The Comparison of WML, cHTML, and XHTML-MP in m-Commerce

Jongwook Woo
California State University/Computer Information Systems, Los Angeles, USA
Email: jwoo5@calstatela.edu

Minseok Jang
Kunsan National University/Computer Information Engineering, Kunsan, Korea
Email: msjang@kunsan.ac.kr

Abstract—In order to use mobile devices for business application, mobile applications and standard have grown fast—so called m-Commerce that normally uses WAP protocol to access remote web site wirelessly. WAP protocol has moved from WAP 1.0 to WAP 2.0 in order to lessen the developer’s load by simplifying and forcing language independency. WML has been used to provide web-like user interface to mobile device on WAP 1.0. And, cHTML has been used exclusively in NTT DoCoMo service. However, WAP 2.0 chooses XHTML-MP by considering existing WAP languages. The paper introduces and compares WML, cHTML and XHTML-MP in syntax and on experimental results. Besides, m-Commerce architecture on n-tier architecture is illustrated. The financial transaction system on online game is implemented in those languages as a mobile application to be compared.

Index Terms—m-Commerce, WAP 2.0, XHTML-MP, WML, cHTML

I. INTRODUCTION

e-Business system has been popular, which includes the popular terminology e-Commerce. IBM defines e-Business as the leveraging of network capabilities and technologies in order to achieve and maintain the huge advantages for customers, suppliers, partners, and employees [9]. e-Business activities can be classified into three categories based on end-users of transactions: Intra-business, Business-to-consumer, and Business-to-business. Intra-business activity is to share company information and computing resources among employees on the intranet: for example, knowledge management. Business-to-business activity is to improve inter-organizational partnerships and relationships: for example, supply chain integration. Business-to-consumer, the most common activity, is to provide services to consumers who are out of organizations: for example, customer resource management (CRM), e-Commerce, and web auctions etc [6]. And, financial transaction report system that is introduced in this paper is the example of CRM. Accountant needs to analyze the gain and loss of a product and then to see the report for net cash and net earned revenue that are computed based on the customers’ subscription data accessible through the intranet.

n-tier architecture for e-Business system has been presented because businesses have to improve efficiency by integrating data and applications across the enterprise. Besides, the highest levels of performance and availability must be maintained for the critical businesses. In order to enable high performance, scalability, and availability to businesses, n-tier architecture partitions systems and software to more flexible blocks that have their roles [1]. Section 3 of this paper introduces n-tier architecture in detail.

As mobile devices and wireless telecommunications have grown these days, m-Commerce industry has been popular. m-Commerce can be defined as e-Business with mobile device. m-Commerce is the same as e-Business in its fundamental concept and actually its architecture is extended from e-Business architecture. But, it needs wireless environment to connect mobile device to the legacy system and to develop its client logic. W3C presented wireless access protocol WAP and languages for WAP protocol. In WAP 1.x, WML is the standard language but it has different syntax from HTML that has been the language for web browsing. Thus, NTT, Japanese Telecommunication Company, presented cHTML for DoCoMo wireless service, which is the subset of HTML. However, it is not W3C standard. Therefore, for WAP 2.0, W3C selected XHTML-MP as the standard, which is similar to XHTML.

In this paper, WML, cHTML, and XHTML-MP are used and compared to build client logic on WAP 2.0. WML is the extension of XML (eXtensible Markup Language) as an acronym of Wireless Markup Language. XHTML-MP (XHTML Mobile Profile) is the subset of XHTML (eXtensible HTML) that is the latest HTML standard for web. And, WAP gateway (or server) is used for WAP communication in Java between the wireless client logic and the legacy system in J2EE (Java 2 Enterprise Edition) as business/data access logic [11].

In this paper, section 2 is Related Work. Section 3 n-Tier Architecture describes n-Tier architecture on e-
Business and m-Commerce. Section 4 describes the mobile application, financial transactional report system. Section 5 explains the architecture of the system on WAP 2.0. Section 6 compares syntax of the languages and presents experimental result. Finally, section 7 is Conclusions.

II. RELATED WORK

Read et al. introduce the wireless protocol and languages at the moment. The Wireless Application Protocol WAP with XHTML and WML is illustrated. Besides, they describe the properties of i-mode mobile service with cHTML and J2ME (Java 2 Micro Edition) as tools for mobile application [13]. The paper just introduces the current techniques and trends in wireless applications.

Wang et al. describe WAP and i-mode. Then, they provide the sample m-Commerce applications simulated on Nokia Toolkit 4.0 [14]. The Wang’s paper has the similar architecture to our paper’s because it is implemented on WAP. However, the application of our paper is implemented not only with cHTML but also with WML and XHTML-MP. It is integrated with the dynamic web contents in J2EE back-end system and even connected to DB of the application. However, Wang’s application just communicates with WAP server on i-mode. Besides, our application is to access and display the financial transaction report.

Duncan et al. present their clinical data access system as a wireless healthcare application. It uses Palm Proxy server as a WAP server and PDA (Personal Digital Assistant) as a WAP browser. It uses existing back-end system built in Microsoft ASP language on Microsoft IIS web server but ours run on J2EE [15].

Mendonca et al. provide the health care mobile system that is executed on web server with Palm PDA. It is to provide health care information by reducing the errors [16]. Their back-end system is CGI that has less performance than our systems in J2EE. And, Raymond and Eneider’s applications are wireless healthcare systems.

III. N-TIER ARCHITECTURE

e-Business and m-Commerce are built on n-tier architecture. Thus, this section illustrates the architecture and its history.

The traditional Client-Server architecture has a mainframe that includes core applications and data. The mainframe is accessed from thick clients that are big applications. We can call it 2-tier architecture that has many loads between client and server because of their tight interoperations for its presentation logic, business logic, and data access logic. This tight interoperation has generated many issues in the current high volume business systems. It is not scalable because it should replace the entire system when its capacity is exceeded. And, it is not flexible because its presentation logic, business logic, and data access logic are tightly coupled. If the developer wants to modify its business logic, he/she should modify the entire logics. Besides, the developer must adapt or modify the business logic when it is integrated with the WWW (World-Wide-Web) or other applications [1].

The n-tier architecture has addressed the issues of the 2-tier architecture and become the solution of the current e-Business systems on Internet and WWW. It partitions application functionalities into n independent layers, mainly three layers as in Figure 3.1. Thus, it becomes easier to integrate with the existing business systems. The layer 1 is the presentation logic that is typically hosted on Web server with web browser. The presentation logic is to send the request of client and receive its response from business logic. The response is normally dynamic or static web pages formatted to present the client. The layer 2 is hosted on mid-tier (middleware) server as business logic. It includes the business functions that are the main of the e-Business applications on n-tier architecture. It produces the response of the request from the client and provides it to the client. If the request is related to access data, it will pass the data access request to the back-end database server. The layer 3 is hosted on the back-end database server as database access logics. It is to handle the request of data source from the business logic. It has the functions to access data source such as plain file, XML file, database, or repository etc. Since business logic is separated from presentation logic and database access logic physically, each layer can be scalable and upgradeable independently. And, even if a layer is
modified or replaced, the application of other layers does not need to be recreated. Besides, each layer can be implemented with clustered servers for its logic. The clustering enables high-performance computing, availability, and scalability [1]. Therefore, the current e-Business systems are implemented on n-tier architecture.

m-Commerce application can be implemented on the similar architecture of Figure 3.1. In m-Commerce, presentation logic on WAP (Wireless Access Protocol) can be built in WML, cHTML, or XHTML-MP etc. WAP is the standard created by WAP forum in order to bring the WWW to wireless devices. Client device can be mobile phone or palm pilot. In order to make WML, cHTML, or XHTML parseable and executable, WAP server (or WAP gateway server) is needed. WAP server is to convert WAP data to http compatible data (or the other way). Thus, middleware server on WAP is composed of WAP server, web server, and application server.

A. WML

WML 1.x is defined in the WAP 1.0 specification. WAP sites are written in WML as web sites are in HTML. WML is similar to HTML which has tags in plain text format. However, WML has unique tags for WAP document. The latest WAP standard is WAP 2.0 and it defines XHTML MP as its markup language, which is described in the next section. Besides, WAP 2.0 also supports WML. Even though WML 1.x is the old technology, there are still many mobile devices that only support WML 1.x.

When a mobile device sends a request to the WAP application running on the application server by selecting the system’s WAP address as locating a WML file, the request is first routed through the WAP server where it is decoded, translated to HTTP, and then forwarded to the appropriate URL. After executing the business logic in Java classes (or other classes, for example, in .NET) referred by WML codes, its execution result will be generated. The execution result of the response is then routed back through the WAP gateway, translated to WAP, encoded, and forwarded to the mobile client. Thus, the mobile device can display the data result responded from the WAP address. This proxy architecture allows application developers to build services that are network and terminal independent [11].

B. cHTML (Compact HTML)

cHTML is the acronym of Compact HTML. It is simply the subsets of HTML 2.0, 3.2, 4.0 and 4.01 and used for iMode service that is supported by NTT DoCoMo. cHTML does not support CSS (Cascading Style Sheet) so that it does not need to be well formed and that each browser displays different views for the same cHTML code. It is the proprietary dependent language for iMode service. It does not support scripting language [19]. cHTML is the subset of HTML so that it is simple but it is proprietary dependent. cHTML is moving to WAP 2.0 to be integrated to XHTML-MP.

C. XHTML MP

XHTML is the acronym of Extensible HyperText Markup Language as the latest version of HTML that extends HTML as a family of XML. Thus, XHTML has the strength of HTML in the look of a document and the strength of XML in the meaning of a document. There are several W3C recommended XHTML versions: XHTML 1.0, XHTML basic, and XHTML 1.1. XHTML 1.0 is to reformulate HTML to XML-like. XHTML basic is to modulate XHTML to achieve mobile applications. XHTML 1.1 is the larger module that can be easily combined to other XML documents.

WAP2.0 is the latest mobile service specification created by WAP forum. NTT DoCoMo and WAP forum join together to present the next wireless internet access - WAP2.0 - by combining the features of WML, XHTML Basic, and cHTML. XHTML-MP is defined in WAP2.0. XHTML-MP is the subset of XHTML and it is the superset of XHTML basic with other XHTML elements and attributes. Even though XHTML-MP does not have the useful features such as events, variables, and script of WML, the great advantage of XHTML-MP is that web and WAP world now share the same document. Thus, in order to build WAP application, the developer can simply use the existing web documents in XHTML or simply modify them.

IV. APPLICATION FOR M-COMMERCE: FINANCIAL TRANSACTION REPORT

This section illustrates an application that is implemented in J2EE and extended to wireless application by building WML and XHTML-MP clients. For business, it is important to display and analyze the gain and loss of a project. Many companies analyze their business loss or gain with the factors such as net cash and earned revenue. This section describes the basics of cash application and revenue and what are their mathematical formulae for an online game project. The online game supported by the financial system in our project has the millions of transaction with the hundreds of thousands of customers. Customer in the online game needs to subscribe it by determining its billing cycle as monthly, quarterly, semi-annually, and annually.

The financial system built on computer can provide well organized information to accountants for the millions of transactions. If there is no such a system, it will be the nightmare for the accountants. The accountants used to use the simple application such as Microsoft Excel for the financial system. However, the excel file cannot handle the complicated data as the online game transaction system. Therefore, our transactional system is implemented in J2EE to compute complicated data on web for the system. The accountants need to analyze customers’ net cashes and earned revenue for a period by collecting the transactional data such as subscription amount and tax etc. The transactional system can display the transactional data and its net cashes and earned revenue for a period and it has two reports as
follows.

First, there is cash application report to calculate a net cash of each customer and its summary. Since there are millions of transactions in the game, an accountant needs data in certain period. Cash application report needs each game account’s subscription amount, credit card fee charged, online payment fee charged, and tax charged in order to calculate its net cash. The formula to calculate the net cash is as follows:

\[
\text{Net Cash} = (\text{Subscription Amount}) - \text{Tax} - (\text{Credit Card Fees}) - (\text{Online Payment Fees}) \quad \text{(Formula 4.1)}
\]

For each customer, since the online game system stores its subscription amount and tax and fees charged, its net cash can be calculated by formula 4.1. However, the user – accountant – needs to filter the millions of customers by selecting periods as start and end dates and collect only small amounts of customers.

Second, there is revenue report to calculate earned revenue for each customer by its billing cycle in a period selected by the accountant. The report needs each game account’s gross earned revenue, credit card fee charged, online payment fee charged, and tax charged in order to calculate its net earned revenue. Its formula is similar to cash report formula 4.1. However, it needs to calculate daily revenue rate before calculating earned gross and revenue. The daily revenue rate is calculated as the total subscription rate divided by the number of days in the month(s) spanning the subscription as follows:

\[
\text{Daily Revenue Rate} = \frac{(\text{subscription amount})}{(\text{total days})} \quad \text{(Formula 4.2)}
\]

For example, there is a customer who subscribes the game with $14 subscription amount from May 20 2007 for a monthly subscription. Thus, the customer’s Net Cash is $12.25 (14 – 14 x 0.08 – 14 x 0.03 – 14 x 0.015) where tax is 8%, Credit Card fee is 3%, and Online Payment Fee is 1.5%. His account is expired on June 19 and he has 31 total days for the subscription. Thus, its daily revenue rate is $0.4516 (=14/31). Revenue will be earned on a daily basis. The rate of revenue earned will be based on the number of days in the month(s) spanning the subscription. Based on the daily revenue rate, earned revenue as of a date can be computed as follows:

\[
\text{Gross Revenue Earned As Of Date D} = (D – (\text{subscription date})) \times (\text{Daily Revenue Rate}) \quad \text{(Formula 4.3)}
\]

For example, for the revenue earned as of May 31 2007 of the above example, total days between May 20 and May 31 are 11 days. Thus, its gross earned revenue is $4.9676 (= 11 X 0.4516).

Let’s see another example. For an annually subscription that begins on March 14th 2007 with the subscription amount $150, the user want to see the revenue earned as of May 14th 2007. First, the daily rate will be calculated as follows:

\[
\text{Daily Revenue Rate} = \frac{150}{365} = \$0.4110
\]

Total days between March 15 and May 14 are 61 days (17 days for March, 30 days for April, and 14 days for May). Its Gross Revenue Earned as of May 14, 2007 is $25.071 (=0.4110 X 61).

We can compute Net Earned Revenue with Formula 4.3 and other fees as follows:

\[
\text{Net Earned Revenue} = (\text{Gross Earned Revenue of (Formula 4.3)}) - \text{Tax} - (\text{Credit Card Fees}) - (\text{Online Payment Fees}) \quad \text{(Formula 4.4)}
\]

Thus, the customer’s Net Earned Revenue is $21.93 (25.071 – 25.071 X 0.08 – 25.071 X 0.03 – 25.071 X 0.015). Formula 4.1-4.4 are implemented in Java for financialReport System.

V. THE ARCHITECTURE OF THE FINANCIAL REPORT ON WAP 2.0

The financial report system is built on Tomcat server that supports WAP 2.0 and Java servlet/JSP and MySQL Database server. The system is mainly developed in J2EE version 1.5 on JBoss version 4.0.3 application server.

\[\text{Figure 5.1 } \text{m-Commerce Architecture}\]

\[\text{JBoss server supports WAP that acts as the bridge between the mobile network containing mobile clients and the computer network containing application servers as shown in Figure 5.1. Its database server is MySQL 4.1. The mobile device requests WAP of JBoss server for financial report and receives its response wirelessly.} \]

\[\text{JBoss server executes business logic and data access logic in J2EE. The financial report logic described in section 4 is built in Java and packaged to edu.calstatela.hipic.financialReport. The business logic is composed of the utility classes to calculate the net cash and net earned revenue based on Formulae 4.1-4.4 by using the billing type of a customer for a period entered by the user.} \]

\[\text{The system has two main JavaBean classes for Data Access logic such as CashApplicationReport and RevenueReport with several supporting classes. These JavaBean classes have data access logics to connect DB server and to join several tables to generate the properties that are used for each report.} \]
The client logic of the system is initially built in WML (Wireless Markup Language) and cHTML such as cashReport.wml, cashReport.xhtml, revenueReport.wml, and revenueReport.xhtml. Then, the clients are implemented in XHTML-MP for WAP 2.0 such as cashReport.xhtml and revenueReport.xhtml.

As shown in Figure 5.2-4, cashReport.wml, cashReport.xhtml and cashReport.wml files take the input parameters from the user and pass them to jsp file cashReportResult.jsp. The jsp file is developed to access Java classes of the data access and business logics. Thus, it retrieves data from DB tables with SQL command and generates a JavaBean class that contains data retrieved. And, it displays the result into the LCD panel of the mobile device that represents Cash report as in Figure 6.1 - 6.2. Thus, the mobile device can display the data result responded from the system’s WAP address.

VI. COMPARING WML, cHTML, AND XHTML-MP

This section compares WML, cHTML and XHTML-MP for the two issues. The first is how to implement input pages of m-Commerce applications, which show the differences of the syntaxes in terms of programming language. The second is to display the output pages that we can compare as the result view in both approaches.

A. Syntax

WML has the features that XHTML-MP and cHTML do not have. XHTML-MP and cHTML do not support events like ontimer, onenterbackward, onenterforward and onpick of WML. XHTML-MP and cHTML cannot declare variables as WML does. WML provides client side scripting with WMLScript language. In the future, XHTML-MP will have a script language called ECMAScript Mobile Profile (ECMP) that is designed for XHTML-MP. In WML, input element has format...
attributes to determine the length of characters and its type that the user can enter. XHTML-MP needs to format the input with wap-input-format property of WAP-CSS (Cascading Style Sheet). In WML, in order to get data, anchor link with “go” option is needed. However, in XHTML-MP, “submit” button is enough without anchor link [17-18].

```xml
<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0/EN"
  "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">
// jsp codes to get the parameters for start date sDate and end date eDate
// And to retrieve data from the DB by the parameters and create ResultSet rs for cash report
...
</html>
```

XHTML-MP and cHTML are originated from HTML. Thus, some tags are common and for the simple applications like in this paper, the documents are almost same as in Figures 5.3 and 5.4. The document in XHTML-MP contains more tags related to XHTML than in cHTML. Besides, cHTML does not support scripting language and CSS. And, XHTML-MP is W3C standard but cHTML is proprietary dependent.

B. Experimental Results

The financial report system is implemented with servers such as JBoss 4.0.3 application/WAP server and MySQL Database server. The mobile device and application is simulated with Phone Simulator v7 that is freeware developed by Open Wave [20]. The applications are written in WML, cHTML, and XHTML-MP.

![Figure 6.1 Cash Report on WML](image1)

![Figure 6.2 Cash Report of WML on Nokia Series 40](image2)

![Figure 6.3 Cash Report on cHTML and XHTML-MP](image3)

Figures 6.1-6.5 show the experimental results of the Cash and Revenue reports illustrated in the previous section in the Phone Simulator v7. Depending on the input dates and billing cycle, the report should display different results.

The experiment is not to evaluate the efficiency of the system because the system depends on the existing back-end application in J2EE, JBoss Application Server, and MySQL DB server. The experimental result is to show that transactional and financial system can be expanded to mobile environment and implemented in WML, cHTML or XHTML-MP. Then, we actually want to compare them.
The user enters the start date and end date to retrieve data for the cash report as in Figures 6.1-3 (a). Since cHTML and XHTML-MP are originated from HTML, in our example, the input and its result have the same look.

The user interface built in WML needs two phases input process for some mobile devices such as Nokia 40 series shown in Figure 6.2 (a) but in Phone Simulator v7 of Figures 6.1 and 6.3 (a), it is the one phase process. In Nokia 40 series of Figure 6.2 (a), after entering the input data, the user needs to choose “go” button. It is inconvenient to the user, especially using the key of the mobile device - it may not be the problem to the traditional web user who uses desktop keyboard. However, the user interfaces in Phone Simulator v7 including WML, cHTML and XHTML-MP of Figure 6.1-3 (a), after entering the input data, the user can choose either “go” or “submit” button respectively as the legacy web user interface.

![Figure 6.5 Revenue Report on cHTML and XHTML-MP](image)

Then, after submitting the dates, its cash report of customers between those dates is displayed on the LCD panel of the device, which is composed of each customer’s Bill Cycle, Account Name, Gross Amount, Credit Card Fee, Online Fee, Tax, and Net Cash calculated as in Figures 6.1-3 (b). The result displays the same page with the same data because all WML, cHTML and XHTML-MP pages display the same JSP page, cashReportResult.jsp. For the revenue report as in Figures 6.4 and 6.5 (a), the user enters the start date and end date and then selects its billing cycle to retrieve data. Same as cash report, the user interface in WML needs two phases process in some mobile devices but the user interfaces in Phone Simulator v7 including WML, cHTML and XHTML-MP runs on one phase process. Then, after submitting the dates and its cycle, its revenue report of customers between those dates by the cycle is displayed on the LCD panel of the device, which is composed of each customer’s Bill Cycle, Account Name, Gross Earned Amount calculated, Credit Card Fee, Online Fee, Tax, and Net Earned Revenue calculated as in Figures 6.4 and 6.5 (b). Again, its result page is the same JSP page, revenueReportResult.jsp as input pages in WML, cHTML and XHTML-MP.

<table>
<thead>
<tr>
<th>Table 6.1 Comparing WML, cHTML, and XHTML-MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events Support</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Yes (onTimer, onEnterBackward, onEnterForward etc)</td>
</tr>
<tr>
<td>Variable Declaration</td>
</tr>
<tr>
<td>Scripting Support</td>
</tr>
<tr>
<td>Object Support</td>
</tr>
<tr>
<td>Table Support</td>
</tr>
<tr>
<td>CSS Support</td>
</tr>
<tr>
<td>Coding Simplicity for XHTML developer</td>
</tr>
<tr>
<td>Submitting input data</td>
</tr>
<tr>
<td>Displaying the result JSP page</td>
</tr>
</tbody>
</table>

Table 6.1 compares the applications built in WML, cHTML and XHTML-MP in the view of the user and developer as well as the language characteristics. As described in section VI.A, WML supports events and variable declaration statement but cHTML and XHTML-MP do not. WML and XHTML-MP supports table and scripts WMLScript and ECMP respectively. XHTML-MP supports CSS with WAP-CSS but others do not. However, all do not support object. In order to implement input document, cHTML and XHTML-MP are much easier for the legacy HTML developer because cHTML and XHTML-MP are originated from HTML.

For the simplicity to submit input data as described above, in Phone Simulator v7, WML, cHTML, and XHTML-MP only need one phase process but WML in some mobile devices needs two phases processes that are inconvenient for the user of mobile device such as cellular phone. However, the result displays the same page with the same data as the input pages request the same JSP pages: cashReportResult.jsp or revenueReportResult.jsp. Besides, cHTML and XHTML-MP input pages have the same look. However, cHTML is proprietary dependent so that it may have platform dependency issue.

VII. Conclusions

e-Business has been adopted for business as Internet became the part of our life. Besides, as wireless communication has grown up, m-Commerce gets more important and popular. And, WAP has been the standard for m-Commerce application. Thus, many organizations
have studied the way how to provide contents to mobile devices so that some organizations presented Markup languages. NTT DoCoMo presented cHTML that is the subset of HTML so that it is easy to build by the legacy HTML developer but it is proprietary dependent. W3C presented WML that is similar to but different from HTML. Therefore, it is not convenient to use WML for the traditional HTML or JSP developers because the developer needs to learn WML as well as HTML. Thus, XHTML-MP has been introduced by WAP 2.0 community, which is a sibling of XHTML.

The paper illustrates and compares m-Commerce application on WML, cHTML, and XHTML-MP. The application, financial report system, has been implemented on n-tier architecture for its m-Commerce system with WAP, which is extended from the legacy financial report system in e-Business.

The paper also presents the m-Commerce architecture and how it is implemented on WML, cHTML, and XHTML-MP. cHTML and XHTML-MP are easy to build because they have the similar syntax of HTML used in the legacy e-Business world. And, it is easy to adapt web XHTML document to WAP cHTML and XHTML-MP. The developer just modifies or uses the existing XHTML document for cHTML and XHTML-MP. Besides, for some mobile devices, in order to submit the user’s data, user interface in cHTML and XHTML-MP is much easier than one in WML. The user interface in WML needs two phase processes that are composed of data entry page and “go” page. However, the user interface in cHTML and XHTML-MP only needs one phase process by submitting form page.

REFERENCES

Prof. Jongwook Woo is currently an Assistant Professor at Computer Information Systems Department of California State University, Los Angeles. He received the BS and the MS degree, both in Electronic Engineering from Yonsei University in 1989 and 1991, respectively. He obtained his second MS degree in Computer Science and received the PhD degree in Computer Engineering, both from University of Southern California in 1998 and 2001, respectively. His research interests are Integrated Information Systems, static analysis in Objected-Oriented language, Parallel and Distributed Computing, e-Business and bioinformatics applications in n-Tier Architecture, and load-sharing algorithm in IPv6.

Prof. Minseok Jang is currently a professor of Computer Information Engineering Department at Kunsan National University, which is located in Kunsan, Korea. He received the BS, MS and the PhD degree in Electronic Engineering from Yonsei University in 1989, 1991, and 1999 respectively. His research interests are Wireless Network, XML, VoiceXML, and e-Business.