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Abstract—Real time systems have a natural executing policy
of urgency. However, real time process algebras of nowadays
cannot specify this basic executing policy which limits their
expressiveness. There is only one default policy called “maximal
progress” in process algebras which is not enough to specify the
behaviors of real time systems. Based on this, we propose a real
time process algebra with urgency executing policy which can
specify the behaviors of real time systems.

Key words: process algebra, executing policy, real time, ur-
gency.

I. INTRODUCTION

There is little change in the composition of non-
deterministic choice in the development of process algebras
[14], [11], [1] under the assumption of maximal progress [3],
[13], [6].

In PCCS (Probabilistic CCS)[2], [5], components under
choice composition are equipped with probabilistic variables.
These probabilistic variables make the decision among pro-
cesses from non-deterministic to a more accurate form. In
PEPA [7], [9], maximal progress is used. The system selects
the action with shortest duration for the coming execution.
Actions in PEPA are associated with exponential distributions
which describe the actions’ durations. Race condition is used
in PEPA that governs the dynamic behavior of a model
whenever more than one activity is enabled, which means only
the “fastest” succeeds.

In real time systems [16], [4], all actions should be sched-
uled under the policy of urgency. The responsibility of the
scheduling algorithm is to determine an order of execution
of the real time tasks that is feasible, i.e. that meets timing
requirements of those tasks. In the design of a real time system,
the choice of an appropriate scheduling algorithm (or policy)
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may depend on several issues, e.g. the number of processors
available in the system, their homogeneity or heterogeneity,
the precedence relations among the application tasks, and the
task synchronization methods.

Real time scheduling algorithms can be classified as either
static or dynamic algorithms. A static scheduling algorithm
is one in which a feasible schedule is computed off-line;
one such algorithm typically requires a priori knowledge of
the tasks characteristics. In contrast, a dynamic scheduling
algorithm determines a feasible schedule at run time. Dynamic
scheduling can adapt to changes in the environment. In this
paper, we adopt dynamic scheduling algorithms called urgency
executing policy. The dynamic scheduling approach has led
to the development of a variety of preemptive scheduling
policies. These include the Earliest Deadline First (EDF), and
the Least Slack Time First (LSTF) policies.

With the EDF policy, the earlier the deadline of a task,
the higher the priority assigned to that task. Instead, with the
LSTF policy, the smaller the slack time (see below) of a task,
the higher the priority value assigned to that task. The task
slack time is defined as the difference between the amount of
time needed from the current time value to the deadline of a
task, and the amount of time that task requires to perform its
computation.

We adopt the urgency executing policy like LSTF. We define
parameter t as the time limitation before which action a(t)
should be executed successfully. What’s more, we classify the
choice composition into two groups. One group is internal
choice ⊕, through which the system can decide which action
is to be executed by its execution policy. Another group is
external choice � which is the choice exposed to the envi-
ronment. We also study the execution of parallel composition,
through which the system can make its decisions under parallel
composition.

In intelligent real time systems, they can perform some
actions which can be called as the intelligent behaviors of

34 JOURNAL OF SOFTWARE, VOL. 4, NO. 1, FEBRUARY 2009

© 2009 ACADEMY PUBLISHER



the systems. The system can evolve from one state to another
by executing a series transitions labeled by actions.

In some cases, real time system may have several actions
available for the coming execution and they are homogeneous.
As to choosing which one, the system needs to make its
decisions by algorithm under the urgency executing policy.
We construct the system’s action with structure a(t), and
parameter t represents the time left before a is executed.

Example 1.1 There is a web server providing services for
Internet games. For simplicity, we assume this server provides
two games, one is card, and the other is shooting. During the
interaction of clients and the server, the time restriction for
card game is tcard and the time restriction for shooting is
tshoot. We set the tcard = 60 time units which is much greater
than the tshoot = 3. If action a1(60) and b1(3) are activated
at the same time, then it is natural for us to require the
server to serve the process with the shortest time restriction.
Suppose that process Pcard is loaded at the same time as
process Pshoot, with the tshoot shorter than tcard, then the
server should execute the action b(tshoot), which is shown in
figure 1.

The dashed lines connecting the two execution lines are time
stamps, which restrict the two lines with the same time scale.
From this figure, we can see the execution policy of urgency
in the system run.

After defining the language of process algebra with urgency
executing policies for real time systems, we show the opera-
tional semantics of the operators in this language. Then, we
construct axioms for operators. As bisimulation relationships
play an important role in the theory of process algebra, we
define the strong bisimulation and weak bisimulation.

This paper is organized as follows. Section 2 defines the
language of process algebra with executing policies. Section
3 defines the operational semantics and the axioms for the
operators. Section 4 proposes the equational theory including
the expansion law, strong bisimulation and weak bisimulation.
Section 5 concludes this paper.

II. LANGUAGE

In this section, we will give out the definition of the
language for the process algebra of real time systems.

Sequential operators as prefix, parallel, termination, dead-
lock and recurrence have little relationship with urgency
executing policy. Choice composition is divided into two: the
external choice � and internal choice ⊕.

The internal choice operator is very important and valuable
in practise. It equips the real time systems under urgency
policy with the ability to make feasible schedule of their
executions.

The grammar of our PA is:

P :: = 0
∣∣ �

∣∣ δ
∣∣ a(t).P

∣∣ P � P
∣∣ P ⊕ P

∣∣ P ; P
∣∣

P ||SP
∣∣ P \ L

∣∣ P [f ]
∣∣ X

∣∣ fix(X = E)

0 is the constant named empty process indicating inactive
process capable of doing nothing. � is the constant named

successful termination indicating a process terminate success-
fully. δ is the constant named deadlock indicating unsuccessful
termination of a process capable of doing nothing.

a(t).P is action prefixing, only when the action a(t) is
executed, the system would behave process P . Parameter t
indicates the time restriction for action a: a must be executed
within time t.P ; Q is the sequential operator, only when the
process P terminates successfully, then, process Q will get its
turn to be executed.

P �P is the external choice composition for the interaction
between system and environment. P ⊕P is the internal choice
which is decided by the system. By internal choice, system can
select proper action for execution under the urgency executing
policy.

P ||SQ is the parallel operator. It represents a system in
which components P and Q work together to perform ac-
tivities in the set S. The set S is called the synchronising or
cooperation set. Both components proceed independently with
any activities whose types do not belong to the set S. Activities
with action types in the set S are assumed to require the
simultaneous involvement of both components. The resulting
activity will have the same action type as the two contributing
activities and a rate reflecting their rates. As to the rate, which
is decided by action in the form of a(t) or a(p).

P \ L is the hiding operator. It behaves as P except that
any activities of types within the set L are hidden. meaning
that their type is not visible outside the component upon
completion. They appear as action typed τ as internal actions.

P [f ] is the relabelling operator. It behaves like P with
actions of process P will be relabelled by function f .

X is a bound process variable. It is used in the definition
of the recursive expression. fix(X = E) is the recursive
expression. We treat recursive expression as fixed-point to
express the recursive process in the real world. For example,
the expression fix(X = a.X) represents a process that can
perform infinite number of actions a.

Example 2.1 Revisit example 1.1, we can get the expression
of process a and b as: a1(60).a2(60)||b1(3).b2(3). · · · .bn(3).
As to the execution, after execute b1(3) just within
the time limitation, the system will evolve into
a1(57).a2(60)||b2(3). · · · .bn(3). After executing 19 b actions,
the system evolves into a1(3).a2(60)||b19(3). · · · .bn(3). Then,
the system executes a1(3) and b19(3) synchronously at time
20 and evolves into a2(60)||b21(3). · · · .bn(3).

This example shows that the language of real time process
algebra with urgency executing policy can specify the behav-
iors of real time systems especially by the policy of EDF
(Earliest Deadline First) and LSTF (Least Slack Time First).

III. OPERATIONAL SEMANTICS AND AXIOMS

Operational semantics gives out the intuitive evolution rules
of the system the process algebra concerned. There have
many situations where intelligent system can make their own
decisions, e.g. select an action (program) to be activated for
the next execution.
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Fig. 1. Executing policy of urgency

Action prefix
a(t).P

a(t)
−−−→ P

Internal Choice
P

a(t)
−−−→ P ′, Q

a(t′)
−−−→ Q′

P ⊕ Q
a(t)
−−−→ P ′

(t < t′)
P

a(t)
−−−→ P ′, Q

a(t′)
−−−→ Q′

P ⊕ Q
a(t′)
−−−→ Q′

(t′ < t)

External Choice
P

a(t)
−−−→ P ′

P � Q
a(t)
−−−→ P ′

Q
a(t)
−−−→ Q′

P � Q
a(t)
−−−→ Q′

Parallel
P

a(t)
−−−→ P ′

P ||SQ
a(t)
−−−→ P ′||SQ

(a �∈ S)
Q

a(t)
−−−→ Q′

P ||SQ
a(t)
−−−→ P ||SQ′

(a �∈ S)

P
a(t′)
−−−→ P ′ Q

a(t′′)
−−−−→ Q′

P ||SQ
τ(t)
−−−→ P ′||SQ′

(a ∈ S) where (t) = max(t′, t′′)

Hiding
P

a(t)
−−−→ P ′

P \ L
a(t)
−−−→ P ′ \ L

(a �∈ L)
P

a(t)
−−−→ P ′

P \ L
τ
−→ P ′ \ L

(a ∈ L)

Relabelling
P

a(t)
−−−→ P ′

P [f ]
f(a)(t)
−−−−−→ P ′[f ]

Recursion
E{fix(X = E)/X}

a(t)
−−−→ E′

fix(X = E)
a(t)
−−−→ E′

TABLE I
THE OPERATIONAL SEMANTICS

A. Operational semantics

In this section, we will define the operational semantics of
process algebra in Table 1. All deduction rules of the language
listed in this table are in form of a(t).

Action prefix: Process term a(t).P will evolve to P by
executing action a(t) within time limitation t. In real time
systems, a(t) can be dropped if it can not be accomplished
within time t.

Sequential composition: Sequential composition P ; Q,
when P is successfully terminated, Q gets its turn for exe-
cution. If there is a deadlock in P , Q can not be executed.

Internal action: In system runs, most actions are executed
invisible and they are called as internal actions. We use τ to
stand for them.

Internal choice: In real time systems, time plays the key
role in the system run. All actions concerned should be
activated and executed in the least time. Actions are equipped
with time limitation t. System will activate another action
when a timeout occurs.

Example 3.1 For internal choice ⊕ under urgency policy,
only parameter t is considered. System only select the action
with the smallest t among action available for execution.
There are also some changes in the operational semantics.
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In situation both P and Q have the same initial action a:

P
a(t1)
−−−→ P ′, Q

a(t2)
−−−→ Q′

P ⊕ Q
a(t1)
−−−→ P ′

(t1 < t2)

In case t1 = t2, then the choice would come to a non-
deterministic for P and Q, and this is really hard to encounter.
Under this situation, either process is OK under this policy.

External Choice: External choice � is an interface between
system and the environment. System provides external choices
for environment, and the environment can use them to ac-
complish its purposes. The external choice is completely non-
deterministic for the system. thought there might have certain
kind of probability for the actions in the long run, we assume
that the system is not necessary to deal with it.

First, we explain the formula in For formula

P
a(t)
−−→ P ′

P � Q
a(t)
−−→ P ′

the environment picks up the action a(t) to execute among
actions available provided by the system. As to the reason
why the environment picks up the action a(t), we leave it to
the environment and not consider it here.

Termination predicator: We present � to indicate the
successful termination of a process which can be distinguished
from deadlock (δ). � indicates whether or not a process
has a termination option. If so, then the result will be 0,
and otherwise δ. For example, �(P + 0) = 0 where as
�(P + Q) = δ.

Parallel composition: There are some changes in the
parallel composition in this language with others.

In action a(t), rule

P
a(t)
−−→ P ′

P ||SQ
a(t)
−−→ P ′||SQ

(a �∈ S)

indicates that process P will evolve to P ′ by executing a(t)
with a �∈ S which means there have no communication
between process P and process Q, and the process Q remains
unchanged. It is similar with the rule

Q
a(t)
−−→ Q′

P ||SQ
a(t)
−−→ P ||SQ′

(a �∈ S)

As to the rule

P
a(t′)
−−−→ P ′, Q

a(t′′)
−−−→ Q′

P ||SQ
τ
−→ P ′||SQ′

(a ∈ S)

there will have a communication action τ (which can also be
expressed as τ(t)).

As to the parameter of (t) bounded with action τ in the
rule, we can also figure them out if necessary, the system will
wait to the time either P or Q cannot wait any longer which
is: t = max(t′, t′′). When an action is turned into internal
action τ , usually we do not care about the executing time.

A key issue in process algebra is how to model and
deal with the models of concurrency and communications.
Processes under parallel conmposition can perform actions and
evolve into other states independently. They can also perform
synchronous communications and then evolve into other states
synchronously.

For parallel composition under urgency policy, we know
that the synchronizing among processes P1||SP2||S · · · ||SPn

has nothing to do with the position in the terms. System picks
up the quickest two processes for synchronization if all the
action of Pi i = 1, 2, ..., n are waiting for it,

Pi

a(ti)
−−−→ P ′

i , Pj

a(tj)
−−−→ P ′

j

P1||SP2||S · · · ||SPn
τ
−→ P1||S · · ·P ′

i ||S · · ·P ′
j ||S · · · ||SPn

where 1 ≤ i < j ≤ n and max(ti, tj) ≤ (tk | k �∈ {i, j}∧1 ≤
k ≤ n).

Hiding: Hiding term P \L behaves like P except that any
activities of types within the set L. Actions in L are not visible
outside the component upon execution and they are turned into
internal action τ .

Deduction rule

P
a(t)
−−→ P ′

P \ L
a(t)
−−→ P ′ \ L

(a �∈ L)

indicates process P will evolve to P ′ by executing action a(t)
within time t under condition a �∈ L. The deduction rule

P
a(t)
−−→ P ′

P \ L
τ
−→ P ′ \ L

(a ∈ L)

indicates process P can evolve to P ′ by executing action τ
(with parameters like τ(t)) within time t under condition a ∈
L. There is no visible action observed outside when a(t) ∈ L
is executed but a sojourn time t.

We use a particular simple relabeling operator is of special
importance, which is δH , the hiding operator. It can be taken
as an indispensable feature in process algebra.

Relabeling: P [f ] is the relabeling operator. P [f ] behaves
like P with its actions relabeled by function f . It does not
change parameters bounded with actions. and just change the
name of actions, so we can get the deduction rule in action
form a(t) by

P
a(t)
−−→ P ′

P [f ]
f(a(t))
−−−−→ P ′[f ]

.

Recursion: The meaning of recursion operator is given by
equation such as

E{fix(X = E)/X}

Process variable X is guarded in the expression E, and the
system run of E{fix(X = E)/X} can be taken as a fixed-
point, which means the the final step of one cycle run of the
system leads to the starting point of the system run.
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The deduction rule of constant can be expressed in action
form a(t) like

E{fix(X = E)/X}
a(t)
−−→ E′

fix(X = E)
a(t)
−−→ E′

Recursive is of key importance in the theory of process
algebra which can be used to model the circulatory behavior of
systems. For example, P ::= a.P �b.P can represent a system
that can execute either a or b, and then return to the initial
state. In this section, we take recursive behavior as expressed
as fixed point.

B. Axiomatizations

Providing sound and complete axiomatizations for various
equivalence relations has been one of the major research topics
in the development of process theories. A complete axioma-
tization not only allows us to reason about process behaviors
by syntactic manipulation, but also helps to understand the
properties of the operators used to build complex processes
from simpler components.

Now, we list the axioms of the process algebra with urgency
policy in table II.

IV. EQUATIONAL THEORY

Equivalence relations have been used in classic[14],
probabilistic[2], timed[4], [16] and stochastic[9] process al-
gebras to compare components and to replace a component
with another which exhibits an equivalent behavior, but has a
simpler representation. This technique still applies in real time
process algebra with urgency policy.

A. The expansion law

The expansion law shows us all the possible execution of
concurrent systems. The nondeterminism and concurrency of
the execution in complex systems can be showed clearly by
this law.
Definition 4.1 The expansion law under urgency

Let P ≡ (P1||S · · · ||SPn), with n ≥ 1. Then

P ∼
∑
⊕

{
a(tmin).(P1||S · · · ||SP ′

i ||S · · · ||SPn) |

Pi
a
−→ P ′

i , a(t) �∈ S
}

+
∑
�

{
a.(P1||S · · · ||SP ′

i ||S · · · ||SPn) |

Pi
a
−→ P ′

i , a �∈ S
}

+
∑ {

τ.(P1||S · · · ||SP ′

i ||S · · · ||SP ′

j · · · ||SPn) |

Pi
l
−→ P ′

i , Pj
l
−→ P ′

j , i < j, l ∈ S
}

This policy is somehow like “maximum progress” in prob-
abilistic process algebras, PEPA and stochastic process alge-
bras. They all willing to execute more and more processes
within restricted time.

Under internal choice composition, action a(t) is executed
among Pi (1 ≤ i ≤ n). System under urgency policy selects
the one with the shortest time restriction for execution which

is a(tmin). But for external choice composition, it is out of the
control of the system and it is non-deterministic. For internal
action τ between two processes, it can not be observed outside,
but we have reason to believe that the system under urgent
policy will force its components to behave in the manner of
urgency.

B. Recursiveness

It is very common for system to have recursive behaviors.
We will study the equivalent relationship about recursive
behavior in our language.

Definition 4.2 For strong bisimulation relationships under
execution policies as ∼U , let E and F contain variables X̃
at most. Then E ∼U F if, for all indexed sets P̃ of processes,
E{P̃ /X̃} ∼U F{P̃ /X̃}.

We shall also use Ẽ ∼U F̃ to mean component-wise
congruence between Ẽ and F̃ .

Proposition 4.3 If Ã
def
= P̃ , then Ã ∼U P̃

Proof: By the operational semantics of Congruence, we see
that for each i, Ai and Pi have exactly the same derivatives,
and the result follows directly. �

Now we are ready to show that ∼U is preserved by recursive
definition.

Proposition 4.4 Let Ẽ and F̃ contain variables X̃ at most.

Let Ã
def
= Ẽ{Ã/X̃}, B̃

def
= F̃{B̃/X̃} and Ẽ ∼U F̃ . Then

Ã ∼U B̃.
Proof We shall deal only with the case of single recursion

equations, thus replacing Ẽ, F̃ , Ã, B̃ by E, F, A, B. So assume

E ∼U F , A
def
= E{A/X}, and B

def
= F{B/X}. It will be

enough to show that S is a strong bisimulation up to ∼, where

S = {(G{A/X}, G{B/X}) |

G contains at most the variable X}

For then, by taking G ≡ X , it follows that A ∼ B.
To show this, it will be enough to prove that
If G{A/X}

a
−→ P ′ then, for some Q′ and Q′′,

G{B/X}
a
−→ Q′′ ∼U Q′ with (P ′, Q′) ∈ S

We shall prove the above formula by transition induction, on
the depth of the inference by which the action G{A/X}

a
−→ P ′

is inferred. We argue by cases on the form of G:
Case 1 G ≡ X .
Then G{A/X} ≡ A, so A

a
−→ P ′, hence also

E{A/X}
a
−→ P ′

by a shorter inference. Hence, by induction

E{B/X}
a
−→ Q′′ ∼U Q′, with (P ′, Q′) ∈ S.

But E ∼ F , so

F{B/X}
a
−→ Q′′′ ∼U Q′

and since
B

def
= F{B/X},
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For simplicity, we use + to stands for {⊕,�} in general.

P + Q = Q + P A1 a · τ · P = a · P T1

P + (Q + R) = (P + Q) + R A2 τ · P = τ · P + P T2

P + P = P A3 P · (τ · Q + R) = P · (τ · Q + R) + P · Q T3

(P + Q) · R = P · R + Q · R A4

(P · Q) · R = P · (Q · R) A5 P ||S0 = P C1

P + δ = P A6 P ||Sδ = P C2

δ · P = δ A7 P ||SQ = Q||SP C3

P + 0 = P A8 (P + Q)||SR = P ||SR + Q||SR C4

P · 0 = P A9 R||S(P + Q) = R||SP + R||SQ C5

0 · P = P A10 p[f ] = p if p = {0, �, δ} L1

δH(τ) = τ H0 p[f ] = f(p) L2

δH(a) = a if a �∈ H H1 P [id] = P L3

δH(a) = δ if a ∈ H H2 (P + Q)[f ] = P [f ] + Q[f ] L4

δH(P + Q) = δH(P ) + δH(Q) H3 (P · Q)[f ] = (P [f ]) · (Q[f ]) L5

δH(P · Q) = δH(P ) · δH(Q) H4 P [f ][g] = P [f ◦ g] L6

δHδK(P ) = δH∪K(P ) H5 (P ||SQ)[f ] = (P [f ])||S[f ](Q[f ]) L7

P ⊕ (Q � R) = (P ⊕ Q) � (P ⊕ R) D1 P � (Q ⊕ R) = (P � Q) ⊕ (P � R) D2

fix(X = E) = E{fix(X = E)/X} R1

If F = E{F/X} then F = fix(X = E), with X is guarded in E R2

fix(X = X + E) = fix(X = E) R3

fix(X = τ · X + E) = fix(X = τ · E) R4

fix(X = τ · (X + E) + F ) = fix(X = τ + X + E + F ) R5

TABLE II
THE AXIOMS OF PROCESS ALGEBRA WITH EXECUTING POLICY
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G{B/X} ≡ B
a
−→ Q′′′ ∼U Q′, with (P ′, Q′) ∈ S

are required.
Case 2 G ≡ a · G′.
Then

G{A/X} ≡ a · G′{A/X}

so
P ′ ≡ G′{A/X}

also
G{B/X} ≡ a · G′{B/X}

a
−→ G′{B/X}

and clearly
(G′{A/X}, G′{B/X} ∈ S)

as required.
Case 3 G ≡ G1 ⊕ G2 and G ≡ G1 � G2.
This is simpler than the following case, and we omit the

proof.
Case 4 G ≡ G1||SG2.
Then

G{A/X} ≡ G1{A/X}||SG2{A/X}.

There are three cases for the action

G{A/X}
a
−→ P ′,

according to whether it arises from one or other component
alone or from a communication. We shall treat only the case
in which a ∈ S, and

G1{A/X}
a
−→ P ′

1, G2{A/X}
a
−→ P ′

2

where P ′ ≡ P ′
1||SP ′

2. Now each component action has a
shorter inference, so by induction

G1{A/X}
a
−→ Q′′

1 ∼U Q′

1, with (P ′

1, Q
′

1) ∈ S,

G2{A/X}
a
−→ Q′′

2 ∼U Q′

2, with (P ′

2, Q
′

2) ∈ S

Hence, setting Q′ ≡ Q′
1||SQ′

2 and Q′′ ≡ Q′′
1 ||SQ′′

2 ,

G{B/X} ≡ G1{B/X}||SG2{B/X}
τ
−→ Q′′ ∼U Q′

It remains to show that (P ′, Q′) ∈ S. But

(P ′

i , Q
′

i) ∈ S(i = 1, 2)

so for some Hi, P ′
i ≡ Hi{A/X} and Q′

i ≡ Hi{B/X}(i =
1, 2); thus if we set H ≡ H1||SH2 we have

(P ′, Q′) ≡ (H{A/X}, H{B/X}) ∈ S.

Case 5 G ≡ G1 \ L, or G1[R]
These cases are simpler than Case 4, and we omit the proof.
Case 6 G ≡ C, a process Constant with associated

definition C
def
= R. Then, since X does not occur, G{A/X}

and G{B/X} are identical with C and hence both have a-
derivative P ′; clearly

(P ′, P ′) ≡ (P ′{A/X}, P ′{B/X}) ∈ S

�

The recursion, represented by the definition of Constants, is
the only feature of the calculus which gives us processes with
the power to computer infinitely; more than that, it gives our
calculus the full power of Turing machines or any other basis
for computation, so we should expect to spend some effort in
showing that it behaves properly.

C. Strong bisimulation

We want to introduce the strong bisimulation for process
algebra with urgency executing policy.

Definition 4.5 A binary relation S ⊆ P ×P over processes
with action in form of a(t) is a strong bisimulation under
policy of urgency if (P, Q) ∈ SU implies, for all a(t) ∈ Act,

• Whenever P
a(tmin)
−−−−−→ P ′ then, for some Q′, Q

a(tmin)
−−−−−→

Q′ and (P ′, Q′) ∈ SU ;

• Whenever Q
a(tmin)
−−−−−→ Q′ then, for some P ′, P

a(tmin)
−−−−−→

P ′ and (P ′, Q′) ∈ SU .

We use a(tmin) to denote the action whose parameter t is
the smallest. By doing this, system can select the most urgency
actions available for the next execution.

In the sequential composition, action prefix and so on, there
have no other actions available for choice, parameter t has no
competitors and it is naturally the smallest.

We use P ∼U Q to denote processes P and Q in the
relationship of strong bisimulation under policy of urgency.

The strong bisimulation under policy of urgency can be
used to compare two or more processes dealing with real
time systems. Real time systems have their actions scheduled
dynamically during its executions.

Actions being executed within time limitations. If an action
is successfully terminated within the time limitations, the sys-
tem just moves on to execute the following actions. Otherwise,
the timer guarding the time limitation will be triggered, and
the system arranges another action for execution as designed.

Definition 4.6 P and Q are strongly equivalent or strongly
bisimilar written as P ∼(t) Q w.r.t. a(t) under execution
policies of urgency if (P, Q) ∈ S for some strong bisimulation
S under one of the execution policy. This may be equivalently
expressed as follows:

∼U= ∪{S|S is a strong bisimulation under policy of urgency}.

D. Weak bisimulation

We have introduced strong bisimulation. Every action α in
a process must be matched by an α action of the other - even
every internal action τ . But in some cases, we should loosen
the requirement. If the observer does not has the ability of
observing the internal action τ , this yields a weaker notion
of bisimulation called weak bisimulation. More precisely, we
merely require that each internal action τ can just be omitted
from the process. For example, τ.α.τ can be denoted by α̂

and transition
α̂
⇒.

Definition 4.7 A binary relation SU ⊆ P×P over processes
with action in form of a(t) is a weak bisimulation under policy
of urgency, if (P, Q) ∈ SU implies, for all a(t) ∈ Act,
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• Whenever P
a(tmin)
−−−−−→ P ′ then, for some Q′, Q

̂a(tmin)
=⇒ Q′

and (P ′, Q′) ∈ SU ;

• Whenever Q
a(tmin)
−−−−−→ Q′ then, for some P ′, P

̂a(tmin)
=⇒ P ′

and (P ′, Q′) ∈ SU .

where the
̂a(tmin)
=⇒ means

τ̂n

=⇒
a(tmin)
−−−−−→

τ̂n

=⇒, and τ̂n = 0 (the
empty sequence).

By analogy with our treatment of strong equivalence with
∼U , we write this formally as follows using ≈U to stand
for weak bisimulation (also as observation equivalence) under
policy urgency.

Theorem 4.8 ∼U⇒≈U

Proof: straight forward. �

V. CONCLUSIONS

Process algebras have been studied over 20 years. Re-
searchers have extended them in many aspects, e.g., PEPA [9],
SPAs [8], [10], probabilistic PAs [12], [17], [15], [18] and so
on. Among all of them, there is one common executing policy:
maximum progress. This policy is useful but not enough to
specify the behaviors of real time systems.

In this paper, we introduced urgency executing policy into
process algebra to specify the behaviors of real time systems.
Urgency executing policy, together with the default policy
of maximal progress, forms executing policy for real time
systems. As for action structure, we use a(t) to stand for
action a with parameter t as time limitation. Action a(t) must
be executed within limitation t, or, it will be terminated by a
timer and the system will activate another action as designed.

We defined the operational semantics and axioms for op-
erators in the language. As per the operational semantics
and axioms, we defined equivalent relationship of strong
bisimulation and weak bisimulation, thus forming a theory of
process algebra for real time systems with execution policy of
urgency.
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