
A Novel Solution to Query Assurance Verifica-

tion for Dynamic Outsourced XML Databases

Viet Hung Nguyen, Tran Khanh Dang

Faculty of CSE, HCM University of Technology, Ho Chi Minh City, Vietnam

Email: {hungnv, dtkhanh}@cse.hcmut.edu.vn

Abstract – Database outsourcing model is emerging as

an important new trend beside the “application-as-a-

service” model. In this model, since a service provider is

typically not fully trusted, security and privacy of out-

sourced data are significant issues. These problems are

referred to as data confidentiality, user privacy, data pri-

vacy, and query assurance. Among them, query assurance

takes a crucial role to the success of the database outsourc-

ing model. To the best of our knowledge, however, query

assurance, especially for outsourced XML databases, has

not been concerned reasonably in any previous work.
In this paper, we propose a novel index structure,

named Nested Merkle B+-Tree, combining the advantages

of B+-tree and Merkle Hash Tree to completely deal with

three issues of query assurance known as correctness,

completeness and freshness in dynamic outsourced XML

databases. Experimental results with real-world datasets

prove the efficiency of our proposed solution.

Index Terms – outsourced XML database, query assurance.

I. INTRODUCTION

Database outsourcing is emerging as an important

trend beside the “application-as-a-service”. In the out-

sourced database service model (ODBS, see fig. 1), data

owners ship their data to external service providers. Ser-

vice providers do data management tasks and offer their

clients a mechanism to manipulate outsourced database.

This helps organizations cut down the cost of hardware,

software investment and maintenance. Specially, this

model gives organizations a cost-effective means of em-

ploying outside professional staff that is increasingly

expensive. Computer hardware is getting cheaper and

more powerful than before. Nevertheless, cost of soft-

ware and experienced staff are increasing rapidly. By

outsourcing, organizations could take the benefits of

new software and have their system maintained, up-

graded professionally with a feasible price.

Information is a valuable asset. Since a service pro-

vider is not fully trusted, organizations need to be guar-

anteed that their data is protected. This kind of security

requirement is different from that of traditional in-house

databases. The question is “how is the client‟s data pro-

tected against sophisticated attackers?” [17]. Attackers

here mean both intruders and server operators. Because a

server operator has rights to execute all database opera-

tions, traditional security barriers are useless with these

malicious insiders. This big challenge of the model is the

source of numerous researches in the community. These

problems are stated as data confidentiality, user privacy,

data privacy and query assurance [2, 17].

- Data confidentiality: unauthorized people are not

able to see outsourced data, even server operators.

- User privacy: server and data owners should not

know about the clients‟ queries and returned results.

- Data privacy: clients could not get more informa-

tion than what they are querying from the server.

- Query assurance: server has to prove that the re-

turned results are original, complete and up-to-date.

To ensure data confidentiality, data is encrypted be-

fore outsourcing using symmetric algorithms (e.g., DES,

Rijndael) or asymmetric ones (e.g., RSA). Commonly,

symmetric algorithms are preferred due to their tradeoff

between security and performance.

The two requirements, user privacy and data privacy,

are well done in many researches for both relational and

tree-structured data. A detailed discussion of these issues

is out of the scope of this paper. More information can

be found in [3, 7, 9, 15, 16, 17]. This paper focuses on the

last one, query assurance, for outsourced XML data.

In outsourcing scenario, clients do not fully trust

servers. Clients should be able to authenticate the results

they received from servers. In that respect, query authen-

tication has three important issues: correctness, com-

pleteness and freshness. Correctness means clients must

be able to validate returned records to ensure that they

have not been tampered with. Completeness guarantees

that there is no matched record excluded from the an-

swers. Freshness shows that the answers are based on

the latest version of the dynamic outsourced database.

Previous work often assumes that the database is

read-only and the results are always fresh. Hence, only

correctness and completeness are considered. Moreover,

most of these research activities have been done theoret-

ically [1, 8]. Recently, in [2, 14], the authors mentioned

about freshness, and carried out the evaluations with real

datasets. However, none of them says about query assur-

ance for outsourced XML database.

Our contributions. This paper proposes a novel au-

thenticated structure indexing all elements of a XML

Data Owners

Clients

Service

Providers

Store/Retrieve Data

Retrie
ve data

Pay for data

Secure Communication

External Servers

(Outsourced Database

Service Provider)
Clients

Figure 1. ODBS models

JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008 9

© 2008 ACADEMY PUBLISHER

document. Then we introduce a solution to the three

mentioned issues for the outsourced XML database.

The rest of the paper is organized as follows. Section

II gives background information. Section III briefly re-

views related work. Section IV discusses XML data sto-

rage format at server. Section V is about our novel struc-

ture. Section VI presents analysis and evaluation of the

proposed solution. Section VII concludes the paper.

II. FUNDAMENTAL THEORY

Existing solutions mainly falls into two approaches:

- The first approach relies totally upon digital signa-

ture scheme. By signing on each record of each rela-

tion, clients can verify the data‟s correctness. Signa-

ture could be embedded with other information to

give a proof of completeness, this kind of informa-

tion will be discussed later. However, no research in

this approach has mentioned about freshness.

- The second one uses a complex structure, called

Authenticated Data Structure (AuthDS). Servers use

this structure to build a verification object VO, and

then pass it along with the answers. After that,

clients use the VO to verify the returned results.

Besides, there are some researches in this area not be-

long to any approaches above. A brief discussion will be

presented in the next section.

A. Concept

Public-key digital signature schemes [2]. A public-

key signature is a tool for authenticating the integrity

and ownership of signed messages. Digital signature

scheme is the combination of asymmetric encryption and

collision-free hash function. Hashing the message, send-

ers have its digest, and then apply an asymmetric en-

cryption on that digest to produce the signature. Signa-

ture is sent along with the original message. When re-

ceivers receive the message, they hash the message for

the digest, and then verify the accompanied signature. If

the verification is successful, receivers could be assured

that what they received is originated from the sender.

The most popular digital signature scheme is RSA.

Aggregating digital signature schemes [2]. The cost

of digital signature computation and verification is ex-

pensive, especially, when receivers deal with thousands

of signatures. A new technique has been developed to

combine these signatures. Thereby, instead of sending

these signatures and making corresponding thousands of

verifications, a condensed signature is employed and a

single verification is done to ensure correctness. The

Condensed-RSA and the BGLS aggregated signature are

two popular samples of this scheme [5].

The Merkle Hash Tree [2]. The Merkle hash tree

(MHT) (see fig. 2), first proposed by R.C. Merkle, is one

of the most popular authentic data structure. It is a bi-

nary tree, where each leaf contains the hash of the data

value, and each internal node contains the hash of its two

children. The hash function is usually collision-free. The

verification is done because the hash value of the root is

authentically published (authenticity can be established

by a digital signature). Beside the returned value, the

sender attaches several additional hash values of some

nodes so that receiver could reconstruct hash value of

the root. If this value equals the published value, the data

is authenticated. By this mechanism, the Merkle hash

tree provides an authenticity for simple point queries.

Fig. 2 [2] shows an illustrative example. The answer

here is {5}, and then the server returns additional hash

values {h1, h34} to clients. Clients computes h2
‟
 = h(5),

h12
‟
=h(h1||h2

‟
), and root’=h(h12

‟
||h34). Since the root value

is published, if root = root’, correctness is achieved

B. Methodology

Correctness. Correctness means data has not been

tampered with as compared to the origin. Digital signa-

ture is the most favorite solution. If the data is signed by

owners‟ private keys and their public keys are well

known, clients could easily verify that returned results

are truly from the owner and have not been altered.

Completeness. There are a lot of methods to give

proof of completeness. Most of the researches concen-

trate on range query and point query. In general, point

query is the query that returns records whose attributes

equal the conditional value and range query returns

records whose attributes are within two given boundary

values. Because point query is a specific case of range

query, if we achieve completeness for range query, then

we have it for point query in the same way.

Now, suppose that a range query Q on relation R re-

turns a set of records S, we have:

 S = {R | RR, R.x ≥ LB, R.x ≤ UB} (1)

In which, LB and UB are two given boundary values

and R is a tuple in relation R.

To give a proof, the server includes two additional

tuples of relation R in result set as follows.

Sb = {RL | RiR , RL.x = max(Ri.x), Ri.x < LB, i}

{RU | RjR , RU.x = min(Rj.x), Rj.x > UB, j} (2)

If this attribute orders the relation R and RL, RU are

proven to be satisfied formula (2), there is no record

falling into RL and min(S), RU and max(S); and so the

completeness proof is achieved.

Freshness. Outsourced data is embedded with unique

time information called timestamp [2,14]. Timestamp is

widely published to all clients. When data owners

change the data, they update the timestamp and an-

nounce it again. Freshness is achieved if extracted time-

stamp from the answers equals the published one.

III. RELATED WORK

There are several researches in this area, and this sec-

tion will concisely summarize major work here. As pre-

sented in section II.B, to achieve correctness, each tuple

h1 h2 h3 h4

3 5 6 9

h34 = h(h3||h4)h12 = h(h1||h2)

root = h(h12||h34)

Figure 2. Example of the Merkle hash tree.

10 JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008

© 2008 ACADEMY PUBLISHER

of a relation is signed by a private-key with a digital

signature algorithm [1, 5, 14]. The signature is stored

along with the tuple. Returned tuple itself contains a

signature; clients re-compute the hash and then verify

the signature to ensure correctness. Another interest is

the granularity that relates to which level of relation

should be signed. There are three levels of granularity:

whole relation, tuple or attribute [1]. Signing the whole

table requires the server to return all tuples in the an-

swers, which is unfeasible. If signature is at row-level,

the answers will include all attributes of the rows so the

data privacy is violated. In case of column-level, the

computation and storage cost at both server and clients

are overhead due to expensive large-integer calculations

for a signature. However, by employing aggregated sig-

nature technique, several signatures are combined into

the only one passed to clients. Clients do a single verifi-

cation for all returned data; column-level granularity

could be taken into account.

A different approach uses an extra data structure

called authenticated data structure (AuthDS), proposed

in [2, 8], by extending the idea of MHT. This approach

provides correctness and completeness [2, 8] as well as

freshness [2]. In this scheme, data is sorted at leaves of a

tree. Leaves also contain hash of data; internal nodes

contain hash of their children that calculated by hashing

the combination of children‟s hashes. These calculations

ensure the order of data in the sorted list. Therefore, as

mentioned in section II.B, they could prove both cor-

rectness and completeness. Additionally, the root con-

tains a well-known timestamp value [2]. Clients will

extract the timestamp from the answers; compare it with

this value to know how much up-to-date the answers are.

AuthDS is usually large and complex. It takes an ex-

tra cost for storing and maintaining these structures. In

[5], the authors introduced a new signature-based me-

thod called Digital signature aggregation and chaining

(DSAC), which gives a concise proof of correctness and

completeness with a effective storage cost. The main

idea of DSAC is also the same as that of AuthDS, which

was detailed in section II.B.

R5R6 R7-¥ +¥

R5R2 R6-¥ +¥

R5R7 R12-¥ +¥

A1

A2

A3

Figure 3. Signature Chain [5].

The relation is sorted by all searchable attributes to

have ordered lists. Each tuple has some neighbors (left

and right) in lists. In fig. 3, left neighbors of R5 are R6,

R2, R7 in three searchable dimensions based on attribute

A1, A2 and A3 respectively. Ref. [5] calls left neighbors

immediate predecessor (IPR). The signature of each

tuple contains hashes of its entire IPR (see formula 3).

 Sign(r) = h(h(r)||h(IPR1(r))|| … h(IPRl(r)))SK (3)

With signatures chained in the above fashion, the

server answers a range query by releasing all matching

tuples; the boundary tuples which are just beyond the

query range (to provide a proof of completeness) as well

as the aggregated signature corresponding to the result

set. Specifically, the querier verifies that the values in

the boundary tuples are just beyond the range posed in

the query. At the same time, the querier verifies that

there are no other tuple between the boundary tuples and

the satisfied ones. This is because boundary values are

linked to the first and the last tuple. Therefore, the queri-

er obtains a concise proof of completeness [5].

The above paragraphs discuss two main approaches in

query authenticating: the signature based approach and

the AuthDS approach. However, these two approaches

concentrate only on range queries and do not address

aggregated ones. Moreover, both of them are query un-

derstanding. It is means these solutions have to analyze

the query syntax, and require some extra information

(signature or AuthDS) for the proof, and do certain tasks

in query processing process. This causes a high cost with

respect to complex query processing.

To overcome these problems, a new approach extend-

ing the ringer protocol of distributed computing has

been developed [11]. In this approach, query authenticat-

ing is proven for all types of query, regardless their

forms. However, the probability of successfully cheating

at servers is too high, approximate 33% [11]. A recently

research employs the idea of fake records, which is

stated to be deal with join query more efficient [6].

IV. STORAGE OF OUTSOURCED XML DATABASES

XML is a de-factor standard for information inter-

change. An XML database consists of semi-structured

tree data in text format. Therefore, the need of outsourc-

ing XML data is quite natural. Many recent work could

be applied to outsourced XML databases to obtain pri-

vacy and confidentiality [2, 4, 9]. None of them, how-

ever, is about query authenticating for XML database

although there are many efforts for the relational one.

To cope with security problems of outsourced XML

databases, we could create an algorithm to transform an

XML database to a relational one in which security

problems are solved well. Alternatively, we need to de-

velop a particular method dealing with the problems.

Hence we should first answer the question “how do we

store XML data?”. The answer strongly influences to the

way we deal with this problem.

Table based. Each XML document has a schema,

called schema tree that defines the relation between

nodes and their attributes (parent-child relationship). A

schema tree consists of two node types: element node

and attribute node (hereafter, referred to as t-node and a-

node, respectively). With the schema tree, an XML doc-

ument could be transformed to tables as follows.

First, label all t-nodes with integers incrementally so

that their labels are unique in the whole XML document.

For each t-node, create a table named by suffixing t-

node‟s name with its label. The table should have one

more column, called ID, which is its primary key. If a t-

node has a parent, we append a column named PNodeID

to point to its parent‟s corresponding table. Finally, for

each attribute a-node, append to the table a column

named as the a-node‟s name.

Fig. 4 illustrates a sample. From a given XML docu-

ment (A), we extract its schema tree (B). After labeling,

JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008 11

© 2008 ACADEMY PUBLISHER

we transform it into relational tables (C).

Once an XML document is transformed, prior work is

applied to achieve query authenticating. However, an

XML database schema is changed easily. That causes

the table schema to change also, and sometime forces

the data to be re-outsourced.

Node based. XML document is structured as a tree

with t-nodes and a-nodes that could be saved in a single

table. Each node has enough data to reconstruct the

XML text. Schema for t-node and a-node is as follows.

t-node(nodeid, xtype, datatype, nameid, pnodeid, lmaid, value)

a-node(nodeid, xtype, datatype, nameid, pnodeid, sibid, value)

In which, Xtype is used to distinguish t-node and a-

node among the records. Datatype determines type of

the value (text, numeric, etc.). NameID is the node‟s

identity (use labeling like that of table based). PnodeID

refers to parent node‟s tuple. lmaID refers to the left-

most attribute of the node. sibID refers to the right sibl-

ing attribute. Value is the value of the node/attribute.

For security reasons, this information is serialized into

an encrypted binary string before outsourcing. Storing

XML documents under such a node-based format con-

forms to tree-structured data. Changing an XML docu-

ment schema does not dramatically affect the outsourced

data because it just appends the modified node to the

database. However, each element is stored by many

records for the tag name and attributes. Thus outsourced

database storage cost may become overhead. Further-

more, it is too difficult to utilize the existing indices.

V. QUERY ASSURANCE FOR OUTSOURCED XML DA-

TABASE

An important factor for a feasible solution to query

assurance of outsourced XML databases depends on

index structures, which are employed to manage the

storage and retrieval of the data. By embedding extra

information into this structure, we could achieve query

assurance. Most related work about XML indexing

could be found in [4, 18]. However, these structures are

not suitable for query authenticity purpose because we

expect an ordered list of all XML elements (both xml-

tags and xml-attributes) for giving completeness proof

(cf. section II.B). Additionally, most of the queries re-

quire join-operations that take an expensive cost for

proving the query completeness. In order to obtain an

effective proof for the completeness (cf. section II.B), all

elements should be sorted by two criteria: (path, value)

and (path, parent, value), where path is the path from

the tree‟s root to a given node. However, existing data

structure could not help this. Therefore, we introduce a

novel index structure, called Nested Merkle B
+
-Tree, to

facilitate the storage and retrieval as well as to ensure

the query correctness, completeness and freshness for

outsourced XML databases.

A. Nested B
+
-Tree

As mentioned above, we desire an index structure that

sorts all elements by their corresponding combinations

(path, value) and (path, parent, value). Here, we list out

all possible paths from root to leaves, and associate each

path with a unique integer called nameid. To construct

this structure, a B
+
-Tree, named NameTree, with the

search key is nameid (equivalent to path) is employed.

At each leaves‟ entry of NameTree, instead of record‟s

links, there are two links to two new B
+
-Trees having

value and (parent, value) as their search keys, respec-

tively. We call these trees ValueTree and ParentTree

(see fig. 5). Leaves of ValueTree and ParentTree store

links to a-node or t-node records (hereafter, referred to

as data records). Note if many data records have the

same key then they are in a same entry. The solution is

employing an additional structure called bucket, which

stores references to all same data records. In addition, an

entry of the leaf points to this bucket. Combining these

trees, we have Nested B
+
-Tree (NBT).

B. Nested Merkle B
+
-Tree

Basing on the idea of the MHT, we attach some in-

formation to NBT for giving proof of query assurance.

Each node of NBT has hashes of its children. These

values are calculated as follows.

a-node : Ha-node = h(nodeid||xtype||…||value) (4)

t-node : Ht-node = h(h(nodeid|| …||value)||i Hattr) (5)

Leaf of ValueTree, ParentTree: HL= h(i Hdata-record) (6)

Internal node: HI = h(i Hchild-node) (7)

Leaf node of NameTree: HL-N = h(Hvtree || Hptree) (8)

Root node of NameTree: HR = h(|| i Hchild-node) (9)

Where, Hattr is hash value of an a-node of a given t-

node. Hdata-record is either Ha-node or Ht-node that associated

to the link. Hchild-node is one of HL, HI or HL-N. Hptree and

Hvtree are hash values of the roots of corresponding Pa-

rentTree and ValueTree. denotes a timestamp value

and h() is a one-way non-invertible hash function (e.g,

SHA-1, MD5). Additionally, we sign the root of Name-

Tree by private-key of a digital signature scheme (such

as RSA, DSA). The corresponding public key and time-

stamp are broadcasted to all clients.

C. Providing query assurance

Correctness and Completeness. Assume that the re-

sult set consists of leaf entries in ValueTree that contain

links to records fallen into a given range (range query).

As mentioned in sec. II.B, two additional boundary

records are included in the result set. These entries oc-

cupy some adjacent leaves, say {Li, Li+1,…, Lj}. The

...

... ...

NameTree

ParentTree ValueTree

(n
am

eid)

(p
nodeid, v

alue)

(v
alue)

Figure 5. Nested B+-Tree.

Figure 4. Transform an XML document into tables.

12 JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008

© 2008 ACADEMY PUBLISHER

server returns data records and hash values of not-in-

result entries in Li and Lj so that clients could re-

compute hash values of these leaves. Similarly, the se-

ries {Li, Li+1,…, Lj} occupies entries in some internal

nodes, say {Ix, Ix+1,…, Iz}. In addition, hash values of the

remained entries in internal nodes are returned. Recur-

sively, the server returns the root with its signature and

timestamp. These not-in-result entries (in both leaves

and internal nodes) are called co-path. Actual results and

co-path are packaged in a structure called VO (verifica-

tion object) and sent to clients. The clients will recalcu-

late hash value of the root, and then verify it with the

signature to assure both correctness and completeness.

More detail of co-path and VO could be found in [8].

Freshness. Along with the result set, the server re-

turns timestamp value of the root. After verifying the

root‟s signature, clients compare returned timestamp to

the well-known timestamp broadcasted by the data own-

er before. If two values are equal, clients are guaranteed

about freshness of the result.

D. Select operation

The above shows how to use NMB
+
-Tree to achieve

query authenticity for the simplest situation that returns

a single and contiguous record set. It is just a single step

among many necessary ones. To answer a query, the

server performs some other tasks in a specific order

called execution plan. Next, let us see some examples of

XPath to find out a general method for query processing.

As illustrated in fig. 6, the round rectangular nodes

stand for elements and the sharp corner ones are

attributes. The number next to node is nameid value.

Example 1 is about “List all sold items named

„TV‟?”. The corresponding query in XPath should be

expressed like /Customer/Order/Item[@name =”TV”].

The server scans NameTree with nameid = 13 to get the

ValueTree. Then, the server scans on the found Value-

Tree with value = ‘TV’ to list out all satisfied attributes

name_13 and builds a VO for authenticity. With the

pnodeid field in each found name_13, the server reads

and appends these Item_8 into the VO. Because there is

only one Item_8 for each name_13, the server needs not

to provide any information to prove query assurance. For

each Item_8, the server returns two remain attributes.

These steps could be rewritten as follows:
STEP#1 IndexMethod : Vtree, nameID=13

Condition : equal to [TV]

Result level : not included

Retrieval : node only

StepValue : PNODEID

[For each matched item, perform]

STEP#2 IndexMethod :DirectIDAccess,

id=ParentStepValue

 Result level : 1

 Retrieval : node and all its attributes
Example 2 deals with a question “List all items

bought by Marry?” and its query is /Customer[@name=

”Marry”]/Order/Item. The server does some similar

jobs to obtain satisfied Customer_1 records. For each

Customer_1, the server scans on ParentTree3 with pno-

deID equals id of Customer_1. The ParentTree3 is the

ParentTree located in the leaf entry that nameid = 3 of

the NameTree. A VO is built to give proof of query as-

surance for these records. Similarly, the server returns

expected Item_8 records and their VOs.

Unifying VOs. For each matched Customer_1 record,

the server returns an Order_3 record set that have

pnodeid point to the Customer_1 record and, similarly,

an Item_8 record set for each found Order_3. Therefore,

the server returns many record sets and each of them

requires a VO. Thus, the number of VOs is linear with the

product of matched records in Customer_1 and Order_3.

This could dominate communication and computation

cost at clients. Hence, instead of building multiple VOs,

the server only builds a single VO for all returned record

sets by making a slight modification on the co-path ge-

nerating algorithm. Thus, the clients only have to carry

out a single verification for all returned record sets.

E. Update operations

Since the database could be changed even if it has

been outsourced, feasible solutions should have an ac-

ceptable cost for update operations. Update operations

refer to insertion, update, and deletion. Data owners

could make changes to a local copy of the database then

outsource it again. Here, we refer to another scheme that

data owners do not have any local copy and/or re-

outsourcing is impossible.

The most important issue of an update operation is to

recalculate embedded security information. In this

scheme, we should recalculate the data nodes relevant

and their associated index nodes. The basic idea for this

protocol is shown in fig. 7. In general, an update could

be treated as a series of delete and insert operations.

 Insertion. To insert a new element into database, the

owner first serializes it into t-node and a-node. These

nodes are sent to server to insert into the database and

update the index structure. This will change the hash

value of a leaf, and then the change is propagated to its

ancestors (up to the root). The server recalculates these

hash values and returns the new hash of the root to the

data owner. The data owner generates a new timestamp

value , combines it with the hash value then signs on it

with the private key. The signature and are sent to the

server to update the root. Then, the owner announces the

new timestamp to all clients. If many nodes are inserted

at the same time, batch operation could be considered to

Figure 7. Update protocol.

Customer

Name

Address

State City

Order

Employee

Name Code

Item Amount

Name Price Qty

1

2 3

4

5 6
7 8 9 10

11 12 13 14

Date

15

Figure 6. An example of labeled XML schema tree.

JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008 13

© 2008 ACADEMY PUBLISHER

minimize the root-resigning round.

Deletion. Performing a deletion is similar to an insert.

The difference is the first round of the protocol. Instead

of inserting, server has to locate deleted node in the in-

dex tree then removes it from the index and database.

The remains are the same as that of the insertion process.

VI. ANALYSES AND EXPERIMENTS

Until now, no research work about query assurance of

outsourced XML databases has been carried out. Hence,

this section theoretically analyzes the solution with re-

spect to storage cost and VO size. Table I summarizes

the notion used in this section.

Storage cost. Storage cost here is referred to as the

cost for additional security information. In our scheme,

this is the cost of storing the NMB
+
-Tree. The NMB

+
-

Tree consists of one NameTree, several ValueTrees and

ParentTrees. Because the number of nameid is smaller

than that of elements, the storage cost for ValueTrees

and ParentTrees dominates the overall storage cost.

Formulating the number of ValueTrees and ParentTrees

in a database is very difficult because it depends on the

XML document structure. Therefore, we suppose that

only one type of node in the XML document, hence

there is only one nameid in the whole database. This

means there are one-element NameTree, one ValueTree

and one ParentTree. Thus the storage cost is cost of stor-

ing n-elements ValueTree and ParentTree.

In addition, we assume that these nodes are distin-

guished by their values. The minimal and maximal num-

bers of leaves are calculated as formula (10). Hence, we

can get the minimum when all leaves are full (f entries)

and the maximum when they are half-full (f/2 entries).

f

n
L

f

n
L VTreeVTree 2, maxmin

 (10)

Then we have:

 1log minmin + VTree

f

VTree Lh , 1log max

2

max +

 VTree

f

VTree Lh (11, 12)

1
1

1

1
1

1

minmin

min

+

-

-

-

f

f
LN

h
VTree

,

1
2

1

2
1

1

maxmax

max

+

-

-

-

f

f
LN

h

VTree

(13,14)

The overall storage cost is calculated as follows.

++

++

PTreeVTreeNTreestorage

PTreeVTreeNTreestorage

NNNC

NNNC

maxmaxmax

minminmin (15)

In fact, many elements may have the same (nameid,

value) or (nameid, parentID, value). These elements will

occupy only one entry in the index tree. So, before ap-

plying these formulas, we should determine a value n’

that is the number of distinct elements by mentioned

conditions. Then, we replace any occurrences of n in

(10) by n’. The actual storage cost is achieved by count-

ing the number of index nodes in the database.

VO size. Similarly, only extra information returned to

clients to give query authenticity is concerned. The for-

mula (14) is used to calculate the size of a single VO.

 C
VO

 =|sign| C
VO

i , i = 1,h
NMBTre

 , (16)

Formula of C
VO

i is listed in table II.

Overall cost. The overall cost includes I/O cost, com-

munication cost, CPU cost at both server and client. Ex-

periments are performed in a local environment; there-

fore, communication cost is omitted. However, this is

directly proportional with the VO size. We simulate the

overall cost by measuring query-processing time since a

query is submitted to server until a completed XML re-

sult text is reconstructed from the returned data. To

know the I/O cost, for each query, we measure the num-

ber of nodes that have been loaded from the database

into memory during the query processing process. There

are six phases of the query-processing process: parsing

query, planning, fetching, building VO, verifying VO,

and re-generating XML text. Parsing phase receives

query text from client, builds a corresponding syntax

tree, and then passes it to the next state. Planning phase

uses the syntax tree came from parsing phase, does some

optimization to produce the executing plan. Fetching

phase performs the query follow the executing plan,

fetches matched data from database. Building VO phase

collects additional information to build the VO, and

sends this VO along with the result set to the client. Veri-

fying VO phase takes the returned VO and verifies the

result to ensure query assurance. Finally, regenerating

phase reconstructs XML text from the answer. The first

four phases happen at server, called server-side phases.

The last two phases happen at client, called client-side

phases. However, the benchmark program ignores two

server-side phases, Parsing and Planning, because they

are complex and not affect much to the evaluation.

Experimental results. The experiments are con-

ducted on a P4-2x2.0GHz Windows Vista with 2GB of

memory. Benchmarking program is written in VB.NET

2005, .NET Framework 2.0. Data encryption and digital

signature are Rijndael and RSA-1024, respectively. The

TABLE II.
FORMULAS ARE USED TO CALCULATE VO SIZE.

The number of nodes at a

depth

Additional elements in

co-path

h

 +

f

s
Lh

2 C
VO

h = f.Lh - s + 2

h-1 Lh-1 = Lh/f C
VO

h-1 = f.Lh-1 – Lh

… … …

h-i Lh-i = Lh-i+1/f C
VO

h-i = f.Lh-i – Lh-i+1

TABLE I.
FORMULA NOTION.

n Total number of data item (element and

attribute)

s Number item of result set.

f fanout parameter NMB
+
-Tree.

h
T

min|max Min/max height of a tree T.

L
T

min|max Min/max number of leaves in a tree T.

N
T

min|max Min/max of total nodes in a tree T.

|sign| Size of a hash value. (20 bytes for SHA-1)

14 JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008

© 2008 ACADEMY PUBLISHER

DBMS is MSSQL Server 2005 Express for storing the

encrypted database. Moreover, test data are 69,846 items

XML document [12], representing world geographic

database integrated from the CIA World Fact book, for

all the tests. Finally, Windows high-resolution timer

APIs are used to measure time cost.

The program reads the XML document, imports its

nodes and attributes into an encrypted database. By

counting the actual number of tree nodes (both internal

nodes and leaves), the program collects the storage cost,

which are compared with calculated values show in fig.8

In which, the Min Nodes and Max Nodes are theoretic

nodes calculated by formula (13) and (14).

To evaluate performance, the program carries out cer-

tain queries based on the data distribution. Fig. 9 is the

datagram of nodes /mondial/country and their children.

The outer dotted line is the number of /mondial/country

nodes, this number is about 60% of the whole document.

It is clearly that the query should relate to these nodes.

The next dashed line shows the distribution of

/mondial/country/province nodes. The last solid one is that

of /mondial/country/city nodes. Since two children of

/mondial/country nodes, city and province, are majority,

other children are not concerned here. Examining this

datagram (fig. 9) helps to choose following queries:

/mondial/country/province/city (name as P) and / mondi-

al/country/city (name as C). These queries are performed

with three different conditions to assess efficiency of the

index structure: population between 100K and 200K; popu-

lation between 400K and 500K; and population > 500K. The

first condition returns the largest result set; the second

produces the smallest one; and finally, the third returns

the average one (see fig. 10 for the item distribution

based on population value).

The program measures three important parameters:

result size, I/O cost, and overall execution time. The

result size is the number of returned items. Since I/O

cost is proportional with amount of data loaded from

database, then the number of read nodes could represent

this cost. The overall execution time is obtained by sub-

tracting the time when result texts are completely recon-

structed by the time when the query processing begins.

To understand these measured numbers clearly, we ana-

lyze their difference when the database size increases.

Charts in fig.11 show the increase of I/O cost and

overall cost in percentage over the database size. These

charts have the original at 10K items. Measured values

are called V10K. The increases here, of course, are 0%.

When database size is up to 20K, measured values are

V20K. Then the increases at this point are as follows:

 20K = (V20K – V10k)/V10K (17).

Similarly, we have xK, where x runs from 30K to 70K.

Fig. 11 presents increases of the query C and P within

three segments of population value. They are [100K,

200K], [400K, 500K], and (500K, +∞) which are illu-

strated from chart A to C, respectively. The Result size

line is the increase of returned items; the I/O Cost line is

that of number of items loaded into memory during

query processing; and the last Exec. Query line is that of

overall consumed time to process query. As mentioned

in fig. 9, data are distributed from the size 0K to 42K

items. Thus, the Result size is linear in range (0K, 50K).

After that, there is no matched record, so the Result size

is horizontal. I/O cost and processing time are propor-

tional with result size. So, the I/O Cost and Exec. Query

lines are also linear in range (0K, 50K). In range (50K,

60K), the result size is not vary. However, database size

increase does not affect index structure strongly. Thus,

the two lines, I/O Cost and Exec. Query, are nearly hori-

zontal. When the database size is up to 70K, it changes

Figure 8. Number of actual nodes compared to min-, max-one.

Storage cost

1.821

3.518

5.264

6.894

7.920
8.703

9.885

0K

2K

4K

6K

8K

10K

12K

10K 20K 30K 40K 50K 60K 70K
size

node

Min nodes Actual nodes Max nodes

Figure 9. Distribution of mondial/country nodes and their children.

Figure 10. Distribution of /mondial/country/city (left) and
/mondial/country/city (right) base on their population value.

Figure 11. Increases of I/O cost and processing time over database size (query C and query P)

JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008 15

© 2008 ACADEMY PUBLISHER

the index structure. This change makes I/O Cost and

Exec. Query go up a little. However, the I/O Cost in

chart CB of fig. 11 has a big jump. This is a special case.

Changes of the index structure made by database size

increase affect the I/O cost due to specific data distribu-

tion.

VII. CONCLUSIONS AND FUTURE WORK

This work explored the problem of query assurance of

query replies in outsourced database. In particular, we

developed a novel index structure called Nested Merkle

B
+
-Tree by which we could completely achieve query

assurance for dynamic outsourced XML data, ensuring

the query correctness, completeness and freshness. Our

proposed solution is among the first efforts in this area.

We also implemented a benchmarking program for ex-

periments and carried out evaluations with real datasets

to show the efficiency of the proposed solution.

In the future, we will further investigate other com-

plex forms of XPath/XQuery, especially aggregated

function ones. Moreover, another approach could be

taken in mind is to employ multi-dimensional access

methods (MAMs) [13] for the storage and retrieval man-

agement of outsourced XML data. Although MAMs

bring in many advantages for the indexed data, they in-

troduce challenging issues related to security, especially

for outsourced databases. Thus, further research in this

direction will be interesting.

REFERENCES

[1] E.Mykletun, M.Narasimha and G.Tsudik, “Authentica-

tion and Integrity in Outsourced Databases”, Proc.

ISOC Symp. on Network and Dist. System Security,

USA, 2004.

[2] F.Li, M.Hadjieleftheriou, G.Kollios and L.Reyzin,

“Dynamic Authenticated Index Structures for Out-

sourced Databases”, ACM SIGMOD, USA, June 2006

[3] H. Hacigümüs, B. Iyer, C. Li and S. Mehrotra, “Execut-

ing SQL over Encrypted Data in the Database-Service-

Provider Model”, ACM SIGMOD, USA, Feb 2002

[4] H.Wang, S.Park, W.Fan and P.S.Yu, “ViST: A Dynam-

ic Index Method for Querying XML Data by Tree Struc-

tures”, ACM SIGMOD, USA, June 2003

[5] M. Narasimha and G. Tsudik, “Authentication of Out-

sourced Databases using Signature Aggregation and

Chaining”, Proc. Intl. Conf. on Database Systems for

Advanced Applications, April 2006

[6] M. Xie, H.Wang, J.Yin and X.Meng, "Integrity Audit-

ing in Outsourced Data",Proc. 33rd VLDB Conf., Aus-

tria, 2007

[7] P. Lin and K.S. Candan, “Hiding Tree-Structured Data

and Queries from Untrusted Data Stores”, Proc. 2nd Intl.

Workshop on Security in Information Systems, Portugal,

April 2004

[8] P.Devanbu, M.Gertz, C.Martel and S.G.Stubblebine,

“Authentic Thrid-party Data Publication”, Proc. IFIP

Workshop on Database Security, The Netherlands, 2000

[9] P.Lin and K.S. Candan, “Secure and Privacy Preserving

Outsourcing of Tree Structured Data”, Proc. 1st Work-

shop on Secure Data Management, Canada, August

2004

[10] R. Brinkman, L. Feng, J. Doumen, P.H. Hartel, and W.

Jonker, “Efficient Tree Search in Encrypted Data”,

Information System Security Journal, 13, 14-21, 2004

[11] R.Sion, “Query Executing Assurance for Outsourced

Da-tabases”, Proc. 31st VLDB Conf., Norway, 2005

[12] Sample dataset World geographic database,

http://www.cs.washington.edu/research/xmldatasets/dat

a/mondial/mondial-3.0.xml.

[13] T.K.Dang, “Semantic Based Similarity Searches in

Data-base Systems (Multidimensional Access Methods,

Similarity Search Algorithms)”, PhD thesis, FAW-

Institute, University of Linz, Austria, May 2003

[14] T.K.Dang and N.T.Son, “Ensuring Correctness, Com-

pleteness and Freshness for Outsourced Tree-Indexed

Data”, Information Resources Management Journal

(IRMJ), Idea-Group Publisher, Jan 2008, in press.

[15] T.K.Dang, “A Practical Solution to Supporting Obli-

vious Basic Operations on Dynamic Outsourced Search

Trees”, Special Issue of International Journal of Com-

puter Systems Science and Engineering (CSSE), CRL

Publishing Ltd, UK, 21(1), 53-64, Jan 2006

[16] T.K.Dang, “Oblivious Search and Updates for Out-

sourced Tree-Structured Data on Untrusted Servers”,

International Journal of Computer Science and Applica-

tions (IJCSA), 2(2), 67-84, June 2005

[17] T.K.Dang, “Security Protocols for Outsourcing Data-

base Services”, Information and Security: An Interna-

tional Journal, ProCon Ltd., Sofia, Bulgaria, 18, 85-

108, 2006

[18] T.Shimizu and M.Yoshikawa,“An XML Index on B+ -

Tree for Content and Structural Search”, 2005,

http:/dl.itc.nagoyau.ac.jp/~shimizu/papers/shimizu_dew

s2005.pdf

 Mr. Viet Hung NGUYEN received his IT BEng. degree in

2003 and MSc degree in 2007 from HCMC University of

Technology (Vietnam). From 2003-2006, he worked for a local

software development company. He experienced in analysis

and development of information management system. Since

May 2006, he has been working as research assistant in the

Faculty of CSE in HCMC University of Technology. His re-

search interests include advanced security and modern infor-

mation system.

Dr. Tran Khanh DANG obtained his BEng. degree from

HCMC University of Technology (Vietnam) in 1998. He got

his PhD degree in May 2003 at FAW Institute, Johannes Kep-

ler University of Linz (Austria). From 1998-2000, he worked

as a lecturer and researcher in the Faculty of CSE, HCMUT.

From 2003-2005, he worked as a lecturer and researcher in the

School of Computing Science, Middlesex University in Lon-

don (UK). He has been working as lecturer and researcher in

the Faculty of CSE since Oct 2006. Of late, he founded Ad-

vances in Security & Information Systems Lab at the faculty.

His research interests include database and information securi-

ty, similarity search and flexible query answering systems,

modern information systems and applications, and distributed

systems and parallel processing. He published more than 40

papers in international journal/conferences.

16 JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008

© 2008 ACADEMY PUBLISHER

