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Abstract— The current software development environment
has been changing into new development paradigms such
as concurrent distributed development environment and the
so-called open source project by using network computing
technologies. Especially, OSS (Open Source Software) sys-
tems which serve as key components of critical infrastruc-
tures in our society are still ever-expanding now. However,
poor handling of quality attainment and customer support
prohibit the progress of OSS. We focus on the problems in
low software quality that prohibit the progress of OSS.

In case of considering the effect of the debugging process
on an entire system in the development of a method of
reliability assessment for open source project, it is necessary
to grasp the deeply-intertwined factors, such as program-
ming path, size of each component, skill of fault reporter,
and so on. In order to consider the effect of each software
component on the reliability of an entire system under such
OSS development, we propose a new approach to software
reliability assessment by creating a fusion of neural networks
and the software reliability growth models. Also, it has been
necessary to manage the software development process in
terms of reliability, effort, and version-upgrade time. In this
paper, we find the optimal version-upgrade time based on
the total expected software maintenance effort by using our
software reliability growth models.

Index Terms— open source software, reliability, modeling,
optimal version-upgrade time

I. INTRODUCTION

The distributed development paradigm based on the
object-oriented design and analysis will rapidly grow in
the future, because the methodology is expected as a
very effective approach to improve software quality and
productivity. As a result of the technological progress,
the social influence of software for business systems and
the development effort of software systems are on the
increase. Also, the network technologies have made rapid
progress with the dissemination of computer systems in
all areas. These network technologies become increas-
ingly more complex in a wide sphere [1]. The current
software development environment has changed into new
development paradigms such as concurrent distributed

development environment and the so-called open source
project by using network computing technologies. Espe-
cially, an OSS (open source software) system is frequently
applied as server use, instead of client use. Such OSS
systems which serve as key components of critical infras-
tructures in the society are still ever-expanding now.

The open source project contains special features
so-called software composition that the geographically-
dispersed several components are developed in all parts
of the world. The successful experience of adopting
the distributed development model in such open source
projects includes GNU/Linux operating system1, Apache
Web server, and so on2. In this paper, we focus on OSS
developed by using network computing technologies.

Software reliability growth models (SRGM’s) [2] have
been applied to assess the reliability for quality manage-
ment and testing-progress control of software develop-
ment. On the other hand, the effective testing management
method for new distributed development paradigms as
typified by the open source project has only a few
presented [3]–[6]. In case of considering the effect of the
debugging process on an entire system in the development
of a method of reliability assessment for the OSS, it is
necessary to grasp the deeply-intertwined factors, such as
programming path, size of each component, skill of fault
reporter, and so on.

In this paper, we focus on an OSS developed under
the open source project. We discuss a software reliability
assessment method in open source project as a typical
case of new distributed development paradigm.

In order to consider the effect of each software com-
ponent on the reliability of an entire system under such
open source project, we apply a neural network [7].
Moreover, we discuss SRGM’s which can evaluate the
quality of OSS quantitatively. Also, we analyze actual
software fault-count data to show numerical illustrations

1Linux is a Registered Trademark of Linus Torvalds.
2Other company, product, or service names may be trademarks or

service marks of others.
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of software reliability assessment for the open source
project. Furthermore, we find the optimal version-upgrade
time based on the total expected software maintenance
effort.

II. RELIABILITY ASSESSMENT FOR
EACH COMPONENT

A. Interaction among Software Components

In case of considering the effect of debugging process
on an entire system in the development of a software
reliability assessment method for open source develop-
ment paradigm, it is necessary to grasp the deeply-
intertwined factors, such as programming path, size of
each component, skill of fault reporter, and so on.

We have proposed several software reliability assess-
ment methods [8]–[10] based on AHP (Analytic Hierar-
chy Process) [11] for the OSS. However, it is difficult for
the conventional software reliability assessment method
based on AHP to estimate the weight parameter (i.e.,
importance factor) for each component. Because the AHP
method requires the software developer’s intention of
decision-making in order to decide the evaluation crite-
ria of the AHP, i.e., the software reliability assessment
method based on the AHP is OSS developers-oriented.

In this paper, we propose a reliability assessment
method based on the neural network in terms of estimat-
ing the effect of each component on the entire system
in a complex situation. Especially, we consider that our
method based on neural network is useful for OSS users to
assess the software reliability by using the only data sets
in bug tracking system on the website. Also, we can apply
the importance level of faults detected during testing of
each component, the size of component, the skill of fault
reporter and so on, to the input data of neural network.

B. Weight Parameter for Each Component Based on
Neural Network

In case of considering the effect of each component on
the reliability entire system, it is necessary to grasp the
size of each component, the skill of fault reporter, the state
of error correction, the development time of component,
the number of paths between components, and so on. In
this paper, we apply the neural network to the estimation
of interaction among software components in order to
comprehend the internal state of OSS. We estimate the
weight parameter for each component from input-output
rules of neural network.

In this paper, we apply the structure of 3-layered
neural networks. We assume that w1

ij(i = 1, 2, · · · , I; j =
1, 2, · · · , J) are the connection weights from i-th unit on
the sensory layer to j-th unit on the association layer,
and w2

jk(j = 1, 2, · · · , J ; k = 1, 2, · · · , K) represent the
connection weights from j-th unit on the association layer
to k-th unit on the response layer. Moreover, x i(i =
1, 2, · · · , I) are the normalized input values of i-th unit
on the sensory layer, and yk(k = 1, 2, · · · , K) represent
the output values. We apply the number of critical(fatal)

faults, the number of faults detected in specific operating
system, the number of fault repairers, and the number of
fault reporters, to the input values xi(i = 1, 2, · · · , I).

The input-output rules of each unit on each layer are
given by

hj = f

(
I∑

i=1

w1
ijxi

)
, (1)

yk = f

⎛⎝ J∑
j=1

w2
jkhj

⎞⎠ , (2)

where a logistic activation function f(·) which is widely
known as a sigmoid function given by the following
equation:

f(x) =
1

1 + e−θx
, (3)

where θ is the gain of sigmoid function. We apply the
multi-layered neural networks by back-propagation in
order to learn the interaction among software components.
We define the error function by the following equations:

E =
1
2

K∑
k=1

(yk − dk)2, (4)

where dk(k = 1, 2, · · · , K) are the target input values for
the output values. We apply the normalized values of the
total number of faults for each component to the target
input values dk(k = 1, 2, · · · , K) for the output values,
i.e., we consider the estimation and prediction model in
which the property of the interaction among software
components accumulates on the connection weights of
neural networks. The connection weights w1

ij and w2
jk

are estimated by using the following equations:

w2
jk(σ + 1) = w2

jk(σ) + ε(yk − dk)

·f ′

⎛⎝ J∑
j=1

w2
jk(σ)hj

⎞⎠ hj , (5)

w1
ij(σ + 1) = w1

ij(σ) + ε

K∑
k=1

(yk − dk)

·f ′

⎛⎝ J∑
j=1

w2
jk(σ)hj

⎞⎠ · w1
ij(σ)

·f ′
(

I∑
i=1

w1
ij(σ)xi

)
xi. (6)

In Eqs. (5) and (6), σ is the update cycle, and ε the
learning parameter. By using the connection weights
estimated from Eqs. (5) and (6), we can obtain the total
weight parameter pi (i = 1, 2, · · · , n) which represents
the level of importance for each component as follows:

pi =
yi

K∑
i=1

yi

. (7)
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III. RELIABILITY ASSESSMENT FOR
ENTIRE SYSTEM

A. Extended Logarithmic Poisson Execution Time Model

1) Model description: Many SRGM’s have been used
as the conventional methods to assess software reliability
for quality management and testing-process control of
software development. Among others, nonhomogeneous
Poisson process (NHPP) models have been discussed in
many literatures since the NHPP models can be easily
applied in the software development. In this section,
we discuss NHPP models for analyzing software fault-
detection count data. Considering stochastic character-
istics associated with fault-detection procedures in the
testing-phase, we treat {N(t), t ≥ 0} as a nonnegative
counting process where random variable N(t) means the
cumulative number of faults detected up to testing-time
t. The fault-detection process {N(t), t ≥ 0} is described
as follows [2]:

Pr{N(t) = n} =
{H(t)}n

n!
exp[−H(t)]

(n = 0, 1, 2, · · ·). (8)

In Eq. (8), Pr{A} means the probability of event A, and
H(t) is called a mean value function which represents
the expected cumulative number of faults detected in the
time interval (0, t].

The OSS has the characteristics of the susceptible to
various operational environments. Therefore, it is different
from the conventional software system developed under
the identical organization. Then, the expected number of
detected faults continues to increase from the effect of the
interaction among various operational environments, i.e.,
the number of detected faults can not converge to a finite
value.

As mentioned above, we apply the logarithmic Poisson
execution time model based on the assumption that the
number of detected faults tends to infinity as testing-time
t → ∞. Thus, we consider the following structure of
the mean value function represented by µ(t) because an
NHPP model is characterized by its mean value function
[8]–[10]:

µ(t) =
1

θ − P
ln[λ0(θ − P )t + 1]

(0 < θ, 0 < λ0, 0 < P < 1), (9)

where λ0 is the intensity of initial inherent failure, and
θ the reduction rate of the failure intensity rate per
inherent fault. Moreover, we assume that the parameter
P in Eq. (9) represents the following average in terms
of the parameter yi estimated by the neural network:
P =

∑n
i=1 yi/n, where n represents the number of

software components [8]–[10].
2) Parameter estimation: In this section, the method of

parameter estimation for the logarithmic Poisson execu-
tion time model based on an NHPP is presented. Suppose
that K data pairs (tk, yk)(k = 1, 2, · · · , K) are observed
during the operational phase, where the total number of
software failures observed in the time-interval (0, tk] is

yk(k = 1, 2, · · · , K). Then, the logarithmic likelihood
function of the NHPP model with mean value function
µ(t) in Eq. (9) is given by

lnL =
K∑

k=1

(yk − yk−1) · ln[µ(tk) − µ(tk−1)]

− µ(tK) −
K∑

k=1

ln[(yk − yk−1)!]. (10)

The maximum-likelihood estimates θ̂ and λ̂ for the un-
known parameters θ and λ can be obtained by solving the
following simultaneous likelihood equations numerically:

∂lnL

∂θ
=

∂lnL

∂λ
= 0. (11)

3) Software reliability assessment measures: We can
give the following expressions as software reliability
assessment measures derived from the NHPP model given
by Eq.(9):

� Instantaneous fault-detection rate
The instantaneous fault-detection rate can be defined
as the intensity function which represents the num-
ber of faults detected per unit time. From Eq. (9),
the instantaneous fault-detection rate is defined as
follows:

IR(t) =
dµ(t)

dt
. (12)

� Instantaneous mean time between software failures
The instantanesous mean time between software fail-
ures (MTBFI) is given as follows:

MTBFI(t) =
1

dµ(t)/dt
. (13)

� Cumulative mean time between software failures
The cumulative mean time between software failures
(MTBFC) is given as follows:

MTBFC(t) =
t

µ(t)
. (14)

B. Stochastic Differential Equation Model

1) Model description: Let S(t) be the cumulative num-
ber of faults detected in the OSS system at operational
time t (t ≥ 0). Suppose that S(t) takes on continuous
real values. Since latent faults in the OSS system are
detected and eliminated during the operational phase, S(t)
gradually increases as the operational procedures go on.
Considering the characteristics of open source software
development, the OSS developers report several related-
faults when the OSS developers confirm the specific faults
of bug tracking system, i.e., OSS developers can be OSS
users. Therefore, we assume that the increase rate of
S(t) is proportional to the value S(t) itself. Thus, un-
der common assumptions for software reliability growth
modeling, we consider the following linear differential
equation:

dS(t)
dt

= λ(t)S(t), (15)
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where λ(t) is the intensity of inherent software failures
at operational time t and a non-negative function.

In most cases, the detected faults of OSS are not
reported to the bug tracking system at the same time
as fault-detection but rather reported to the bug tracking
system with the time lag of fault-detection and -reporting.
As for the fault-reporting to the bug tracking system, we
consider that the software fault-reporting phenomena on
the bug tracking system keep an irregular state. Moreover,
the addition and deletion of software components is
repeated under the development of OSS, i.e., we consider
that the the software failure intensity depends on the time.

Therefore, we suppose that λ(t) in Eq.(15) has the
irregular fluctuation. That is, we extend Eq.(15) to the
following stochastic differential equation [12], [13]:

dS(t)
dt

= {λ(t) + σγ(t)}S(t), (16)

where σ is a positive constant representing a magnitude of
the irregular fluctuation and γ(t) a standardized Gaussian
white noise.

We extend Eq.(16) to the following stochastic differen-
tial equation of an Itô type:

dS(t) = {λ(t) +
1
2
σ2}S(t)dt + σS(t)dW (t), (17)

where W (t)is a one-dimensional Wiener process which is
formally defined as an integration of the white noise γ(t)
with respect to time t. The Wiener process is a Gaussian
process and has the following properties:

Pr[W (0) = 0] = 1, (18)

E[W (t)] = 0, (19)

E[W (t)W (t′)] = Min[t, t′]. (20)

By using Itô’s formula [12], [13], we can obtain the
solution of Eq.(16) under the initial condition S(0) = v
as follows [14] :

S(t) = v · exp

(∫ t

0

λ(s)ds + σW (t)

)
, (21)

where v is the number of detected faults for the previous
software version. Using solution process S(t) in Eq.(21),
we can derive several software reliability measures.

Moreover, we define the intensity of inherent software
failures, λ(t), as follows:∫ t

0

λ(s)ds =
n∑

i=1

pi(1 − exp[−αit]), (22)

where αi (i = 1, 2, · · · , n) is an acceleration parameter of
the intensity of inherent software failures for the i-th fault
importance level, pi (

∑n
i=1 pi = 1) the weight parameter

for the i-th fault importance level, and n the number of
the applied fault importance levels. We can apply the S-
shaped growth curve to Eq. (22) depending on the trends
of fault importance level.

2) Method of maximum-likelihood: In this section, the
estimation method of unknown parameters α and σ in
Eq. (21) is presented. Let us denote the joint probability
distribution function of the process S(t) as

P (t1, y1; t2, y2; · · · ; tK , yK)
≡ Pr[S(t1) ≤ y1, · · · , S(tK) ≤ yK |S(t0) = v], (23)

where S(t) is the cumulative number of faults detected up
to operational time t (t ≥ 0), and we denote its density
as

p(t1, y1; t2, y2; · · · ; tK , yK)

≡ ∂KP (t1, y1; t2, y2; · · · ; tK , yK)
∂y1∂y2 · · ·∂yK

. (24)

Since S(t) takes on continuous values, we construct the
likelihood function l for the observed data (tk, yk)(k =
1, 2, · · · , K) as follows:

l = p(t1, y1; t2, y2; · · · ; tK , yK). (25)

For convenience in mathematical manipulations, we use
the following logarithmic likelihood function:

L = log l. (26)

The maximum-likelihood estimates α∗
i and σ∗ are the

values making L in Eq. (26) maximize. These can be
obtained as the solutions of the following simultaneous
likelihood equations [14] :

∂L

∂αi
=

∂L

∂σ
= 0. (27)

3) Software reliability assessment measures: We con-
sider the mean number of faults detected up to operational
time t. The density function of W (t) is given by:

f(W (t)) =
1√
2πt

exp
{
−W (t)2

2t

}
. (28)

Information on the current number of detected faults
in the system is important to estimate the situation of
the progress on the operational procedures. Since it is
a random variable in our model, its expected value and
variance can be useful measures. We can calculate them
from Eq.(21) as follows [14] :

E[S(t)] = v · exp
(∫ t

0

λ(s)ds +
σ2

2
t

)
, (29)

Var[S(t)] = E[{S(t)− E[S(t)]}2]

= v2 · exp
(

2
∫ t

0

λ(s)ds + σ2t

)
· {

exp(σ2t) − 1
}

, (30)

where E[S(t)] is the expected number of faults detected
up to time t.

From Eq. (29), we can confirm that the number of
detected faults can not converge to a finite value as the
following equation:

lim
t→∞E[S(t)] = ∞. (31)
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The OSS has the characteristics of the susceptible to
various operational environments. Therefore, it is different
from conventional software systems developed under the
identical organization. Then, the expected number of
detected faults continues to increase from the effect of the
interaction among various operational environments, i.e.,
the expected number of detected faults can not converge
to a finite value [8]–[10].

The instantaneous mean time between software failures
(denoted by MTBFI) is useful to measure the property of
the frequency of software failure-occurrence.

Instantaneous MTBF is approximately given by

MTBFI(t) =
1

E[dS(t)
dt ]

. (32)

Therefore, we have the following instantaneous MTBF:

MTBFI(t) = 1

/
v

(
λ(t) +

1
2
σ2

)
· exp

(∫ t

0

λ(s)ds +
σ2

2
t

)
. (33)

Also, cumulative mean time between software failures
(denoted by MTBFC) is approximately given by

MTBFC(t) =
t

E[S(t)]
. (34)

Therefore, we have the following cumulative MTBF:

MTBFC(t) =
t

v · exp
(∫ t

0

λ(s)ds +
σ2

2
t

) . (35)

Moreover, we can derive the following coefficient of
variation from Eq. (21):

CV (t) ≡
√

Var[S(t)]
E[S(t)]

. (36)

IV. OPTIMAL VERSION-UPGRADE PROBLEM

Recently, it becomes more difficult for software de-
velopers to produce highly-reliable software systems ef-
ficiently, because of the diversified and complicated soft-
ware requirements. Thus, it has been necessary to control
the software development process in terms of reliability,
cost, and delivery time. On the other hand, the effective
optimal software version-upgrade problem for OSS has
only a few presented. It is very important in terms of
software management that we decide for the optimal
length of testing versions for OSS. We find the optimal
testing-time based on the total expected software main-
tenance effort in this section. Several optimal software
release problems considering host-concentrated software
development process have been proposed by many re-
searchers [15], [16]. However, optimal software release
problems for OSS have not been proposed. Therefore,
we formulate a maintenance effort model based on our
two SRGM’s proposed in Section III, and analyze the
optimal release problem minimizing the total expected
maintenance effort.

It is interesting for the software developers to predict
and estimate the time when we should stop testing in order
to develop a highly reliable software system efficiently.
Hence, we discuss about the determination of software
version-upgrade times minimizing the total expected soft-
ware effort.

We define the following:

m0: the fixing effort per fault during the test-version,
m1: the maintenance effort per fault during the test-

version,
m2: the effort per time for fixing faults during the test-

version.

Then, the expected software effort in the test-version
of OSS for our two SRGM’s can be formulated as:

E1(t) = m0 · µ(t), (37)

E1(t) = m0 · E[S(t)]. (38)

Also, the expected software maintenance effort after
the release of general availability for our two SRGM’s is
represented as follows:

E2(t) = m1{µ(t0) − µ(t)} + m2t, (39)

E2(t) = m1{E[S(t0)] − E[S(t)]} + m2t. (40)

where, t0 is the previous version-upgrade period.
Moreover, if the software components are added to

entire system after the version-upgrade, the penalty effort
is imposed. We define the penalty effort function as
follows:

G(t) = (1 − c) exp
[
t − t0

v

]
, (41)

where c is the ratio of the number of new components to
entire system after version-upgrade, and v the number of
prior version-upgrade.

Consequently, from Eqs.(37), (39), and (41), the total
expected software effort is given by

E(t) = E1(t) + E2(t) + G(t). (42)

The optimum version-upgrade time t∗ is obtained by
minimizing E(t).

V. NUMERICAL ILLUSTRATIONS

We focus on the Fedora Core Linux [17] which is one
of the operating system developed under an open source
project. The Fedora project is made up of many small-
size projects. Fedora is a set of projects, sponsored by
Red Hat and guided by the Fedora Project Board3. These
projects are developed by a large community of people
who strive to provide and maintain the very best in free,
open source software and standards.

The fault-count data used in this paper are collected
in the bug tracking system on the website of Fedora
project in May 2007. Especially, we focus on the Kernel
component of the Fedora Core Linux (FC7).

3Fedora is a trademark of Red Hat, Inc. The Fedora Project is not a
supported product of Red Hat, Inc.
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TABLE I.
THE ESTIMATED WEIGHT PARAMETERS IN FC7

Component Name Weight parameters pi

Kernel p1=0.882
Kernel-xen p2=0.069
Kernel-module-thinkpad p3=0.012
Kernel-pcmcia-cs p4=0.012
Kernel-utils p5=0.012
Kenrel-xen-2.6 p6=0.012

A. Software Reliability Assessment Procedures

The procedures of reliability assessment in the pro-
posed our method for OSS are shown as follows:

1. We processes the data file in terms of the data in bug-
tracking system of the specified OSS for reliability
assessment.

2. Using the data obtained from bug-tracking system,
we process the data for input data.

3. We estimate the weight parameter pi (i =
1, 2, · · · , n) for each component by using the neural
network. Then, the parameter P in our model is
obtained from Eq. (7).

3. Also, the unknown parameters included in our mod-
els are estimated by using the maximum-likelihood
method.

4. Moreover, we show the number of detected faults,
the instantaneous fault-detection rate, and the cu-
mulative MTBF as software reliability assessment
measures, and the predicted relative error.

5. Finally, we estimate the total expected software
effort. Then, we can confirm the optimal version-
upgrade time [18].

B. Level of Importance for Each Component

Estimating the weight parameter in terms of the relia-
bility by using the neural network, the input data sets are
the importance level of faults detected for each component
(Critical), the platform (All), the fault repairer (Assigned
to), and the fault reporter (Reporter).

The estimated results of weight parameter pi(i =
1, 2, · · · , 6) for the Kernel of FC7 based on the neural
network in Section II-B are shown in Tables I. From
Table I, we can grasp the level of importance in terms
of reliability for each component.

C. Reliability Assessment for Entire System

On the presupposition that the weight parameters for
each component are estimated by using the neural net-
work, we show numerical examples for reliability assess-
ment of FC7. The estimated numbers of detected faults
of FC7 in Eq. (9), µ̂(t) by using our models are shown
in Figure 1.

D. Goodness-of-fit Comparison

We compare the goodness-of-fit of the proposed
SRGM’s for OSS. We adopt the value of the Mean Square
Error (MSE) as comparison criteria of goodness-of-fit.
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Figure 1. The estimated cumulative number of detected faults.

TABLE II.
COMPARISON OF THE MSE FOR THE CUMULATIVE NUMBER OF

DETECTED FAULTS OF FIREFOX WEB BROWSER.

Compared methods MSE
NHPP model 565.52
SDE model 457.48

MSE can be obtained by dividing the sum of square
errors between the observed value, yk, and the estimated
one, ŷk, by the number of data pairs, K . That is,

MSE =
1
K

K∑
k=1

(yk − ŷk)2, (43)

where ŷk in Eq. (43) is obtained from estimated µ̂(tk),
and Ê[S(tk)], (k = 1, 2, · · · , K). The MSE indicates that
the selected method and model fit better to the observed
data as the MSE becomes small.

Table II shows the result of goodness-of-fit comparison
in terms of the MSE for the observed data of Firefox Web
browser [19]. We found that the proposed method based
on chaos theory fits better than the other SRGM’s with
respect to MSE.

Moreover, we show the estimated cumulative number
of detected faults by using proposed SRGM’s for OSS in
Figure 2.

Furthermore, Figure 3 shows the behaviors of the
predicted relative error for NHPP model and SDE model,
respectively. As shown in Figure 3, the estimate by NHPP
model becomes stable when the progress ratio (te/tq)
exceeds 60%.

E. Optimal Version-upgrade Time

In this section, we show several numerical examples
of FC7 based on the optimal version-upgrade problems
which are discussed in the section IV. Figure 4 is shown
the estimated total expected software effort by using our
models. From Figure 4 in case of the extended logarithmic
Poisson execution time model, we find that the optimum
version-upgrade time is derived as t∗ = 133 days from
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Figure 2. The estimated cumulative number of detected faults for each
SRGM.
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Figure 3. Estimated predicted relative errors for each SRGM.

Figure 4. Then, the total expected software effort is 21498
man-days effort. On the other hand, from Figure 4 in case
of the stochastic differential equation model, we find that
the optimum version-upgrade time is derived as t∗ = 139
days from Figure 4. Then, the total expected software
effort is 25019 man-days effort.

VI. CONCLUDING REMARKS

In this paper, we have focused on the Fedora Core
Linux operating system which is known as the OSS,
and discussed the method of reliability assessment for
the OSS developed under on an open source project.
Especially, we have applied on the neural network in order
to consider the effect of each software component on the
reliability of an entire system under such open source
development paradigm. By using the neural network,
we have proposed the method of reliability assessment
incorporating the interaction among software components.
The neural network and NHPP model applied in this paper
have simple structures. Therefore, we can easily apply our
method to actual open source software by rote.

In case of considering the effect of debugging process
on an entire system in the development of software
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Figure 4. The estimated total expected software effort for our models

reliability assessment methods for open source projects,
it is necessary to grasp the deeply-intertwined factors. In
this paper, we have shown that our method can grasp such
deeply-intertwined factors by using the neural network.
Especially, we consider that our method based on neural
network is useful for OSS users to assess the software
reliability by using the data sets in bug tracking system
on the website [20].

Moreover, it has been necessary to control the software
development process in terms of reliability, effort, and
version-upgrade time for OSS. We have formulated the
maintenance effort model based on our SRGM’s and
analyzed the optimal release problem minimizing the total
expected maintenance effort. Also, we have estimated the
optimum version-upgrade time.

Finally, we have focused on an OSS developed un-
der open source projects. New distributed development
paradigm typified by such open source project will evolve
at a rapid pace in the future. Our method is useful as
the method of quantitative reliability assessment incorpo-
rating the importance of each component for an entire
system.
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