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Abstract— A new tool for automated validation of attacks
on authentication protocols has been used to find several
errors and ambiguities in the list of attacks described in the
well known report by Clark and Jacob. In this paper the
errors are presented and classified. Corrected descriptions
of the incorrect attacks are given for the attacks that can be
easily repaired. The underlying method for finding errors in
attacks is presented, including a formal language for attack
specification, a validation algorithm, and a framework for
executing attacks. At the end of the paper, the connection
between validation and simulation is settled: Every attack
specification that can be successfully executed is valid.

Index Terms— Authentication protocols, attacks, valida-
tion

I. INTRODUCTION

The report “A Survey of Authentication Protocol Lit-
erature: Version 1.0” by Clark and Jacob [9] (in this
paper denoted Clark/Jacob), has been used extensively by
experts on security protocols as the main reference on
authentication protocols.1 This publication was a major
achievement in security protocol design and analysis, and
it was intended to be a “living document” that should
be regularly updated with corrections, new protocols and
attacks [9, p. 6]. Tools for analyzing protocols have used
the attacks in the Clark/Jacob report as a benchmark for
evaluating protocol analyzers ( [6], [13], [5], [23], [4]
[15], [10], [3]) or as a reference to protocol specifications
and attacks ( [8], [21]). It is therefore important to
obtain correct knowledge about which attacks are correct.
Typical claims have been:

“So far, about 40 protocols from [9] have been
analyzed on which all the previously known
attacks are detected, as well as new ones.” [5,
p. 16]

“For example, the OFMC tool finds all known
attacks, and discovers a new one (on the Ya-
halom protocol), in a test suite of 38 protocols
from the Clark/Jacob library [9] in a few sec-
onds of CPU time for the entire suite.” [4, p.
182]

This paper is an extended version of “Errors in Attacks on Authenti-
cation Protocols, presented at ISCC 2007 [17]. The paper presents the
validation algorithm used to detect the errors and the simulation frame-
work for executing attack. A previously unpublished result connecting
validation and simulation is presented at the end of the paper.

1At 27 November 2006, the report had 50 citations by citeseer.

A new tool for analyzing descriptions of attacks has
revealed that 7 of 23 attacks in Clark/Jacob contain
errors. Four of these incorrect attacks contain more than
one error. Most of the errors reported here have been
discovered in a fully automated way by the static validator
of the protocol simulator PROSA [16]. The validation
is split into several steps: First an attack description is
specified in a formal language for protocols. Then the
formal attack description is refined in an automated way
into a description including the assumptions about actions
that the agent is required to perform and assertions that
the agent should possess. Finally, the validator checks
whether each element in the attack has been obtained
in a legal way either by past communication or by the
cryptographic operations. PROSA has been used to find
ambiguities in two additional attacks in Clark/Jacob, by
showing exactly where the attack descriptions need to be
adjusted. This paper also shows how several errors and
ambiguities in the attack descriptions can be resolved by
a slight modification of the attacks.

To the best of the author’s knowledge, the severe errors
reported in this paper have not been published before.
Some of the minor errors reported here are corrected in
the Security Protocol Open Repository2 (SPORE) [14],
and some attacks not listed on the webpage which might
indicate that some researchers might be aware of the
errors. Unfortunately, SPORE is not a systematic update
of Clark/Jacob: Flawed but repairable attacks are left
out, errors have migrated to SPORE from Clark/Jacob,
and correct attacks have been left out. For the sake of
completeness both the severe errors and the misprints are
included in this paper - along with the corrected versions.

The current paper subsumes the results presented in
[17], the method described in [18], but also contains a
new result describing how validation relates to simulation,
described in [16]. The paper contains two major parts:
First we present the result of the analysis without detailed
explanation of the underlying method and tool, since
the results might interest a general audience. Second we
present the formal language, the method and a description
of the application of the tool. Part one of the paper
(Section II) is organized as follows: In Section II-A, a
classification of errors is presented. The incorrect attacks
and their analysis are presented in Section II-B. Some

2The webpage SPORE is the self-proclaimed successor of the
Clark/Jacob report. Since the Internet page might be updated contin-
uously, this paper refers to the version 27 November 2006.
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attack descriptions in Clark/Jacob are incomplete although
not incorrect, revisions proposed by the validator are
presented in Section II-E. The results are discussed and
compared with SPORE in Section II-F. In the second
part of the paper the method used to find errors in
attacks of authentication protocols is presented: the formal
language used to specify protocols and attack descrip-
tions (Section III-A), automated refinement of attack
specification (Section IV), and the validation algorithm
(Section V). Not every error can be discovered through
validation, some attack descriptions must be simulated in
order to discover the flaws. One example is the attack
on Shamir Rivest Adelman protocol. In Section V-A,
we present an operational semantics for simulations of
attacks. Fortunately there is a formal relation between
the two approaches, and in Section VII, we prove that
validation can be embedded into simulation.

Finally in Section VIII concluding remarks are given.

II. ANALYZING A LIBRARY OF AUTTHENTICATION

PROTOCOLS

In this section we give a careful analysis of the result
of applying the PROSA tool to the most famous library
on authentication protocols. This part is written without
any reference to the underlying method or tool syntax, in
order to make the results comprehensible to the general
security expert.

A. Classification of errors

Every attack in the report by Clark/Jacob has been
checked using the validator. Errors in attack descriptions
can be divided into four categories:paq misprints,pbq man-in-the-middle errors,pcq incompleteness of assumptions, andpdq protocol jumps.

The man-in-the-middle flaw is a common type of
specification error; it means that the intruder should
have intercepted and forwarded a message earlier in the
protocol session. In order to make the attack description
precise a protocol clausepP q A ÝÑ B : M

meaning “agent A sends a message M to agent B”,
should be replaced by the two clausespP1q A ÝÑ IpBq : MpP2q IpAq ÝÑ B : M

where the notation IpBq means that the intruder I imper-
sonates the agent B. Hence in pP1q intruder I intercepts
the message intended to be received by B, while in pP2q,
the intruder I sends a message pretending to be A.

Incompleteness of assumptions means that there are
some data in the protocol, like keys, nonces, timestamps
or ciphertexts that an agent is assumed to be aware of at a
given point in the attack description, but these data have

not been obtained through past communication and valid
decryption.

The final type of error, protocol jump means that an
honest agent involved in the attack description does not
follow the protocol that is supposed to be under attack.

Misprints and man-in-the-middle errors are easy to
fix, and the attacks were revised and then validated as
correct attacks. Most interpretations of the Dolev-Yao
model [12] assume that the attacker controls the network,
hence every honest message is intercepted by the attacker
(corresponding to P1). If an attack is discovered by
an automated analysis tool for security protocols, then
typically a proper subset of the interceptions is required
in order for the attack to succeed. Based on the result of
this inquiry we recommend that the exact interceptions
should be stated explicit in any attack description. Two
attacks in Clark/Jacob lacking man-in-the-middle clauses
turned out to contain severe errors: it is likely that these
errors could have been discovered if the attack description
had been complete in the first place.

Incompleteness of assumptions and protocol jumps tend
to indicate severe errors in the attacks, some of which are
not easily repaired. Flaws of kind pa� cq were typically
found by the validator, while mistakes of kind pdq were
discovered by the validator except the errors in the Shamir
Rivest Adelman.

B. Notation

In the following section we present the collection
of errors found by the validator. First we present five
attacks that contain severe errors. Then two attacks only
containing misprints are discussed. Both the protocol
specifications and attack descriptions are given in a nota-
tion similar to Clark/Jacob. The messages in the protocols
consists of basic entities as follows:

A, B, C, S, I , IpAq agent terms
KAB symmetric key shared by A and B
KA A’s public key
K�1

A A’s private key
NA nonce generated by agent A
TA timestamp generated by agent A

There are two composition operators in the notation:
concatenation denoted by “,” (comma) and encryption
denoted by EpK : Mq, where K denotes a key and
M a message content.

C. Attacks containing severe errors

The attacks presented in this section contain at least one
severe error each: either incompleteness of assumptionspcq or protocol jumps pdq. Two of the protocols, the
Wide Mouthed Frog and the Denning Sacco Public Key
Protocol, additionally contain misprints paq and man-in-
the-middle errors pbq. Later, in Section II-F (Table I), an
overview of the errors found is given.
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1) The Wide Mouthed Frog: The protocol [9, p. 48],
was proposed by Mike Burrows as “(...) perhaps the
simplest protocol that uses shared-key cryptography and
an authentication server” [7, p. 25]:pWMF1q A ÝÑ S : A,EpKAS : TA, B,KABqpWMF2q S ÝÑ B : EpKBS : TS , A,KABq
An attack on the protocol was presented by Anderson
and Needham in [2, p. 429], and formally described in
Clark/Jacob. Two mistakes in the attack on the Wide
Mouthed Frog protocol given in Clark/Jacob, were found
by the validator. The attack by Clark/Jacob states:pW.1.1q A ÝÑ S : A,EpKAS : TA, B,KABqpW.1.2q S ÝÑ B : EpKBS : TS, A,KABqpW.2.1q IpBq ÝÑ S : B,EpKBS : TS, A,KABqpW.2.2q S ÝÑ IpAq : EpKAS : T 1S, B,KABqpW.3.1q IpAq ÝÑ S : A,EpKAS : T 1S, B,KABqpW.3.2q S ÝÑ IpBq : EpKBS : T 2S , A,KABqpW.4.1q A ÝÑ IpSq : EpKAS : T 1S, B,KABqpW.4.2q IpSq ÝÑ B : EpKBS : T 2S , A,KABq
The mistakes are not easy to spot at a glance. The first
mistake occurs in line pW.2.1q: The intruder I has not
obtained EpKBS : TS, A,KABq. The reason is that I is
not intercepting the second message pW.1.2q. The second
problem occurs with the transmission pW.4.1q: The agent
A does not have any way of deducing the already created
timestamp T 1S from what has happened previously in the
attack. A corrected version of the attack can be given as
follows:pW.1.1q A ÝÑ S : A,EpKAS : TA, B,KABqpW.1.2.aq S ÝÑ IpBq : EpKBS : TS , A,KABqpW.1.2.bq IpSq ÝÑ B : EpKBS : TS , A,KABqpW.2.1q IpBq ÝÑ S : B,EpKBS : TS , A,KABqpW.2.2q S ÝÑ IpAq : EpKAS : T 1S , B,KABqpW.3.1q IpAq ÝÑ S : A,EpKAS : T 1S , B,KABqpW.3.2q S ÝÑ IpBq : EpKBS : T 2S , A,KABqpW.4.1.aq A ÝÑ IpSq : A,EpKAS : T 1A, B,KABqpW.4.2q IpSq ÝÑ B : EpKBS : T 2S , A,KABq
In this description, message pW.1.2q is replaced by a
man-in-the-middle interception: pW.1.2.aq and pW.1.2.bq.
The application clause pW.4.1q was not a sentence that
could be interpreted as belonging to a session of the Wide
Mouthed Frog protocol. In pW.4.1.aq the agent A starts
a re-authentication of the agent B with a new timestamp
T 1A, and is fooled in message pW.4.2q to believe that S has
replied with the appropriate timestamp T 2S . The timestamp
is not fresh, B falsely believes that S has been involved
in the last session.

2) Yahalom: The Yahalom protocol [9, p. 49] uses
symmetric keys, in order to establish a new session key
KAB to be shared by agent A and B. The protocol was
invented by Raphael Yahalom and presented in [7, p. 30]:

pY1q A ÝÑ B : A,NApY2q B ÝÑ S : EpKBS : A,NA, NBqpY3q S ÝÑ A : EpKAS :B,KAB, NA, NBq,
EpKBS :A,KABqpY4q A ÝÑ B : B,EpKBS : A,KABq, EpKAB : NBq

In the attack presented in Clark/Jacob, the attacker tries to
make the respondent B believe that the concatenation of
nonces NA, NB plays the role of the new secret session
key, in other words the attack is a typical type flaw:pY.1q IpAq Ñ B : A,NApY.2q B Ñ IpSq : EpKBS : A,NA, NBqpY.3q OmittedpY.4q IpAq Ñ B : B,EpKBS :A,NA, NBq,

EpNA,NB : NBq
The validator immediately found that the intruder I does
not possess EpNA, NB : NBq before entering pY.4q.
There are two reasons why the intruder I cannot build
the sentence EpNA, NB : NBq: I does not possess NB ,
and can neither build the fake key NA, NB nor the content
NB to be encrypted. There is no obvious way to repair
this attack. Note that Donovan et. al. considered the attack
to be erroneous without giving an explanation or analysis
of how they considered it flawed [13, p. 6].

3) Woo Lam Π: Woo Lam’s Π protocol [9, p. 51] is
the final of a series of one-way authentication protocols
initially presented in [24]:

WL1 A ÝÑ B : A

WL2 B ÝÑ A : NB
WL3 A ÝÑ B : EpKAS : NBq
WL4 B ÝÑ S : EpKBS : A,EpKAS : NBqq
WL5 S ÝÑ B : EpKBS : NBq

Clark/Jacob presents two attacks on the protocol. The final
and rather obscure attack on the protocol [9, p. 53] is
given by two interleaving sessions:pL.1.1q B ÝÑ I : BpL.2.1q IpAq ÝÑ B : ApL.2.2q B ÝÑ IpAq : NBpL.1.2q I ÝÑ B : EpNB : KISqpL.1.3q B ÝÑ I : EpEpNB : KISq : KBSqpL.2.5q IpSq ÝÑ B : EpNB : KBSq
The attack involves five type conversions. The two main
conversions regard interpreting the nonce N as a key
in pL.1.2q and pL.2.5q, and interpreting the cipher-text
EpN : KISq as a key in pL.1.3q. The validator reported
that agent B had no reason to believe that EpNB : KISq
is a key. This problem can be solved by assuming that the
equation EpKey : Mq � EpM : Keyq p:q holds. Then
in clause pL.1.3q agent B is encrypting with key KBS and
sending EpKBS : EpNB : KISqq, while the intruder I
is receiving EpEpNB : KISq : KBSq and decrypting
with the key EpN : KISq. But then pL.2.5q turns out to
be a problem, since B’s interaction requires two missing
intermediate protocol events pL.2.3q and pL.2.4q. One may
reinterpret the attack as one single session to avoid this
protocol jump:
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pL.1q IpAq ÝÑ B : ApL.2q B ÝÑ IpAq : NBpL.3q IpAq ÝÑ B : EpNB : KISqpL.4q B ÝÑ IpSq : EpKBS : EpNB : KISqqpL.5q IpSq ÝÑ B : EpNB : KBSq
The clause pL .4q is not part of the protocol according to
WL4, agent B is not following the protocol, by omitting
the agent name A. Instead it is possible to return to the
original attack by including the two missing messages:pL.2.3q IpAq ÝÑ B : MpL.2.4q B ÝÑ IpSq : EpKBS : A,Mq
Since Woo and Lam require that the agents can detect
replays, M must be chosen different from any of the
previous messages and such that B can not decrypt
according to p:q. One such example is M � EpKIS :
EpKIS : NBqq: M is no replay, and both KIS and
EpKIS : NBq are kept secret to agent B.

4) Denning Sacco Public Key: The protocol [9, p. 63]
uses certificates to establish a secure connection between
two agents A and B:pDS1q A ÝÑ S : A,BpDS2q S ÝÑ A : CA,CBpDS3q A ÝÑ B : CA,CB, EpKB : EpK�1

A : KAB, TAqq
The agent A uses two certificates, denoted CA and CB ,
that are distributed from a trusted server S in order to
securely deliver a new session key KAB to the agent B.
The session key and a timestamp are signed by A’s private
key, in order to assure authenticity, and then encrypted
with B’s public key in order to provide secrecy. In the
attack by Clark/Jacob the bad agentB is fooling an honest
agent C to believe that B is running a session with A:pD.3q BpAq ÝÑ C : CA,CC , EpKC : EpK�1

A : KABqq
There is an obvious misprint, the timestamp TA is left out
in pD.3q. In the original attack by Abadi and Needham
[1], the timestamp is included:pD.3.aq BpAq ÝÑ C : CA,CC ,

EpKC : EpK�1

A : KAB, TAqq
The attack relies on B’s capabilities to initiate sessions
and intercept any previous runs of the session, as de-
scribed informally in the original paper by Abadi and
Needham [1]:pD.1.1q A ÝÑ S : A,BpD.1.2q S ÝÑ A : CA,CBpD.1.3q A ÝÑ B : CA,CB,

EpKB : EpK�1

A : KAB, TAqqpD.2.1q BpAq Ñ S : A,CpD.2.2q S Ñ BpAq : C1A,C1CpD.2.3q BpAq Ñ C : CA,C
1
C ,

EpKC : EpK�1

A : KAB, TAqq
But even this attack description which is derived from [1]
is flawed. The final clause pD.2.3q is a protocol jump for

the honest agent C. This can be seen by examining the
certificates ( [11, p. 534] or [9, p. 63]) involved in the
two protocol runs:

CA�EpK�1

S : A,KA, TSq CB�EpK�1

S : B,KB, TSq
C1A�EpK�1

S : A,KA, T
1
Sq C1C�EpK�1

S : C,KC , T
1
Sq

The agent C will not accept the certificates CA,C
1
C as

belonging to a Denning Sacco session, since the certifi-
cates received are not synchronized with respect to the
timestamp:

CA,C
1
C � EpK�1

S : A,KA, TSq, EpK�1

S : C,KC , T
1
Sq

This is an explicit part of the protocol, hence C will abort
her session after decrypting the certificates. The attack
can be repaired by replacing pD.2.3q with the clausepD.2.3.bq, in the previous description:pD.2.3.bq BpAq ÝÑC : C1A,C1C ,

EpKC : EpK�1

A : KAB, TAqq
In this message both the certificates of A and C are
synchronized on the timestamp T 1S . Agent C can not
detect that B is the originator: Hence C is successfully
fooled to believe that A sent her a new session KAB key
shared by A and C.

5) Shamir Rivest Adelman Three Pass (SRA): The
Shamir Rivest Adelman protocol [9, p. 64] assumes that
encryption is commutative, which means the following:
Erk1 : Erk2 : F ss � Erk2 : Erk1 : F ss p;q.pSRA1q A ÝÑ B : EpKA : MqpSRA2q B ÝÑ A : EpKB : EpKA : MqqpSRA3q A ÝÑ B : EpKB : Mq
The second attack presented in the report contains two
protocol jumps. The attack involves two interleaving
sessions.pR.1.1q A ÝÑ IpBq : EpKA : MqpR.2.1q IpBq ÝÑ A : EpKA : MqpR.2.2q A ÝÑ IpBq : MpR.1.2q IpBq ÝÑ A : boguspR.1.3q A ÝÑ IpBq : EpKA : bogusq
The first mistake in this attack occurs in event pR.2.2q as a
reply to pR.2.1q. Agent A is not following the protocol,
she should have been replying EpKA : EpKA : Mqq
according to pSRA2q. In pR.1.2q the attacker I may well
send the message containing bogus, since A is expecting a
message encrypted with B’s public key. But it is incorrect
to claim that A is sending EpKA : bogusq in pR.1.3q.
Since it receives bogus, in its (first) session R.1.2, it is not
able to do any decryptions, and the session aborts. The
clause R.1.3 is nothing that A can do as the final step in
the (first) session, since it is not in accordance with A’s
local understanding of the protocol. It could have been
the start of a third session. This is the second protocol
jump in the description. This attack is not easily repaired
either.
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D. Two attacks containing only misprints

1) Neuman Stubblebine: The protocol is split into
two parts, exchanging tickets pNS1 � NS4q and repeated
authentication pNS5 � NS7q:pNS1q A ÝÑ B : A,NApNS2q B ÝÑ S : B,EpKBS : A,NA, TBq, NBpNS3q S ÝÑ A : EpKAS : A,NA,KAB, TBq,

EpKBS : A,KAB, TBq, NBpNS4q A ÝÑ B : EpKBS :A,KAB, TBq, EpKAB :NBqpNS5q A ÝÑ B : N 1A, EpKBS : A,KAB, TBqpNS6q B ÝÑ A : N 1B, EpKAB : N 1AqpNS7q A ÝÑ B : EpKAB : N 1Bq,
In the first attack on Neuman Stubblebine protocol [9, p.
57], the intruder I tries to fool B to accept the nonce NA
as a session key:pN.1q IpAq ÝÑ B : A,NApN.2q B ÝÑ IpSq : B,EpKBS : A,NA, TBq, NBpN.3q OmittedpN.4q IpAq ÝÑ B : EpKBS :A,NA, TBq, EpKAB : NBqpN.5q IpAq ÝÑ B : N 1A, EpKBS : A,NA, TBqpN.6q B ÝÑ IpAq : N 1B, EpKAB : N 1AqpN.7q IpAq ÝÑ B : EpKAB : N 1Bq,
The attack is not valid because of the final sentence pN.7q:
The intruder I is not able to form EpKAB : N 1Bq,
because the key KAB is unknown to I . This might be
a mistyped key by the authors. If we instead follow their
own convention for notation and writepN.6.aq B ÝÑ IpAq : N 1B, EpNA : N 1AqpN.7.aq IpAq ÝÑ B : EpNA : N 1Bq,
then the specification represents a correct attack.

2) Encrypted Key Exchange: In the protocol [9, p. 65],
a password P is used as symmetric key to distribute a
randomly generated public key KA and a new session
key R. The session key R is a secret key shared by A

and B:pE1q A ÝÑ B : EpP : KAqpE2q B ÝÑ A : EpP : EpKA : RqqpE3q A ÝÑ B : EpR : NAqpE4q B ÝÑ A : EpR : NA, NBqpE5q A ÝÑ B : EpR : NBq
The attack is given as follows [9, p. 65]:pE.1.1q A ÝÑ IpBq : EpP : KAqpE.2.1q IpBq ÝÑ A : EpP : KAqpE.2.2q A ÝÑ IpBq : EpP : EpKA : RqqpE.1.2q IpBq ÝÑ A : EpP : EpKA : RqqpE.1.3q A ÝÑ IpBq : EpR : NAqpE.2.3q IpBq ÝÑ A : EpR : NAqpE.2.4q A ÝÑ IpBq : EpR : NA, NBqpE.1.4q IpBq ÝÑ A : EpR : NA, NBqpE.1.5q A ÝÑ B : EpR : NBqpE.2.5q IpBq ÝÑ A : EpR : NBq
The validator reports that in between the transmissionpE.1.5q and pE.2.5q, the agent B had not obtained the

key R in a valid manner. The reason is that R is a
shared (symmetric) key between A and B. The agent B
expects to be able to know R, yet B has not created
R, or received R during the session. So B is correct
in claiming ownership to the key, and the validator is
correct in stating that B’s claim is unjustified, since R

is specified to be freshly generated in the protocol run!
Protocol clause pE.1.5q is a simple misprint, by instead
replacing it with the clausepE.1.5.aq A ÝÑ IpBq : EpR : NBq,
the attack becomes valid.

E. Concise descriptions of attacks

Two of the attacks are not directly incorrect, since
the attacks lacked man-in-the-middle clauses that were,
however, described informally in the text: Below, the
necessary and sufficient criteria for making the attacks
precise are given:

1) Andrew Secure RPC : The protocol is given in [9,
p. 45] (initially presented by M. Satyanarayanan in [22,
p. 256]).pA1q A ÝÑ B : A,EpKAB : NAqpA2q B ÝÑ A : EpKAB : NA � 1, NBqpA3q A ÝÑ B : EpKAB : NB � 1qpA4q B ÝÑ A : EpKAB : K 1AB, N 1Bq
The attack by Clark/Jacob [9, p. 24] states that the intruder
intercepts the third message pA.3q, and then impersonates
as Bob and replays message pA.2q in pA.4q. Hence the
intruder tries to fool A to believe that the nonce NA�1
is the new session key K 1AB.pA.1q A ÝÑ B : A,EpKAB : NAqpA.2q B ÝÑ A : EpKAB : NA � 1, NBqpA.3q A ÝÑ IpBq : EpKAB : NB � 1qpA.4q IpBq ÝÑ A : EpKAB : NA � 1, NBq
Validation of the attack reveals that the second message
must be intercepted and forwarded by the intruder, hence
message pA.2q should be replaced by:pA.2.aq B ÝÑ IpAq : EpKAB : NA � 1, NBqpA.2.bq IpBq ÝÑ A : EpKAB : NA � 1, NBq

2) Neuman Stubblebine: The second attack on the
protocol [9, p. 58] involves one previous session of
the initiation phase, corresponding to pN.2.1 � N.2.4q,
where the third message pNS3q is intercepted and for-
warded (N.2.3.a) and (N.2.3.b), hence Clark/Jacob’s at-
tack should be modified as follows:
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Protocol attacks Kind of flaw SPORE Repairable
Errors from Section II-B

Wide Mouthed Frog pbq, pc{dq not corrected yes
Yahalom pcq not included no
Woo Lam Π pcq or pbq or pdq not included yes
Denning Sacco Public Key paq, pbq, pdq not included yes
Shamir Rivest Adelman pdq, pdq not included no
Neuman Stubblebine (1) paq corrected yes
Encrypted Key Exchange paq not included yes
Section II-E

Andrew Secure RPC pbq not included yes
Neuman Stubblebine (2) pbq not corrected yes

TABLE I

ANALYSIS RESULT.

pN.2.1q A ÝÑ B : A,NApN.2.2q B ÝÑ S : B,EpKBS : A,NA, TBq, NBpN.2.3.aq S Ñ IpAq : EpKAS : A,NA,KAB, TBq,
EpKBS : A,KAB, TBq, NBpN.2.3.bq IpSq ÑA : EpKAS : A,NA,KAB, TBq,
EpKBS : A,KAB, TBq, NBpN.2.4q A ÝÑ B : EpKBS : A,KAB, TBq,

EpKAB : NBqpN.2.5q IpAq Ñ B : N 1A, EpKBS : A,KAB, TBqpN.2.6q B Ñ IpAq : N 1B, EpKAB : N 1AqpN.3.5q IpAq Ñ B : N 1B, EpKBS : A,KAB, TBqpN.3.6q B Ñ IpAq : N2B, EpKAB : N 1BqpN.2.7q IpAq Ñ B : EpKAB : N 1Bq,
F. Discussion of the findings

The validity of 23 attacks on 15 protocols have been
analyzed. Table I gives an overview of the results of
the analysis: All the four error types described in Sec-
tion II-E are represented. The validator reported problems
with 9 attacks that can be divided into three groups:
incomplete attacks, misprints, and severe flaws. Two of
the attacks only contained misprints: the first attack on
Neuman Stubblebine and the attack on Encrypted Key
Exchange. Both attacks are easily adjusted to form real
attacks. The remaining five attacks included 11 errors, six
severe, three misprint and two man-in-the-middle flaws.
These included two attacks that are not easily repaired,
the one on Yahalom and the second on Shamir Rivest
Adelman (containing two severe errors). The attack of the
Wide Mouthed Frog could be redesigned in conformance
with the intentions of the informal description given by
Clark/Jacob, by making the implicit interception explicit,
and modifying the two final clauses. The attack on the
Woo Lam Π protocol was interpreted in three ways, each
gives rise to errors. Fortunately the attack was possible
to repair in conformance with Clark/Jacobs requirements.
The attack on the Denning Sacco Public Key protocol
could be made explicit and the erroneous certificate was
replaced successfully. It is interesting to observe that the
error occured in specifications lacking explicit descrip-
tions of intermediate interceptions (the missing session)
and where essential parts of the cryptographic primitives
(the certificates) were suppressed.

It turns out that SPORE is not a systematic update
of Clark/Jacob, as Table I shows. In the following each
of the attacks presented in this paper is compared with
the descriptions on the webpage [14]. In the SPORE
description of the Wide Mouthed Frog the first error
is not corrected, and the website does not mention the
final two clauses where the second severe error occurs.
Neither the Yahalom attack nor the two attacks on Shamir
Rivest Adelman are mentioned, although the first attack
on Shamir Rivest Adelman is correct. The original attack
on Neuman Stubblebine in [20] and the specification
in SPORE are both correctly described. The Encrypted
Key Exchange protocol and Denning Sacco Public Key
are not included in SPORE, nor are the attacks, even
though the attacks could be easily repaired. The attack on
Andrew Secure RPC occurring in Clark/Jacob is replaced
in SPORE with the original attack from [7]. Finally the
Neuman Stubblebine description on the webpage contains
the same man-in-the-middle flaw as in Clark/Jacob. Hence
there does not seem to be uniform criteria for transferring
attacks and protocols from Clark/Jacob into SPORE.

G. Evaluations of the result

The rather bold claims referred in the introduction
come in a strange light. Are they too good to be true?
At face value it seems so. A tool that claims to find
attacks that are incorrect must be inappropriate in some
sense or other. What conclusions can be derived on the
correctness of the existing tools? A thorough evaluate of
the existing tools is outside the scope of this paper. But a
general recommendation can be given: Currently it is rare
that researchers from the protocol analysis community
give details (that is complete descriptions) of the concrete
attacks found by the most prominent tools. To avoid
potential ambiguity and in order to make protocol analysis
a more robust and accumulative research field, detailed
lists of the attacks found by the tools should be publicly
available.

III. THE METHOD

In Figure 1 we show the process of validation: Initially
an attack description P is written in the security language
LP . This description is then fed into the automated
refinement algorithm which produce a raw refinement P 1.
Note that specification P 1 does not contain information
about fresh entities. The raw refinement contains infor-
mation about the required beliefs and extracted beliefs as
well as all the encryptions an decryptions performed in
the protocol specification. Fresh nonces and timestamps
are inserted into the attack specification, resulting in the
description P 2. This final refinement is then taken as
input to the actual validation algorithm. If no error is
found, then it returns ok. If an ungrounded assumption
is discovered, then a break point is returned (a minimal
failure report), indicating the exact place in the attack
where the error occurs.
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Fig. 1. Validation process.

A. A formal language for authentication protocols

The content of the messages consists of basic entities:
nonces, timestamps, text strings, and agent names. In
addition there are three composition operators: concate-
nation, hashing and encryption. A language for specifying
security protocols LP can be defined as follows: LP

consists of terms of five sorts, agents, nonces, time-

stamps, keys, and natural numbers. The agent-names

are typically written “Alice”, “Bob”, “Server”, agent-

variables are written x, y, x1, x2, . . ., and agent-terms a,
b, c, . . . Variables for the other sorts are labeled with
the sort xN (nonce-variable), xT (time-variable), and
xK (key-variable) respectively, when their sorts are em-
phasized. Constants include protocol names µ, µ1, µ2,
encryption methods for cryptography s (symmetric) and
a (asymmetric), in addition to the indicators i (private)
and u (public). There are function symbols for nonces
nptN , aq, time-stamps stampptT , aq, keys keyps, a, b, xKq,
keypa, i, a, xKq, keypa, u, a, xKq. Protocol names µ1, µ2

might be concatenated: µ1µ2. Ground terms for nonces
tN , time-stamps tT , and key-terms tK , may either denote
natural numbers N or variables of the appropriate sort.

Definition 1: Let LP be the least language such that:piq Each of the following atomic formulas are in LP

ε the empty sentence
Agentpaq a is an agent
isKeypkq k is a key
isNoncepnpN, aqq npN, aq is a nonce
TimepstamppN, aqq stamppN, aq is a timestamp
rolepbq b is a protocol rolepiiq If ϕ, ψ, ξT , ξA, ξS P LP , then so are; ϕ, ϕÑ ψ propositional logic
Transmitpa, b, ϕq a sends ϕ to b
Belapϕq a believes ϕ
ϕU ψ ϕ holds until ψ holds
Erk : ϕs encrypt ϕ using key k
Drk : ϕs decrypt ϕ using key k
Hashrϕs hash the sentence ϕ
Enforceapϕq enforce agent a to do ϕ
protocolrµ,N, ξT, ξA, ξS,Φs protocol operator

The connectives ^, _ and Ø are definable in terms of and Ñ and J � ϕ Ñ ϕ. The operator Belapϕq reads
“the agent a believes ϕ holds”. In protocol specifications
beliefs are used to explicitly state required cryptographic
assumptions. The until operator ϕU ψ means that ϕ

holds until ψ holds. The operator before B , is definable
from U by ϕB ψ �  p ϕU ψq. Furthermore F ϕ � pJU  ϕq, F♦ϕ �  F  ϕ and dϕ � p F ϕ^ ϕq.

The sentence Enforceapϕq, means: “enforce agent a to
perform ϕ”. Enforcement is the only imperative construct
in the language, and is used usually with the generation of
fresh entities within the protocol: We augment LP with
additional constructs for local construction of fresh enti-
ties: newKeypkeyps, tA1 , tA2 ,Mqq, CurrentpstamppN, tAqq,
and newNoncepnptN , tAqq. Note that the usage of the
nested operator EnforcexpBelxpψqq shall be restric-
tive. The operator protocolrµ,N, ξT , ξA, ξS ,Φ s denotes:
“protocol named µ with session number N , the total roles
ξT , the agent specific roles ξA, the start-roles ξS and with
the protocol body Φ”. Trust can be expressed within LP

by: Trustpa, b, ϕq � Transmitpb, a, ϕq Ñ Belapϕq.
A subset of this language is the set of P-positive

sentences; that includes the atomic sentences, and com-
posite sentences where a modal operator is the uttermost
connective (thus every connective in Definition 1 part piiq,
except  and Ñ).

B. Specification of protocols

Protocols are sequences of instructions in a distributed
program, where the notion of ordering can be expressed
by temporal logic: A protocol is a chain of events between
agents. A chain of events is of the form ϕ1 B ϕ2 ^
ϕ2 B ϕ3^. . .^ϕn�1 B ϕn, where each ϕi is P-positive.
The last event ϕn � ε, is always the empty event, marking
the end of the protocol specification. Let Φ � ϕB rΦ1s
denote a chain of events written by recursion, hence ϕ is
a single event and Φ1 a chain of events.

Definition 2: If Φ and Ψ are chains of events, then
their concatenation, denoted Φ"Ψ, is given by:piq Φ"ε � Φ � ε"Φpiiq pϕB rΦ1sq"Ψ � ϕB rΦ1"Ψs
We say that a text-book protocol, (or simply
TBP) is a protocol where each single event is
of the form Transmitpxj , xk, ϕq, or of the form
EnforcexpBelxpnewKeypkqqq.
C. Attack protocols

The language presented so far needs few extensions
in order to capture attacks: An attack protocol is a
protocol P, such that some of the transmissions con-
tains occurrences of impersonation terms impI, Aq ei-
ther as the sender or the receiver of a transmission.
The term impI, Aq reads “I impersonates as A”. In
case TransmitpimpI, Aq, B,Mq, the real sender of the
message is I , while the message itself claims that A
is the originator. In case TransmitpB, impI, Aq,Mq, the
message is intercepted by I , and A never receives the
message. Protocols that do not contain any occurrence of
impersonation terms are called intended protocols. We let
TBAS denote text-book attack specifications.

IV. AUTOMATED REFINEMENT OF ATTACKS

An automated refinement of a text-book specification
includes every local assumption about each participant in
the attack. Roughly the refinement algorithm works as
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follows: Given a transmission clause A ÝÑ B : M , the
refinement algorithm constructs a protocol as follows:

The sender’s assumptions about M . pPreMA q
A ÝÑ B : M pMsgq
The receiver’s information-extract. from M . pPostMB q

In the following section we present the refinement al-
gorithm that is deployed in order to perform validation.
The complete algorithm with a detailed explanation is
given in [18]. The chain of events described in pPreMA q,
characterize the sender’s preconditions for transmitting
the message pMsgq. The chain of events described inpPostMB q, contains protocol clauses that maximize the
receiver’s extraction of information from M .

If a transmission involves an impersonation, then the
attacker’s local behavior must be reflected in the precon-

ditions if the attacker fakes an honest agent, or in the
postconditions if the attacker is an eavesdropper. In both
these cases the principal agent in the refinement is the
intruder, which possess beliefs or performs cryptograpic
actions. Consequently we need two functions for inter-
preting the impersonation terms, realization of a potential
impersonator and realization of a potential interceptor. We
define the functions t and t as follows: If t is an agent
variable or agent name, then t � t � t. If t � impt1, t2q,
then t � t1 and t � t2.

Definition 3: If P is s text-book protocol, then P can
be refined into an assumption protocol by ℜ

A
:pR0q ℜ

A
pprotocolrµ,N, ξT , ξA, ξS ,Φ sq �
protocolrµ,N, ξT , ξA, ξS ,ℜ

A
pΦ, εq spR1q ℜ

A
pε, P q � PpR2q ℜ

A
pTransmitpt1, t2, F qB rΦs, P q �

ℜ
A
pΦ, P "pre

A
pt1, F, P q"pBelt1pAgentpt2qqB

Transmitpt1, t2, F qB Belt2 pAgentpt1qq
B Enforcet2 pBelt2pTrustpt2, t1, F qqqB εq"post

A
pt2, F, P qqpR3q ℜ

A
pBelapF qB rΦs, P q � ℜ

A
pΦ, P "pBelapF qB εqqpR4q ℜ

A
pEnforceapBelapHashrF sqqB rΦs, P q �
ℜ

A
pΦ, P "pre

A
pa, F, P q"pEnforceapBelapHashrF sqqB εqqpR5q ℜ

A
pEnforceapF qB rΦs, P q �

ℜ
A
pΦ, P "pEnforceapF qB εqq

if F � BelapHashrM sq, for every M
The definition of ℜ

A
can be motivated as follows: In the

beginning pR0q, the function is called with the empty
chain. If the first argument is the empty chain ε, then
ℜ

A
returns the accumulated chain P , and the recursion

ends pR1q. In case the event is a transmission, then the
assumptions required to send the message are generated
as preconditions for the sender, and afterwards the local
assumptions about the receivers extraction of information
is constructed, the postconditions for the receiver pR2q.
If the protocol contains explicit specifications of assump-
tions in advance, then these assumptions are included in
the refined protocol (R3 and R5). One exception to this
is hashing (R4), if some data is hashed this data should
have been obtained earlier in the protocol session.

A. Assumptions regarding transmission

We first present the assumptions, pre- and post-
conditions for plain-text content hashing, and symmetric
keys, and then the extension to public key cryptography
is given:

1) Preconditions - constructing the subprotocolpPreMt q: The assumption function pre constructs
every required assumption necessary for transmitting a
message. First let A denote the following set of atomic
sentences:tAgentpaq, isKeypkq, isNoncepnq,Timeprq| a is a agent
(term), k is a key, n is a nonce, r is a timestamp u.

Definition 4: The assumption function pre is defined
by recursion on the syntactic complexity of the message
content:pAAq pre

A
pt, F, P q � BelxpF qB ε, if F P ApACq pre

A
pt, F ^G,P q � pre

A
pt, F, P q"pre

A
pt, G, P qpAH1q pre

A
pt,HashrF s, P q � pre

A
pt, F, P qB ε

if Hash rF s P
E
PpAH2q pre

A
pt,HashrF s, P q � pre

A
pt, F, P q"pEnforcetpBeltpHashrF sqqB εq if Hash rF s R

E
PpAE1q pre

A
px,Erkeyps, y, zq : F s, P q �

pre
A
px, F ^ isKeypkeyps, y, zqq, P q"

EnforcexpBelxpErkeyps, y, zq : F sqqB ε

if x�y _ x�z _ BelxpisKeypkeyps, y, zqqq P
E
PpAE2q pre

A
px,Erkeyps, y, zq : F s, P q �

BelxpErkeyps, y, zq : F sqB ε

if x�y ^ x�z ^ BelxpisKeypkeyps, y, zqqq R
E
P

2) Postconditions - constructing the subprotocolpPostMt q: The postcondition function post works by
extracting information from a received message, by de-
composing the message using projection and decryption.

Definition 5: The extraction function post is defined
by recursion on the complexity of the message content:pPAq post

A
pt, F, P q � BeltpF qB ε, if F P ApPCq post

A
pt, F^G,P q � post

A
pt, F, P q"post

A
pt, G, P qpPHq post

A
pt,HashrF s, P q � εpPE1q post

A
py,Erkeyps, x, zq : F s, P q �

post
A
py, isKeypkeyps, x, zqq, P q"pEnforceypBelypDrkeyps, x, zq :
Erkeyps, x, zq : F ssqqB εq"post

A
py, F, P q

if y�z _ x�z _ BelypisKeypkeyps, x, zqqq P
E
PpPE2q postpy,Erkeyps, x, zq : F sq �

BelypErkeyps, x, zq : F sqB ε

if y�x^ y�z ^ BelmpisKeypkeyps, y, zqqq R
E
P

The previous algorithm extends easily to public key
cryptography, the details can be found in [18]. Note that
the extension to public key infrastructure requires that
there is already an infrastructure for distributing the public
keys.

B. General properties of automated refinement

A couple of high level properties of automated re-
finement might be proven; the exact space and time
complexity of ℜ

A
, and that the automated refinement

of a protocol is a subprotocol of the original protocol.
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Let P be an arbitrary nonempty protocol with message
contents M � tF1, . . . , FlthpPqu. The maximal message
content is a sentence F P M such that for every i with
1 ¤ i ¤ lthpPq we have that degpF q ¥ degpFiq.

Lemma 1: Let P be TBP, with maximal message con-
tent F , then lthpℜ

A
pPqq ¤ lthpPq�p2degpF q �1q.

If P is a protocol with the chain of events Ω, then we let
#pPq denotes the space used to represent Ω.

Observation 1: If P is TBP, where the maximal mes-
sage content P is F then ℜ

A
pPq is performed in time

2� lthpPq�2degpF q and space #plthpPq�p2degpF q�1qq.
Fortunately we can apply the techniques presented in [19],
in order to prove that the protocol ℜ

A
pPq really is a

refinement of the protocol P.
Theorem 1: If P is a TBAS, then P�Pℜ

A
pPq.

Proof: Straightforward induction on lthpPq, using
similar techniques as the proof of theorem 4 in [19].
Contraction of superfluous protocol sentences, denoted eq
and generation of freshness actions, denoted Æ, preserves
the subprotocol relation: ℜÆ

A
pPq � ÆpeqpPqq

Theorem 2: If P is TBAS, then P�PℜÆ
A
pPq.

Proof: Follows by similar techniques as the proof of
theorem 6 in [19].

V. AUTOMATED VALIDATION OF ATTACKS

It is possible to use the resulting refined protocol for
further analysis. It turns out that automated refinement
is the “working horse” of validation. There is a close
interplay between the automated validation algorithm and
the beliefs obtained through automated refinement. From
the presentation of the automated refinement algorithm
in Section IV, it is clear that that the algorithm does
apply to text-book specifications that are not cryptograph-
ically correct. The only sanity check that ℜ

A
performs,

is whether appropriate keys have been obtained prior
to encryptions and decryptions. We say that a belief
statement is grounded if it is obtained through legal
cryptographic operations or communication. From the
definition of the automated refinement algorithm in Sec-
tion IV, we observe that some beliefs in certain protocols
might not be grounded. Ungrounded beliefs might be
atomic facts as well as encrypted sentences. Candidates of
ungrounded beliefs - involving encrypted messages using
symmetric keys - can be produced from Definition 4, part
AE2, and Definition 5, part PE2. Similarly, encryptions
using asymmetric keys that might potentially give rise to
ungrounded beliefs may come from the equations AE4,
AE5, AE6, PE4, and PE5.

The validation algorithm decides whether every belief
in a refined protocol is grounded. In other words, the
validation algorithm makes the informal reasoning of the
protocol designer’s cryptographical understanding entirely
explicit.

We call the algorithm static validation, and write vpPq
for the result of validating the text-book protocol P. In
practice validation is carried out by first performing the
automated refinement, then removing duplicated assump-
tions (denoted eq), and finally supplementing the protocol

with freshness actions (denoted Æ). In other words, given
a text-book protocol P, validation amounts to applyvpÆpeqpℜpPqqqq. There are three cases: a given protocol
sentence is grounded, hence we proceed traversing the
rest, or the validation reached the end, or finally a belief
statement is found that is not grounded. The first case
corresponds to a pattern:vpϕB ΦqΨ � vpΦ,Ψ"pϕB εqq if condition C holds.

If ϕ � BelapF q then the condition C formalize the
sentence “F has been obtained correctly by the agent a by
past communication and the principles of cryptography”.
Two additional concepts are needed: A conjunction ϕ is
included in another conjunction ψ, denoted ϕ � ψ is
defined by aggregation. The notion of ϕ is an element

in a chain Ψ, written ϕ P
E

Ψ, is defined by obvious
recursion on the length of chains Ψ.

Definition 6: We say that ϕ can be embedded (cryp-

tographically) valid inside Ψ for an agent a, denotedepa, F,Ψq, iffepa, ϕ1,Belbpϕ2qB Ψq � epa, ϕ1,Ψqepa, ϕ1, EnforceapBelapDrk1 : Erk2 : ψssqqB Ψq � J
if ϕ1 � ψepa, ϕ1, Enforceapϕ2qB Ψq � epa,ϕ1,Ψq

if ϕ2 � BelapDrk1 : Erk2 : ψssq implies ϕ1 � ψepa, ϕ1,Transmitpb, a, ϕ2qB Ψq � J if ϕ1�ϕ2epa, ϕ1,Transmitpb, impa, cq, ϕ2qB Ψq � J if ϕ1�ϕ2epa, ϕ1,Transmitpb, c, ϕ2qBΨq�epa,ϕ1,Ψq ifϕ1�ϕ2epa, ϕ1, εq � K
Let ÆpisNoncepnqq � newNoncepnq and ÆpTimeptqq �
Currentptq. Also let �ptq denote the function decalculat-

ing a numeric term t, e.g. �px�1q � x and �px�1q � x.
Definition 7: The validation algorithm v is given by:piq vpprotocolrµ,N, ξT , ξA, ξS ,Φ sq � vpΦ, εqpiiq vpε,Ψq � Textp"No error found"qpiiiq vpF B Φ,Ψq � vpΦ,Ψ"pF B εqq

if F � BelapAgentpbqq or F � EnforceapBelapϕqq
or F � Transmitpa, b, ϕqpivq vpBelapF qB Φ,Ψq � vpΦ,Ψ"pBelapF qB εqq

if pF � isNoncepnpxN , bqq or
or F � TimepstamppxT , bqq or F � TextpS, bqq

and pEnforceapBelapÆpF qqq PE Ψ or epa, F,Ψqqpvq vpBelapisNoncepnptN , bqqqB Φ,Ψq �vpΦ,Ψ"pBelapisNoncepnptN , bqqqB εqq
if tN is a numeric term, andpEnforceapBelapnewNoncepnp�ptN q, bqqqq P

E
Ψ

or epa, isNoncepnptN , bqq,Ψq
or epa, isNoncepnp�ptN q, bqq,Ψqqpviq vpBelapErk : F sqB Φ,Ψq�vpΦ,Ψ"pErk : F sB εqq if epa,Erk : F s,Ψqpviiq vpBelapisKeypkeyps, x, y,NqqqB Φ,Ψq �vpΦ,Ψ" Bela pisKeypkeyps, x, y,NqqqB εq

if a � x _ a � ypviiiq vpBelapisKeypkeyps, x, y, wKqqqB Φ,Ψq �vpΦ,Ψ" Bela pisKeypkeyps, x, y, wKqqqB εq
if pa � x _ a � yq^pEnforceapBelapnewKeypkeyps, x, y,wKqqqq P

E
Ψ

or epa, isKeypkeyps, x, y,wKqq,Ψqqpixq vpBelapisKeypkeyps, x, y, tKqqqB Φ,Ψq �vpΦ,Ψ" Bela pisKeypkeyps, x, y, tKqqqB εq
if a � x and a � y andpEnforceapBelapnewKeypkeyps, x, y,wKqqqq P

E
Ψ

or epa, isKeypkeyps, x, y,wKqq,Ψqqpxq vpBelapisKeypkeypa, i, yqqqB Φ,Ψq �vpΦ,Ψ"pBelapisKeypkeypa, i, yqqqB εq
if a � x or epa, isKeypkeypa, i, yqq,Ψqpxiq vpBelapisKeypkeypa, u, yqqqB Φ,Ψq �vpΦ,Ψ"pBelapisKeypkeypa, u, yqqqB εqpxiiq otherwise vpBelapϕqB Φ,Ψq �  Bela pϕq ^Ψ
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The algorithm is motivated as follows: In piiq the original
protocol to be validated is empty, which means that there
are no more sentences to check, hence the protocol is
correct. The main recursion involves checking the cryp-
tographic integrity of beliefs. Hence beliefs concerning
agent names, enforcements and transmissions are not
validated piiiq.

Nonces, timestamps, and message text pivq might either
be created by the principal agent, or have been obtained
as plain-text or encrypted by transmissions from other
agents. Nonces might involve numeric terms, the most
common nonce term is tN � x � 1. In that case the
nonce might have been received as a numeric term, or
as a subterm of a numeric term. In this case, the term is
decalculated, �ptN q, in order to justify if the origin of the
nonce is valid. An encrypted message pviq should have
been obtained legally, received by transmission from other
agents.

Symmetric keys might either be one of the agent’s own
keys (vii, viii) or keys belonging to another agent pixq.
In the former case the key is either possessed by the
agent pviiq, or created in the current protocol session by
the principal agent or another agent, typically a server
providing keys pviiiq. Asymmetric keys is handled as
follows: In case the key is a public key, every agent is
supposed to be able to know it pxiq. In case the agent
possesses a private key, it might be its own private key,
or the agent has obtained the key intentionally or as part
of an attack pxq.

If none of the above conditions apply then the algo-
rithm terminates in pxiiq with an exception, reporting the
negation of the ungrounded assumption:  Bela pϕq, and
where this anomaly occurred Φ (representing the initial
segment of the protocol).

A. Simulating attacks on authentication protocols

The errors in the Shamir Rivest Adelman attack were
not discovered by the tool. The reason is that the validator
can not discover every possible protocol jump in every
attack. A recent result by the author [16] shows that the
errors in the Shamir Rivest Adelman attack described
in this paper can be detected by simulation. The model
contained two honest agents Alice and Bob that possessed
the Shamir Rivest Adelman protocol. An attacker Malice
was configured to control the network, and executed
the Clark/Jacob attack with Alice and Bob. Simulations
showed that the attack failed to succeed in exactly the
same state described in the paper, and reachability anal-
ysis of the model showed that the attack failed in any
simulation. In section VI-I, we give a detailed exposition
of the simulation of the attack.

VI. OPERATIONAL SEMANTICS FOR PROTOCOLS

In this section we shall first describe an operational
semantics for executing standard protocols and then see
how the semantics should be modified in order to include
attacks. Agents communicate with other agents over a
network. A message in the network consists of a message
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Protocols

Fig. 2. Uncompromized message flow.

content m, the sender’s name and the receivers name. If
a and b are agent names, and m is the message content
we write msg m from a to b. The entities agents

and messages are the only inhabitants in the model. We
introduce the parallel operator || , and use the notation
o1 || o2 || . . . || on, to express that the entities o1, o2, . . . , on
coexists concurrently. A rewrite rule t ÝÑ t1 can be
interpreted as a local transition rule allowing an instance
of the term t to evolve into the corresponding instance
of the pattern t1. Each rewrite rule describes how a part
of a configuration can evolve in one transition step. A
configuration is a snapshot of a dynamic system evolving.
The parallel operator is an abelian monoid over the set
of configuration with an identity element (the empty
configuration). The agent is a structure containing four
slots:   idloomoon

agent name

| bel,loomoon
set of sentences

in, outloomoon
buffers

¡
where id denotes the identity or name of the agent,
while bel denotes its current set of beliefs. The variable
denoted in represents the inbuffer - messages waiting
for processing in protocol while out denotes the outbuffer

- messages intended for transmission.

A. Asynchronous communication

In case of the honest agent there are two rules for com-
munication, the rule for sending and receiving messages.
Referring to figure 2, the send rule involves updating
the agents beliefs, and puts the message msg F from

a to b into the network. Since a is required to be
honest, the transmission of the rule requires that BelapF q.
Operationally this is interpreted by:  a | bel, outY tTransmitpa, b, F qu ¡ÝÑ  a | belYtTransmitpa, b, F qu, out¡ || msg F from a to b

if Honest paq P bel

The receive rule involves transferring the message from
the network and memorizing the message:  b | bel, in ¡ || msg F from a to b ÝÑ  b| belYtTransmitpa, b, F q,Agentpaqu, inYtTransmitpa, b, F qu¡
B. Protocol execution - the protocol machine

The operational semantics contains some meta-
concepts required for executing protocol specifications.
We introduce a meta-predicate Epa,Pq (for execute),

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 49

© 2008 ACADEMY PUBLISHER



modeling the concept protocol machine. The predicateEpa,Pq reads “agent a at stage P” in the protocol µ,
and is an operator for executing any protocol µ in LP .
The execution predicate consumes one protocol event at
a time, starting from the top. The rule for transmitting a
message in a protocol session then reads:  a|belYtEpa, protocolrµ,N, ξT, ξA, ξS,Transmitpa, b, F qB rΦs squ, out¡ÝÑ  a|belYtEpa, protocolrµ,N, ξT, ξA, ξS,Φsqu, outYtTransmitpa, b, F qu¡
The rule for receiving messages in a protocol session
reads:  a | bel YtEpa, protocolrµ,N, ξT , ξA, ξS ,

Transmitpt1, a, F qB rΦs squ, inYtTransmitpt2, a, F 1qu ¡ÝÑ  a | bel YtEpa, protocolrµ,N, ξT , ξA, ξS ,
subpSpF 1, F q Y txt2, t1yu,Φq squ, in ¡

if MpF 1, F q ^Mpt2, t1q
The boolean function MpF 1, F q decides if F 1 may match
F . The function SpF 1, F q performs the matching of
the terms in F 1 with variables in F , resulting in a set
of pairs of variables and terms: txx1, t1y, . . . , xxn, tnyu.
Then if the head of the protocol body is a passive
transmission, and a message in the inbuffer matches the
head, the protocol proceeds by substituting the result ofSpF 1, F q Y Spt2, t1q, into the rest of the protocol body
Φ. The function subpS,Pq recursively substitute a set of
matching pairs S in the protocol denoted P.

C. Session administration

For the purpose of this paper we omit multi-threading
and the mechanisms for listening at sockets. The execute
operator is accompanied by an await operator Apb,Pq,
which reads “agent b awaits in the responder role for
an incoming message in order to proceed executing the
protocol P”. The function Fpa,Pq filters out agent a’s
relevant sub-protocol: that is, the function keeps trans-
missions and assumptions where a plays a principal role,
and throws the rest of the protocol.

1) From listening to execution: When the agent re-
ceives a message from its environment, it matches the
message with one of its running threads of protocol
“sockets”.  b | bel Ytprotocolrµ,M, ξT , ξA, ξS ,Φ suY p1qtApb, protocolrµ,N, ξT

I
, rolepxq, ξS ,Transmitpt, b, F qB rψs squ, p2q

inY tTransmitpa, b, F 1qu ¡ p3qÝÑ  b | bel Ytprotocolrµ,M�1, ξT , ξA, ξS ,Φ suY p4qtEpb, protocolrµ,N, ξTI , rolepxq, ξS , subpSpF 1, F q Y txa, tyu, ψq squ p5qYtApb,Fpb, subpb, x, protocolrµ,M�1, ξT
I
, rolepxq, ξS,Φ sqqqu, in ¡ p6q

if MpF 1, F q ^Mpa, tq p7q
The rule combines three operations at once, message

handling, start of session, and invocation of new session

thread: The message in the inbuffer (3) is matched with
the head of the protocol body (2) and (7), and removed
from the inbuffer (6). An active listening (2) is replaced
by a new active protocol session (6). A new thread of
listening is generated (6), with the current session number,
generated from the initial protocol (2).

2) Done with protocol: Every protocol ends with the
empty event ε, which terminates the session:  a| bel YtEpa, protocolrµ,N, ξT , ξA, ξS , εsqu ¡ÝÑ   a | bel YtDonepa, µ,Nqu ¡
Donepa, µ,Nq is a signal for the successful termination
of the protocol session.

D. Assumptions and cryptography

Assertions about a belief F that an agent a possess is
expressed by BelapF q. Hence the assertion rule is given
by:   a | bel YtEpa, protocolrµ,N, ξT , ξA,BelapF qBϕ squ ¡ÝÑ  a | bel YtEpa, protocolrµ,N, ξT , ξA, ϕ squ ¡ if F P bel

1) Cryptography: An agent may encrypt a sentence F
using the key k only if it possess both F and k:  b | bel YtEpb, protocolrµ,N, ξT , ξA,

EnforcebpBelbpErk : F sqqBϕ squ ¡ÝÑ  b | bel YtErk : F su Y tEpb, protocolrµ,N, ξT , ξA, ϕ squ ¡
if isKey pkq P bel and F P bel

Decryption is given by the following rule:  b | bel YtEpb, protocolrµ,N, ξT , ξA,
EnforcebpBelbpDrk : F sqqBϕ squ ¡ÝÑ  b | bel YtDrk : F suYtEpb, protocolrµ,N, ξT , ξA, ϕ squ ¡

if F P bel

Decryption of cipher-text requires that the agent a possess
the appropriate keys as follows:

key possessed permitted cryptographic action
keyps, a, bq Drkeyps, a, bq : Erkeyps, a, bq : F ss � F

keypa, i, aq Drkeypa, i, aq : Erkeypa, u, aq : F ss � F

keypa, u, aq Drkeypa, u, aq : Erkeypa, i, aq : F ss � F

This gives a distinction between the agent’s intention of
performing a decryption of a cipher-text, and the agent’s
actual capability to decrypt.

2) Fresh generation of keys, nonces and timestamps:

Freshly generated data requires that there is a generator,
that memorize past values of nonces, timestamps and
keys. The rule for constructing fresh symmetric keys
reads:  b | bel YtkeyGenpkeyps, a, b,MqquYtEpb, protocolrµ,N, ξT , ξA,

EnforcebpBelbpnewKeypkeyps, a, b, xqqqqBϕ squ¡ÝÑ  b | bel YtkeyGenpkeyps, a, b,M � 1qquYtisKeypkeyps, a, b,M�1qqu Y tEpb, protocolrµ,N, ξT , ξA, ϕ squ¡
The rules for constructing fresh nonces and timestamps
are similar, each requires that there is a suitable generator.

E. Simulation with the Dolev-Yao attacker

In order to run attack-protocols, the operational seman-
tics should reflect attack specifications, both interception
and impersonation should be possible. Running attack-
specifications requires that the message flow is modified.
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Fig. 3. Compromised communication.

F. Rules for executing attack protocols

Malicious agents can do whatever good agents can and
in addition fake and intercept messages. This means that
the protocol machine must be extended with the corre-
sponding rules for malicious protocol behaviour. Suppose
that µA is an attack protocol, and i denote an agent (to be
thought of as the intruder). Then impersonating by sender
is given by the rule:  i | bel YtEpi, protocolrµA, N, ξT , ξA, ξS ,

Transmitpimpi, aq, b, ϕqB rΦs squ, out ¡ÝÑ  i | bel YtEpi, protocolrµA, N, ξT , ξA, ξS ,Φ squ,
outY tTransmitpimpi, aq, b, ϕqu ¡

Interception of messages reads:  i | bel YtEpi, protocolrµA, N, ξT , ξA, ξS ,

Transmitpt1, impi, aq, ϕqB rΦs squ, inYtTransmitpt2, a, ϕ1qu¡ÝÑ  i | bel YtEpi, protocolrµA, N, ξT , ξA, ξS ,

subpSpϕ1, ϕq Y txt2, t1yu,Φq squ, in ¡
if Mpϕ1, ϕq ^Mpt2, t1q

G. Message flow in the Dolev-Yao model

A standard approach in protocol analysis, is to let the
attacker control the entire network. In an agent-centric
approach like the one advocated in this paper the intruder
is placed as malicious router that inspects and manipulates
every message put into the network. Hence the network
is split into two, first the advisory network and then the
standard normal network. In Figure 3, the revised message
flow according to the Dolev-Yao interpretation is depicted.

Agents sending messages acting as good agents: The
good agents transmits messages, by putting the message
into the channel msgadvisory, in which a message is
denoted msg. Note that Malice is not permitted to use
the rule, since Malice is intercepting every message, and
then would intercept herself. Hence the communication
rule for good agents, presented previously, is replaced by
the following rule:  a | bel, outY tTransmitpa, b, ϕqu ¡ÝÑ  a | belYtTransmitpa, b, ϕqu, out ¡ ||msg ϕ from a to b

if Honest paq and ϕ P bel and  Malicious paq
Malice receives the message: A message in the ms-

gadvisory is received by Malice. Malice’s role in the
interception is captured by the impersonation construct,
Transmitpa, impi, bq, ϕq.  i | bel, in ¡ ||msg ϕ from a to b ÝÑ  i | bel YtTransmitpa, impi, bq, ϕqu,

inYtTransmitpa, impi, bq, ϕqu ¡ if Malicious piq

Malice sending messages as normal participant: In
order to avoid that Malice intercepts his own messages,
the honest transmissions by Malice is placed directly into
the network:  i | bel, outY tTransmitpi, b, ϕqu ¡ ÝÑ  a | bel YtTransmitpi, b, ϕqu, out ¡ || msg ϕ from i to b

if Malicious piq
Malice sending messages by impersonation: The rule
is straightforward, if Malice intends to send a message by
impersonation, then this fact is stored in the belief-set of
Malice and the message is put on the network as message
transmitted from the agent a.  i | bel, outY tTransmitpimpi, aq, b, ϕqu ¡ ÝÑ  a | bel YtTransmitpi, b, ϕqu, out ¡ || msg ϕ from a to b

if Malicious piq
Any agent (good or bad) receiving messages: The rule
for receiving messages is the same for Malice as it is for
any other good agent. Hence to conclude: Executing the
attack protocols require few changes into the protocol ma-
chine. The communication model involve the introduction
of one extra state that the messages must pass through,
the Dolev-Yao attacker.

H. Denotational semantics

Since our language is based on epistemic logic, the
natural semantics to formulate a denotational semantics is
Kripke models. Some aspects of the operational semantics
can be embedded in a denotational semantics, suitable for
expressing security properties about a given configuration.
The denotational semantics for the language can be given
by connecting the transition relation from the operational
semantics. First we interpret the single transition arrow;
C ÝÑ C 1 iff C ÞÝÑ1 C 1. The arrow

�ÞÝÑ is the transitive
closure of the one step arrow ÝÑ1, that is C

�ÞÝÑ C 1
iff C ÞÝÑ1 C 1 _ DC 2pC ÝÑ1 C 2 ^ C 2 �ÞÝÑ C 1q. A
contextual model is a pair xC,ÝÑ�y, where C is a set of

configurations, and
�ÞÝÑ� C � C.

Definition 8: The truth of a formula φ P LS in a
configuration in a contextual model M � xC, �ÞÝÑy,
denoted M (C φ, is defined by:

M (C a � b iff aM �M bM

M (C Agentpaq iff   a | bel ¡ P C

M (CTransmitpa, b, F q iff pmsg F from a to bq P C

M (C Belapϕq iff   a | belYtϕu ¡ P C

M (C  ϕ iff M *C ϕ

M (C ϕ1 Ñ ϕ2 iff M (C ϕ1 ùñ M (C ϕ2

M (C �x P Ag φpxq iff�a p  a | bel ¡ P C ùñ M (C φpaqq
M (C ϕ1 U ϕ2 iff DC 1pC �ÞÝÑ C 1 ^M (C 1 ψ^�C 2pC �ÞÝÑ C 2 ^ C 2 �ÞÝÑ C 1 ùñ M (C2 ϕqq
M (C �X ϕpXq iff �ψ P LS M (C ϕpψq
A sentence ϕ is valid in a model M � xC, �ÞÝÑy, denoted
M ( ϕ, iff for every C P C, M (C ϕ.
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protocolrSRA, 0, rolepAq ^ rolepBq, rolepAq ^ rolepBq, rolepAq,
TransmitpA,B,Erkeypa, u, Aq : TextpMSG, Aqsq pR1q

B Transmit pB,A,Erkeypa, u, Bq :Erkeypa, u, Aq :TextpMSG, Aqssq pR2q
B Transmit pA,B,Erkeypa, u, Aq : TextpMSG, Aqsq pR3q
B εs

Fig. 4. Shamir Rivest Adelman in LP .

protocolrSRAattack2, 0,

rolepAq ^ rolepBq ^ rolepIq, rolepIq, rolepAq,
TransmitpA, impI, Bq, Erkeypa, u, Aq : TextpMSG, Aqsq pR.1.1q

B Transmit pimpI, Bq, A,Erkeypa, u, Aq : TextpMSG, Aqsq pR.2.1q
B Transmit pA, impI, Bq,TextpMSG, Aqq pR.2.2q
B Transmit pimpI, Bq, A,TextpBogus, Iqq pR.1.2q
B Transmit pA, impI, Bq, Erkeypa, u, Aq : TextpBogus, Iqsq pR.1.3q
B εs

Fig. 5. Attack on Shamir Rivest Adelman.

I. Shamir Rivest Adelman Three Pass

In this section we shall investigate one application of
attack simulation: the validation of attacks on authenti-
cation protocols. The Shamir Rivest Adelman protocol
(SRA) [9, p. 64] assumes that encryption is commutative,
which means Erk1 : Erk2 : F ss � Erk2 : Erk1 : F ss.pSRA1q A ÝÑ B : EpKA : MqpSRA2q B ÝÑ A : EpKB : EpKA : MqqpSRA3q A ÝÑ B : EpKB : Mq
The protocol is transfered to LP by The second attack
in Clark/Jacob involves two interleaving sessions.pR.1.1q A ÝÑ IpBq : EpKA : MqpR.2.1q IpBq ÝÑ A : EpKA : MqpR.2.2q A ÝÑ IpBq : MpR.1.2q IpBq ÝÑ A : boguspR.1.3q A ÝÑ IpBq : EpKA : bogusq
Although this attack on the SRA protocol is erroneous, it
is not possible to detect the attack through static validation
as was reported in [17]. Fortunately attack simulation
uncovers the two flaws in the attack. The second attack
presented in the report contains two protocol jumps. The
attack was specified in LP as described in Figure 5. The
attack includes the three roles initiator A, responder B
and attacker I . The automated refinement of the previous
attack specification is shown in Figure 6. When validating
the refined attack specification, no error is reported.
After configuring a scenario involving two good agents
Alice and Bob possessing the SRA protocol, and an
intruder agent Malice that possesses the attack protocol,
the scenario is started with Alice as the initiator of the
authentication. Let this initial configuration be denoted
Cinit. The simulation stops in a configuration Cend with
two unresolved execution predicatesE inside Alice (recall
Section VI-B), and one unresolved execution predicate
inside Malice. Malice is waiting to intercept a message
to be sent by Alice pR.2.2q, (line 13 in Figure 6):

protocol rSRAattack2, 0,

rolepAq ^ rolepBq ^ rolepIq, rolepIq, rolepAq,
EnforceApBelApnewTextpMSG, Aqqq p1q
B BelA pisKeypkeypa, u, Aqqq p2q
B EnforceA pBelApErkeypa, u,Aq : TextpMSG, Aqsqq p3q
B BelA pAgentpBqq p4q
B Transmit pA, impI, Bq, Erkeypa, u, Aq : TextpMSG, Aqsq p5q
B BelI pAgentpAqq p6q
B EnforceI pBelIpTrustpI, A,Erkeypa, u, Aq : TextpMSG, Aqsqqq p7q
B BelI pErkeypa, u, Aq : TextpMSG, Aqsq p8q
B Transmit pimpI, Bq, A,Erkeypa, u, Aq : TextpMSG, Aqsq p9q
B EnforceA pBelApTrustpA,B,

Erkeypa, u, Aq : TextpMSG, Aqsqqq p10q
B BelA pisKeypkeypa, i, Aqqq p11q
B EnforceA pBelAp

Drkeypa, i, Aq :Erkeypa, u, Aq :TextpMSG, Aqssqq p12q
B Transmit pA, impI, Bq,TextpMSG, Aqq p13q
B EnforceI pBelIpTrustpI, A,TextpMSG, Aqqqq p14q
B BelI pTextpMSG, Aqq p15q
B EnforceI pBelIpnewTextpBogus, Iqqq p16q
B Transmit pimpI, Bq, A,TextpBogus, Iqq p17q
B EnforceA pBelApTrustpA,B,TextpBogus, Iqqqq p18q
B BelA pTextpBogus, Iqq p19q
B EnforceA pBelApErkeypa, u,Aq : TextpBogus, Iqsqq p20q
B Transmit pA, impI, Bq, Erkeypa, u, Aq : TextpBogus, Iqsq p21q
B EnforceI pBelIpTrustpI, A,Erkeypa, u, Aq : TextpBogus, Iqsqqq p22q
B BelI pErkeypa, u, Aq : TextpBogus, Iqsq p23q
B εs

Fig. 6. Automated refinement of the attack on Shamir Rivest Adelman.

M (Cend
BelMalicepEpMalice, protocolrSRAattack2, 1,

rolepAliceq ^ rolepBobq ^ rolepMaliceq, rolepIq, rolepAq,
TransmitpAlice, impMalice,Bobq,

TextpMSG,AliceqqB Φ1sqq
where the protocol header includes the protocol name
SRAattack2, the session number 1, instantiated with the
three agents Alice, Bob,Malice, playing the roles A, B, I
respectively. Malice can only play the attacker role I , and
there is one start role A. Finally Φ1 denotes the rest of
the instantiated attack protocol. In the configuration Cend,
the inbuffer of Malice contains the message:

msg Erkeypa, u,Aliceq : Erkeypa, u,Aliceq : TextpMSG,Aliceqss
from Alice to impMalice,Bobq

which indicates that Alice has responded to the second
session of the protocol, the request pR.2.1q, with the
encryption EpKA : EpKA : Mqq, originally intended to
be sent from Alice to Bob. Alice expected EpKB : Mq,
yet she has no way of discovering that she was fooled
and instead got the cipher text EpKA : Mq. Hence we
have both

M (Cend
BelAlicepEpAlice, protocolrSRA, 1, . . . ,

TransmitpBob,Alice,
Erkeypa, u,Aliceq : TextpMSG,AliceqsqB Φ2sqq

and
M (Cend

BelAlicepEpAlice, protocolrSRA, 2, . . . ,
TransmitpBob,Alice, Erkeypa, u, B%q :

Erkeypa, u,Aliceq : TextpMSG,AliceqssqB Φ3sqq
where the header is supressed and where Φ2 and Φ3
denote the respective instantiated protocol tails. In the
first session pSRA, 1q, Alice plays the responder role B,
while the second session pSRA, 2q she plays the initiator
A. Thus in the first session Alice does never receive the
appropriate final message instance from Bob or by Malice
impersonating Bob. In the second session Alice is waiting
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for an instance of the second message pSRA2q, which
never appear in Alice’s inbuffer, Malice is blocked by the
attack clause pR.2.2q. Reachability analysis of the attack
shows that there are no more simulations than the one
previously described. In other words, reachability analysis
shows that

M (Cinit
d BelMalice pDonepSRAattack2,

rolepAliceq ^ rolepBobq ^ rolepMaliceqqq,
hence the attack can never succeed. The fact that Alice is
not able to finalize any intended session is also a question
of reachability, it can justified (by the model checker in
Maude) that

M (Cinit
d BelAlice pDonepSRA,

rolepAliceq ^ rolepBobqqq.
To conclude, the attack contains two severe errors, and
there is no obvious way to repair the specification.

VII. CONNECTING VALIDATION AND SIMULATION

There is a connection between static validation and sim-
ulations of attack protocols: if the simulation of an attack
specification P shows that the attack can be executed, then
the validation algorithm will succeed for P too.

The expression vpℜÆpPqq � Textp“No error found”q is
a bit cumbersome to work with inside proofs, hence we
shall stipulate that Textp“No error found”q � ε.

Lemma 2: Let RA denote the set of operational rules
for performing assumptions.piq If vpΦ, εq � ε, thenvpΦ"pF B εq, εq � vpΦ, εq"vpF B ε, εq

if F � BelapAgentpbqq or F � EnforceapBelapϕqq
or F � Transmitpa, b, ϕqpiiq Let P � protocolrµ,N, ξT , ξA, ξS , ϕB Φ s
be an executable protocol, andvpΨ"pϕB εq, εq � Textp“No error found”q, and
ϕB Φ ÞÝÑ1

r Φ denotes one application of a rule
r P RA, then vpϕB Φ,Ψq � vpΦ,Ψ"pϕB εqq.

Proof: Part piq is proven by obvious application of
definition 7. Part piiq follows by thorough of each of the
rules r P RA and definition 7.

Theorem 3: Let P � protocolrµ,N, ξT , ξA, ξS ,Φ s
be an intended protocol spesification, containing n dis-
tinct roles ξT � �n

i�1
playRolepai, xi, µq. Suppose that

there exists a configuration C containing only the agents
a1, . . . an such that M (C

�n

i�1
Belai

pℜÆpPqq and
such that the agents in C does not possess any other
protocol, and we have that M (C BelξS pstartpµ, ξT qq.
If there exists a sequence of session numbers denoted
~N � xN1, . . . , Nny, such that

M (C F♦p n©
i�1

Belai
pDonepµ, ξT , Niqqq , thenvpℜÆpPqq � Textp“No error found”q.

Proof: (Sketch) Suppose that C is such a configuration
that satisfies the premiss of the theorem, which means that
the protocol P is executable. We prove that if C

�ÞÝÑ C 1
such that M (C 1 �n

i�1
Belai

pDonepµ, ξT , Niqq, then

we have that vpℜÆpPqq � Textp“No error found”q. The
strategy of the proof is to extend an executable protocol
with piece by piece: hence the theorem is proven by
induction on lthpPq. The result follows by application of
lemma 2 and definition 7.

Theorem 4: Let P be a specification of a protocol
as described in Theorem 3. Suppose furthermore that
PA � protocolrµA, N, ξT

A
, ξA

A
, ξS

A
,ΦA s is an attack

specification. Suppose that there exists a configuration
C containing only the agents a1, . . . an, an�1, with the
requirement that M (C

�n

i�1
Belai

pℜÆpPqq such that
the agents a1, . . . an does not possess any other protocol
than P. Suppose that the attacker an�1 satisfies the
following: M (C Belan�1

pℜÆpPAqq. If either there exists
a j P t1, . . . , nu such that M (C Belaj

pstartpµ, ξT qq
or M (C Belan�1

pstartpµA, ξT
A
qq, and there exists a

sequence of session numbers ~N � xN1, . . . , Nny, such
that

M (C F♦pBelan�1
pDonepµA, ξT , Nn�1qq^ playRole pan�1, w, µ

Aq^p�n

i�1
Belai

pDonepµ, ξT , Niqqqq,
then vpℜÆpPAqq � Textp“No error found”q.

Proof: The proof is settled by a similar argument as
the proof of Theorem 3.
A natural question posed by Theorem 3 and Theorem 4
is: does simulation make validation superflous, since the
theorems imply that every error discovered by validation
is also discovered by simulation? The answer is no, simu-
lation always regards several agents running concurrently,
and it is therefore harder to understand an unsuccessful
simulation than a failure report from validation. An error
discovered by validation points to the exact place in the
attack description where something is wrong.

VIII. CONCLUSION

Several errors have been found in the most frequently
cited library on authentication protocols. A close inves-
tigation revealed that errors migrate from original papers
to the report by Clark/Jacob, and from the report to
SPORE and papers on protocol analysis. This show that
flaws in protocol attacks do occur and that they can be
hard to discover by humans. Our experience indicates
that attack descriptions should be described as accurately
as protocols and their correctness should be analyzed as
formally as protocols.

Then we presented the underlying algorithms for static
validation of attack descriptions. Attack specifications
were refined in an automated way and the resulting
refined descriptions were then validated in order to find
ungrounded beliefs. If such beliefs were found then the
specifications where considered invalid, and a break point
was given. Although the validation algorithm was used to
find several errors in Clark/Jacob, it can not find several
protocol jumps. The reason is that attack descriptions con-
taining protocol jumps might not be discovered through
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the validation algorithm. But fortunately, every protocol
jump can be discovered through simulation.

Finally we have shown how a simulator for executing
security protocols can be extended to execute attacks on
these protocols. The attack simulator has proven to be
useful in checking the correctness of attacks: the second
attack on the Shamir Rivest Adelman protocol could
only be detected by simulation, not by static validation
[17]. A recent result relating validation and simulation
was presented at the end showing that validation can be
properly embedded into simulation.
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