
An Application Directed Adaptive Framework for
Autonomic Software

Bridget Meehan
Intelligent Systems Research Centre, University of Ulster, Derry, Northern Ireland

Email: ba.meehan@ulster.ac.uk

Girijesh Prasad and T.M. McGinnity
Intelligent Systems Research Centre, University of Ulster, Derry, Northern Ireland

Email: {tm.mcginnity, g.prasad}@ulster.ac.uk

Abstract—Autonomic computing is gradually becoming
accepted as a viable approach to achieving self-management
in systems and networks, with the goal of lessening the
impact of the complexity crisis on the computing industry.
The authors propose the integration of high level self-
organisation features into an Application Directed Adaptive
Framework (ADAF), an autonomic-oriented software
development process, which when used during the
development of software applications, enables those
applications to exhibit autonomic behaviour. This paper
discusses the infrastructure of the ADAF and demonstrates
two self-managing capabilities that come about in a software
application as a result of applying the ADAF, namely self-
monitoring and self-diagnosis.

Index Terms—autonomic computing, autonomic-oriented
software development process, self-organising features, self-
monitoring, self-diagnosis

I. INTRODUCTION AND BACKGROUND

The computing industry has a tradition of
concentrating on building smaller, faster, cheaper
machines. As a consequence, the last two decades have
seen a steady decline in the cost of computer hardware
and a dramatic increase in processing capabilities, storage
capacities and communication speeds. This race towards
‘smaller, faster, cheaper’ has resulted in the ubiquitous
use of independent, heterogeneous devices, applications,
and systems that is so pervasive and far-reaching that
most aspects of our everyday lives have been touched or
altered irrevocably.

Software has had to change too, to keep up with the
pace of hardware changes and the variety of needs and
expectations of increasingly more sophisticated and
demanding users [1, 2]. The days of command-line
interfaces with black displays and a pulsing cursor in the
top left hand corner of the screen are long gone, given
way to intuitive, graphical user interfaces with multi-
modal forms of interaction and menus of elaborate
functionality.

However, the pursuit of the ‘smaller, faster, cheaper’
goal has not come without its consequences and, the
complexity arising from the billions of interconnections

between heterogeneous devices and systems and users is
growing beyond human ability to manage [3, 4, 5]. This
phenomenon is labelled the complexity crisis, a crisis that
threatens to undermine the benefits proffered by
technology and hinder further progress [6, 7]. Indeed, the
complexity crisis is already impacting on the computing
industry in terms of escalating administration and
financial costs, reduced reliability and integrity, as well
as software specific impacts such as increased
development and maintenance effort and reduced user
confidence [8, 9].

There is consensus that if the computing industry is to
manage complexity, there must be a profound change in
how technologies are constructed, a change that moves
towards developing technologies that can manage
themselves (and thus the complexity) without the need
for vast numbers of expensive human administrators [4,
10].

Software must also be steered towards greater
autonomicity, with a shift away from the development of
rigid and often brittle programs that are heavily
dependent on human intervention, and unable to adapt or
evolve to meet unforeseen requirements or conditions.
Instead, there is a need for software that possesses the
capability of dynamic evolution; that allows bug fixes
and upgrades to be integrated without having to stop
application execution; that detects potential problems and
errors and takes action to prevent or recover from them;
that restructures itself by accommodating multiple design
choices and dynamically selecting from among them [11-
14].

Autonomic computing is a biologically-inspired
approach focused on reliably and robustly dealing with
complexity and uncertainty in technology and software.
Autonomic computing systems should aim to be capable
of self-managing with a minimum of human interference
in order to provide reliable, always available, robust
services [8, 15]. Autonomic systems should be capable
of anticipating changing requirements and conditions, of
adapting to those anticipated changes by reconfiguring
and optimising system structures, of protecting
themselves from security breaches, of repairing

30 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

themselves when errors and failures occur, and all
without interrupting execution and with little or no
human assistance [1, 16].

Four key self-managing attributes are identified in
autonomic computing, specifically self-configuration,
self-optimisation, self-repair, and self-protection. These
basic four have been extended to include a wide range of
what is called self-* (pronounced self-star) attributes
which describe any activity that can be performed by a
system without the need for complete human intervention
[17, 18]. Some additional self-* attributes include self-
evolution, self-diagnosis and self-monitoring.

A large proportion of the research in autonomic
computing focuses on autonomic capabilities within the
context of distributed networks and systems and web and
server applications, with less attention given to more
stand-alone software applications which are not
necessarily distributed or available over the Internet or
other networks, and which are composed of components
with relatively low levels of granularity such as functions,
objects, or object methods. For this research, the focus is
on such software applications and how they might be
developed for autonomicity.

A. An Approach to Realising Autonomic Software
In exploring ways in which autonomic software

applications might be realised, it was observed that many
of the aims of autonomic computing are compatible with
the features of self-organising systems [6, 7, 19, 20].
Although self-organisation is an extensive area of
research in its own right, some of the high level features
from self-organising theory can be simplified and
extracted for the purposes of creating a framework for
autonomicity.

Self-organisation is a process whereby global order or
structure emerges from an entity comprised of a
collection of autonomous and disordered, but
interconnected, components. Components act based on
local knowledge to achieve a simple task and collectively
their interacting behaviours emerge as more complex and
ordered higher level (global) behaviours that create order
and structure in the entity. The process happens without
the supervision of a ‘leader’ or of a controlling
component and without any external pressure or
constraints.

Based on this, a self-organising system can be defined
as one that is composed of autonomous components, each
of them acting independently of each other without
higher supervision, and each following a few simple rules
based on local knowledge that achieve organised
behaviour and order [5, 19, 20]. Examples of self-
organising systems include insect colonies (bees, ants,
and termites), the human brain and liver, swarms and
flocks, traffic jams, markets, economic systems,
ecosystems, and societies [5, 20, 21].

There are a number of features common to self-
organising systems, and although not all of them are
entirely feasible or even necessary in a software
application, some of them can be usefully extracted, to
greater or lesser degrees, to aid in the creation of
autonomic software. For instance, self-organising

systems are able to adapt to unforeseen changes,
problems and events in their environment, and can re-
configure their structure to fit the conditions demanded
by the environment at that time.

A self-organising system forms without the need for
any central or external controller and instead, control is
distributed evenly over the whole of the system, with all
components contributing equally to the emergent order
and structure. The distributed nature of self-organising
systems means that they are inherently robust and fault-
tolerant, and can withstand errors, disruption or partial
destruction because non-damaged regions can usually
make up for the damaged ones. It also means they are
capable of restoring themselves and (self-) repairing any
damage caused.

Self-organising systems result in emergent behaviour
that results from the autonomous components acting on
simple rules. It is these features that the authors have
sought to implement (entirely or in part) in the ADAF,
with the aim of enabling applications, developed using
the ADAF, to exhibit autonomic behaviour.

A preliminary vision of this work was presented in the
conference paper [22]. The current paper is organised in
the following way. Section two provides a brief summary
of work related to this research. Section three discusses
the design and implementation of ADAF and section four
follows on from this by detailing a case study in which
ADAF was applied and tested. Finally, section five ends
with a summary.

II. RELATED WORKS

Investigating autonomic computing from the point of
view of architecture-based adaptation and evolution is
related to the research in this paper, and is classified
under a range of names, such as dynamic software
architectures, runtime evolution, adaptive dynamism,
self-organising systems, intelligent dynamism, self-
repairing systems and self-adaptive software. With this
approach, systems are described and modelled at the
architectural level. The architecture of a system is an
abstraction of its structure and behaviour, described as a
set of connected components, their visible properties and
the relationships or bindings between them. Examples
can be found in [23-26].

Research into architecture-based adaptation focuses on
the large-scale, distributed, and component-based or
agent-based systems used in Internet, middleware, mobile
and client-server environments, and ad hoc and peer-to-
peer networks. Systems of this nature typically contain
coarse-grained components such as groups of
collaborating objects, agents, or entire applications. There
is no evidence to demonstrate where this approach has
been applied to the type of applications that are the focus
of this research.

The area of adaptation and dynamic updating is hugely
significant to autonomic computing. Dynamic adaptation
or updating is where code has facilities for selecting and
incorporating new behaviours at runtime [27]. Until
recently, few commercial systems have required changes
to be made on the fly and suitable technologies to

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 31

© 2008 ACADEMY PUBLISHER

facilitate this sort of change have not been rigorously
developed, although this is changing as the recognition
for the need for dynamic updating grows.

This area uses techniques such as proxies, partial
system shut-down, and dynamic linking and loading [28].
For instance, the Fifi architecture focuses on evolving
Java programs. In [29], dynamic patches containing both
the updated code and the code needed to transition from
the old version to the new are applied to a running
program. Dynamic updating for C++ classes is
investigated by [30, 31]. A C++ proxy-based approach is
applied to dynamic updating in the work of [32].

Research in this area has some focus on non-
distributed, fine-grained applications which are the focus
of this research. They also employ techniques such as
dynamic linking, proxies, and redirection code, as does
this research. However, unlike this research, these
approaches do not have a facility for change
management, and often they are incapable of reasoning
about, specifying, or controlling changes, or of selecting
between versions of classes. As such, these approaches
do not encompass the wider issues surrounding
autonomic computing, and they do not focus on the use
of dynamic updating for the purposes of autonomicity
which this research does.

Agent-based technology is closely related to the notion
of self-organising and autonomic systems since agents are
essentially autonomous entities. In this approach,
applications and components are written as software
agents that communicate with each other by sending and
receiving messages using an Agent Communication
Language. Agents are active entities that have their own
thread of control which extends over both state and
behaviour. This means they are reactive, that is, they
respond to changes in their environment; and they are
proactive, that is, they adapt goals and take the initiative.

While agent-based technology is certainly a viable
approach to autonomic systems, many agent systems use
interpreted languages which are not efficient enough for
low-level processing. Additionally, due to the
communication overhead in current agent systems, an
application is often implemented as a few large agents
rather than many small agents, resulting in large
replacement units that are too coarse-grained for many
applications, including those that are the focus for this
research. Agent-based technology also requires an
investment in specialised software and retraining for
engineers, while the research in this thesis uses
technologies and techniques that are widely used in
commercial programming [32, 33, 34].

III. THE APPLICATION DIRECTED ADAPTIVE
FRAMEWORK

The ADAF is a proof-of-concept autonomic-oriented
software development process. Realised in software, it
embodies a number of capabilities that reflect a number
of selected self-organising features. The ADAF
distributes the control of management and coordination
activities as much as possible and operates largely at a
component level. Where distributed control might

interfere with the achievement of global needs and goals,
control is central and operates at a global level.

The ADAF has the ability to self-adapt. This means it
can evolve and reconfigure, and therefore can support
multiple versions or states of software, as well as
dynamically add to and select between them, without
requiring the application to stop execution. The ADAF
has monitoring and reasoning capabilities so that
behaviour can be observed and reasoned about, thus
making it possible to select between versions. The ADAF
has the ability to self-repair. This requires that behaviour
can be monitored and reasoned about to determine if
there are any problems. The ADAF also allows
application components to have simple, localised rules
that they can act upon.

The ADAF was developed and deployed on standard
hardware: a Toshiba Tablet Personal Computer with
512MB of RAM and an Intel Pentium Processor with a
clock speed of 1.80GHz, running on the Windows XP
Tablet PC operating system. It was developed in the
Microsoft Visual Studio .NET Framework, Version 1.1
and written in Microsoft Visual Studio .NET C++. The
ADAF did not require modification of the C++ language
but was able to use the mechanisms already available.

A. ADAF Components
The component parts of the ADAF are cells. ADAF

cells are of two types: local and global. All cells are
comprised of a complex of software programs and
database files. When the ADAF is used in the
development of a software application, it enables that
application to achieve autonomicity, and the end product
is an autonomic application that is ADAF-embedded. An
ADAF-embedded application is one where each module,
for example each object, of the application has a local cell
attached to it, and where the overall application has a
global cell embedded into it for the purposes of global
monitoring and reasoning, and application evolution. An
ADAF-embedded (object-oriented) application is
depicted in Fig. 1.

Application

Object A
shell

Local
cell

Object B shell Local
cell

Object C
shell

Local
cell

Object D
shell

Local
cell

Global Cell

Monitoring
and

reasoning

Evolution

 Figure 1. An ADAF-embedded application, including the global

cell.

32 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

B. ADAF Local Cell Structure
There is an ADAF local cell for each object in the

application. When a local cell is embedded into an object,
the object itself becomes a shell used only as a conduit
between the object’s local cell and the object’s external
environment. Fig. 2 provides a logical conceptualisation
of a local cell embedded in a specific object, object A.
Object A is an exemplar only and represents any object.
The local cell for object A operates as a control loop that
contains four interacting elements: local monitoring; local
reasoning; stored rules for selecting object code; and a
library of object code.

The loop works in the following way: the stored rules
represent the conditions under which object code
executes; the behaviour of the application is monitored by
collecting runtime data; the monitored data are compared
against the stored rules to reason about the object code
from the library that should be executed; the behaviour of
the library code executed is monitored, thus closing the
loop.

In the local cell, object code is kept separate from local
cell code. This ensures a loose coupling between the two
types of code, otherwise known as a separation of
concerns. There is also a separation in the objects
themselves, between the object definition and object
code, and thus object A becomes a shell containing the
definition of the object’s attributes and methods, while
the implementation of the methods is extracted and
placed in the library of object code. The methods that
remain in the object shell need only provide code that
redirects execution to the local cell. The separation of the
object code from the object definition into a library is
further necessary as a means of allowing multiple
versions of code to exist and of allowing new or updated
versions of code to be added.

C. ADAF Local Cell Library of Object Code
The library of object code is realised using dynamic

link libraries (DLLs). DLLs are units of code capable of
being loaded into an application at runtime and executed,
that is, dynamic loading. Since the level of change is
directed at the method level, it is the case that each object
method is separated into its own DLL. Therefore, when a
local cell is initially embedded in an object, there is one
DLL in the library for every object method.

Local Cell for Object A

Object A
shell

Local
cell

Local
reasoning

Local
monitoring

Rules for
selecting

object A code

Library of
object A code

As such, the library can be described as a store of
DLLs. Throughout the lifetime of the application, as
needs and goals change, the library can dynamically
change as required, allowing multiple versions of DLLs
to be added, existing DLLs to be replaced, and entirely
new DLLs to be added.

D. ADAF Local Cell Rules for Code Selection
That object code resides in the library in the first

instance, and that multiple versions of code can exist as
well, means that there must be a mechanism for selecting
between DLLs. Rules provide the means for selecting
between DLLs of object code. They specify the
conditions that must be met before a DLL can be
executed. These rules are defined as parameter and
threshold values. Thresholds represent a baseline or
acceptable level of application performance and
behaviour and can be a single value or a range of values.
Thresholds are derived from application requirements and
objectives, and also from the experience of developers
and designers.

During application execution, meeting or exceeding
threshold ranges or values helps determine which
methods are selected for execution. Thresholds can
change over time (that is, they are refined) as knowledge
of application usage and performance grows. A parameter
value represents a specific value that an application
variable is expected to have at runtime. These values are
usually derived from application requirements and
objectives. During application execution, when an
application variable matches a parameter value, it helps
determine which DLLs are selected for execution.

The rules can serve local or global application needs
and goals. Global rules can apply to a single local cell or
over multiple local cells and, are based on application
needs and goals, for example, if the application falls
below a processing rate of less than 10 transactions per
second, select the optimised DLLs. Local rules apply to
single local cells only and, are based on the values of
object attributes and program variables at a particular
time, for example, if an object attribute or local variable
matches a value of 10, select the DLL requiring the value
10. The global and local rules required for a given
application are particular to that application, although
some rules may be common to applications, for example,
memory and processor usage rules.

In addition to rules for selecting DLLs, there is also a
need to provide the data that allow a local cell to
physically locate and load a DLL that has been selected
for execution. The locate-and-load data are packaged as
part of the rules for each DLL.

The locate-and-load data, as well as the rules, are held
in an Access database file, and there is one file for each
local cell. When a local cell is initially embedded in an
object, the database of rules contains only the locate-and-
load data for each DLL. The rules do not need to have
conditions for use since there is only one DLL that can
possibly be executed and selection does not have to be
made. Throughout the lifetime of the application, as
needs and goals change, rules can be dynamically added

Figure 2. Logical conceptualisation of a local cell embedded in
object A.

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 33

© 2008 ACADEMY PUBLISHER

and modified to accommodate conditions, and more
entries can be added for new DLLs.

E. ADAF Local Cell Monitoring and Reasoning
The library and rules form only two of the elements in

local cells. The local monitoring and local reasoning
elements are also part of the local cell. In the field of
adaptive software, these functions are collectively known
as reflection. Reflection is two-fold, comprising
introspection and intercession. Introspection involves
observing behaviour and is equivalent to monitoring.
Intercession involves acting on observations by
modifying behaviour and is equivalent to reasoning [24].

The local monitoring element observes the behaviour
of an application by collecting runtime data, to ensure it
is running correctly and is meeting goals and needs. The
runtime data collected describe the actual behaviour of
the application. It is then the work of the reasoning
element to evaluate that data, using it as the basis for
deciding which DLLs (from the library) to select for
execution.

Since the rules stored in the database describe the
conditions under which DLLs should execute, the
reasoning element must compare actual conditions (that
is, monitored data) against required or desired conditions
(that is, rules in the database) and find the DLL that most
closely matches the needs of actual conditions. On
finding a match, the reasoning element then retrieves the
locate-and-load data for the selected DLL from the
database and uses those to execute the DLL.

The local monitoring and reasoning elements of the
local cell are implemented in a single DLL, the local cell
DLL. A DLL is chosen to implement these elements for
the same reasons that DLLs are chosen for the object
code. The monitoring and reasoning elements are not
expected to remain static, they are expected to change
and evolve over time, to meet the changing needs of the
application. Therefore, like the object code, they too must
be implemented in a way that will allow dynamic linking.

When a local cell is initially embedded in an object,
the monitoring element may or may not need to collect
runtime data, and the reasoning element may or may not
need to perform any evaluation. However, throughout the
lifetime of an application, as needs and goals change,
additional and alternative monitoring and reasoning code
can be dynamically added and modified. The specific
reasoning and monitoring techniques and approaches
contained within the reasoning and monitoring elements
can take many forms and will vary from application to
application, depending on the aspects of the application
deemed important and necessitating observation, and on
the autonomic activities that may be required by the
application such as self-repair or self-optimisation.

F. ADAF Global Cell
Although the ADAF operates largely at a local level,

with local cells embedded into application objects, there
is also a global aspect to the ADAF. This global aspect is
realised through the global cell, of which only one exists
for any given application. The global cell contains two
major elements: the evolution element and the monitoring

and reasoning element. The monitoring and reasoning
element collects and reasons about runtime data that
cannot be collected or reasoned about at the local
(module) level.

The evolution element allows dynamic adaptation and
change of the application over time. The global cell must
facilitate evolution of code in a way that will not disrupt
system execution. Without this capability, the cells of the
ADAF which compound to achieve autonomic
computing, have little value. While dynamic linking plays
an important role in achieving evolution, it alone is not
sufficient. Indeed on its own, the use of dynamic linking
is not novel or innovative. What is innovative, however,
is the way in which it is exploited in the ADAF as a
means of enabling autonomic software: the way it is used
to structure the cells of the ADAF; the way it is used as
the foundation upon which the cells of the ADAF rest;
and the way it is used to achieve software evolution.

The evolution element is created through the
interrelatedness between: a) the ADAF cell infrastructure;
b) and the evolutionary DLL, which is the
implementation of the evolution element in the global
cell. The cell infrastructure of the ADAF combines the
use of method DLLs with a form of proxy code, to
separate adaptation code from implementation code, and
to redirect code. As discussed, the implementation code
of an object is separated into method DLLs in the object’s
library. The object itself becomes a shell that acts as a
proxy, redirecting the method calls made to it, towards
the local cell DLL. The local cell DLL in turn contains
the elements necessary for monitoring, reasoning and
selection of method DLLs for execution. This
infrastructure lays the foundation for evolution, while the
actual mechanism of evolution is carried out by the
evolutionary DLL.

The evolutionary DLL is implemented as an event-
driven thread. The thread sleeps until it receives the
signal to wake up and execute its code. Once awake, the
thread searches a specified temporary storage area and
copies of all the DLLs it finds there into the appropriate
object code libraries. The copied DLLs might contain
code completely new to the application or they might be
replacements for existing DLLs. The temporary storage
area is populated by code developers on-the-fly, while the
application is executing, with any new or updated code
that is necessary. Once copying is complete, the thread
deletes everything from the temporary storage area and
goes back to sleep. All of this code is executed
dynamically, while the application is executing and as
such, new and changed code is dynamically integrated
into the running application.

In addition to local monitoring and reasoning, it is
necessary for monitoring and reasoning to take place at a
global level, to observe runtime behaviour that cannot be
observed at a local level, and to make decisions that
cannot be made at a local level. The notion of global
monitoring and reasoning might appear to contradict the
features of self-organisation in which all such activity is
localised. However, it is worth noting that a software
application (even with the ADAF embedded) can never

34 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

strictly be a self-organising system and that there are
some behaviours and actions that must be recognised at
an application-wide (global) level to be meaningful. In
other words, the application has specific objectives, not
merely emergent characteristics.

Like the evolution element, the global monitoring and
reasoning element of the global cell is implemented in a
single DLL, the Monitor DLL, which contains its own
thread of execution. The thread remains in a sleep state
and at specified time intervals it is signalled to wake up
and execute. The specifics of what code it executes when
it does wake up, such as the data it collects, the reasoning
by which the data are evaluated, the actions taken based
on the reasoning, and the mechanisms by which these
activities are implemented and to what extent, will be
entirely dependent on the aspects of the application
deemed important and necessitating observation and on
the autonomic activities that may be required by the
application such as self-repair or self-optimisation. In
fact, similar to local cells when the ADAF is initially
embedded in an application, the global monitoring and
reasoning DLL may not necessarily contain any
functionality. Rather, it is simply put in place to provide a
facility for dynamically adding and modifying whatever
future global monitoring and reasoning code might be
needed, whenever it might be needed.

IV. CASE STUDY

With the ADAF developed, it was necessary to
conduct testing to determine if the ADAF enabled
autonomicity in software applications. The Ship Radar
Translator (SRT) application was selected as the test
application because it is a self-contained, non-distributed
application, with object-level granularity. The SRT is a
simplified version of a real-world application. It receives
encoded messages, in the form of character strings, from
the radar on a ship and translates these messages into a
meaningful form which is then displayed on a visual
display unit and written to a database file.

The SRT is made up of ten C++ classes and has
approximately 7,500 lines of code. When the SRT was
developed using the ADAF, which is an autonomic-
oriented development process, the result was the ADAF-
SRT application. The ADAF-SRT became a test
application and functioned in exactly the same way as the
SRT application.

Test scenarios were developed for the ADAF-SRT to
demonstrate autonomic capabilities. One of the test
scenarios demonstrated self-configuration and self-
evolution where monitoring and reasoning were local
[35]. A second test scenario was developed to
demonstrate self-diagnosis and self-monitoring, in which
memory usage was monitored and appropriate action
initiated when a memory leak was detected. In this
scenario, monitoring and reasoning were global. Space
precludes discussion of both scenarios, so only the
second is detailed here.

A. Test Scenario Demonstrating Self-diagnosis and Self-
monitoring

It is reasonable to expect that autonomic software
should be able to dynamically detect problems or errors
that may occur in an application and to take preventative
or corrective action. The occurrence of problems and
errors in software, resulting in software failure, is
prevalent in deployed applications. For this reason, self-
healing or self-repair is a strong focus of autonomic
computing research. Since the research in this paper does
not focus on software failure or self-repair per se, but
rather, focuses on a more holistic autonomic computing
solution, it was sufficient for this test scenario to
demonstrate dynamic error detection, without extending
that as far as healing or repairing from the error.

As such, the test scenario demonstrates the dynamic
detection of a specific type of error, namely a memory
leak that went undetected at development time. In the
scenario, the ADAF-SRT application’s memory usage
was monitored to collect data, and then the data used to
reason about whether there was a memory leak. Action
was taken in the event where the leak became severe
enough to potentially affect the performance of the
application.

In preparation for conducting the test scenario, it was
necessary to carry out a substantial amount of preparatory
work: the memory leak was created; instrumentation code
for monitoring was decided upon; reasoning code was
decided upon; and the monitoring and reasoning code
was integrated into the application by dynamically
changing Monitor DLL (that is, the ADAF DLL
responsible for global monitoring and reasoning).

B. Preparing for the Test Scenario: Creating the
Memory Leak

While many aspects of an application could be
monitored, it was decided to monitor the application for
memory leaks. A memory leak occurs in an application
when memory is allocated but not freed up and returned
to the operating system when no longer in use. Memory
leaks are often difficult to detect during development and
might not be noticed until deployment, at which time they
can be detrimental to an application.

There are several causes of memory leaks and, for this
test scenario it was decided to inject memory leaks by
including the new operator without using its
corresponding delete operator. For the purposes of
testing, a simple dummy class, called CMemoryLeak,
was written, and a .NET Windows Forms application
called LeakyApp was created with deliberately inserted
memory leaks, whereby pointers to CMemoryLeak
objects were created using the new operator without the
corresponding delete operator.

C. Preparing for the Test Scenario: Developing
Monitoring Code

The instrumentation method selected to monitor data
was sampling, since it is less intrusive and carries much
less overhead than the alternative probe methods. The
Performance Monitor, or PerfMon, was used to gather the
data samples. PerfMon is a performance profiler built-in

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 35

© 2008 ACADEMY PUBLISHER

to the Windows NT operating system. It allows a range of
behaviours to be monitored, capturing samples of the raw
data being generated by components and objects in the
host machine and running applications. The raw data
samples collected by PerfMon are captured into objects
called performance counters which are expressed as
numbers.

PerfMon has over a thousand predefined performance
counters that monitor a host of machine and application
behaviours. These are grouped into fifty-four
performance counter categories, where each category
refers to a specific area of machine functionality such as
the processor, threading, memory, and disk operation. In
addition, there are a number of .NET classes which allow
performance counters to be manipulated and accessed
programmatically.

A dummy .NET application was created and used
along with the LeakyApp application to produce
performance counter values that could be observed and
interpreted, thus provide a starting point for isolating
those performance counters relevant for monitoring
memory leakage. After considerable time and effort,
counters relevant to memory leakage were eventually
isolated to Memory\AvailableMBytes and
Process\PrivateBytes.

Process\PrivateBytes provides data about individual
processes on a machine, for example, an executing
application. It is the current size of RAM, in bytes, that a
process has been allocated and that cannot be shared with
other processes. The threshold for PrivateBytes depends
on the application and on the settings in the host
machine’s configuration, but it should not exceed
AvailableMBytes when the machine is idle.

Memory\AvailableMBytes provides data about the
host machine (not individual processes running on the
machine). It is the total amount of physical RAM, in
megabytes (MB), available to processes running on the
host machine. According to Microsoft Developer
Network (MSDN) recommendations, AvailableMBytes
should be at least 10% of the total RAM of the host
machine, and ideally should exceed 20% [36].

If AvailableMBytes is observed to maintain a
consistent value of less than 20-25% of RAM, it indicates
that the host machine is low on RAM, caused either by
memory limitations or by an application that is not
releasing memory. To determine if the problem is due to
memory not being released, that is a memory leak, it is
further necessary to observe PrivateBytes for each
process running on the machine. If this counter is not
rising for any application, then the problem is due to lack
of RAM. However, if it is noted that for a particular
application, this counter is increasing without ever going
constant, then it is a definite indicator of a memory leak,
since the longer a memory leaking application runs, the
more memory it uses and thus the more PrivateBytes it
needs.

D. Preparing for the Test Scenario: Developing the
Reasoning Code

The technique selected for reasoning was fuzzy logic.
Fuzzy logic is routinely used in situations where there is a

continuum of fuzzy, non-sharp values rather than crisp,
precise values, for example, control systems in
manufacturing and production environments. The
memory leak scenario is similar to a control system
because a memory leak exists, to a greater or lesser
degree, along a continuum from no memory leak to a
severe memory leak. Therefore, fuzzy logic is ideal for
this scenario, and was applied by developing a fuzzy
inference system in MATLAB. Developing the fuzzy
inference system required the completion of two steps:
acquiring archetypal data; modelling the relevant data.

To acquire the data, the behaviour of PrivateBytes and
AvailableMBytes was observed by collecting their data
values through a series of executions of the ADAF-SRT
application, and the data values were used to identify
patterns in behaviour. On completion of the series of
executions, with ever increasing levels of memory leak
introduced at each iteration, there was a total of 1,110
data values. These data were imported into MATLAB for
analysis where they were plotted onto graphs. The graphs
provided a means of observing trends and patterns in the
application’s memory usage for times when there was no
memory leak, for when there were low level leaks, for
when there were moderate leaks, and for when there were
severe leaks.

From the plotted data, it was observable that when the
application was executing with no memory leak, both
PrivateBytes and AvailableMBytes remained at relatively
constant and static levels, although PrivateBytes was seen
to decrease slightly at times, while AvailableMBytes
sometimes increased. The slight increases or decreases
observed were tiny fluctuations only, not continuous
increases or decreases, and they were brought about by
varying intensities of processing activity in the
application. When a low level memory leak was
introduced to the application, PrivateBytes showed a
slight, but steady increase, and AvailableMBytes showed
a slight, but steady decrease. As greater levels of memory
leak were introduced, PrivateBytes increased ever further
while AvailableMBytes progressively decreased.

With the PrivateBytes and AvailableMBytes data
acquired and analysed, it was next necessary to model the
data by building a fuzzy inference system. The system
had two inputs, PrivateBytes and AvailableMBytes, and
one output, MemoryLeak, since it is PrivateBytes and
AvailableMBytes together that are needed to determine if
there is a memory leak. The system also included a set of
rules to evaluate the inputs to produce the output value.
Using the plotted data collected above, the PrivateBytes
range on the fuzzy inference system was divided into
three levels: low, medium and high, where low
represented no memory leak in the application; medium
represented a moderate memory leak; and high
represented a severe memory leak.

Using the plotted data and MSDN recommendations
(that AvailableMBytes should not fall below 10% of
RAM and ideally should stay above 20% of RAM), the
range for AvailableMBytes was divided into three levels:
low, medium, and high, where low indicated that there
was a memory shortage on the host machine; medium

36 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

indicated that there was an adequate amount of memory;
and high indicated that there was a healthy amount of
memory. The output for the fuzzy inference system,
MemoryLeak, was modelled. The range for
MemoryLeak, that is, the level of memory leakage, was
represented on a scale that went from 0-12, and was
divided into three levels: no memory leak, moderate
memory leak, and severe memory leak.

To complete the fuzzy inference system, a set of nine
rules were created, and these are shown in Fig. 3. The
rules defined all combinations of the three levels, low,
medium and high, in PrivateBytes and AvailableMBytes
with their resulting MemoryLeak. When PrivateBytes is
low and AvailableMBytes is high, there is enough
available RAM on the host machine and the application is
using an acceptable amount of its allocated memory.
Therefore, there is no memory leak. When PrivateBytes
is medium and AvailableMBytes is high, there is enough
available RAM on the host machine and although the
application is using more of its allocated memory, the
problem is still not considered a memory leak. When
PrivateBytes is high and AvailableMBytes is high, there
is enough available RAM on the host machine but the
application is using more of its allocated memory than is
acceptable, and a moderate memory leak is flagged.

When PrivateBytes is low and AvailableMBytes is
medium, there is less, but still adequate, memory
available on the host machine and the application is using
an acceptable amount of its allocated memory. Therefore,
there is no memory leak. When PrivateBytes is medium
and AvailableMBytes is medium, the host machine is
running on less though adequate memory, while the
application is using more of its allocated memory,
resulting in a moderate memory leak. When PrivateBytes
is high and AvailableMBytes is medium, there is
adequate machine memory available but the application is
using more of its allocated memory than is acceptable,
and a moderate memory leak is flagged.

When PrivateBytes is low and AvailableMBytes is
low, the memory on the host machine has fallen below a
healthy level but the application is using acceptable
amount of its allocated memory. Therefore, there is no
memory leak. When PrivateBytes is medium and
AvailableMBytes is low, machine memory is below an
acceptable level and the application is using more of its
allocated memory, and a moderate memory leak is
flagged.

When PrivateBytes is high and AvailableMBytes is
low, machine memory is below an acceptable level and
the application is using more of its allocated memory than
is acceptable. This situation may quickly lead to serious
problems such as highly degraded application
performance or a system crash, so the problem is flagged
as a severe memory leak.

E. Preparing for the Test Scenario: Dynamically
Integrating the Monitoring and Reasoning Code

With the monitoring and reasoning code determined, it
was then necessary to integrate that code into the ADAF-
SRT application. This involved making changes to a part
of the global cell of the ADAF, namely the Monitor DLL.

 Figure 3. Rules in the fuzzy inference system.

The instrumentation code necessary for monitoring
memory usage at intervals was added to Monitor DLL.
The code necessary to execute the fuzzy inference system
at intervals was added to Monitor DLL.

Further code was added to Monitor DLL to allow
appropriate action to be taken, depending on the result
from the fuzzy system. If the fuzzy system showed that
the memory leak value was between 0 and 3, there was
no memory leak and no action would be taken. If the
value from the fuzzy system was between 4 and 7, there
was a moderate memory leak and a warning would be
written to a log called Problems.log. This warning took
the form of a message indicating the time at which the
warning was detected, and providing a list of DLLs that
might potentially be the source of the memory leak.

If the value from the fuzzy system was between 8 and
10, there was a severe memory leak, and an error was
written to the Problems.log. The error took the form of a
message indicating the time at which the error was
detected and providing a list of DLLs that might
potentially be the source of the memory leak. Further, in
the case where a previous version of the application
existed, a rollback to that previous version would be
performed. The rollback was based on the assumption
that a previous version of the application would not have
a memory leak and that the most recent version must be
the cause of the memory leak. Therefore, rolling back to a
previous version would ensure that the most recent,
memory-leaking version could be avoided.

V. CASE STUDY RESULTS

On completion of the preparatory work for the test
scenario, the scenario itself was conducted and the results
observed. This took place in three distinct parts whereby
the ADAF-SRT application was executed with a) no
memory leak; b) a moderate memory leak; and c) a
severe memory leak.

A. Conducting the Test Scenario: Results for Part a)
For part a) of the test scenario, the values for

PrivateBytes remained low for the first 6 hours of
execution, and the values for AvailableMBytes remained
high. After 6 hours of execution, when LeakyApp was
executed multiple times, the values for AvailableMBytes

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 37

© 2008 ACADEMY PUBLISHER

began to decrease to medium, while the values for
PrivateBytes remained low. Continued execution of
LeakyApp caused AvailableMBytes to decrease to
medium at 6 hours 45 minutes, and then drop to low at 8
hours 30 minutes.

In summary, PrivateBytes remained low all the way
throughout execution, and AvailableMBytes moved from
high, then to medium, and finally to low. When the
application was shut-down, the Problems.log was
checked and found to be empty, indicating that a memory
leak had not been detected. A MATLAB graph plotting
all of the data values collected for AvailableMBytes
during part a) of the test scenario is provided in Fig. 4,
and Fig. 5 shows a MATLAB graph plotting all of the
data values collected for PrivateBytes.

In addition to the data values collected while
conducting part a) of the test scenario, other data were
collected: the time taken to collect the performance
counter data values at each interval was measured and
found to be negligible; the average time taken to open,
execute, and close MATLAB at each interval was
measured and found to be 1.02 seconds; the time taken to
check for a memory leak at each interval was measured
and found to be negligible.

B. Conducting the Test Scenario: Results for Part b)
In part b) of the test scenario, the values for

PrivateBytes remained low for the first 6 hours of
execution, although the memory leak was causing the
values to increase slightly. The values for
AvailableMBytes were high, and although the memory
leak did cause the values to decrease slightly, the
reduction was not enough to lower the values from high.

After this point, when LeakyApp was executed
multiple times, the values for AvailableMBytes began to
drop steadily and the values for PrivateBytes continued to
rise. At 6 hours 20 minutes, PrivateBytes moved into
medium, and at 6 hours 25 minutes the values for
AvailableMBytes moved into medium. At this point, a
moderate memory leak was detected and a warning
message was written to the Problems.log. Continued
execution of LeakyApp caused AvailableMBytes to
decrease further until it reached low, at 8 hours 40
minutes. PrivateBytes remained at medium. Throughout
this, the moderate memory leak continued to be detected
and warning messages written to the Problems.log.

To summarise, PrivateBytes started at low and moved
to medium where it stayed for the remainder of execution.
AvailableMBytes moved from high, then to medium, and
finally to low. A MATLAB graph plotting all of the data
values collected for AvailableMBytes during part b) of
the test scenario is provided in Fig. 4, and Fig. 5 shows a
MATLAB graph plotting all of the data values collected
for PrivateBytes.

In addition to the data values collected while
conducting part b) of the test scenario, other data were
collected: the time taken to collect the performance
counter data values at each interval was measured and
found to be negligible; the average time taken to open,
execute, and close MATLAB at each interval was
measured and found to be 1.02 seconds; the time taken to

check for a memory leak at each interval was measured
and found to be negligible; the time taken to write a
warning message to the Problems.log was measured and
found to be negligible.

C. Conducting the Test Scenario: Results for Part c)
For part c) of the test scenario, the values for

PrivateBytes remained low – and rising – for the first 5
hours of execution, when at that point, the values moved
to medium. AvailableMBytes values started at high,
although the memory leak caused the values to decrease
steadily. At 5 hours 15 minutes, AvailableMBytes values
moved to medium. At this point, a moderate memory leak
was detected and the first warning message was written to
the Problems.log. After 6 hours 25 minutes, PrivateBytes
moved to high, while AvailableMBytes remained
medium.

LeakyApp was executed multiple times, causing the
AvailableMBytes values to drop. PrivateBytes remained
high. LeakyApp continued to be executed and at 7 hours
40 minutes the values for AvailableMBytes dropped to
low, while PrivateBytes remained high. Throughout this,
the moderate memory leak continued to be detected and
warning messages written to the Problems.log. A
MATLAB graph plotting all of the data values collected
for AvailableMBytes during part c) of the test scenario is
provided in Fig. 4, and Fig. 5 shows a MATLAB graph
plotting all of the data values collected for PrivateBytes.

At this point, that is, 7 hours 40 minutes, with
PrivateBytes at high and AvailableMBytes at low, a
severe memory leak was detected. An error message was
written to the Problems.log, and an application rollback
was performed where the application was returned to a
previous version which did not contain the memory leak.
Specifically, the rollback meant a return to all the
previous versions of the local cell DLLs, and therefore,
the DLL with the injected memory leak stopped being
executed, and an earlier, non-leaking version of it began
being executed instead.

Figure 4. Plot of data collected for AvailableMBytes during

parts a), b) and c) of the test scenario

38 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

The time of the rollback of the application is visible

from Figs. 4 and 5, where it is marked on both figures
with a vertical line. Notice that towards the end of
execution for part c) data, PrivateBytes values were
visibly falling, while AvailableMBytes values were on
the increase, indicating that the rollback was beginning to
take effect and that the application had stopped leaking
memory. The rollback also prevented any further warning
or error messages to be written to the Problems.log.

When the application was shut-down, the Problems.log
was checked and found to have 11 warning messages
logged, and 1 error message logged. A snapshot of the
warning and error messages is shown in Fig. 6. It is worth
noting that in the snapshot, one of the DLLs identified as
having a potential memory leak is HandleRadarMsg, and
this is in fact the memory-leaking DLL. Since the
instrumentation technique used was sampling, it was
more difficult to pinpoint the precise DLL causing the
memory leak, and a list of the potential problem DLLs
was all that was provided.

This may be acceptable, depending on the needs of a
given application. However in the situation where greater
precision is required, the instrumentation technique could
be changed to use probes, whereby every DLL containing
memory allocation through the new operator could be
instrumented. In this way, the exact DLL (or DLLs) that
is the source of the memory leak could be pinpointed.
Given the design of the ADAF, such changes could be
easily accommodated by dynamically replacing original,
non-instrumented versions of the DLLs with new,
instrumented versions.

In addition to the data values collected while
conducting part c) of the test scenario, other data were
collected: the time taken to collect the performance
counter data values at each interval was measured and
found to be negligible; the average time taken to open,
execute, and close MATLAB was measured and found to
be 1.02 seconds; the time taken to check for a memory
leak and write a warning or error message to the
Problems.log was measured and found to be negligible;
the time taken to perform the application rollback was
measured and found to be 0.47 seconds.

Figure 6. Snapshot of warning and error messages logged in

Problems.log for part c) of the test scenario

VI. SUMMARY

The ADAF was presented as an autonomic-oriented
development process for achieving autonomicity in
software applications whereby high-level self-organising
features were identified and then integrated into the
framework Developed for use with object-oriented
software applications, ADAF was embedded into a
sample real-world application, the Ship Radar Translator,
and was tested against a scenario that would determine if
the application could exhibit the autonomic capabilities of
self-monitoring and self-diagnosis.

Test results demonstrated that the ADAF-SRT
application was able to achieve significant levels of
autonomicity in terms of self-monitoring and self-
diagnosis. The original SRT application has no such
capability. While it would not be impossible to add that
kind of capability to the SRT, it would have to be done
by halting execution and then rebuilding. Additionally, if
a memory leak were found and had to be corrected, that
work would have to be conducted while the application
was stopped, for there is no way to separate problem
areas of the application and dynamically correct them.

ADAF adds a level of complexity that does not exist in
the original application. However the complexity brings
the advantages of autonomic capabilities and when
managed in an efficient and controlled manner, means the
application is no different from any other complex
application. Future work is directed at issues of
scalability and performance, and the implementation of a
more advanced reasoning system.

REFERENCES

[1] E. P. Kasten and P. K. McKinley, “MESO: Supporting
Online Decision Making in Autonomic Computing
Systems”, IEEE Transactions on Knowledge and Data
Engineering, vol. 19, no. 4, 2007, pp. 485-499.

[2] R. Gerber, A. J. C. Bik, K. B. Smith and X. Tian, The
Software Optimisation Cookbook, Intel Press, second
edition, 2006.

[3] W. Wayt-Gibbs, “Autonomic Computing”, [Online],
Scientific American, 6th May, 2002. Available at:
http://crash.stanford.edu/articles/sciam1/autonomic.html/[a
ccessed November 2003].

[4] P. Horn, “Why Autonomic Computing will Reshape IT”,
[Online], ZDNet Magazine, 16th October, 2001. Available

Figure 5. Plot of data collected for PrivateBytes during parts a),
b) and c) of the test scenario

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 39

© 2008 ACADEMY PUBLISHER

at: http://www.zdnet.com.au/newstech/enterprise/story/0,2
000048640,20261187-1,00.htm/[accessed November
2003].

[5] M. Mamei, R. Menezes, R. Tolksdorf and F. Zambonelli,
“Case Studies for Self-organization in Computer Science”,
Journal of Systems Architecture, vol. 52, iss. 8-9, 2006, pp.
443-460.

[6] J. O. Kephart and D. M. Chess, “The Vision of Autonomic
Computing”, IEEE Computer, January, 2003, pp. 41-50.

[7] A. G. Ganek and T. A. Corbi, “The Dawning of the
Autonomic Computing Era”, IBM Systems Journal, vol.
42, no. 1, 2002, pp. 5-18.

[8] T. Hall, “Autonomic Computing: It’s about making
Smarter Systems”, [Online], LDD Today, 2nd June, 2003.
Available at: http://www-10.lotus.com/ldd/today.nsf/
9148b29c86ffdcd385256658007aaa0f/337bfa71918408a68
5256d330047cbbe?OpenDocument/[accessed February
2004].

[9] D. Patterson et al, “Recovery Oriented Computing (ROC):
Motivation, Definition, Techniques and Case Studies”,
[Online], UC Berkeley Computer Science Technical Report
UCB//CSD-02-1175, 2002. Available at:
http://roc.cs.berkeley.edu/papers/ROC_ TR02-1175.pdf/
[accessed November 2003].

[10] G. Candea and A. Fox, “Recursive Restartability: Turning
the Reboot Sledgehammer into a Scalpel”, [Online],
Proceedings of the 8th Workshop on Hot Topics in
Operating Systems, 2001. Available at: http://roc.cs.
berkeley.edu/papers/ recursive_restartability.pdf/[accessed
November 2003].

[11] S. Brueckner, G. di Marzo Serugendo, D. Hales and F.
Zambonelli, “Engineering Self-organising Systems, 3rd
International Workshop”, 2005, Springer: Berlin,
Heidelberg.

[12] M. Sipper, “An Introduction to Artificial Life”, AI Expert
Special Issue: Explorations in Artificial Life, September
1995, pp. 4-8.

[13] M. Kim, J. Jeong and S. Park, “From Product Lines to
Self-managed Systems: An Architecture-based Runtime
Reconfiguration Framework”, SIGSOFT Software
Engineering Notes, vol. 30, no. 4, 2005, pp. 1-7.

[14] M. A. Munawar and P. A. Ward, “Better Performance or
Better Manageability?”, Proceedings of the 2005
Workshop on Design and Evolution of Autonomic
Application Software, St. Louis, USA, 21st May, 2005, pp.
1-4.

[15] C. Boulton, “IBM Spruces up Autonomic Computing
Offerings”, [Online], ASPNews, 7th March, 2003. Available
at: http://www.aspnews.com/news/article.php/2106371/
[accessed November 2003].

[16] R. Sterritt and D. Bustard, “Towards an Autonomic
Computing Environment”, [Online], 14th International
Workshop on Database and Expert Systems Applications,
Prague, September, 2003. Available at:
http://www.infj.ulst.ac.uk/~roy/papers/autonomic/ieee_dex
a_2003_ace.pdf/[accessed November 2003].

[17] M. Mesnier, E. Thereska, G. R. Ganger, D. Ellard and M.
Seltzer, “File Classification in Self-*storage Systems”,
Proceedings of the International Conference on Autonomic
Computing, New York, USA, 17th-18th May, 2004, pp. 44-
51.

[18] J. Martin-Flatin, J. Sventek and K. Geihs, “Self-Managed
Systems and Services: Introduction”, Communications of
the ACM, vol. 49, no. 3, 2006, pp 37-39.

[19] M. Jelasity, O. Babaoglu and R. Laddaga, “Self-
management through Self-organisation”, IEEE Intelligent
Systems, March/April, 2006, pp. 8-9.

[20] F. Heylighen and C. Gershenson, “The Meaning of Self-
organisation in Computing”, IEEE Intelligent Systems, vol.
18, no. 4, July/August, 2003, pp. 27-86.

[21] G. di Marzo Serugendo et al, “Self-organisation:
Paradigms and Applications”, [Online], Engineering Self-
Organising Applications Working Group, 2004. Available
at: http://www.agentcities.org/Activities/WG/ESOA/[acces
sed January 2005].

[22] B. Meehan, G. Prasad, T. M. McGinnity, “A Framework
for Autonomic Software”, Proceedings of IEEE
International Conference on Systems, Man, and
Cybernetics, October, 2007, Montreal, Quebec, Canada.

[23] S. Cheng et al, “Using Architectural Style as a Basis for
System Self-repair”, [Online], Software Architecture:
System Design, Development, and Maintenance, Kluwer
Academic Publishers, 2002. Available at:
http://www2.cs.cmu.edu/afs/cs.cmu.edu/project/cmcl/archi
ve/Libra-papers/WICSA02.pdf/[accessed November 2003].

[24] P. K. McKinley, S. M. Sadjadi, E. P. Kasten and B. H. C.
Cheng, “Composing Adaptive Software”, IEEE Computer,
vol. 37, iss. 7, 2004, pp. 56-64.

[25] J. Keeney and V. Cahill, “Chisel: A Policy-driven,
Context-aware, Dynamic Adaptation Framework”,
Proceedings of the 4th IEEE international Workshop on
Policies for Distributed Systems and Networks,
Washington DC, USA, 4th-6th June, 2003, pp. 3-14.

[26] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici and P.
Plebani, “PAWS: A Framework for Executing Adaptive
Web-service Processes”, IEEE Software,
vol. 24, no. 6, 2007, pp. 39-46.

[27] S. D. Fleming, B. H. Cheng, R. E. Stirewalt and P K.
McKinley, “An Approach to Implementing Dynamic
Adaptation in C++”, SIGSOFT Software Engineering
Notes, vol. 30, no. 4, 2005, pp. 1-7.

[28] K. H. Fung, G. Low and P. K. Bay, “Embracing Dynamic
Evolution in Distributed Systems”, IEEE Software, vol. 21,
iss. 2, 2004, pp. 49-55.

[29] M. Hicks, J. Moore and S. Nettles, “Dynamic Software
Updating”, [Online], University of Maryland,
Programming Languages Research, 2001. Available at:
http://citeseer.ist.psu.edu/cache/papers/cs/22700/http:zSzz
Szwww.cis.upenn.eduzSz~mwhzSzpaperszSzdyn_update.p
df/hicks01dynamic.pdf/[accessed November 2003].

[30] G. Hamilton and S. Radia, “Using Interface Inheritance to
Address Problems in System Software Evolution”,
Proceedings of the ACM Workshop on Interface Definition
Languages, Portland, Oregon, USA, 1994, pp. 119-128.

[31] T. C. Goldstein and A. D. Sloane, “The Object Binary
Interface – C++ Objects for Evolvable Shared Class
Libraries”, [Online], Technical Report TR-94-26, Sun
Microsystems Laboratories Incorporated, 1994. Available
at: http://research.sun.com/techrep/1994/smli_tr9426.pdf
/[accessed July 2004].

[32] G. Hjálmtysson and R. Gray, “Dynamic C++ Classes: a
Lightweight Mechanism to Update Code in a Running
Program”, In Proceedings of the USENIX Annual
Technical Conference. 1998.

[33] N. Jennings, K. Sycara and M. Wooldridge, “Roadmap of
Agent Research and Development”, Autonomous Agents
and Multi-Agent Systems, vol. 1, no. 1, 1998, pp. 7-38.

[34] N. Jennings, “An Agent-based Approach for Building
Complex Software Systems”, Communications of the
ACM, vol. 44, no. 4, 2001, pp. 35-41.

[35] B. Meehan, G. Prasad, T. M. McGinnity, “Autonomic
Software through Self-organisation”, IT&T Conference
2006, Technical Session on Software Innovations, Carlow,
Ireland, October 25-26, pp. 101-109, 2006.

40 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

[36] MSDN Library, “Measuring .NET Application
Performance (Chapter 15)”, [Online], MSDN .NET
Development: Improving .NET Applications Performance
and Scalability, 2004. Available at: http://msdn2.
microsoft.com/en-us/library/[accessed July 2005].

Bridget Meehan is a PhD student in the School of
Computing and Intelligent Systems at the Magee Campus of the
University of Ulster. She holds a BSc in Applied Computing
from the University of Ulster earned in 1992, and an MSc in
Computer Science from the University of Limerick earned in
1998.

Girijesh Prasad is a lecturer and researcher in the School of
Computing and Intelligent Systems at the Magee Campus of the
University of Ulster. Previously he worked as a Digital Systems
Engineer in Uptron India Ltd, Lucknow, India, and then as a
Power Plant Engineer in a thermal power station of UPSEB at
Obra, India.

He also worked as a Research Fellow on an UK
EPSRC/industry funded research project at Queen’s University
of Belfast. He holds a first class honours bachelor degree in
Electrical Engineering and a first class honours master degree in
Computer Science and Technology. He obtained his PhD degree
from the Queen's University of Belfast. He is also a Chartered
Engineer and a member of IEE.

T. M. McGinnity has been a member of the University of

Ulster academic staff since 1992. He holds the post of Professor
of Intelligent Systems Engineering within the Faculty of
Computing and Engineering. He holds a first class honours
degree in physics, and a doctorate from the University of
Durham. He is a Fellow of the IEE, member of the IEEE, and a
Chartered Engineer. He has 28 years experience in teaching and
research in electronic and computer engineering, and was
formerly Head of School of Computing and Intelligent Systems
at the University’s Magee campus. He is currently Director of
the Intelligent Systems Research Centre and Director of the
University’s technology transfer company, UUTech. He is the
author or co-author of over 175 research papers, and has been
awarded both a Senior Distinguished Research Fellowship and a
Distinguished Learning Support Fellowship by the University.

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 41

© 2008 ACADEMY PUBLISHER

