
Model-Driven User Requirements
Specification using SysML

Michel dos Santos Soares, Jos Vrancken
Faculty of Technology, Policy and Management,

Delft University of Technology, Delft, The Netherlands
Email: {m.dossantossoares, j.l.m.vrancken}@tudelft.nl

Abstract— Requirements engineering is an important phase
in a system’s life cycle. When poorly performed, various
problems may occur, such as failures, cost overrun and
delays. The increasing complexity of systems makes require-
ments engineering activities both more important and more
difficult. Model-driven engineering, in which models are the
main artifact during system development, is an emergent
approach that tries to address system complexity by the
intense use of models. This article proposes a model-driven
approach to requirements engineering based on SysML
Requirements and Use Case Diagrams. The main advantages
are that user requirements are graphically modeled, their
relationships are explicitly mapped, and system decomposi-
tion is considered in the early system development activities.
In addition, requirements traceability is enhanced by using
the SysML Requirements tables. The approach is illustrated
by a list of user requirements for a road traffic management
system.

Index Terms— Requirements Engineering, Model-driven En-
gineering, SysML, UML

I. INTRODUCTION

Requirements for a system are a collection of needs
expressed by stakeholders respecting some constraints
under which the system must operate. Requirements can
be classified in many ways [1]. The first classification
used in this paper is related to the level of detail. In
this case, the two classes of requirements are user or
system requirements [2]. User requirements are high-
level abstract requirements based on end users and other
stakeholders viewpoint. They are usually written using
natural language, occasionally with the help of domain
specific models or even informal models not related to
any method or language [3]. The fundamental purpose
of user requirements specification is to document the
needs and constraints gathered in order to later develop
a system based on those requirements. Systems require-
ments are derived from user requirements but with a
detailed description of what the system should do, and are
usually modeled using formal or semi-formal methods and

This paper is an extended version of the paper “Requirements
Specification and Modeling through SysML,” by Michel dos Santos
Soares and Jos Vrancken, which appeared in the Proceedings of the
IEEE International Conference on Systems, Man, and Cybernetics -
SMC 2007, pp. 1735-1740, ISBN 1-4244-0991-8 Montreal, Canada.
c© 2007 IEEE.

This work was supported by the Next Generation Infrastructures
Program and the Next Generation Infrastructures Research Center of
Delft University of Technology.

languages. This proposed classification allows the repre-
sentation of different views for distinct stakeholders. This
is good Software Engineering practice, as requirements
should be written at different viewpoints because different
stakeholders use them for distinct purposes.

The process by which requirements for systems and
software products are gathered, analyzed, documented and
managed throughout the development life cycle is called
Requirements Engineering (RE) [2]. RE can be divided
into two main groups of activities [4]: i) requirements
development, including activities such as eliciting, docu-
menting, analyzing, and validating requirements, and ii)
requirements management, including activities related to
maintenance, such as tracing and change management
of requirements. This paper is related to user require-
ments development, mainly the activities of documenting
and analyzing requirements for software systems. The
assumption is that improving requirements development
activities may have a strong impact on the quality of later
requirements activities, such as requirements tracing. It
is assumed that user requirements were already gathered
using one or more of a variety of proposed techniques,
such as interviews, questionnaires or ethnography, and
transformed into a list of requirements according to each
stakeholder’s viewpoint.

RE is generally considered in the literature as the
most critical process within the development of com-
plex systems [5], [6]. Software intensive systems [7],
such as large-scale heterogeneous systems and embedded
systems used in domains such as telecommunications,
business and transportation, are complex systems difficult
to model, design and analyze. In these systems, software
interacts with other software, systems, devices, sensors,
actuators, and with people. Their complexity is increased
due to the large number of elements and reliability factors.
Thus, they must be decomposed into several smaller
components in order to manage complexity and facilitate
their implementation and verification. In addition, there
is a need to increase the level of abstraction, hiding
whenever possible unnecessary complexity, by the intense
use of models.

Models are abstractions of physical systems that allow
one to reason about the system by ignoring irrelevant
details while focusing on the relevant ones [8]. This
simplification (or abstraction) is the essence of modeling
[9]. Models are used in many activities, such as to

JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008 57

© 2008 ACADEMY PUBLISHER



predict system behavior, as technical specifications and
to communicate design decisions to various stakeholders.
Although code can also be considered a model, as it
abstracts lower-level machine related instructions, in prac-
tice code and models are often considered to be different
types of artifacts. Typically, in Systems and Software
Engineering, an artifact is considered to be a model if
it has a graphical representation instead of only a textual
one as in the case of source code [10]. This comes as no
surprise, as UML and its profiles are the current dominant
graphical languages used in model-driven approaches.

Several researchers are working on the transitions from
code-only to model-driven approaches in order to increase
the level of abstraction [11], [12], [13]. The common
feature to all these approaches is that models are the
primary system and software artifacts, being as important
as they are in other engineering disciplines, and are
specified in higher levels of abstraction using well-defined
languages [14]. However, few attempts consider models
as centric artifacts in RE.

A. Proposed approach

Well-written user requirements documentation is fun-
damental as it facilitates later phases, not only during
RE, but during the whole system life cycle. This paper is
about applying a Model-Driven Requirements Engineer-
ing approach based on SysML [15] Requirements and Use
Case diagrams.

First, a classification for each atomic requirement
is proposed, avoiding the confusion of which type of
requirement is written in the user requirements docu-
ment. Then, the SysML Requirements diagram is used to
represent graphically single user requirements and their
relationships. The idea is that user requirements are mo-
deled after being written in natural language. The SysML
Requirements Diagram specifies a defined semantics to be
followed when relating requirements to each other and to
other models created during system design. Requirements
may be combined depending on their semantics, what
can be useful for early discovering subsystems and start
delimiting system architecture.

User requirements are also represented in a tabular
format, which may facilitate requirements tracing during
the system life cycle. This is important to know what
happens when related requirements change or are deleted,
which improves traceability.

Finally, SysML Use Case diagrams are applied to
represent the actors involved and the use cases, giving a
context diagram delimiting the system. Then, use cases
are related to SysML Requirements using one of the
proposed relationships.

Although the idea is to use models from the early
phases of system development, natural language is still
important and can be used as input for later RE activi-
ties. Despite its problems, there are also advantages, as
natural languages are the primary communication medium
towards stakeholders.

After being structured and graphically represented (Fig
1) using SysML Requirements and Use Case diagrams,
user requirements may be detailed into systems require-
ments, being specified using other models, such as other
UML/SysML diagrams or formal methods.

informal diagrams

domain specific diagrams

natural language
requirements

+ explicit relationships between
- requirements
- requirements and use cases

+ improved
- structure
- traceability

+ less ambiguity

+ graphical representation

+ system delimitation

+ methodology freedom

structured user requirements
represented as models and
in a tabular format

SysML Requirements
Diagram

SysML Use Case
Diagram

SysML Requirements
Tables

Figure 1. Model-Driven Requirements Engineering approach with
SysML

B. Related Work

Studies conducted by the Standish Group [16] and other
researchers [17], [18] found that the main factors for
problems with system projects (cost overruns, delays, user
dissatisfaction) are related to requirements issues, such as
lack of user input, incomplete requirements specifications,
uncontrolled requirements changing and unclear objec-
tives. In an empirical study [3], the activities of identify
user requirements and later model these requirements
were considered as priorities by a large percentage of
respondents. In addition, according to Brooks [19], know-
ing what to build, which includes requirements elicitation,
technical specification, and prioritization, is the most
difficult Systems Engineering phase in the life cycle.
Related work of two RE activities are given as follows.

1) Requirements Documentation: There are several
approaches to document requirements. Basically, they
can be classified as graphic-based, purely textual, or a
combination of both. Some are generic while others are
based on a specific methodology. The most common
approach is to write user requirements using natural lan-
guage, which may cause several problems such as impre-
cision, misunderstandings, ambiguity and inconsistency
[20]. This problem gets more serious as requirements
are written in more detail in order to be used as system
specifications. With the purpose of giving more structure
and pattern to requirements documents, structured natural
language is used [21]. Nevertheless, structured natural
language is neither formal nor graphical, and can be too
much oriented to algorithms and specific programming
languages.

User Stories have been used as part of the eXtreme
Programming (XP) [22] agile methodology. They are
written by the customer using non-technical terminology,
in the format of some sentences using natural language.
Although XP offers some advantages in the RE process,
such as user involvement and defined formats for user

58 JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER



requirements and tasks, requirements are still loosely re-
lated, not graphically specified, and oriented to a specific
methodology.

Even before UML emerged as the main Software
Engineering modeling language, Use Cases were already
a common practice for graphically representing functional
requirements in other methodologies, such as Object-
Oriented Software Engineering (OOSE) [23]. Their po-
pularity can be explained due to their simplicity, acting
as a bridge between technical and business stakeholders,
the compact graphical nature to represent requirements
that may be expanded to several pages, and even as a
basis for managers when doing project estimation [24]
[25]. Use cases also have some disadvantages and pro-
blems [26]. They are applied mainly to model functional
requirements, however are not very helpful to model other
types of requirements, such as non-functional ones [27].
Use Case diagrams lack well-defined semantics, which
may lead to differences in interpretations by stakeholders.
For instance, the include and extend relationships are
considered similar, or even the inverse of each other
[28]. In addition, use cases may be misused, when too
much detail is added, which may incorrectly transform
the diagrams into flowcharts or making them difficult to
comprehend. Finally, although being an important part
of an object-oriented language, the diagram itself is not
object-oriented.

2) Requirements Relationships: It is well-known by
Software Engineering researchers and practitioners that
requirements are related to each other. These interactions
affect various software development activities, such as
release planning, change management and reuse. A study
has shown that the majority of requirements are related to
or influence other requirements [29]. Due to this fact, it
is almost impossible to plan systems releases only based
on the highest priority requirements, without considering
which requirements are related to each others and the type
of these relationships.

Many requirements relationships are presented and
classified as structural, constrain or cost/value in [30].
The survey [31] introduces the discipline of Requirements
Interaction Management (RIM), which is concerned with
the analysis and management of dependencies among
requirements. Among the main activities of the RIM
discipline, the ones that are related to this article are
the representation of requirements and their interactions.
This is done using the SysML Requirements diagrams and
tables.

II. A PROPOSED USER REQUIREMENTS
CLASSIFICATION

A common classification proposed for requirements
in the literature is based on the level of abstraction,
in which requirements are classified as functional or
non-functional [32]. Functional requirements describe the
services that the system should provide, including the
behavior of the system in particular situations. Non-
functional requirements are related to emergent system

properties such as safety, reliability and response time.
These properties cannot be attributed to a single system
component. Rather, they emerge as a result of integrating
system components. Non-functional requirements are also
considered as quality requirements, and are fundamental
to determine the success of a system.

The IEEE Recommended Practice for Software Re-
quirements Specifications [33] suggests a table of con-
tents of a Requirements Specification with the following
requirements items: external interfaces, functions, perfor-
mance, logical database, design constraints, and software
system attributes. For sake of simplicity, and as some of
the items can be considered non-functional requirements
(performance, design constraints and software system
attributes), or functional requirements (logical database),
the second classification used in this paper (after user vs.
system requirements) is as follows:
• Functional: describes what the system should do

to be useful within the stakeholders’ context (the
functionalities), including information about logical
databases, such as frequency of use, data entities,
and integrity constraints.

• Non-functional: are related to emergent system prop-
erties, such as reliability and performance. These
requirements do not have simple yes/no satisfaction
criteria. Instead, it must be determined whether a
non-functional requirement has been satisfied.

• External: a detailed description of all inputs into and
outputs from the software system, such as system,
user, hardware, software and communication inter-
faces. It is an important classification to decompose
the system into subsystems.

III. USER REQUIREMENTS SPECIFICATION USING
SYSML DIAGRAMS

SysML is a systems modeling language that supports
the specification, analysis, design, verification and vali-
dation of a broad range of complex systems [15]. The
language is an evolution of UML 2.0 [34] to be ap-
plied to systems that may include hardware, software,
information, processes and personnel. This may facilitate
the communication between heterogeneous teams (for
instance, mechanical, electrical and software engineers)
that work together to develop a system. The language is
effective in specifying requirements, structure, behavior,
allocations of elements to models, and constraints on
system properties to support engineering analysis.

Both SysML and UML languages are based on the
same metametamodel, the OMG Meta Object Facility
(MOF) [35]. SysML is considered both a subset and
an extension of UML 2.0. As a subset, UML diagrams
considered too specific for software (Objects and De-
ployment diagrams) or redundant (Communication and
Time Diagrams) were not included in SysML. Some dia-
grams are derived from UML without significant changes
(Sequence, State-Machine, Use Case, and Package Dia-
grams), some are derived with changes (Activity, Block
Definition, Internal Block Diagrams) and there are two

JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008 59

© 2008 ACADEMY PUBLISHER



new diagrams (Requirements and Parametric Diagrams).
As a matter of fact, SysML is compatible with UML,
which can facilitate the integration of the disciplines of
Software and System Engineering.

SysML can be used in many important activities during
the system life cycle. The following list gives some
examples:

a) Communication with Stakeholders: Require-
ments are normally presented to stakeholders using na-
tural language. SysML provides two diagrams for RE:
Use Cases and Requirements Diagrams. These diagrams
are useful to improve requirements visualization by using
graphical elements.

b) Improving system knowledge: The application of
visual models during system engineering development
facilitates system understanding, and allow standards and
patterns that can be used and reused.

c) Model execution and verification: Model-driven
transformations from SysML semi-formal diagrams (Se-
quence, State-Machine, Activity Diagrams) to a formal
method such as Petri nets [36], allows not only formal
verification but also model execution using simulation.
These practices may help in early discovering possible
design problems.

d) Documentation for maintenance: Several factors
contribute to the necessity of performing system main-
tenance, such as new requirements, bug fixing or new
constraints (new laws for instance). The changes are
necessary in order to keep the system useful. In fact, it is
unlikely that the system will not undergo any changes.
SysML models document design decisions, which are
useful when the development team needs to perform
changes. SysML may be useful even if there is a need
to perform the reengineering of legacy systems with poor
documentation.

The following subsections presents SysML diagrams
for RE.

A. The SysML Requirements Diagram

The SysML Requirements diagram helps in better orga-
nizing requirements, and also shows explicitly the various
kinds of relationships between different requirements.
Another advantage of using this diagram is to standardize
the way of specifying requirements through a defined
semantics. As a direct consequence, SysML allows the
representation of requirements as model elements, which
mean that requirements are part of the system architecture
[13]. The SysML requirements constructs are intended to
provide a bridge between traditional requirements mana-
gement tools and the other SysML models. When com-
bined with UML for software design, the requirements
constructs can also fill the gap between user requirements
specification, normally written in natural language, and
Use Case diagrams, used as initial specification of system
requirements.

A SysML requirement can also appear on other dia-
grams to show its relationship to other modeling elements.
With the SysML Requirements diagram, visualization

techniques are applied from the early phases of system
development. The SysML Requirements diagram is a
stereotype of the UML Class diagram, as shown in Fig.
2.

Figure 2. Basic SysML Requirements diagram

B. Requirements relationships

Implementing all requirements in a single system re-
lease may be unattractive due to the high costs involved,
lack of sufficient staff and time, and even client and
market pressures. These difficulties make prioritization a
fundamental activity during the RE process. Prioritizing
requirements is giving an indication of the order in which
the requirements should be considered for implemen-
tation. However, it is not always possible to plan a
system release based only on the set of more important
requirements due to requirements relationships. A better
knowledge of requirements relationships may be useful
to do more accurate release plans, to reuse requirements
and to drive system design and implementation.

The SysML Requirements diagram allows several ways
to represent requirements relationships. These include
relationships for defining requirements hierarchy, deriving
requirements, satisfying requirements, verifying require-
ments and refining requirements. The relationships can
improve the specification of systems, as they can be used
to model requirements. The relationships: hierarchy, de-
rive, satisfy, verify, refine and trace are briefly explained
below.

In large, complex systems, it is common to have a
hierarchy of requirements, and their organization into
various levels helps in dealing with system complexity.
For instance, high-level business requirements may be
gradually decomposed into more detailed software re-
quirements, forming a hierarchy. SysML allows split-
ting complex requirements into more simple ones, as
a hierarchy of requirements related to each other. The
advantage is that the complexity of systems is treated
from the early beginning of development, by decomposing
complex requirements.

The concept of hierarchy also permits the reuse of
requirements. In this case, a common requirement can
be shared by other requirements. The hierarchy is built
based on master and slave requirements. The slave is a
requirement whose text property is a read-only copy of the

60 JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER



text property of a master requirement. The master/slave
relationship is indicated by the use of the copy keyword.

The derive relationship relates a derived requirement
to its source requirement. During RE activities, new
requirements are created from previous ones. Normally,
the derived requirement is under a source requirement
in the hierarchy. In a Requirements diagram, the derive
relationship is represented by the keyword deriveReqt.

The satisfy requirement describes how a model satisfies
one or more requirements. It represents a dependency
relationship between a requirement and a model element,
such as other SysML diagrams, that represents that re-
quirement. This relationship is represented by the key-
word satisfy. One example is to associate a requirement
to a SysML Block diagram.

The verify relationship defines how a test case can
verify a requirement. This includes standard verification
methods for inspection, analysis, demonstration or test.
For example, given a requirement, the steps necessary
for its verification can be summarized by a state-machine
diagram. The keyword verify represents this relationship.

The refine relationship describes how a model element
(or set of elements) can be used to later refine a re-
quirement. For example, how a Use Case can represent
a requirement in a SysML Requirements diagram. The
relationship is represented in the diagram by the keyword
refine.

The trace relationship provides a general purpose re-
lationship between a requirement and any other model
element. Its semantics has no real constraints and is not
well-defined as the other relationships. For instance, a
generic trace dependency can be used to emphasize that
a pair of requirements are related in a different way not
defined by other SysML relationships [37].

C. Requirements Table

Requirements traceability is one important quality fac-
tor in systems design. A definition of requirements trace-
ability is given in [38] as: “the ability to describe and
follow the life of a requirement, in both a forward and
backward direction, i.e., from its origins, through its de-
velopment and specification, to its subsequent deployment
and use, and through periods of ongoing refinement and
iteration in any of these phases”. Basically, requirements
traceability helps in identifying the sources, destinations
and links between requirements and models created dur-
ing system development.

Identifying and maintaining traces between require-
ments are considered important activities during RE [39].
The activity of requirements tracing is very useful, for
example, to identify how requirements are affected by
changes. For instance, in later phases a requirement
may be removed, and the related requirements may be
also deleted or reallocated. And when a requirement is
changed, the stakeholders need to know how this change
will affect other requirements. Traceability also provides
a possibility to ensure that all requirements are fulfilled
by the system and subsystem components. As a matter

of fact, important decisions on requirements and the
correspondent models are better justified [40]. One way to
manage the requirements traceability in SysML is within
requirements tables.

TABLE I.
A SYSML HIERARCHY REQUIREMENTS TABLE

Id Name Type

SysML allows the representation of requirements, their
properties and relationships in a tabular format. One
proposed table shows the hierarchical tree of requirements
from a master one. The fields proposed for table I are the
requirement ID, its name and type. There is a table for
each requirement that has child requirements related by
the relationship “hierarchy”.

TABLE II.
A SYSML REQUIREMENTS RELATIONSHIP TABLE

Id Name RelatesTo RelatesHow Type

Other information items can be represented, as shown
in table II. For example, the requirement Id, the name
of the requirement, to which requirement it is related (if
any), the type of relationship and the requirement type.
This allows an agile way to identify, prioritize and trace
requirements. As a matter of fact, whenever a requirement
is changed or deleted, the tables are useful to show that
this can affect other requirements.

D. The SysML Use Case Diagram

The SysML Use Case diagram is derived without im-
portant extensions from the UML 2.0 Use Case diagram.
The main difference is the more wide focus, as the idea is
to model complex systems that involve not only software,
but also other systems, personnel, and hardware.

The Use Case diagram shows system functionalities
that are performed through the interaction of the system
with its actors. The idea is to represent what the system
will perform, not how. The diagrams are composed of
actors, use cases and their relationships. Actors may
correspond to users, other systems or any external entity
to the system.

There are four types of relationships in a Use Case dia-
gram: communication, generalization, include and extend.
The “communication” relationship is used to associate
actors and use cases when they effectively participate in
the use case behavior. The “generalization” relationship
occurs from actor to actor or from use case to use case.
The semantics is the same used in other diagrams, such
as the UML Class diagram: the child element inherits all
behavior of its parent, and can add some more specific
behavior. The “include” relationship provides a mecha-
nism useful when a sequence of events is common to
more than one use case. These sequences of events can

JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008 61

© 2008 ACADEMY PUBLISHER



be encapsulated as one use case and reused by other
use cases. The execution of the base use case implies
also in the execution of the included use cases. The “ex-
tend” relationship provides optional functionality, which
extends the base use case at defined extension points
under specified conditions. This relationship is useful
when a use case is too complex, with many alternatives
and optional sequences of interactions. The solution is
to separate each alternative or option of the base use
case into another use case, and relate them using the
“extend” keyword. The base use case is independent of
the extended ones, which may only be executed if the
condition in the base use case that causes it to execute is
set to true.

The detailed sequence of events in a use case can
be represented by different manners. It is common to
describe the sequence of events in structured language
based on a pre-defined pattern. One example is given in
[41], in which the document has the following fields:
Use Case Title, Actors involved, Use Case goal, Pre-
condition, Pos-condition, Steps and Alternatives (the last
two are both enumerated lists). Considering a model-
driven approach, it is also possible to specify use case
behavior by Activity diagrams [42] or Sequence diagrams
[43]. Within SysML, a use case may also be represented
by SysML Requirements diagram. Which of these tech-
niques to use depends on the nature of the use case
behavior as well as of the intended reader. A combination
of techniques can also be used in order to present the best
manner to each stakeholder.

IV. SYSML REQUIREMENTS DIAGRAM EXTENSIONS

The basic SysML Requirements diagram is extended
in this section, by creating new stereotypes and tagged
values, and by grouping related requirements.

A. Stereotypes

Stereotypes are the main mechanism used to create
profiles and extensions to the SysML metamodel. A
stereotype extends a metaclass or another stereotype.
Well-known examples of stereotypes for the UML meta-
model are the classes control, entity and boundary, each
one with its own graphical icon. When used in a Class
diagram, these stereotypes improve semantics for the
diagram readers.

After creating a stereotype, specific properties and
constraints can be created. Properties add information to
elements of the model, and are normally associated to
tagged values. Properties are displayed inside braces, with
the tag and the value encoded as strings. Tagged values
add extra semantics to a model element. Constraints may
also be used as semantics restrictions applied to elements.
One example of a constraint is the association of the “xor
constraint” specifying a restriction (exclusive or).

According to the classification proposed in Section 2,
three requirements stereotypes are created: Functional,
Non-functional and External Interfaces (Fig. 3). The Non-
functional and External Interface requirements have the

<<Stereotype>>
Requirement

- Text: String
- Id: String

Non-functional
Requirement

- Type: String

Functional
Requirement

External
Interface

- Type: String

Figure 3. Extension to SysML Requirements Diagram with user
requirements classifications

property “type” that may have several tagged values.
Examples of possible values are Performance, Security
and Efficiency for Non-functional Requirements, and
User, Hardware, Software and Communication for Ex-
ternal Interface requirements.

B. Grouping Requirements

By modeling requirements with SysML, system com-
plexity is addressed from the early system design acti-
vities. Managing decomposition is an important task to
be able to deal with complexity. Requirements may be
decomposed into atomic requirements, and may later even
be related in the sense that together they are capable of
delivering a whole feature, ie., they are responsible for a
well-defined subsystem.

Figure 4. Grouping Requirements

SysML requirements may be part of other SysML re-
quirements, as a hierarchy. We propose in this subsection
that related SysML Requirements can be grouped into a
single SysML requirements sub-package (similar to the
UML package diagram, which combines several class
diagrams), creating categories of requirements (Fig. 4).

V. CASE STUDY

The case study is based on a document with 79 atomic
requirements for a road traffic management system. The
requirements are based on a series of interviews and
studies with stakeholders. The stakeholders (and the rela-
tive number of requirements) were classified as: the Road
Users (1), the Ministry of Transport, Public Works and
Water Management (2), the Traffic Managers (10), the
Traffic Management Center (8), the Task, Scenario and
Operator Manager (22), the Operators (4), the Designers
of the Operator’s Supporting Functions (15), and the
Technical Quality Managers (17). We have selected in this
paper to model the requirements of the Traffic Manager

62 JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER



and the Traffic Management Center. The Ministry require-
ments are just written, as they are source for requirements
TM4 and TMC14. The requirements are given in the
following subsections.

A. Requirements

1) Ministry of Transport, Public Works and Water
Management:
• MI2 - The utilization of the road network in the

Netherlands must be maximized (optimally utilized).
• MI3 - The initial and yearly investment costs of the

management of the traffic-flow in the Netherlands
must be minimized.

2) Traffic Manager:
• TM4 - It is expected that software systems will

be increasingly more intelligent for managing the
traffic-flow in a more effective and efficient manner.

• TM5 - To optimize traffic flow, it is expected that
gradually, region-wide traffic management methods
will be introduced.

• TM6 - The traffic management systems must have
a convenient access to region-wide, nation-wide, or
even European-wide parameters so that the traffic-
flow can be managed optimally.

• TM7 - It must be possible for the traffic mana-
gers/experts to express (strategic) “task and scenario
management frames”, conveniently.

• TM8 - The system should effectively gather and
interpret all kinds of information for the purpose
of conveniently assessing the performance of the re-
sponsible companies/organizations that have carried
out the construction of the related traffic systems
and/or infrastructure.

• TM9 - The system must support the traffic mana-
gers/experts so that they can express various exper-
imental simulation and analytical models.

• TM10 - The system must enable the traffic mana-
gers/experts to access different kinds of statistical
data.

• TM11 - The system must enable the traffic ma-
nagers/experts to access different kinds of data for
transient cases such as incidents.

• TM12 - The system must provide means for express-
ing a wide range of tasks and scenarios.

• TM13 - The traffic management will gradually
evolve from object management towards task and
scenario management.

3) Traffic Manager Center:
• TMC14 - The operational costs of the traffic mana-

gement centers and shared resources must be mini-
mized.

• TMC15 - The operators’ reaction speed must be
improved, especially in critical and unanticipated
situations.

• TMC16 - The operators’ decision accuracy must
be improved, especially in critical and unanticipated
situations.

• TMC17 - The system must provide means to manage
various “traffic management configuration informa-
tion” conveniently.

• TMC18 - The system must provide tools so that the
operators can perform their work more efficiently.

• TMC19 - The system must provide tools so that the
operators can perform their work more effectively.

• TMC20 - The system must make it intuitively obvi-
ous in which function/context the operator is working
in.

• TMC21 - The education material and process nec-
essary to train the operators must be simplified,
standardized and supported. This should improve the
effectiveness of tutoring.

B. SysML Requirements Tables

Tables III through VII show SysML Hierarchy Require-
ments tables for requirements TM4, TM7, TM9, TMC14,
TMC15 and TMC16.

TABLE III.
HIERARCHY REQUIREMENTS TABLE - TM4

Id Name Type
TM5 Region-wide traffic management Functional
TM6 Traffic flow managed optimally Functional

TABLE IV.
HIERARCHY REQUIREMENTS TABLE - TM7

Id Name Type
TM9 Simulation and analytical models Functional

TM12 Wide range of tasks and scenarios Functional

TABLE V.
HIERARCHY REQUIREMENTS TABLE - TM9

Id Name Type
TM10 Access statistical data Functional
TM11 Access transient data Functional

TABLE VI.
HIERARCHY REQUIREMENTS TABLE - TMC14

Id Name Type
TM15 Improve reaction speed Non-functional
TM16 Improve decision accuracy Non-functional

TABLE VII.
HIERARCHY REQUIREMENTS TABLE - TMC15, TMC16

Id Name Type
TM18 Tools perform work efficiently Functional
TM19 Tools perform work effectively Functional

The other proposed type of table, relating requirements
and their relationships for each SysML Requirements
diagram is presented in tables VIII and XIX.

JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008 63

© 2008 ACADEMY PUBLISHER



Figure 5. SysML Requirements diagram for Traffic Management Stakeholder

TABLE VIII.
SYSML REQUIREMENTS RELATIONSHIP TABLE FOR TM

Id Name RelatesTo RelatesHow Type
TM7 Task and scenario frames {TM5, TM6} trace Functional
TM8 Gather and interpret information TM9 deriveReqt External
TM13 Object towards task and scenario TM12 deriveReqt Functional

TABLE IX.
SYSML REQUIREMENTS RELATIONSHIP TABLE FOR TMC

Id Name RelatesTo RelatesHow Type
TMC17 Traffic management configuration information {TMC15, TMC16} deriveReqt Functional
TMC20 Make function/context obvious {TMC18, TMC19} deriveReqt Functional
TMC21 Education material {TMC18, TMC19} deriveReqt Functional

64 JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER



Figure 6. SysML Requirements diagram for Traffic Management Center Stakeholder

C. SysML Requirements diagrams

The associated Requirements diagrams for the list of
user requirements are given by Figs. 5 and 6, respectively
concerning the Traffic Manager and the Traffic Manage-
ment Center requirements.

D. SysML Use Case diagrams

The associated Use Case diagrams are given by Figs.
7 and 8, respectively concerning the Traffic Manager and
the Traffic Management Center requirements.

E. Use Case and Requirements Relationship

The SysML “refine” relationship can be used to re-
late requirements to other SysML models. For example,
the Requirements sub-package representing requirements
TM5 and TM6 can be associated by the refine relationship
to the use case “Manage region-wide traffic flow”, which
means that the requirements can be represented by the use
case. Figure 9 shows this example. Later, this use case can
be detailed by including other use cases and relationships,

Figure 7. Use Case diagram for Traffic Manager

or even by using other SysML diagrams, such as the Se-
quence diagram. As a result, one knows which Sequence
diagram models a specific SysML Requirement.

JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008 65

© 2008 ACADEMY PUBLISHER



Figure 8. Use Case diagram for Traffic Manager Center

Figure 9. Refine relationship example

VI. DISCUSSION

The gap between the application of new academic
methods, techniques and processes in industry is common
in all domains. Systems and Software Engineering are no
exception. The challenge is not only to develop better
theories, but also to implement these theories in practice.
Some studies were performed to discover why good RE
practices are not widely used in industry [44], [45]. The
following items summarizes some well-known obstacles:
• RE is often seen as waste of time. Project managers

may consider that teams should be more concerned
about system design and implementation.

• Normally, it takes a long time before new research
ideas reach widespread use in industry. The causes
vary, although frequently includes lack of time, lack
of money, lack of personnel, risks of innovation,
or a combination of these factors. An example is
the object-oriented programming paradigm. The first
studies started in the 60’s, many languages were cre-
ated during the 70’s and 80’s, but only in the 90’s that
languages supporting the object-oriented paradigm,
such as C++ and Java, achieved widespread use in
industry.

• New RE techniques have to be integrated into the
already existing system development environment,
which always involves risks that not always ma-
nagers and organizations are willing to take. For
instance, new tools and methods require training the
team. Also, at least in the beginning the productivity
may not be as good as needed. This may happen even
when new technologies have been shown to improve

productivity in other environments.

SysML Requirements Diagram may become the main
choice for requirements specification, as there is a lack of
this type of language [44]. This lack of useful languages
for requirements specification and documentation is one
reason why natural language is often used exclusively to
document requirements. There are advantages in using
natural language, as for instance, being the primary means
of communication among humans. The problem occurs
when natural language is the only description of require-
ments, due to its well-known problems: ambiguity, lack
of easy visualization and impossibility to analyze and
simulate.

As SysML is a language, not a methodology, it is
expected that it can be added without many problems
into the current development process in an organization.
There is no need to do a radical change in the current
methodology, which would involve too many risks. The
language can be adapted and integrated into the existing
methodology and processes. In addition, SysML is a
UML-based language, which is widely known and used,
both in academia and industry. As a matter of fact, SysML
can be easily introduced to teams that are already using
UML. It can also facilitate communication between all
professionals involved in a system design.

Another advantage is that the language is highly cus-
tomizable and can be extended into families of languages,
specific for various domains. Business organizations that
develop systems for several different domains may create
a family of languages based on a specific standard,
and apply them to each domain. Profiles may specialize
language semantics, provide new graphical icons and
domain-specific model libraries.

VII. CONCLUSION

It is essential to have properly-structured and controlled
requirements specifications that are consistent and unders-
tandable to the stakeholders. To achieve this important
success factor, in this paper the SysML Requirements
diagram, the SysML Use Cases diagram, and the SysML
Requirements table are applied to specify and model a
list of user requirements for a road traffic management
system. It is shown that modeling requirements through
diagrams can be useful to explicitly represent the various
ways that requirements can be related to each other.
Using a specific diagram for requirements is a SysML
advantage over UML. In addition, requirements tables
are useful to represent decomposition in a tabular form
and improve traceability, which is an important quality
factor when building systems. An extension to the basic
SysML Requirements diagram is proposed, based on a
classification for user requirements. It is also shown that
related requirements can be grouped, which can be seen
as an initial system decomposition into subsystems.

For future research, further relationships between
SysML Requirements diagram, Use Case diagrams and
other UML and SysML models are going to be investi-

66 JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER



gated, and also the traceability aspects of the requirements
table.

REFERENCES

[1] A. Aurum and C. Wohlin, “Requirements Engineering:
Setting the Context.” in Engineering and Managing Soft-
ware Requirements., A. Aurum and C. Wohlin, Eds.
Springer-Verlag., 2005, pp. 1–15.

[2] I. Sommerville, Software Engineering: (Update) (8th Edi-
tion) (International Computer Science). Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.,
2006.

[3] M. Luisa, F. Mariangela, and I. Pierluigi, “Market research
for requirements analysis using linguistic tools,” Require-
ments Engineering, vol. 9, no. 1, pp. 40–56, 2004.

[4] P. Parviainen, M. Tihinen, M. Lormans, and R. van Solin-
gen, “Requirements Engineering: Dealing with the Com-
plexity of Sociotechnical Systems Development.” in Re-
quirements Engineering for Sociotechnical Systems, J. L.
Maté and A. Silva, Eds. IdeaGroup Inc, 2004, ch. 1, pp.
1–20.

[5] N. Juristo, A. M. Moreno, and A. Silva, “Is the European
Industry Moving Toward Solving Requirements Engineer-
ing Problems?” IEEE Software, vol. 19, no. 6, pp. 70–77,
2002.

[6] S. Komi-Sirviö and M. Tihinen, “Great Challenges and
Opportunities of Distributed Software Development - An
Industrial Survey.” in Proceedings of the Fifteenth Interna-
tional Conference on Software Engineering & Knowledge
Engineering (SEKE’2003), 2003, pp. 489–496.

[7] M. Broy, “The ’Grand Challenge’ in Informatics: Engi-
neering Software-Intensive Systems.” Computer, vol. 39,
no. 10, pp. 72–80, 2006.

[8] A. W. Brown, J. Conallen, and D. Tropeano, Model-Driven
Software Development. Berlin, Germany: Springer-Verlag,
2005, ch. Introduction: Models, Modeling, and Model-
Driven Architecture (MDA), pp. 1–16.

[9] G. Booch, Object-oriented analysis and design with appli-
cations (2nd ed.). Redwood City, CA, USA: Benjamin-
Cummings Publishing Co., Inc., 1994.

[10] J. Bézivin, “Model driven engineering: An emerging tech-
nical space,” in Generative and Transformational Tech-
niques in Software Engineering, International Summer
School - GTTSE, 2006, pp. 36–64.

[11] OMG, “Model Driven Architecture (MDA),
version 1.0.1.” 2003. [Online]. Available:
http://www.omg.org/mda/index.htm

[12] D. C. Schmidt, “Guest Editor’s Introduction: Model-Driven
Engineering.” Computer, vol. 39, no. 2, pp. 25–31, 2006.

[13] L. Balmelli, D. Brown, M. Cantor, and M. Mott, “Model-
driven systems development.” in IBM Systems Journal,
2006, vol. 45, no. 3, pp. 569–586.

[14] F. Fondement and R. Silaghi, “Defining Model Driven
Engineering Processes,” in Third International Workshop
in Software Model Engineering (WiSME), held at the
7th International Conference on the Unified Modeling
Language (UML), 2004.

[15] OMG, “Systems Modeling Language
(SysML).” 2007. [Online]. Available:
http://www.omg.org/technology/documents/formal/sysml

[16] The Standish Group, “CHAOS Chronicles v3.0.” The
Standish Group, Tech. Rep., 2003. [Online]. Available:
http://standishgroup.com/chaos/toc.php

[17] M. van Genuchten, “Why is Software Late? An Empirical
Study of Reasons For Delay in Software Development.”
IEEE Transactions on Software Engineering, vol. 17, no. 6,
pp. 582–590, 1991.

[18] H. F. Hofmann and F. Lehner, “Requirements Engineering
as a Success Factor in Software Projects.” IEEE Software,
vol. 18, no. 4, pp. 58–66, 2001.

[19] F. Brooks, “No Silver Bullet: Essence and Accidents of
Software Engineering.” Computer, vol. 20, no. 4, pp. 10–
19, 1987.

[20] E. Kamsties, “Requirements Engineering: Dealing with
the Complexity of Sociotechnical Systems Development.”
in Engineering and Managing Software Requirements,
A. Aurum and C. Wohlin, Eds. Springer-Verlag, 2005.

[21] K. Cooper and M. Ito, “Formalizing a structured natural
language requirements specification notation.” in Proceed-
ings of the International Council on Systems Engineering
Symposium, vol. CDROM index 1.6.2, Las Vegas, Nevada,
July 2002, pp. 1–8.

[22] K. Beck, Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, October 1999.

[23] I. Jacobson, Object-Oriented Software Engineering: A Use
Case Driven Approach. Addison-Wesley Professional,
June 1992.

[24] S. Diev, “Use cases modeling and software estimation:
applying use case points.” SIGSOFT Software Engineering
Notes, vol. 31, no. 6, pp. 1–4, 2006.

[25] P. Mohagheghi, B. Anda, and R. Conradi, “Effort Estima-
tion of Use Cases for Incremental Large-Scale Software
Development,” in ICSE ’05: Proceedings of the 27th
International Conference on Software Engineering. New
York, NY, USA: ACM Press, 2005, pp. 303–311.

[26] A. J. H. Simons, “Use Cases Considered Harmful.” in
TOOLS ’99: Proceedings of the Technology of Object-
Oriented Languages and Systems. Washington, DC, USA:
IEEE Computer Society, 1999, pp. 194–203.

[27] Soares, M.S. and Vrancken, J., “Requirements Specifica-
tion and Modeling through SysML.” in Proceedings of the
2007 IEEE International Conference on Systems, Man and
Cybernetics. Montreal, QC, Canada: SMC, October 2007,
pp. 1735–1740.

[28] I. Jacobson, “Use cases - Yesterday, today, and tomorrow,”
Software and System Modeling., vol. 3, no. 3, pp. 210–220,
2004.

[29] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and
J. Natt och Dag, “An industrial survey of requirements
interdependencies in software product release planning,”
Proceedings of the Fifth IEEE International Symposium
on Requirements Engineering., pp. 84–91, 2001.

[30] A. Dahlstedt and A. Persson, Engineering and Managing
Software Requirements. Springer, 2005, ch. Requirements
Interdependencies: State of the Art and Future Challenges,
pp. 95–116.

[31] W. N. Robinson, S. D. Pawlowski, and V. Volkov, “Re-
quirements Interaction Management.” ACM Computing
Surveys, vol. 35, no. 2, pp. 132–190, 2003.

[32] S. Robertson and J. Robertson, Mastering the Require-
ments Process (2nd Edition). Addison-Wesley Profes-
sional, 2006.

[33] IEEE, “IEEE Recommended Practice for Software Re-
quirements Specifications.” Tech. Rep., 1998.

[34] OMG, “Unified Modeling Language (UML),
version 2.0.” 2005. [Online]. Available:
http://www.omg.org/technology/documents/formal/uml.htm

[35] ——, “OMG Meta-Object Facility (MOF) Speci-
fication v. 1.4.” 2002. [Online]. Available:
http://www.omg.org/mda/index.htm

[36] T. Murata, “Petri nets: Properties, analysis and applica-
tions.” Proceedings of the IEEE, vol. 77, no. 4, pp. 541–
580, 1989.

[37] L. Balmelli, “An Overview of the Systems Modeling Lan-
guage for Products and Systems Development.” Journal of
Object Technology, vol. 6, no. 6, pp. 149–177, 2007.

JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008 67

© 2008 ACADEMY PUBLISHER



[38] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of
the requirements traceability problem,” in International
Conference on Requirements Engineering, 1994, pp. 94–
101.

[39] A.-E.-K. Sahraoui, “Requirements Traceability Issues:
Generic Model, Methodology And Formal Basis.” Inter-
national Journal of Information Technology and Decision
Making, vol. 4, no. 1, pp. 59–80, 2005.

[40] B. Ramesh and M. Jarke, “Toward reference models for
requirements traceability,” IEEE Transactions on Software
Engineering, vol. 27, no. 1, pp. 58–93, 2001.

[41] S. S. Somé, “Supporting use case based requirements
engineering.” Information & Software Technology, vol. 48,
no. 1, pp. 43–58, 2006.

[42] J. M. Almendros-Jiménez and L. Iribarne, “Describing
Use Cases with Activity Diagrams.” in Proceedings of
the MIS04. Salzburg, Austria: Springer-Verlag, 2005, pp.
141–159.

[43] ——, “Describing Use-Case Relationships with Sequence
Diagrams.” Computer Journal, vol. 50, no. 1, pp. 116–128,
2007.

[44] H. Kaindl, S. Brinkkemper, J. A. B. Jr., B. Farbey, S. J.
Greenspan, C. L. Heitmeyer, J. C. S. do Prado Leite, N. R.
Mead, J. Mylopoulos, and J. I. A. Siddiqi, “Requirements
Engineering and Technology Transfer: Obstacles, Incen-
tives and Improvement Agenda.” Requirements Engineer-
ing, vol. 7, no. 3, pp. 113–123, 2002.

[45] D. M. Berry, D. Damian, A. Finkelstein, D. Gause, R. Hall,
and A. Wassyng, “To do or not to do: If the requirements
engineering payoff is so good, why aren’t more companies
doing it?” in RE ’05: Proceedings of the 13th IEEE
International Conference on Requirements Engineering
(RE’05). Washington, DC, USA: IEEE Computer Society,
2005, p. 447.

Michel dos Santos Soares received a BSc. degree in Computer
Science from the Federal University of São Carlos, Brazil, in
2000 and a MSc. degree in Computer Science from the Federal
University of Uberlândia, Brazil, in 2004. Since 2006 he is
a PhD Researcher at the Delft University of Technology, The
Netherlands. His research interests include ICT in the design
of Infrastructures, Modeling and Analysis of Software Intensive
Systems, Road Traffic Control Systems and Software Quality.

Jos Vrancken obtained a masters degree in Mathematics from
the University of Utrecht, in 1982 and a PhD degree in Computer
Science from the University of Amsterdam in 1991. Since 1991
he has been employed at Rijkswaterstaat, as a systems architect,
specializing in traffic control systems. Since 2003 he is by
the Delft University of Technology, as Assistant Professor in
ICT. His research interests include the operational control of
infrastructures, the architecture and implementation of control
systems for road traffic and the use of ICT in the design
and operation of infrastructures. He authored some 50 refereed
publications. He is program committee member of the IEEE-
SMC conference.

68 JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER


