced by the resolvent.
Then the resolvent is checked against existing clauses in
the formula to see if it is subsumed by any of them. If
there is a clause which subsumes the resolvent, the
resolvent is redundant and should be discarded. This
process is called forward subsumption elimination. While
a resolvent is added to the current formula, existing
clauses in the formula are also checked against the
resolvent to see whether they are subsumed. If such a
clause exists, it can be removed from the formula. This
process is called backward subsumption elimination. To
keep the CNF formula subsumption-free, both
subsumption checks and self-subsumption detection are
employed in the local search algorithm.

V1. REFUTATION PROOF PRUNING

During the process of tracking unsatisfiable
subformulas from refutation proofs, many redundant
clauses bring a degradation of runtime performance and
memory consumption. To reduce the search space, we
propose a technique called refutation proof pruning,
which on-the-fly filters out the clauses not belonging to
any infeasible proof of a formula. We keep two fields for
each resolvent: one is the list of source trace of this clause,
and the other is a counter that tracks the number of
offspring of this clause which still have a chance to
involve in the refutation proof. Refutation proof pruning
contains two functions: the first function named
Trace Updating is to establish or update the two fields of
trace information when a new clause is added into the
sequence, and the second function called Trace Pruning
is to remove the clauses which are redundant for proof of
unsatisfiability. Fig.5 shows the pseudo code of two
functions.

Trace_Updating(C)

1 Citrace = parent_clauses.trace

2 C.offspring_count =0

3 for (each clause C| in C.trace) do
4 C.offspring_count++
Trace_Pruning(C)

1 if ((C.offspring_count == 0) and (C.trace != J))
2 for (each clause C; in C.trace) do
3 C.offspring_count—

4 Trace Pruning(C))

5 Delete the resolution steps of C
6 Free the space of C.trace

Figure 5. Refutation Proof Pruning Procedure

In Fig.5 when a clause is created, the counter of its
offspring should be zero. A newly generated clause can
potentially take part in the proof, thus the offspring
counter of each clause on its resolution trace is
incremented. When a clause is removed and its offspring
counter does not equal to zero, we keep its list of source
trace because we cannot know whether any of its
descendants is included in the proof or not. If this clause
has no descendant, then its trace list is deleted and the
offspring counter for each clause on its source proof is
decremented. These counters might become zero, so a
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recursive call to Trace Pruning tries to remove each of
the resolution sources.

VII. EXPERIMENTAL RESULTS

To experimentally evaluate the effectiveness of our
algorithm, we select 10 problem instances from the well-
known pigeon hole family and 10 FPGA routing problem
instances, and then compare our algorithm with the
greedy genetic algorithm“‘”, which extracts a nearly
minimum unsatisfiable subformula. The pigeon hole
problem “pigeon holen” asks whether it is possible to
place n+1 pigeons in » holes without two pigeons being
in the same hole. Another benchmark suite'™'” is derived
from the problem of Boolean-based FPGA detailed
routing formulation on island-style FPGA architecture,
which is one of the typical applications for unsatisfiable
subformulas. The Boolean-based router expresses the
routing constraints as a CNF formula which is
unsatisfiable if and only if the layout is unroutable.

Our algorithm to find unsatisfiable subformulas is
implemented in C++ using STL. The experiments were
conducted on a 1.6 GHz Athlon machine having 1 GB
memory and running the Linux operating system. The
limit time was 3600 seconds. The experimental results are
listed in Table 1. Table 1 shows the number of variables
(vars) and the number of clauses (clas) for each of the 20
problem instances. Table 1 also gives the total number of
minimal unsatisfiable subformulas contained in every
formula (MUSes). For generating all minimal
unsatisfiable subsets we use the CAMUS algorithms!'?!.
However there are five instances which fail to obtain all
MUSes within 2 hours, and we mark them with 70 in the
table. Table 1 provides the runtime in seconds of the
greedy genetic algorithm (GGA time) and the number of
clauses that the unsatisfiable subformula contains (GGA
size). Furthermore, Table 1 reports the runtime in seconds
(time), memory consumption in MB (mem) and size of
the derived unsatisfiable subformula (size) for the local
search algorithm excluding the refutation proof pruning
and subsumption elimination procedure (Basic RbLSA).
The last three columns present the CPU time in seconds
(time), memory consumption in MB (mem) and size of
the resulting unsatisfiable subformula (size) for the whole
local search algorithm (RbLSA+RRP+SE). In Table 1,
the numbers in bold are denoted as the minimum value
among the same parameter of three algorithms.

From Table 1, we may observe the following. Both the
basic and the whole resolution-based local search
algorithm outperform the greedy genetic algorithm for
most formulas, except for the instance of pigeon hole6.
For the instances of fpga routingé through
fpga routingl0 and pigeon hole10, the greedy genetic
algorithm failed to extract the unsatisfiable subformula
within the timeout, but our algorithms succeeded in
obtaining it. Moreover, the local search algorithms find
the minimum unsatisfiable subformula for each formula
of the FPGA routing benchmark suite. Further, as
compare with the basic algorithm, the whole local search
algorithm decrease the runtime by about 10% and the
memory consumption by about 20% for most larger
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instances, and with the size of the formulas increasing,
the whole algorithm seems more efficient, mainly owing
to the capabilities of the refutation proof pruning and
subsumption elimination techniques. However, for a few
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small and simple problem instances, the experimental
results are opposite, because the two pruning procedures
bring more overheads than their gains.

TABLE L
PERFORMANCE RESULTS ON WELL-KNOWN B ENCHMARK

Benchmarks vars clas MUSes GGA Basic RbLSA RbLSA+RRP+SE

time size time mem size time mem size
fpga routingl 10 17 4 0 11 0 0.12 9 0 0.2 9
fpga routing2 14 25 11 0.02 12 0 0.29 9 0 0.35 9
fpga_routing3 18 | 33 26 0.13 10 0.08 0.63 9 0.1 0.7 9
fpga routing4 22 41 57 2.16 14 1.2 1.15 9 1.28 1.2 9
fpga_routings 26 | 49 120 51.9 15 27.6 325 9 252 | 29 9
fpga routing6 30 57 T0 time out 182.5 10.6 9 1710 | 8.75 9
fpga routing7 34 65 T0 time out 358.0 17.5 9 321.0 14.1 9
fpga routing8 38 73 T0 time out 617.0 23.4 9 566.1 18.5 9
fpga routing9 42 81 70 time out 1040.1 | 28.0 9 [ 941.0 | 216 9
fpga routingl0 46 89 T0 time out 1690.0 36.5 9 1507.0 | 27.1 9
pigeon holel 2 3 1 0 3 0 0 3 0 0 3
pigeon hole2 6 9 1 0 9 0 0.1 9 0 0.11 9
pigeon_hole3 2 | 22 1 0 22 0 0.38 22 0 0.46 22
pigeon_hole4 20 45 1 0 45 0 0.52 45 0 0.55 45
pigeon_hole5 30 81 1 0.02 81 0 0.64 81 0.1 0.65 81
pigeon_hole6 42 133 1 0.08 133 0.1 0.78 133 0.1 0.77 133
pigeon_hole? 56 | 204 1 0.9 204 0.5 112 204 | 044 | 1.0 204
pigeon hole8 72 297 1 51.9 297 22.8 10.8 297 20.6 8.9 297
pigeon hole9 90 415 1 1304.0 415 682.6 25.3 415 605.8 21.0 415
pigeon hole10 110 561 1 time out 1850.0 58.8 561 1689.0 | 46.5 561

To experimentally test the local search algorithms on
benchmark with different structures, we used the 7 “a AMUSE
randomly generated problem instances. The A-SAT w0
generator uses as input the number of variables N, the /
number of clauses C, the number of literals per clause £, 40 ,
and the probability p, g. Each clause is generated by © /
randomly choosing m out of N variables, and m=k with % *1 /
probability ¢, and 1<m<k probability 1-¢, and by = ] /-/ /
determining the sign of each literal (positive or negative) Va //.
with probability p. Fig. 6 shows the performance results 10 s /,/')
of local search algorithm vs. AMUSE'” on randomly ) _/F’,rgi:f-/“'
generated 2-SAT and 3-SAT problem instances. Fig.6(a) °s 500 1000 1500 2000
is the 2-SAT benchmark, and Fig.6(b) is 3-SAT number of clauses
benchmark. In our experiments p=¢=0.5, and N=200. The (a) random 2-SAT instances
number of clauses in these instances ranges from 100 to
2000, and increases 100 clauses for each set of instances.

Form the experimental results, our local search 180 1
algorithm outperforms AMUSE, especially for 2-SAT 160 - —= RS /
problem instances. When the number of clauses in the 140
instance is increasing, the performance of our local search 120 / /’
algorithm is much better. The causes include three 2 100 /' /‘
aspects: The first is that the function of deriving £ 80 Vs
unsatisfiable subformula is coupled tightly with the " 60 /'./'/
satisfiability checking procedure of the formula. While 401 &/
the resolution is proceeding, the refutation is recorded, 20 /gf'
and the parsing tree is constructed simultaneously, then o ‘.&.4«-&"4'/ ‘ ‘
the unsatisfiable subformula is computed very efficiently. 0 500 1000 1500 2000
The second reason is that the decision of satisfiability is number of clauses
. . (b) random 3-SAT instaces
implemented simply and performs many more moves per
second. The third cause is there are many powerful Figure 6. Performance Results on Randomly Generated Benchmarks

heuristics in the local search algorithm, especially for unit
clauses and binary clauses.
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VIII. CONCLUSION

In this paper, we present a resolution-based local
search algorithm to track small unsatisfiable subformulas
from reduced refutation proof. The algorithm is combined
with some reasoning and pruning techniques. The
experimental results illustrate that our algorithm
outperforms the greedy genetic algorithm on well-known
benchmarks, and is faster than AMUSE on randomly
generated 2-SAT and 3-SAT problem instances. However
extensive experimental studies show that this algorithm
can efficiently tackle the certain type of problem
instances with many short clauses, and cannot work very
well for the formulas with most long clauses, mainly
because it makes the decisions on resolution of two long
clauses in a stochastic way, and lacks of the effective
heuristics for selecting the appropriate clauses. Therefore
one of the future works is to explore more aggressive
methods for efficient resolution of long clauses.
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