
An Object-oriented Design and Push Web
Server based Framework for Physical Object

Interactions and Services

Runhe Huang, Kei Nakanishi, Jianhua Ma
Faculty of Computer and Information Sciences, Hosei University, Tokyo, Japan

Email: {rhuang, jianhua}@hosei.ac.jp
 nakanishi@gs-cis.hosei.ac.jp

Bernady O. Apduhan

Faculty of Information Science, Kyushu Sangyo University, Fukuoka, Japan
Email: bob@is.kyusan-u.ac.jp

Abstract— One of the substantial issues in ubiquitous
computing is the automatic processing of information from
real world objects and enabling their interactions in the
background. This scenario requires a framework on which
such information processing and object interaction can be
supported. This article presents our research progress in
developing a framework based on the object-oriented
design approach and the use of a push web server. With the
concept of object abstraction, an object can hide its internal
structure from the outside world, which can make the
object secure. Moreover, object interaction can be
conducted via message exchanges, which makes the
interface simple and standardized and the heterogeneous
objects can be easily handled as well. Instead of using the
traditional pull web server, a push web server, i.e., Comet,
which runs on top of HTTP protocol is used to exchange
messages. To this, object interactions can be operated
smoothly and seamlessly in real time with shorter delay.

Index Terms— ubiquitous computing, pushing web service,
object-oriented design, robot motion control, RFID, Comet

I. INTRODUCTION

Different from cyber computing, ubiquitous
computing emphasizes on adding computing ability to
real world physical things such that they are able to
process acquired information, communicate and interact
with each other. In order to differentiate real world
physical things with computing ability from those
software entities known as e-things/e-objects, real world
physical things with computing ability are called u-
things/u-objects [1].

With the continuing miniaturization of electronic
chips and electro-mechanical devices, there are more and
more u-objects being developed ranging from handheld
devices such as cell phones and PDAs, home appliances
such as TVs and refrigerator, to ordinary goods. For
example, a book can be attached with a RFID tag to store
the book’s related information such as the book’s title,
author’s name, year of publication, ISBN number, etc.

As a result, u-objects can be regarded as a special kind of
physical entities that are able to store some data
electronically and interact with each other via wired or
wireless communications.

In contrast, software entity such as digital services,
known as e-things/e-objects, which resides in either a
local or a remote system, can be used to process u-
objects related information by providing various specific
service functions. A service performs some operations
upon request and replies the request with the result. For
example, an online bookstore may have a book
information service which provides catalog searching,
online purchasing, latest news, and so on. In fact, there
are already many digital services, such as map service,
navigation service, online banking service, and other
services that are available via the Internet or other
networks.

A ubiquitous system [2] generally involves many
physical u-objects and digital services. They need to
communicate and interact with each other in order to
accomplish some assigned task(s). Therefore, both
communication and interaction are important and
necessary functions which a ubiquitous system has to
support. To enable their efficient communications and
interactions, it requires a middleware or framework. Due
to the heterogeneity of u-objects and digital services,
developing such framework is not an easy thing to do
and there are many challenging problems to be solved.

There have been quite a number of developments
[3][4][5][6] in this area based on the service-oriented
architecture [7] in which everything is viewed as a
service. This approach seems unnatural since some
physical devices can hardly be regarded as services. In
contrast, it is natural to regard everything as an object,
and so it is appropriate to adopt the object-oriented
design in which everything is viewed as an object [8].
This article proposes a framework based on the object-
oriented design and Comet, also known as a push web
server, which runs on top of HTTP protocol for message
exchanges.

34 JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008

© 2008 ACADEMY PUBLISHER

II. WHY OBJECT-ORIENTED DESIGN?

 The concept underlying object-oriented programming
was first introduced in the Simula programming
language and Smalltalk was the first programming
language to be called "object-oriented" [9]. Different
from the traditional approach, the object-oriented
approach regards everything in the real world and cyber
worlds as objects and associates the data with operators
on objects. It has the following advantages [10]:
reusability, extendibility, scalability, and heterogeneity.
The use of the object-oriented design is mainly based on
the following two considerations: (1) both physical
objects and digital services in the ubiquitous computing
system can be viewed as objects; (2) it is a good idea to
take the advantages of object-oriented design’s
reusability, extendibility, scalability, and heterogeneity.
The object-oriented approach is therefore the appropriate
one.

A. U-object Class vs. U-object Instance
In a ubiquitous computing system, real world physical

objects like PDAs, RFIDs, sensors, and robots are
considered objects, also called u-objects and the
associated services are called u-services in order to
emphasize they are in a ubiquitous computing context.
Like an object in object-oriented programming, a set of
u-objects can be defined as a software entity, called u-
object class. The u-object instances can be generated
from the u-object classes by assigning values to the
variables, and the associated methods defined in the u-
object class can perform their operations on the u-object
instances. As an example, the partial code of RFID class,
the generation of RFID instance rfid1, and the invocation
of the method, startChat() are given below.

RFID rfid1 = new RFID();
rfid1.startChat();

B. Inheritance vs. Containment
Inheritance is a mechanism that provides a way to

reuse existing classes, implementing small changes in
behavior by overriding existing methods in the
superclass or by adding new methods in the subclass [10].
For example, RFIDwithName, is a subclass that inherits
all variables and methods of its superclass, RFID and
includes additional method, toString() as given below.

Object inheritance is referred to as the “IS” relation of
a superclass with its subclass objects. For example, we
can say that a RFIDwithName object IS a RFID object.
Whereas object containment is referred to as the “HAS”
relation of an object with other objects contained in the
object. Such object is called a composite object. For
example, a RFID object is a composite object since it has
RFIDPhidget and Lingr objects in its class. The use of
“HAS” relation permits the representation of complex
structures, which is very important in a ubiquitous
computing system since some objects like space object
and room object are real complex objects that contain a
number of heterogeneous other objects. It is one of the
necessary features that any complex object should be
composed and decomposed.

C. Encapsulation and Polymorphism
An object hides things from other objects and isolates

its variables and methods from the external environment.
This is called encapsulation property. This property
protects an object’s variables from corruption by other
objects and hides the internal structure of the object so
that interaction with the object is relatively simple and
standardized and changes in the internal structure do not
affect other objects [10]. For example, if we change the
internal variable, RFIDPhidget, to other RFID reader,
such as OtherRFIDReader, in the class RFID, it is rather
easy to change Line 3 as,

 private RFIDPhidget rfid;
 private OtherRFIDReader rfid;

The change is completely unknown by external
objects and does not affect the interfaces with external
objects. An object is just like a black box to external
objects and objects interact by means of message
exchanges.

Different objects have the same method name but do
things in different ways. This is called polymorphism
characteristic. This characteristic hides different
implementations behind a common interface [10]. For
example, two different objects share the same method
name, print(), but with different implementations in
different object classes. One is for printing a text line and
the other is for printing an image.

1. public class RFID {
2. // variables
3. private RFIDPhidget rfid;
4. private Lingr lingr;
 // methods
 public RFID() { super(); }
 public void initRFID()]{.…..}
 public void startRFID(){……}
 private String getTag(String oe){……}
 public void startChat(){……}
 }

public interface PrinterInterface{public print();}

public class PrinterText implements PrinterInterface {
 // same method name but different implementation
 public void print(){……} // print a text line
}

public class PrinterImage implements PrinterInterface {
 // same method name but different implementation
 public void print(){……} // print an image
}

With this characteristic, we can use one higher-level
object to invoke many different lower-level objects using
the same message format to accomplish similar functions.
Likewise new lower-level objects can be easily added
with minimal changes to existing objects. These are the
characteristics our platform requires to deal with
heterogeneous objects and their interactions.

public class RFIDwithName extends RFID {
 // additional methods
 public String toString(String oe){
 return getTag(oe);
 }
}

JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008 35

© 2008 ACADEMY PUBLISHER

In conclusion, the inheritance mechanism makes
objects reusable, the containment structure makes objects
extendible and the system scalable. Furthermore, the
encapsulation property makes objects secured and the
interactions simple, and the polymorphism characteristic
makes the platform heterogeneous.

III. OBJECT INTERACTIONS VIA MESSAGES ON COMET

A. U-objects, V-objects, A-objects, and Interfaces
U-objects are real world physical objects in a

ubiquitous computing system. V-object is an object
instance that maps to a physical object. A-object is an
abstract object instance that is generated from the A-
object class that is an abstract class that contains the
default variables, methods, and at least one abstract
method. A V-object class is a subclass of the A-object
class and inherits all variables and methods from the A-
object class with additional necessary variables and
methods and implements the abstract method(s) defined
in the superclass. A V-object class can inherit the
superclass, A-object class, and implement an interface as
well, that is, implement the abstract method(s) defined in
the interface [11]. For example, a robot for finding lost
or misplaced objects. Below gives some partial source
codes in Java to show the relations of V-object class, A-
object class and interface class.

 One of the advantages of using the object abstraction is

that it supports the separation of what operations are
provided by the systems and components, and how their
operations are implemented. The outside world does not
care about the detailed implementation of the operators
and just sends a message to the object. The object

invokes the requested methods within it with the
parameters in the received message. As a result, it hides
the internal structure of objects and makes objects
interaction relatively simple and standardized.

B. Message Exchanges on a Pushing Web Server
Objects interact by means of message exchanges.

Once an object instance wants to interact with other
object(s), it generates and sends out a message that
includes the names of the sending objects, the receiving
object, a method name of the receiving object, and other
necessary parameters to execute the method. A message
can only be used to invoke a method within an object but
can not directly access the data of other objects. So there
should be a place to exchange messages. Such place is
the Comet web server, a push web server.

Comet is a new style web server with push technology
[12]. It allows a web server to push data/events down to
a browser without the browser explicitly requesting it.
With the benefit that data/events are relayed in almost
real-time and “wasteful” requests in a traditional web
server are greatly reduced. As we all know, HTTP is a
widely used communication protocol that is able to cross
over machines and software boundaries as well as getting
through a firewall. However, HTTP protocol does not
maintain a persistent connection. A HTTP server’s
message is to be delivered to a client only when the
client makes a request and after which the connection is
terminated. In order to simultaneously detect a new
event/message arriving at the server, a client has to
repeatedly make polling requests to the server. If the
polling is repeated too frequently, the computation and
communication overheads increase greatly. If the interval
between two polling requests is too long, all objects may
receive messages with long latency, and the whole
system could not respond requests or perform context
changes in real time. Instead of repeatedly polling to get
new events, a Comet application/client, when receiving a
pushed message from a Comet server, can post the next
request immediately so as to keep a persistent HTTP
connection between the server and the client. The
traditional HTTP application model versus the Comet
application model is given in Fig. 1.

// A-object class
public abstract class AbstractRobot {
 private String name ;
 Position position;
 // constructor method for creating robot objects
 public void Robot(String name, Position positon){
 this.name = name; this.positon = position; }
 //default methods
 public String getName(){…}
 public Position getPosition(){…}
 //abstract methods
 public void robotAction();
}
// interface
public interface RobotInterface {
 //abstract methods
 public void sendTo(Message msg)
 public void receiveFrom(Message msg)
}

re
sp

on
s e request re

sp
on

se

in itia lize

connection pu
sh

pu
sh

pos t pu
sh

pu
sh

reques t re
sp

on
s e request

event event event

event event

event

event eventServer P rocess

Server P rocess

Traditional H TTP application m odel

C om et application m odel

C lient P rocess

C lient P rocess

// V-object class
public class FindingRobot extends AbstractedRobot
 implements RobotInterface{
 public void FindingRobot(String name, Position position){
 Super(name, position); }
 //implementation of the abstract methods
 public void robotAction(){……}
 //implementation of the abstract methods
 public void sendTo(Message msg){……}
 public void receiveFrom(Message msg){……}
}

Figure 1. Traditional HTTP versus Comet

36 JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008

© 2008 ACADEMY PUBLISHER

Some platforms have been supporting Comet. The
Cometd [13] is a scalable Comet platform. The Jetty [14]
has an implementation of the Cometd event server. In
Tomcat, the new HTTP connector which uses NIO API
has been added to Comet applications. The Resin [15]
implements the Comet servlet API which enables the
streaming communication. The Lingr [16] is the
browser-based chat service using Comet for real-time
message notification.
 Figure 2 shows the interaction between two objects,
i.e., a lost or misplaced object finding robot and a
location service object, via message exchanges in the
chat space on a Comet server which runs on top of HTTP
protocol. The location service object posts a message
requesting the location of the finding robot, and the
Comet server pushes the event to its clients. Since the
server and the clients are constantly connected, once the
pushed event occurs, the client can almost
simultaneously identify the event and take the
corresponding action, such as return a message including
the requested position of the finding robot to the chat
space on the Comet server. The Comet server pushes the
message to its clients, and the client as well as the
location server can also almost simultaneously identify
the returned message and receive it.

Figure 2. An example of two object interaction

 In conclusion, with the use of Comet, i.e., a push web
server on top of HTTP protocol, the proposed framework
can take advantage of both the push technology and the
HTTP protocol. That is, the server and its clients can
keep a persistent HTTP connection and the
communication protocol can cross over machine and
software boundaries as well as go through a firewall.

IV. THE 5-LAYER FRAMEWORK AND ITS ARCHITECTURE

The proposed framework for real world physical
object interactions is mainly developed on the basis of
the object-oriented design principles and the use of push
web server, Comet. Object interactions are conducted
with message exchanges in a chat space (Lingr) on
Comet that runs on top of the HTTP communication

protocol. The framework has 5 layers which start from
the lowest layer, i.e., the physical network, then the
HTTP protocol layer, 3-servers layer, and the object
interaction layer which is below the highest layer, i.e.,
the application layer. Utilizing the advantage of HTTP
protocol, the framework supports heterogeneous
communications by crossing over any machines and
software boundaries. With push technology in the web
server, it enables persistent connections between the
server and its clients so as to make object interactions
with the least time latency to achieve almost real time
object interactions.

Figure 3. The 5-layer framework

The framework works on any machine and physical

network so long as HTTP is supported. The object
interaction layer consists mainly of three components:
the object manager, the object chat space, and the object
coordinator as shown in Fig. 3. They are designated for
object management, object coordination, and message
exchanges, respectively. The objects here refer to real
world physical objects, such as PDAs, RFIDs, robots,
sensors, and as well as those digital services. They are all
implemented in Java.

Object Manager is a component for managing
physical objects and digital services as well as their
abstractions. Once an object logins, the authentication
server verifies if the object is registered. If not, the login
is refused or the object is reminded to make the
registration first. If yes, the authenticated object is
mapped to an object instance, i.e., v-object, of the
corresponding object class, an abstraction of a set of
objects. And then, the message exchanges with other
object instances can be conducted in the common object
chat space. The authentication server is implemented on
Tomcat.

Object Chat Space is a common virtual place for
message exchanges between objects. An object can send
a message to and receive messages from others in the
chat space. An object’s message that usually requests
other object(s) to do some operation(s) is sent to the
object chat space, and the target object that receives the
requesting message invokes an operation or some
operations specified in the message. Other objects ignore
this message. The object chat space, Lingr, is
implemented on Comet, a push web server.

Object Coordinator provides two functions for
object interactions. One is to analyze the received
object’s event message and publish semantic data to the

JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008 37

© 2008 ACADEMY PUBLISHER

object chat space where all other objects can notice the
incoming data and take necessary response. Another
function is to save or load an object with the object’s
state information. When a physical object or service
logouts/leaves the framework, its corresponding v-object
is saved in the object database. The object’s
configuration and state are preserved and the object is
persistent for the continuous use next time. The context
server for publishing context and analyzing event is run
on Tomcat and the database server for storing objects is
Derby.

The workflow of these components in the framework
is shown in Fig. 4.

Object Database (Derby)

Context Server (Tomcat)

load save

Analyze
Event

Publish
Context

Comet Server (Lingr)

Object Coordinator

Object Chat Space

Authentication Server (Tomcat)

get eventnotify event

Object Manager

notify event

get event

Authenticate Load
Object

object

key

RFID PDA

RFID Object

Abstracted Objects

Robot Location Service

PDA Object

Robot Object

Location Service
Object

long-polling

lon
g-

po
llin

g

login HTTP Connection

Physical Objects and Digital Services

load

Figure 5. The user location tracking

The message regarding the “kei” object is, in this

example, “/location012023c5ded”. The message is
pushed and the object coordinator obtains the message
which is then analyzed by the event analyzer and
translates it into a context message, “kei is in room
w4024”. The context publisher posts the context message,
and Comet pushes the messages into the object chat
room. The location viewer object identifies the context
message, pulls the context message in XML format,
parses the XML file and extracts the human’s object
name, “kei”, and the location, “w4024”. The icon of the
human object is shown in the map on the display screen.
If the user clicks on the icon, the detailed information
about the human object is displayed in the right and
bottom corner of the location viewer window.

Figure 4. The system architecture and its workflow

B. Case 2: Continuation of a u-object’s activity V. CASE STUDIES
This case study is to explain how a u-object maintain

and continue its state and how its designated task can be
continually implemented by itself or by other object.

 Applications which involve enabling various kinds of
object interactions can be developed on the top layer of
the framework. The following present three case studies
in which we can see how two objects communicate via
the object chat room in a user location tracking
application, how an object can keep its persistent state
and for another object to continue the unfinished task,
and how a number of objects interact in a robot motion
control application.

The situation: There are two robots, named robot-A
and robot-B. Robot-A is assigned a task, i.e., going from
its current position to a specified position such as the
coordinates of the position, (100, 50) to perform a task.
However, when robot-A is obstructed by a wall along the
way, it is not possible or not worthy for robot-A to go
around to reach the destination or robot-A may run out of
battery and thus can not continue its task, and has to
terminate for the time being. In such cases, it may be
better to let other robot such as robot-B which is closer to
the destination to continue robot-A’s task or let robot-A
to continue its task after recharging its battery. No matter
which case, it is necessary to store robot-A’s state when
it is terminated and post its unfinished task to the object
chat room so that other robots or robot-A itself can
continue the task.

A. Case 1: User location tracking
This case study is to show how the system tracks a

human object and how the location view object gets the
human object’s location and display it on the map.

The situation: The human, named Kei Nakanishi, is
in room w4024. He is attached with a RFID tag in which
his name, “kei” and tag’ID are written. A user with PDA
can dynamically see the icon representing him located in
the map on the display screen as shown in Fig. 5. The workflow: As shown in Fig. 6, two physical

robot objects are mapped to two virtual robot objects.
Partial information like the robot current state and two
methods for each virtual robot object are presented in the
figure.

The workflow: As shown in Fig. 5, the RFID tag
object is detected by the location notifier, an RFID
reader object. The information contained in the RFID tag
is read and sent to the object chat room.

38 JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008

© 2008 ACADEMY PUBLISHER

Figure 6. The continuation of robot-A’s activity by robot-B

When robot-A encounters a wall and has to stop, its

current state, the destination, and the task to be
performed are saved as a save object which is then sent
to the object coordinator via the object chat space, and
stored in the object database. The saved object with
respect to robot-A can be loaded by robot-A later or
loaded by other object such as robot-B which is
requested to continue robot-A’s task. It is observed that
the methods used to continue a u-object’s activity can be
similarly applied to keep objects persistence at a certain
period of time in any application.

C. Case 3: A Robot’s Motion Control
This case study is to demonstrate how an object and a

number of service objects conduct communications and
interactions in order to achieve the task of controlling the
robot’s motion.

The situation: The robot, ROBODESIGNER RDS-
X03 Platform+CDE, is equipped with a Phidget RFID
reader and a Zaurus SL-C3100 PDA. A number of RFID
tags are distributed in the surroundings. When the robot
moves, the RFID reader can detect a nearby RFID tag
and read the data from it. With the received data, the
robot’s current position can be calculated. The PDA acts
as a communication gateway and a data/program
processor. It communicates with all other services which
can be residing in a site or distributed in different sites,
processes the receiving data/program, and then send the
resulting data to the robot for controlling the robot’s
motion. The service objects include LookupService,
ShellService, MapService, RouteService, and
CompileService. These services function as their names
implies. LookupService provides a list of available
services. ShellService provides a way for users to type
command line. MapService replies a map upon request.
RouteService searches for a route from start to

destination. CompileService generates the motion data
by converting the route data to C source code and then
compiling it. The resulting S19 file is for the robot
motion control.

The workflow: The robot logs in to the system via the
PDA and the services register to the system. No matter
whether it is a robot object or a service object, each
object is mapped to a v-object. All v-objects reside in the
object management module and interact with each other
in the object chat space. The sequence of their
interactions in the object chat space is given in Fig. 7.

After the robot object and the service objects log in or
register to the system, a user can see the robot icon and
get a list of services from the interface window. As
shown in Fig. 7, the sequence of object interactions in
robot motion control is finding the robot’s position,
calculating the route, and sending the motion code to the
robot. These are described in the following steps:
① The interface object sends a message, calling the

method getServiceList() to the LookupService object
and receive the reply message of serviceList.

② The user can type in a command line like
“TestMessage | RouteService | CompileService |
Robot” and then the interface sends the command
line and the message to call the method,
connectServices() to the ShellService object.

③ The ShellService object sends a message to call the
method, getLocation() to the robot object.

④ After receiving the robot’s location data from the
robot object via the PDA, the ShellService object
sends a message to the RouteService objects which
includes the robot’s location data, the destination data,
and the message to call the method, searchRoute().

⑤ The RouteService object then sends a message to call
the method, getMap() with the location data to the

JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008 39

© 2008 ACADEMY PUBLISHER

MapService object, and then receives the returned
map in which the location of the robot object icon is
indicated.

⑥ The RouteService object invoke its own method
generateRoute(), and returns the generated route back
to the ShellService object.

⑦ The ShellService object sends a message to call the
method, outputSource() with the received route data
to the CompileService object.

⑧ The CompileService object invokes its own method,
compileSource() with the generated source code, and
then returns the motion data to the ShellService
object.

⑨ Finally, the ShellService object sends a message to
call the method, move() with the received motion
data to the robot object, and then the robot starts to
move according to the received motion data.

Physical O bjects and D igital Services

In terface

+ sendM essage()

LookupS erv ice

+ getS erv iceL is t()

ShellService

+ connectServ ices()

R obot

+ m ove() + searchR oute()

R outeS erv ice

+ outputSource()

C om pileServ ice

+ getM ap()

M apServ ice

In terface LookupService ShellService R obot R outeServ ice M apService C om pileService

+ com pileSource()+ generateR oute()

getServiceL ist()

connectServices()

+ getLocation()

getLocation()

return serv iceList

return Location
searchR oute()

getM ap()
re turn M ap

genera teR oute()

re turn R oute
outputSource()

com pileSource()

re turn M otionD ata
m ove()

O bject Chat Space

O bject M anager

Figure 7. The interaction flow in the robot’s motion control

 From the above three case studies, it can be seen that
the framework can host a variety of heterogeneous
physical objects and digital services and support their
interactions. With the object-oriented design, the
implementation of the interface of objects interaction
becomes simple and standardized, that is, via message
exchanges on Comet. With respect to the internal
structure of an object, it is hidden from the outside
world so that it is protected from corruption and any
changes in the internal part do not affect other objects
and the framework. This proves that the object-oriented
design is an appropriate approach to realize the
framework.

VI. CONCLUDING REMARKS

This article described a framework based on the
object-oriented design and a push web server for object
communication and interaction in the real world and
cyber world. The object-oriented design was proven to
be the appropriate approach which enables the
framework to handle heterogeneous objects and simplify

their interactions just by exchanging messages. The
interface for the objects communications and interactions
became simple and standardized. Instead of using the
traditional pull web server, the Comet, also known as a
pull web server, was used to host the object chat room
which is a place for objects to exchange messages. Using
push web server that runs on top of HTTP protocol
makes message exchanges of objects more efficient and
shorter delay.

Although this framework is platform and network
independent, and provides heterogeneous objects
interactions using HTTP messages, a general event
analysis mechanism for objects to easily understand
semantic meanings of incoming messages should be
further studied and developed. In the current framework,
all objects exchange messages via one Comet web server.
Although one server is sufficient for the above
mentioned three case studies, it may encounter some
scalability problems especially in a large scale ubiquitous
system in which a huge number of objects are involved.
One possible solution is to use a group of distributed
Comet web servers in a scalable, hierarchical, and

40 JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008

© 2008 ACADEMY PUBLISHER

collaborative structure. Derby, also known as a relational
database, was used in the object coordinator for storing
and managing v-objects. In fact, instead of using a
relational database, it is believed that an object-oriented
database such as db4o is more appropriate database to
use.

REFERENCES

[1] J. Ma, “Smart u-Things – Challenging Real World
Complexity”, IPSJ Symposium Series, Vol. 2005, No. 19
(2005) 146-150.

[2] J. Ma, L. T. Yang, B. O. Apduhan, R. Huang, L. Barolli
and M. Takizawa, “Towards a Smart World and
Ubiquitous Intelligence: A Walkthrough from Smart
Things to Smart Hyperspaces and UbicKids”,
International Journal of Pervasive Comp. and Comm.,
1(1), March 2005.

[3] Ikuo Yamasaki, Kouji Yata, Hiroyuki Kaeomichi, Akihiro
Tsutsui and Ryutaro Kawamura, “Security Functions of a
Distributed Network Middleware CSC on OSGi
Frameworks”, The Institute of Electronics, Information
and Communication Engineers, IEICE Technical Report.
Information Networks, Vol.105, No.113, pp. 35-40, 2005.

[4] T. Kawamura, K. Ueno, S. Nagano, T. Hasegawa and A.
Ohsuga, “Ubiquitous Service Finder - Discovery of
Services Semantically Derived from Metadata in
Ubiquitous Computing”, Proc. of 4th International
Semantic Web Conference (ISWC 2005), 2005.

[5] J. Ma, R. Huang, and R. Nakatani, “Towards a Natural
Internet-Based Collaborative Environment with Support of
Object Physical and Social Characteristics”, International
Journal of Software Engineering and Knowledge
Engineering, pp37-53, No. 2, Vol. 11, 2001.

[6] T. Kawashima and J. Ma, “TOMSCOP -A Synchronous
P2P Collaboration Platform over JXTA”, IEEE CS
Proceeding of the International Workshop on Multimedia
Network Systems and Applications (MNSA’2004), Tokyo,
Japan, March, 2004.

[7] M. P. Papazoglow and D. Georgakopoulos, “Service
Oriented Computing”, in Communications of the ACM,
Vol.46, No.10, pp.25-28, October 2003.

[8] J. Hunt, Smalltalk and Object Orientation
 - An Introduction, Springer, 1997.
[9] Wikipedia, “Object-oriented Programming”, http;//
 en.wikipedia.org/wiki/Object-oriented_programming
[10] W. Stallinngs, Operating Systems – Internals and Design

Principles, the Third Edition, Prentice-Hall International.
[11] T． Sintes, “Abstract classes vs. interfaces”,
 JavaWorld.com, 04/20/01.
[12] A. Russell, “Comet: Low Latency Data for the Browser”,

Continuing Intermittent Incoherency,
 http://alex.dojotoolkit.org/?p=545, November 2007.
[13] Cometd.org, http://cometdproject.dojotoolkit.org/
[14] Jetty Web Server, http://www.mortbay.org/jetty/
[15] Server-push servlet,
 http://www.caucho.com/resin/examples/servlet-comet/
[16] Lingr, http://www.lingr.com/.

Runhe Huang received her B.Sc. in Electronics Technology
from National University of Defense Technology, China, in
1982, and her PhD in Computer Science and Mathematics from

the University of the West of England, UK, in 1993. After
receiving her PhD, she worked in the University of Aizu, Japan,
for 7 years and has been working in Hosei University, Japan,
since 2000.

She is a Professor in Faculty of Computer and Information
Sciences at Hosei University. Her research fields include
Computer Supported Collaboration Working, Artificial
Intelligent Applications, Multi-Agent Systems, Multimedia and
Distributed Processing, Genetic Algorithms, Mobile
Computing, Ubiquitous Computing, Grid Computing, and
Ubiquitous Intelligence.

Professor Huang is the member of IEEE and ACM. She has
served as an editor board member of the Journal of Ubiquitous
Computing and Intelligence (JUCI) and the Journal of
Autonomic and Trusted Computing (JoATC), as a guest editor
of a number of the special issues and as a PC co-chair/PC
member for various international conferences.

Kei Nakanishi received his B.S. and M.S. degrees in
computer and information sciences from Hosei University in
2005 and 2007, respectively. He is currently a software
engineer in Research Institute of System Planning, Japan. His
research interests are web service, networked system
administration, ubiquitous computing, and mapping technology
between real and cyber worlds with using various sensors,
RFID tags and other devices.

Jianhua Ma received his B.S. and M.S. degrees from
National University of Defense Technology (NUDT), China in
1982 and 1985, respectively, and the Ph.D degree from Xidian
University in 1990. He has joined Hosei University since 2000.

He is a professor in the Faculty of Computer and
Information Sciences at Hosei University. His research from
1983 to 2003 covered coding techniques,, data/video security,
speech recognition and synthesis, multimedia QoS, graphics
rendering ASIC, CSCW, multi-agents, mobile web service, P2P
network, etc. Since 2003 he has been devoted to what he called
Smart Worlds (SW) pervaded with smart/intelligent u-things,
and characterized by Ubiquitous Intelligence (UI) or Pervasive
Intelligence (PI).

Professor Ma Professor Huang is the member of IEEE and
ACM. He has published over 150 referred papers in journals
and conference proceedings. He is the Co-EIC of JMM, JUCI
and JoATC, and Ass. EIC of JPCC.

Bernady O. Apduhan received his B.S. Electronics Eng’g.
degree from MSU-Iligan Institute of Technology (MSU-IIT),
Philippines. He studied M.S. Electrical Eng’g. at the University
of the Philippines, Diliman Campus, and received his M.S.,
Ph.D. in Computer Science degrees from Kyushu Institute of
Technology (KIT), Japan.

He was a faculty member at the Dept. of Electronics
Engineering, MSU-IIT, was a research associate at the Dept. of
Artificial Intelligence, KIT, and is currently an Associate
Professor in the Dept. of Intelligent Informatics, Kyushu
Sangyo University, Japan. His current research interests include
cluster/grid computing, ubiquitous computing and intelligence,
and mobile/wireless computing and applications.

Professor Apduhan served as an editorial member of the
Transactions of IPSJ-DPS, Int’l. Journal of Business Data
Communication and Networking, Journal of Ubiquitous
Computing and Intelligence Computing, and as a reviewer in
other respected journals. He also served as executive steering
committee member, PC Chair/PC Co-chair/PC member, and
reviewer in various local and international conferences. He is a
member of IPSJ-SIGDPS, IPSJ-SIGHPC, and a professional
member of ACM and IEEE-CS.

JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008 41

© 2008 ACADEMY PUBLISHER

http://cometdproject.dojotoolkit.org/
http://www.mortbay.org/jetty/
http://www.caucho.com/resin/examples/servlet-comet/
http://www.lingr.com/

