74

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

Extending Component Composition Using
Model Driven and Aspect-Oriented Techniques

Pedro J. Clemente, Juan Herandez and Fernando Sanchez
Department of Computer Science, University of Extremad8gain
Email: {pjclemente, juanher, fernanfg@unex.es

Abstract— Component-based software engineering is an
interesting and emerging discipline focused on reuse
plug&play pieces of software. However, these pieces of
software are distributed by the companies as binary units
of composition. So, nowadays the system requirements are
continuously evolving, as a consequence the component
acquired normally need to require be adapted to these new
requirements. However, once a binary component is ready
to market, its contract cannot be changed in order to be
adapted to new context or new requirements. In this sense,
new modularization mechanisms like aspect-orientation aa
facilitate the software systems adaptation and evolution.
Besides, this kind of modularization joined to model
driven techniques can help to obviate contracts and weave
new behavior to an already developed system. In this
paper, a component composition mechanism based on
aspect-oriented and model-driven techniques is presented
extending the typical composition based on interfaces and
events. To do this, the components and their relations (basi
relations —provides, uses— and extended relations descet
using aspect-oriented techniques) are modeled using
UML. Then, using our approach based on model-driven
development (MDD) the system modeled is transformed
to obtain a component based system based on a specific
component model. This work has been developed using
Corba Component Model (CCM) as the component modél

Index Terms— Model Driven Development (MDD),

Aspect-Oriented Software Development (AOSD), CBSE,
MDA, CCM.

I. INTRODUCTION

tested and validated. This approach shifts organizations
from application development to application assembly.

However, the ideal panorama that advocates component
based development (as a fast assembly mechanism for
building final enterprise applications) is based on a false
comparison with electrical and electronic devices: slgtab
tension, suitable voltage, suitable connectors, plug-and
play, etc. CBSD still has to deal with many challenges
before achieving this ideal goal, from the most obvious
disagreements/discrepancies (different definitions cdtwh
a software component is, market competition because of
distinct companies trying to make their products industry
standards) to more technical problems (interoperability
issues, modular adaptation and evolution to new require-
ments, component composition from early phases of the
software life cycle, just to mention a few).

This article focuses on the composition and later as-
sembly of black-box components at the different stages
of the component life cycle. The composition mechanism
is driven from the modeling phase, allowing software
components both to evolve and to be adapted to changes
and new requirements. In the scope of this work, we
follow the notion of component given by C. Szyperski
[1]: A software component is a unit of composition
with contractually-specified interfaces and explicit @xtt
dependencies only.

The CORBA Component Model (CCM) [2] is one of
the industry-standard component models that, from our
point of view, closest follows the Szyperski's definition.

Component-based software development (CBSD) hag ccm component offers a contract to other compo-

been recognized as one of the key technologies for thgents by means of its interface, which may describe
construction of high-quality, evolvable, large softwarefacets (provided interfaces), receptacles (requiredaper
systems in timely and affordable manners. Constructingion interfaces), event sources (the produced events)f eve
an application under this setting involves the use okjnks (the consumed events) and configurable properties
prefabricated pieces, perhaps developed at differenstimethrough attributes. Nevertheless, the simple task of agldin
by different people, and possibly with different uses inpew requirements to an already functioning system com-
mind. The ultimate goal, once again, is to be able toygsed of CCM black-box components becomes a difficult
reduce development costs and effort, while improving theask pecause of the binary nature of the existing com-
flexibility, reliability, and reusability of the final apmla- ponents. Although the general approach of the technical
tion due to the (re)use of software components alread¥o|ution could be the insertion of proxies or wrapper
components into assemblies, this may become a tedious
task because they must be hand-written, being thus error
prone.

This paper is based on “Driving component composition frarlye
stages using aspect-oriented techniques,” by Pedro J.e@GtemJuan
Hernandez and Fernando Sanchez, which appeared in tecedeings

of the 40th Hawaii International International Confererare Systems
Science. Adaptive and Evolvable Software Systems: TedesigTools
and Applications Track, Hawaii, USA, January 20Q3.2007 |IEEE.

1This project has been financed by CICYT project number TINi20O
09405-C02-02

© 2008 ACADEMY PUBLISHER

On the other hand, aspect-orientation provides trans-
parent and flexible composition mechanisms (mainly at
programming level), allowing crosscutting concerns (or
new behaviour) to be automatically woven with other sys-

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 75

tem concerns. In this sense, we claim that aspect-oriente [missen)
composition mechanisms may be applied to black-bo: PN boremeeereryes ° _ _
component composition, thus allowing components to be| et compenentt mertace2
adapted and reused.
In this paper we provide an approach based on mode < nertace »> pRrT——
driven development (MDD) [3] that allows component | | oo Sy ———
composition to be driven from the early stages of the | [-ows o
component life cycle, by applying aspect-oriented weav

ing techniques at design level and wrapping concepts to

CBSD. We extend wrapping beyond its current use as

an implementation artifact, applying it to all stages of

CBSD in order to automatically draw up black-box com- (s

ponent composition from analysis and system design until

deployment. Concretely, this paper present the following

contributions:

o« A new UML2.0-based profile for modeling com- o

ponent and aspect based systems is proposed. Thi
models obtained through the use of this profile

+11_Operation1(:void +12_Operation1(:void +13_Operation1():void

Figure 1. Initial component based system

+12_Operation2():void +13_Operation2():void

guide the system development. This profile includes o i v
several new stereotypes to model concerns and their
relationships with the base component based system.
This UML profile can be used to model both static — [10peraion sequence piagram system updted)
and behavior system view.
o A model-to-model transformation is presented. The
model obtained using our profile is transformed from T3 i operaton: > :
a model based on components and aspects to a mode 1 2 13 perationty |
based only on components. In this sense, an extendec
composition mechanism based in the main aspect- ! - ’ﬂ'sf..z_olseranonz
oriented principles is used to allow component com- } 13- Operationt.

l :Comgoneml‘ l :ComponenlSl l :Component2

position to be performed during the design phase.

« Software artifacts such as XML assembly descriptors : :
and wrapping code are automatically generated from «--2- - :
the previously transformed models. These artefact’s |
are required to reuse third-party binary components
?Qr?];?)n(:e?]rpaoos;elt rﬂi;‘g%';é’s;e& nﬂ;g]r?es?hjggec;ﬂ%;g;er?n 2. Class and sequence diagrams of the new componsed ba

The rest of the article is structured as follows. In Section

2, the component composition problem in the CCM

framework is presented. Section 3 shows an approadhey are related to each other through the uses/provides
based on aspect oriented techniques to mitigate the proprotocol as it is depicted in Figure 1. This figure repre-
lems in CCM component composition. Our proposalsents a typical UML component based representation.
guides the component based system development through-Assume that our initial system must be adapted with
out all phases of component life cycle, namely designnew functionalities fulfilling unanticipated requiremsnt
code, assembly, packaging and deployment. Finally iThe new behaviour to be used in the initial system is
Sections 4 and 5, we present related work and conclusionaodularly encapsulated i@omponent3vhich offers its

)
- - - p
PR S I

of the paper. services toComponentland Component2 Accordingly,
these two components should update their dependencies
[l. THE KEY: CHANGING THE SYSTEM S to use the services provided Iomponent3see Figure
REQUIREMENTS 2).

The goal of this section is to illustrate the main To update the system previously described, we may
challenges arising in an already existing CCM systengither re-implementComponentland Component2(re-
when new requirements need to be fulfilled. We presen@iuiring them to be white-box componefjtsor wrap base
a generic case study in order to focus the reader on theomponents (in case Componentl and Component2 have
principal problems. Concrete CCM examples matchind?lack-box nature). We are interested in the later scenario

our generic case study may be found in the Douglas

Schmidt's CCM-tutorial [4] _ ‘2Althoggh there are aspect-oriented Ianguages that_allg@(mstq be
L h n@ injected in bytecodes, they are language-implementajpetific, which
et us assume that two components, na Qmpo- is not the case of CCM where components may be implemented in

nentlandComponentZonform to our initial system, and different programming languages.

© 2008 ACADEMY PUBLISHER

76 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

proaches have emerg&dAspect-oriented design provides
mechanisms for the designer to reason about concerns
separately (whether they are crosscutting or not), and to
capture concern design specifications modularly [6]. Con-
sequently, a way to specify how these concern modules
should be composed in the full system design is required.
This includes both a means to specify how to compose
concerns at a later stage of the development cycle, and
also a means to compose concern design artifacts. The
aforementioned aspect-oriented design approaches (and
others described in [6]) have notably contributed to pro-
vide the AOSD community with specific and explicit
means to model aspect-oriented systems, deriving soft-

, . . are engineering quality properties as a result. However,
because component’s source code is not always avallabi/ 9 g4 Y prop

Saturn

Interface2
Client Interfacel

Mars
Componentl
SjE

- New component, connections and node added
- New deployment configuration

upiter
nt3

'(?)— Interface3
1
Compone:

Figure 3. Deployment of the updated system

(such is the case of components acquired to third-parties ﬁey have k_)een thought for developing new systems from
i cratch, without black-box component reuse in mind.
Wrappers intercept and forward messages to Wrappegyr intention is not to compete with aspect-oriented

components. Howevgr, Wrapperimplementation.should bﬂesign approaches but to apply aspect-oriented compo-
done manually; that is to say, developers must implementision techniques at design level for making component-

all wrappers in the system writing the appropriate codep,geq systems to be automatically adapted from design,
which is error prone. Besides, the system design dogshancing thus both component reuse and evolution of

not reflect the changes carried out at implementatiog,e systems. The details of our approach are explained in
level as a result of wrapping. The consequence is a laclq next section.

of coherence between implementation and design levels,
making later maintenance and evolution of the system
difficult. We claim that the new functionalities can be !l ANAPPROACH FOR DRIVING COMPONENTBASED
managed from the design phase, thus filling the gap SYSTEM DEVELOPMENT
between design and wrapper implementation. This section presents our approach based on model-
Going step further, what happens if, in addition, thedriven development (MDD) [3] which allows component
new functionality provided byComponent3cuts-across composition to be driven from early stages of the com-
the initial components? (This would be the case, forponent life cycle, by applying aspect-oriented composi-
example, wher€omponentncapsulates the functional- tion techniques at design level and wrapping concepts
ity of the Java Authentication and Authorization Serviceto CBSD. This approach integrates CBSD, AOSD and
(JAAS)). MDD to build component based systems using the best

Not only should the component implementation beCharacteristics of each tendency.
changed, but the component deployment should be re- This section is structured following the schema de-
configured. In figure 3Componentland Component2 picted in Figure 4, which shows a general overview of
instances should use an instance@dmponent3as a Our approach:
consequence they should know where this insta@oen(- « Firstly, the software architect uses a new UML2.0-

ponent3 will be deployed. The system configuration is
an important issue in distributed systems like this, and
this configuration should be updated when the system
is designed and evolved. Again, the developer should
change the specific system configuration and these tasks
are tedious and error prone.

So, on the one hand, the component models are com- ®
plex and specific characteristics to manage the component
model complexity are required. On the other hand, the de-
velopment processes to build very large systems require a
set of basic characteristics such as adaptability, flégibil
and reusability, which can be obtained using new kinds
of modularizations.

Aspect Oriented Software Development (AOSD) is
a set of emerging technologies that seeks new modu-
larizations of software systems. AOSD allows multiple
concerns to be separately expressed but nevertheless be

based profile calleé\spectComponetrtfigure 4-(1))

for describing component and aspects. This profile
is used in component, sequence and deployment
diagrams, allowing the static and behaviour structure
of the system to be described. Section IlI-A describes
the use of theAspectComponenmrofile.

Once the system including new requirements has
been modeled, a model-to-model transformation is
performed (Figure 4-(2)). The aim of this trans-
formation is twofold: first, to provide a symmetric
separation of concerns at design level, because once
transformation is carried out, components are the
only entities of the models; second, to compose
concerns at design level using wrapping concepts.
Section 1lI-B outlines the transformation process.
Next, the model based on components previously
obtained is processed in order to obtain an XML

automatically unified into working systems [5].

3An exhaustive survey on aspect-oriented design approaohgsbe

In the last few years, several aspect-oriented design aeund in [6].

© 2008 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 77

Design Generation of Code and
Component Descriptors

AspectComponent2UML2.0
O ey © oo

O Component
Aspect
Q — @ ———b% —»@ T mm %__> @ Assembly

AspectComponent B e o
Software Model Model
Architect Model - Weaving at design phase

UML2CCM
Component Model % o
specific generator tool

of the component model

Independent

Deployment Packaging

6)
g<—6@ 0 &

XML Component Wrappers IDL3 Wrap _ XML

u
u

of the component model (CCM)

-
g component model ~ Third-party Descriptor and Java Files and CIDL. Component
E deployment tools binary components XML Component Assembly

g Package Descriptor Descriptor
O

Q

Figure 4. Aspect Component Based System Development (AGBSD

descriptor called CAAD Component Aspect Assem- a) Description of the defined stereotypesCom-
bly Descripto), which describes all the connections ponents may be extended with the new functionality
among components, aspects, interfaces, provideprovided by a given concern through the use of the
uses, etc. (Figure 4-(3)). The XML CAAD file now usesconcerndependency. These kind of dependencies
becomes the input of our tool UML2CCM (Figure 4- allow components to be adapted to new requirements
(4)) to generate the appropriate code automaticallywithout change the initial component design. The use of
component definitions in IDL3, wrapper code andthe AspectComponemrofile is shown in Figure 5, where
CCM descriptors (CCM components, package andComponentland ComponentZare extended to use the
assembly descriptors) . Section IlI-C describes spefunctionalities provided byZomponentznd Component4
cific code generation to obtain a CCM system. in a transparent way by means of thesesconcern
« Finally, the code previously generated may be packedependency. To do that, the access from Componentl and
with third-party binary components (Figure 4-(5)), Component 2 to Component3 and Component4 must be
and then, the final system can be deployed usingonfigured, through the definition of composition rules,
(Figure 4-(6)). Component packaging and deploy-that are explained below.
ment are detailed in Section IlI-D. The usesconcern dependency could define two tag
values:type and order_concern On the one handtype
A. AspectComponentUML profile to model systems tag value defines whether the new functionalities should
based on components and aspects be applied on theprovide interfaces ifi) or should be

The description of a component based system requireééOpIIEd on theusesmterfacgs ¢uo. On. the other hand,
all phases of component based development to be mo&_rder_c_oncern_tag value defln.e.s the priority ofpcern
eled defining the interfaces, the required and providea"hen IS a_pplled on a specific cqmponent. This allows
services, the components, the assembly, the deponmeHl? to configure the aspect execution order When_a com-
etc. [7]. In this sense, we may guide the complete softwar@0nent uses several concerns. For example in figure 5,

development process from the models obtained during thigOmponentuses two concernsconcgrn Compqnent4
design phase [8], from models to code. andconcern Componenft3vhere the actions associated to

A new UML2.0-based profile calledspectComponent concern Component3 (ordeoncern=1)will be executed
has been specified with the aim of modeling adequatellfefore the actions associated witbncern Component4
the relationships among components and aspects in t Qrder_concern:Z)_ -
system [9]. The UML2.0 component model [10] already ~ P) How configure the component composition and
supports the description afomponent, interface, pro- aSPects: In the same way that Apect)-like languages
vides, usesand so onWe have extended UML2.0 with allows abstract and concrete pointcuts to be defined, our
new stereotypesconcern, configconcern, usesoncern, profile _provides two_different cor_nposi_tion configuration
hooksand actiong for aspect-oriented modeling, facili- Strategies for modeling the relationships among compo-
tating the identification of all elements involved in the Nent and aspectgeneric composition configuraticand
system. The use of the AspectComponent UML profilecOncrete composition configuration.
involves the following points: the basic use of the defined « generic composition configuratioAllows the basic
stereotypes, the composition configuration, the hooks and configuration composition of concern to be expressed
the actions to be performed among components and interms ofsethooksandactions.This configuration
aspects. can be reused by all components that use the concern

© 2008 ACADEMY PUBLISHER

78 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

Component and aspect model.)

<< component >> << component >>
<< component >> P P
Componentl Component2
Client @ @
Interfacel Interface2
T
7 ype=in ' ' _
<< uses_concern >>, order_concern=1 i 1 Dll}’ eer:gloncern—z
type=in ’ << uses_concemn >> ! << uses_concern >>
L, _
concrete composition ’
configuration N N << config_concern >>
<< config_concern >> << config_concern >> X
X -) Config_C2_Component4
Config_C1_Component3 Config_C1_Component3
) -set_hooks nameHooks2:call * 12_Operation2(*)
-use_set_hooks:AllMethods -set_hooks nameHooks1:call * 12_Operation2(*)
- - : — " e o—— +action AStart: before nameHooks2():
B g +use_actions Al: before nameHooks1(): "
+action NewAction: before AllMethods(): | use_acti r () +action AStop: after nameHooks2():
T

generic composition \% v V
configuration << concern >> << concern >>
Component3 Component4
-set_hooks:AllMethods: call * * (*) —@ —@
+Action Al: before AllMethods(): Interface3 Interface4
|
<< interface >> << component >> << interface >>
Interface3 Component3 Interface4 <<Ccomponent >>
+13_Operation1():void +14_Operation1():void o "
+13_Operation2():void +14_Operation2():void
+...():void +...():void
Figure 5. Analysis of the proposed system
being modeled. This kind of configuration is defined [sda wrapper. wrap, Context: Pyvoid J
by concernstereotype.

« concrete composition configuratioiie aim of this << concern >> ponent3
configuration is to provide a concrete composition AWHABEE | Interfaces.13_Operation(P thisMethodNmae(P.ThisiP() o |
among components and concerns. In this kind of ' Y n
configuration, theactionsand sethooksestablished D :

in generic composition configuratioten be reused
by usesethooksanduseactions.This configuration
is defined byconfigconcernstereotypes. Figure 6. Sequence of Al action (UML2.0)

c) The hooks.:Hooks are join points at the design
level. They correspond to any location in a component
assembly where a plug may be performed. The hooks in

compdor;ent t_)atse;j systeFm musttrk])e det_scr:bed_ T tferr_ns Péference to an specific sequence diagram which models
provide/use Iniertaces. -rom a theoretical point of VIEWy, ,; the new functionalities should be used. During the

this situation is due to the fact that components cannot bﬁ]odel of the configuration of the aspecbfifigconcern
gxplicitly manipulated but through_ the pr.OVided/re.qUiredstereotype) each set of hooks (callsethooks is de-
interfaces. Consequently, theoks (join pointsylescribed ribed, and subsequently the actions to take on these

in other aspect oriented approaches such as Aspec et of hooks are described in a sequence diagram (see

HyperJ, JAC, etc. are reduced because we only hav&mple example in Figure 6). The sequence diagrams in
access to component interfaces.

_ _ . _ UML 2.0 [10] allow the use of sequences, alternatives,

. H*ookscan be defined using wild-carde.g. call int 5555 references to other sequence diagrams, etc. to
(*)) and sethooksis a set ofhooks composed by egcripe the interactions among components or objects,

AND, OR, NOT operators. Thactionsto carry outatthe oonqequently, the same elements allow the definition of

sethookscan take place before, after or around (beforey,q, the composition with the new functionalities should
after, around) the original invocations in the system. FOlo ~arried out.

example, in Figure 5 theethook namedAllMethod is
defined on all invocationg.g. call * * (*)) carried outon The definition of the hooks as well as the definition of
the component which use tieencerncalled Component3. the actions to be carried out is external to the definition
d) Actions among concerns and componente of the component that provides the concern functionality,
new functionalities (new concerns) are implemented byand external to the component that receives the applica-
means of components and these components offer theion of the aspect. These definitions can be reused by other
services by interfaces. Th@oksshould be focused on the components or be specialized, so that each component
methods of the components interface. Tdw@ionsmake manages the interaction with the aspects in a suitable way.

© 2008 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

New System Architecture J

<< component >>
Client

Interfacel

<< component >>

WComponentl _© —

Interfacel

<< component >>
Componentl

79

cies described previously using thisesconcernstereo-
type. For example, the component calltComponentl
use the interfaceaterfaceslandinterface3and provides
the interfacelnterfacel. The output of the component
6 diagrams transformation is a new system architecture
based only on components.
The transformation rules of the system architecture are
summarized on the algorithm 1:

<< component >>
Component3
(©)

Interface3

<< component >> << component >>
WComponent2 _(Q — Component2

Interface2

Algorithm 1 Transformation rules of the system archi-
tecture. From AspectComponemidelto UML2.0

’ Interface2 ‘

<< component >>
Component4

O

Interface4

Figure 8. Description of the new system architecture (diaggener-
ated)

3)

B. Model to model transformation

During the following development phase, the model
defined by AspectComponent UML Profile is automati-

cally transformed to a model defined only by UML 2.0 4)

component model. Including in this transformation the
component diagrams, sequence diagrams and deployment
diagrams. This is kind of transformation called model-to-

model transformation which translate between source and 5)

target models.

The UML model is processed and merged to obtain
the new system model, using at transformation tool called
AspectComponent2UML2(point 2 at Figure 4). In order
to this, the UML diagrams are exported to XMI files,
which are loaded in a MetaData Repository (MDR). MDR
implements MOF (Meta Object Facilities) and allows one
to recover the information about the UML diagrams in an
objects structure. The model loaded at MDR is processed
using Model Transformation Language (MTL) (which is
a Query/View/Transformation (QVT) implementation).

In figure 7 an imperative algorithm coded by MTL can
be observed. This MTL short algorithm shows how search
for an interface in the model. So, MTL allow us to process
the UML model using mainly imperative structures.

The output of this process is a model defined by the
UML2.0 component model, and in order for, the compo-
nent diagrams, the sequence diagrams and the deployment
diagrams must be transformed.

1) Model to model transformation: component dia-
grams.: The component diagrams are updated during the
transformation process, applying design patterns. Con-
cretely, the components which had in the base model an
usesconcernhas been extended through wrappers. In this
sense, by means of the application of design patterns we
were able to generate automatically the system architec-
ture. In this case, the system architecture is extended usin
a non-intrusive way. An example of component diagram

1) For

2)

each component in AspectComponent
component diagram a new component with
the same characteristics is created in
UML2.0ComponentMod@&omponent diagram.
For eachinterfacein the AspectComponeicbmpo-
nent diagram, a newmterfacewith the same charac-
teristics is created in thML2.0ComponentModel
component diagram.

For each providesin AspectComponembmponent
diagram, a newprovideswith the same character-
istics is created in theJML2.0ComponentModel
component diagram.

For each usesin AspectComponentomponent
diagram, a newuseswith the same characteristics is
created in th&JML2.0ComponentModebmponent
diagram.

For each configconcernin the AspectComponent
component diagram.

a) The component related bysesconcern at
AspectComponegbmponent diagram is iden-
tified.

b) If the component does not have a component
wrapper linked atUML2.0ComponentModel
then

i) A new wrapper component is created and
linked to the component. The component
wrapper name isV+ComponentNamé
the usesconcerns types labeled usingn
or inout.

i) A new wrapper component is created and
linked to the component. The component
wrapper name isV2+ComponentNamig
theusesconcerns typés labeled usingut
or inout.

c) Then, the aspect used by the corda@ncern
description is found. Next, the provides and
uses required by the wrapper components
(created wrappers) and based on domcern
configured are defined.

d) Then, the connections among the components
are reconfigured, attending to the new wrapper
components.

e) Finally, the attributes and operations are de-
fined at the wrapper, using tlenfigconcern
definition.

the

transformed can be observed in Figure 8.
The wrappers modularize the architectural dependen-

© 2008 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

80
1 //IReturn an interface called "name”
2 getinterface (nane : Standard:: Siring): sourcenpdel :: Core::Interface{
3 Interfacelterator : Standard::|terator;
4 anlnterface : source_nodel :: Core::Interface;
5 final Interface : sourcenpdel :: Core::Interface;
6
7 Interfacelterator :=!source.npdel::Core::|Interface!
8 . allinstancey) . getNewlterator() ;
9 Interfacelterator. start() ;
10 while I nt erfacel terator.isOn()
11 {
12 anlnterface : = Interfacelterator.item()
13 . oclAsType(! sourceodel : : Core: :Interface!);
14 if anl nterface. name. [=] (nane) {
15 finallnterface : = anlnterface;
16 1
17 Interfacelterator. next();
18 }
19 return final I nterface;
20 }

Figure 7. Example of MTL code for model transformation

2) Model to model transformation: Sequence d|a_A|gor|thm 2 Sequence diagrams. Transformation rules

grams.: The sequence diagrams allow the description 1) For eachcomponent instancien sequence diagram

of the interaction among components of the system and

based omMspectComponent

the relations with the new concerns. The interactions 2) If this component instanceequires aninstance of

among components defined and the wrapper components
generated to compose the system can be observed in the
sequence diagrams.

Figure 9 represents the interaction among the base
components and the new functionalities added. In this
figure, the wrappers required have been added to the
diagram and then the interconnections among components
have been updated. To obtain this sequence diagram
the initial (sequence diagram) and the actions sequence
diagram (Figure 6) are merged where the hooks are active.
This means carring out the weaving at design phase.

Summarizing the process to carry out the weaving pro-
cess, each component instance at the sequence diagrams
is checked to determine if a wrapper should be fised
Next, each invocation is checked, and wheraok is
active on a specific invocation, the rigattion sequence
diagram is included (see algorithm 2).

Using UML2.0 sequence diagrams, the references to
the action required (Interaction Fragment [10] sequence
diagram defined during AspectComponent model) are

wrapper componerthen

a) Add aninstance of wrapper componemng-
quired
b) For each invocationon the services offered
by the originalcomponent instance
i) Activehooks— false
i) If this invocationis an active hook based
on any set ofsethooksdefined atcon-
fig_concern or concern for this kind of
instance of componenthen
A) Activehooks—true
iii) If Activehooks= truethen
A) Add the actions (after, before and
around) related with thé\ctivehooks
following the order of aspect to be
applied, including the invocations for-
ward the originalcomponent instance
B) elseforward theoriginal invocationto
the originalcomponent instance

included in the sequence diagram. For example, in figure 9
at theWComponenta reference té\1 sequence diagram
(Figure 6) has been included.

Later, the sequence diagrams, along with the clas

As can be observed, component diagrams and sequence
aiagrams describe the new system architecture and their

diagrams defined previously in this design phase, are thgaavior, where the wrapper components allows the addi-

basis for: system code, the search of binary component

ton of new functionalities, which have been defined using

which satisfy the requirements specified and the generaa'spect-oriented techniques.

tion of the corresponding component composition code.

3) Model to model transformation: deployment dia-

4For performance reasons, only verapper component is used to
compose several concerns on the same component.

© 2008 ACADEMY PUBLISHER

grams: Following the model transformation, the deploy-
ment configuration should be transformed too. In this

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 81

11_Operationl Sequence diagram)

:WComponentl | :Comgonemll | :WComponent2 :Component2

| Interface1.11_Operation1(.) 1) |
711

1
1

1

| Ref: Al(WComponentl.Imerface3,ctx:getCOntext())| :
l

Interfacel.11_Operationi(..) :

2) | Ipterface2.12_Operation2(.) :
4‘“

| Ref: AL(WComponent2.Interface3,ctx=getContext()) |

| Ref: AStart(WComponent2.Interface4,ctx=getContext()) |

Interface2.12_Operation2(..) !

4____1)____4)ﬂ

| Ref: AStop(WComponent2.Interface4, ctx=getContext()) |I

A
-0

A
R

Figure 9. Example of sequence diagram to compose new cangethe system (UML2.0) (diagram generated)

sense, the deployment diagrams represent when eadeveloped. This schema allows us to identify all the
component instance will be deployed, including the hostharacteristics added to the software system including
or nodes and the relationships among the componembmponents, wrappers, concerns, hooks and actions. The
instances. To manage the new component relationshipéML files which are validated with this XML schema
(provides, uses and new functionalities) a set of newdescribe the new concerns added to the system, indicating
component wrapper instances should be added and llee wrappers needed, and how the components should
configured to the system. These new component wrappé&e composed and be deployed. The generation of XML
instances are generated in a transparent way in deplofzAAD is independent of the component model used
ment diagrams, making it easy for the developers tdo develop the system, and can be used as basis to
understand the execution architecture. generate code for several component model platforms

Figure 10 shows a deployment diagram generatedCCM, Fractal [11], etc.). Figure 11 shows an overview of
where WComponenthnd WComponent2nstances have Component Aspect Assembly Descriptor (CAAD) Schema.
been generated and configured to use and provide the 2) Specific CCM generation code and descriptors:
rights services. On the one hand, these component ilBased on XML CAAD files, the code for a specific
stances \(VComponenthnd WComponentare instanci- component model can be generated using the appropriate
ated at the same node as the component wrapped. Thisol. We are developing a tool called CAAD2CCM which
decision allows the minimization of the performance cosigenerates CCM code and descriptors from CAAD files.
facilitating local communication among components andAnother approach could be the use of a tool to directly
their wrappers. process the design model to generate the same files. How-

ever, based in CAAD the generation process to specific

C. Model to text transformations: Generation of code andcomponent model (CCM, Fractal, etc.) is more simple
component descriptors than to directly process the design model.

Once the system has been designed, the generation ofBellow, we present the main artifacts which are re-
artifacts to compose the final system at implementatio§luired to implement CCM components, and then we
level is carried out by an automatic way. For this, the cod@resent the process to generate code and descriptors for
for wrappers designed and the component descripto@CM-
are generated following two phased: the first of them &) Summarizing the CCM Component code and de-
is independent of the component model used (Figure 4scriptors required.: Each one of the components de-
(3)), an the second depends of the final component modé&kribed in the design phase which have not been located
used to develop the system (Figure 4-(4)), for us Corbén the components repository, or have not been acquired
Component Model. from third parties, must be implemented. We are now

1) Component Aspect Assembly Descriptor (CAAD)going to summarize the main steps in developing CCM
Independent descriptor of the component modéfith ~ components.
the aim of capturing each of the descriptions added at Firstly, in CCM, the components should be defined
the design phase a new XML schema specification calledsing thelnterface Definition Language (IDL3AIso, the
Component Aspect Assembly Descriptor (CAA&) been component implementation structure should be described

© 2008 ACADEMY PUBLISHER

82 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

Saturn Mars
I— - Interfacel Neptune Interface2

Client Interfacel WComponent1 Componentl Interface2 WComponent2 Component2
I —co—]| I ¢ C O— ¢
~

upiter

Uranus
Interface3 Em
: O , Component4
) = :
©

Interface4

Figure 10. Example of deployment diagram generated

1o

attribute
—

l.oo

ComponentAspectAssembly [} =

Comment describing your root element

Method
—]

1o

» Deploy

Figure 11. XML Component Aspect Assembly Descriptor schewverview

using Component Implementation Definition Languageamong components which require a service and provide
(CIDL) [2]. this service. In this file, the location of each component
Then the component implementation is carried out usis described (this characteristic is extended in the next
ing the high level programming languages (Java, C/C++s€ction). Finally,Corba Properties Descriptoallows us
etc.), in this sense Java is used as the programmiri@ describe the specific configuration properties for the
language. However, other languages can be used to deomponents in the system.
velop CCM components, due to, the CCM specification b) Wrappers code generation.:From Compo-
being independent of the language used to develop theent Aspect Assembly Descriptor (CAARND using
components. That is to say, at the end of the procesSAAD2CCMtool, the wrappers IDL3 definition (neces-
the components written using several languages can lmary specification to generate stubs and skeletons in CCM,
deployed successfully. see Figure 12-a) and therappersimplementation (java
Finally, several XML files describe the assembly amondfiles) are generated. wrapperimplementation (java files)
components in CCM. These files are the followiimrba comprises: the wrapper skeleton and the wrapper code for
Component Descriptor (.ccd), Component Package Dethis skeleton.
scriptor (.csd), Corba Assembly Descriptor (.caaid On the one hand, the wrapper skeleton describes the
Corba Properties Descriptor (.cpf) interfaces which this component wrapper provides and
The first of these descriptor€6rba Component De- Uses. On the other hand, the code for these wrappers is
scriptor) allows us to configure the CCM container prop-a2dded.
erties like transactions, life cycle, security, etc. Also, In the example (see Figure 12-b), the implementation
this XML descriptor describes the services provided an®f the method named _Operationlin the WComponentl
used by a componenXML Component Package De- wrapper responds to the sequence diagram described
scriptor is a specialization of a general software packagdreviously (see Figure 9), that is to say, this method
based on Open Software Description (OSD). The softwarghould invoke thé3_Operationloperation in the compo-
packaging scheme, could be used to package arbitrafjfentComponent3vhich provides thénterface3interface.
software entities. Therefore, the XML file nam&brba Finally, for each component generated, a XML component
Assembly Descriptodescribes the components in the descriptor is generated.
system (based on references to XML Component Package c¢) Generation of CCM descriptors.From CAAD,
Descriptors), the component instances in the systems, amther XML files are generatedXML Component De-
the connections among them, that is to say, the linkscriptor, XML Component Package Descriptand XML

© 2008 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 83

Conponent \WConponent 1{ /I (A) IDL3 for WComponentl
usesl nterfacel cli_lnterfacel;

usesl nterface3 cli_lnterface3;

provides I nt erfacel svr_Interfacel;

/I (B) Java code for 110perationl method of WComponentlimpl
public classWConponent 11 npl extendsor g. obj ect web. ccm nmySyst em WConponent 1Sessi onConposi ti on. Conponent | npl {

1

2

3

4
5}
6

7

8 public voi d 11_Operation1(String text, String textout) {
9

Cont ext P = getContex{); // Obtain the actual wrapper context. Then
10 /I Obtain the object reference associated to the 'clilLogteptacle.
11 Interface3 cli_lnterface3 = getcontext). getconnectioncli_-Interface3() ;
12 if(cli_Interface3 == null)// Check if the connection is available.
13 return; // then Calls the 130perationl service in Component3
14 cli_lnterface3. 13_Operationl(P. thisMethodName(), P. thisIP());
15 /I Obtain the object reference associated to the 'cliiPDAteptacle.
16 Interfacel cli_lnterfacel = getcontext().get _connectioncli_lnterfacel;
17 if(cli_Interfacel == null) // Check if the connection is available.
18 return; // then Calls the 11Operationl service in Componentl
19 cli_lnterafacel. |1_Operationl(text, textout);
20 /.

21 }

Figure 12. IDL3 definition and Java code generatedViiEomponentivrapper

Properties Descriptorfor each component an&KML stalled on a single machine or scattered across a network.

Corba Assembly Descriptothe XML Corba Assembly Based on an assembly descriptor, the deployment tool

Descriptor is based on the deployment diagrams wherénstalls and activates component homes and instances;

the kinds of components in the system are described, thie configures component properties and connects compo-

instances in the system and the interactions among thements together via interface as indicated in the assembly
Consequently, the system architecture has been devalescriptor [2].

oped as described in the previous phases, in order to

do this, several artifacts (wrapper definition, their imple IV. RELATED WORKS

mentation, composition files, etc.) have been generated)])

from the artifact defined in the design pha$ae system The work presented includes two areas of interest in

has been adapted to new requirementemposing the software engineering such us aspect oriented software
components like COTS or black-box. . development (AOSD) and component based software

engineering (CBSE). Both paradigms are combined in
) an adequate way to obtain more adaptable and reusable
D. Packaging and deployment software. Next, the related works are presented taking into
Finally, the system artifacts (third-party binary com- account proposals foAnalysis and desigmnd compo-
ponents, wrappers code, IDL3 component definitionspents and aspects.
and XML descriptors) should be packaged. A software d) Analysis and design.Currently, UML is a stan-
package is represented by a XML Descriptor and a sedard graphical language of modeled software. In this
of files. The descriptor and associated files are groupesense, we can find several approaches for the analysis
together in a ZIP archive file. and design both aspect-oriented software development
A Component Assembly Package consists of a sefAOSD) and component based software (CBS).
of component packages and an XML Corba Assembly The component software modeled [7] presents new
Descriptor (which have been generated during the phasghallenges for software engineering because several
of code and descriptors generation). The XML Corbaphases of component based software development should
Assembly Descriptor specifies the components that makiee modeled, from requirements phase to the deployment
up the assembly, component instances, and connectiord. the system, as has been presented in this proposal.
Connections are between interface ports, represented by Theme/UML [13] is an extension to standard UML
provides and uses features. to support the modularization of designs intemesA
XML Component and Assembly Packages are providedhemeis any feature, concern, or requirement of interest
as input to a deployment tool. A deployment tool [12] that must be handled in the system. A theme is represented
deploys individual components and assemblies of comby a design element which encapsulates a collection of
ponents to an installation site, usually a set of hosts ostructure and behaviors. There are two kinds of themes:
a network. Components within an assembly may be inerosscutting themes and base themes. Theme/UML allow

© 2008 ACADEMY PUBLISHER

84 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

the crosscutting themes to merge with the base themeésvocations to the adequate aspect. This model supposes
to obtain a specific output. The use of Theme/UML tothe existence of one or several central elements called As-
model component based systems and crosscutting copect Moderator, and as a consequence distributed system
cerns makes the components reuse difficult because theirchitecture can not be easily implemented.
static and dynamic view can change as a result of the AspectJ2EE [18] applies aspects to EJB components. In
multiple perspective merge. That is to say, the componernhis sense the EJBs deployment descriptor is extended to
should be composed by means of the union of eachefine aspects and pointcuts. The aspects are implemented
perspective (eactnemg, consequently, the class diagramslike templates (called parametrized aspects) which can be
and collaboration diagrams are updated. Finally, the cominstantiated by specific components (bean components).
ponent implementation will also be updated. However, theThe decorator pattern (also wrapper pattern) is used to
components are binary composition unit and we can nogenerate the code for the new functionalities based in
change their interfaces or their implementation. This is @he parametrized aspects. The mechanism used to com-
one of the main properties to favour component reuse. pose the base components and the aspects is based on

Aspect Oriented Design Modelling (AODM) [14] pro- inheritance (the classes generated inheritance of the base
vides a profile to model crosscutting concerns and thesomponent). The inheritance is not a good mechanism
merge them with the functional concerns. Crosscuttingo compose components because the components are not
concerns are encapsulated in specific entities called aebjects and should be replaced by other compositional
pects where are typical elements described in AOP likenechanisms like the provide/use protocol [1].
pointcuts and advice. AODM involve both static and dy- Truyen [19] presents in Lasagne a view based on
namic views (class diagrams and collaboration diagramspattern design used like wrapper elements. However, the
In the same sense of Theme, the merge process requiresappers should be implemented by the developer, and
changing the behavior of the components affected byhey are not generated as they are in our proposal. Besides,
crosscutting concerns. AODM can not be used to modethe wrapper implementation is based on inheritance too.
a component based system due to the AODM proposal Finally, concerning the containers, Duclos [20] extends
hiding several phases on component based developmethie capabilities of CCM containers by the aspect descrip-
(CBD) as the deployment phase and AODM does notions. However, the developer should know, during the
handle in a transparent way the crosscutting concerns iphase of the component implementation, which services
the system. or aspect are added to the container and use them.

e) Components and aspectsThe application of

new concerns to a component based system presents
several alternatives focused mainly on the description

of proprietary component platforms. The description of Component based systems should normally be adapted
specific platforms makes it easier to apply aspect to § new requirements. For us, Aspect Oriented Software
component based system. Development can help to mitigate this problem. In this
Pinto [15] presents a framework to include aspeckense, an approach has been presented for the reutilization
into component based systems in a dynamic way. Iind adaptation of components which are part of an initial
this framework the aspects and components are differerfystem. On the one hand, the components can be reused
first class entities. These entities can be composed ifuring the software development process and, on the
a dynamic way, that is to say, during the execution ofpther hand, the components can be adapted during future
the application through the information stored in theevolutions of the system.
middleware |ayel’. This framework is based on a SpeCifiC The proposal presented integrates aspects and Compo_
component model designed to support the compositioRents to decrease the code tangling phenomenon, which
among components and aspects. As a consequencejsapresent in component based software development.
specific component model is needed in order to applyrhe building of flexible and adaptable software has been
this proposal. favoured by means of a new component composition
Grundy [16] presents a new component model callednechanism based on aspect-oriented techniques. This
Jview defined to add new services using the concepsroposal, based on model-driven development, allows the
of aspect, which can be identified and incorporated imaddition of new functionalities to the component based
the system. Again, in this model the implementation ofsystems, begins from the model phase, passing through
the component is required to obtain the new systemall phases of the component based development (design,
A specific component model is needed to apply thiscode, assembly, packaging and deployment). The system
proposal. is modeled using components, aspects and their relation-
Netinat [17] proposes an approach based on a stratifieships, and then a model to model transformation is carried
framework for the dynamic and automated composition obut to obtain a new model based only on components.
aspect in a component based system. This work presentd-aom the model obtained, a set of XML descriptors and
structure to describe the coordination among componentpecific code are generated. In our proposal, the system
and aspects. Each component intercepts its invocations finally updated through wrappers, which are generated
and sends it to an Aspect Moderator which re-sends thand handled automatically.

V. CONCLUSIONS

© 2008 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 85

The adequate use of this proposal makes it easigl5] M. Pinto, L. Fuentes, M. Fayad, and J. M. Troya, “Sep-
to reuse, adapt and evolve component based systems aration of coordination in a Dynamic Aspect-Oriented

through the transparent composition of new components

Framework,” inProc. of the First International Conference
on AOSD The Netherlands: ACM, Apr. 2002, pp. 134—

in the system. Finally, the joint use of aspect-oriented 140,
and model-driven techniques in the component based

software engineering domain opens up a new dimensio

(1]

(2]

] J. Grundy, “Multi-Perspective Specification, Designda
Implementation of Components Using Aspectsiterna-

of software development. tional Journal of Software Engineering and Knowledge
Engineering.World Scientificyol. 10, no. 6, December
REFERENCES 2000.
_ _ [17] P. Netinant, T. Elrad, and M. E. Fayad, “A Layered
C. Szyperski, Component Software. Beyond Object- Approach to Building Open Aspect-Oriented Systems: A
Oriented Programming 2nd ed. Cambridge, MA: Framework for the Design of On-Demand System Demod-
Addison-Wesley, 2002. ularization,” Comm. ACMvol. 44, no. 10, pp. 83-85, oct
OMG, The CORBA Component Modd&Dbject Manage- 2001.
6m5ent Group, June 2002, OMG document formal/2002-06-[18] T. Cohen and J. Gil, “AspectJ2EE = AOP + J2EE.

(3]
(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

in ECOOP ser. Lecture Notes ir_] Computer Science,
IEEE Software.vol. 20, no. 5, pp. 19-25, 2003. M. Odersky, Ed., vol. 3086. Springer, 2004, pp. 219-

D. Schmidt, “Tutorial on the Lightweight CORBA Com- 243.

ponent Model (CCM).” OMG Workshop on Distributed [19] E. Truyen, “Dynamic and Context-Sensitive Compositio
Object Computing for Real-time and Embedded Systems. in Distributed Systems,” Ph.D. dissertation, K.U. Leuven,
Arlington, VA (USA), 2003. Belgium, November 2004.

EdsEAsFIIergﬁnO’rieEtel(Ejlrgg;‘tw%alrectl)aer\l/(glyo ?rr]'gm'\élbsg I:f't‘ [20] F. Duclos, J. Estublier, and P. Morat, “Describing asihg
AddiéonRNesle 2005 P ’ non functional aspects in component based applications,”
Y. ; in Proceedings of the 1st international conference on

R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, S
M. P. Alarcon, J. Bakker, B. Tekinerdogan, S\Fs)pggt_ggented software developme®CM Press, 2002,

and A. J. Siobhan Clarke and, “Survey of
Aspect-Oriented Analysis and Design Approaches,”
AOSD-Europe, Tech. Rep. AOSD-Europe-ULANC-
9, May 2005. [Online]. Available: http://www.aosd-

europe.net/documents/index.htm/analys.pdf) Pedro J. Clementeis currently an associate professor at
J. Chessman and J. DanieldML Components: A Sim- the Computer Science Department of Extremadura University
ple Process for Specifying Component-Based Softwargspain). He belongs to the Quercus Software Engineering
ISBN:0-201-70851-5: Addison-Wesley Longman Publish-Groyp. He received his B.S. in Computer Science from the
ing Co., Inc., 2001. _ University of Extremadura in 1998 and Ph.D. in Computer
P.J. Clemente, J. Hernandez, J. L. Herrero, J. M. Murill - ggience form the Extremadura University in 2007. His resear

and F. Sanchez, "Aspect-Orientation in the Software Life-interest include aspect orientation, model driven develent
cycle: Fact and Fiction,” R. E. Filman, T. Elrad, S. Clarke, 5ng component based software engineering.

and M. Aksit, Eds. Boston: Addison-Wesley, 2005, pp.

407-423.

P. J. Clemente, J. Hernandez, and F. Sanchez, “Drivingluan Hernandezis an Associate Professor of Languages and
component composition from early stages using aspectSystems and the Head of the Quercus Software Engineering
oriented techniques,” iBoftware Technology. Adaptive and Group of the Extremadura University (Spain), where he also
Evolvable Software Systems: Techniques, Tools, and Appleurrently leads the Computer Science Department. He redeiv
cations Track at HICSSO7ser. IEEE Computer Society the BSc in Mathematics from the University of Extremadura
Press. ISSN: 1530-1605, Hawaii, United Stated., Januargnd the PhD degree in computer science from the Technical
2007. University of Madrid. His research interests include comgu-
OMG, UML 2.0 Superstructure and Infrastructure Specifi- based software development, aspect orientation and tlited
cation, Object Management Group. Document formal/05- systems. He is involved in several research projects ammesp
07-04, July 2004. sible and senior researcher related to these subjects. sle ha
E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.participated in many workshops and conferences as spea#ler a
B. Stefani, “An Open Component Model and Its Support member of the program committee. He is currently member of
in Java.” inCBSE ser. Lecture Notes in Computer Science, the Spanish steering committee on Software Engineering, an
I. Crnkovic, J. A. Stafford, H. W. Schmidt, and K. C. organized several workshops and international confesertde
Wallnau, Eds. Springer, 2004, vol. 3054, pp. 7-22. is a member of both the ACM and the IEEE Computer Society.
P. Merle, “OpenCCM - The Open CORBA Component

Model Platform,” Web site: http://openccm.objectweblprg]))

20086. Fernando Sanchez-Figueroahas a PhD in Computer Science.
E. Baniassad and S. Clarke, “Theme: An Approach forHe is currently Head of the Vitual Campus at the University of
Aspect-Oriented Analysis and Design,” I6SE '04: Pro- ~ Extremadura (Spain). He is involved in several projectateel
ceedings of the 26th International Conference on Softward0 Web accessibility for visually impaired people using @b
Engineering Washington, DC, USA: IEEE Computer devices. He holds the Telefonica grant for the "Applicatiof
Society, 2004, pp. 158-167. Information and Communication Technologies to the Univgrs

D. Stein, S. Hanenberg, and R. Unland, “An UML-based Environment’.

Aspect-Oriented Design Notation,” iaroc. 1st Int" Conf.

on Aspect-Oriented Software Development (AOSD-2002)

G. Kiczales, Ed. ACM Press, Apr. 2002, pp. 106-112.

B. Selic, “The Pragmatics of Model-Driven Developmént,

© 2008 ACADEMY PUBLISHER

86 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

APPENDIX|. COMPONENTASPECTASSEMBLY
DESCRIPTOR(CAAD) SCHEMA

attribute
——

1.0
ComponentAspectAssembly [—} = 1. Method
Description of an interface]

Comment describing your root element

Components [}

i Set_Hooks [}
s =]

Concerns [} s
JoinPoint Descriptions

0..c0 l.co
Descriptions of code to Description of code to inject
implement in a component in client class

ConfigConcern [}
p OTIOONTET &y

L.
Descriptions of actions for
component interaction with
aspects

Descriptions of code to Description of code
implement in a component in client class

—L Componentinstanciation

Ll
Define the instances in the system,
their location, their names, etc.

onnections [}

Components Connections
emitPort

—ena [}

consumePort

ComponentinstanciationRef

© 2008 ACADEMY PUBLISHER

