
Extending Component Composition Using
Model Driven and Aspect-Oriented Techniques

Pedro J. Clemente, Juan Herández and Fernando Sánchez
Department of Computer Science, University of Extremadura, Spain

Email: {pjclemente, juanher, fernando}@unex.es

Abstract— Component-based software engineering is an
interesting and emerging discipline focused on reuse
plug&play pieces of software. However, these pieces of
software are distributed by the companies as binary units
of composition. So, nowadays the system requirements are
continuously evolving, as a consequence the component
acquired normally need to require be adapted to these new
requirements. However, once a binary component is ready
to market, its contract cannot be changed in order to be
adapted to new context or new requirements. In this sense,
new modularization mechanisms like aspect-orientation can
facilitate the software systems adaptation and evolution.
Besides, this kind of modularization joined to model
driven techniques can help to obviate contracts and weave
new behavior to an already developed system. In this
paper, a component composition mechanism based on
aspect-oriented and model-driven techniques is presented,
extending the typical composition based on interfaces and
events. To do this, the components and their relations (basic
relations –provides, uses– and extended relations described
using aspect-oriented techniques) are modeled using
UML. Then, using our approach based on model-driven
development (MDD) the system modeled is transformed
to obtain a component based system based on a specific
component model. This work has been developed using
Corba Component Model (CCM) as the component model1.

Index Terms— Model Driven Development (MDD),
Aspect-Oriented Software Development (AOSD), CBSE,
MDA, CCM.

I. I NTRODUCTION

Component-based software development (CBSD) has
been recognized as one of the key technologies for the
construction of high-quality, evolvable, large software
systems in timely and affordable manners. Constructing
an application under this setting involves the use of
prefabricated pieces, perhaps developed at different times,
by different people, and possibly with different uses in
mind. The ultimate goal, once again, is to be able to
reduce development costs and effort, while improving the
flexibility, reliability, and reusability of the final applica-
tion due to the (re)use of software components already

This paper is based on “Driving component composition from early
stages using aspect-oriented techniques,” by Pedro J. Clemente, Juan
Hernández and Fernando Sánchez, which appeared in the Proceedings
of the 40th Hawaii International International Conferenceon Systems
Science. Adaptive and Evolvable Software Systems: Techniques, Tools
and Applications Track, Hawaii, USA, January 2007.c© 2007 IEEE.

1This project has been financed by CICYT project number TIN2005-
09405-C02-02

tested and validated. This approach shifts organizations
from application development to application assembly.

However, the ideal panorama that advocates component
based development (as a fast assembly mechanism for
building final enterprise applications) is based on a false
comparison with electrical and electronic devices: suitable
tension, suitable voltage, suitable connectors, plug-and-
play, etc. CBSD still has to deal with many challenges
before achieving this ideal goal, from the most obvious
disagreements/discrepancies (different definitions of what
a software component is, market competition because of
distinct companies trying to make their products industry
standards) to more technical problems (interoperability
issues, modular adaptation and evolution to new require-
ments, component composition from early phases of the
software life cycle, just to mention a few).

This article focuses on the composition and later as-
sembly of black-box components at the different stages
of the component life cycle. The composition mechanism
is driven from the modeling phase, allowing software
components both to evolve and to be adapted to changes
and new requirements. In the scope of this work, we
follow the notion of component given by C. Szyperski
[1]: A software component is a unit of composition
with contractually-specified interfaces and explicit context
dependencies only.

The CORBA Component Model (CCM) [2] is one of
the industry-standard component models that, from our
point of view, closest follows the Szyperski’s definition.
A CCM component offers a contract to other compo-
nents by means of its interface, which may describe
facets (provided interfaces), receptacles (required opera-
tion interfaces), event sources (the produced events), event
sinks (the consumed events) and configurable properties
through attributes. Nevertheless, the simple task of adding
new requirements to an already functioning system com-
posed of CCM black-box components becomes a difficult
task because of the binary nature of the existing com-
ponents. Although the general approach of the technical
solution could be the insertion of proxies or wrapper
components into assemblies, this may become a tedious
task because they must be hand-written, being thus error
prone.

On the other hand, aspect-orientation provides trans-
parent and flexible composition mechanisms (mainly at
programming level), allowing crosscutting concerns (or
new behaviour) to be automatically woven with other sys-

74 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

tem concerns. In this sense, we claim that aspect-oriented
composition mechanisms may be applied to black-box
component composition, thus allowing components to be
adapted and reused.

In this paper we provide an approach based on model-
driven development (MDD) [3] that allows component
composition to be driven from the early stages of the
component life cycle, by applying aspect-oriented weav-
ing techniques at design level and wrapping concepts to
CBSD. We extend wrapping beyond its current use as
an implementation artifact, applying it to all stages of
CBSD in order to automatically draw up black-box com-
ponent composition from analysis and system design until
deployment. Concretely, this paper present the following
contributions:

• A new UML2.0-based profile for modeling com-
ponent and aspect based systems is proposed. The
models obtained through the use of this profile
guide the system development. This profile includes
several new stereotypes to model concerns and their
relationships with the base component based system.
This UML profile can be used to model both static
and behavior system view.

• A model-to-model transformation is presented. The
model obtained using our profile is transformed from
a model based on components and aspects to a model
based only on components. In this sense, an extended
composition mechanism based in the main aspect-
oriented principles is used to allow component com-
position to be performed during the design phase.

• Software artifacts such as XML assembly descriptors
and wrapping code are automatically generated from
the previously transformed models. These artefact’s
are required to reuse third-party binary components
and to compose the final system using an specific
component model like CORBA Component Model.

The rest of the article is structured as follows. In Section
2, the component composition problem in the CCM
framework is presented. Section 3 shows an approach
based on aspect oriented techniques to mitigate the prob-
lems in CCM component composition. Our proposal
guides the component based system development through-
out all phases of component life cycle, namely design,
code, assembly, packaging and deployment. Finally in
Sections 4 and 5, we present related work and conclusions
of the paper.

II. T HE KEY: CHANGING THE SYSTEM’ S

REQUIREMENTS

The goal of this section is to illustrate the main
challenges arising in an already existing CCM system
when new requirements need to be fulfilled. We present
a generic case study in order to focus the reader on the
principal problems. Concrete CCM examples matching
our generic case study may be found in the Douglas
Schmidt’s CCM-tutorial [4].

Let us assume that two components, namelyCompo-
nent1andComponent2conform to our initial system, and

Interface1

<< interface >>

Interface2

+I2_Operation1():void

+I2_Operation2():void

+...():void

Interface2

<< component >>

Component2

<< component >>

Component1

 InitialSystem

<< interface >>

Interface1

+I1_Operation1():void

+I1_Operation2():void

+...():void

Figure 1. Initial component based system

<< interface >>

Interface1

+I1_Operation1():void

+I1_Operation2():void

+...():void

<< interface >>

Interface3

+I3_Operation1():void

+I3_Operation2():void

+...():void

Interface3

<< component >>

Component3

<< component >>

Client
Interface1

<< interface >>

Interface2

+I2_Operation1():void

+I2_Operation2():void

+...():void

Interface2

<< component >>

Component2

<< component >>

Component1

 System Updated

 :Component2 :Component1 :Client

I1_Operation1 Sequence Diagram System Updated

1) .I1_Operation1

1)

2) .I3_Operation1

2)

3) .I2_Operation2

3)

4) .I3_Operation1

4)

 :Component3

Figure 2. Class and sequence diagrams of the new component based
system

they are related to each other through the uses/provides
protocol as it is depicted in Figure 1. This figure repre-
sents a typical UML component based representation.

Assume that our initial system must be adapted with
new functionalities fulfilling unanticipated requirements.
The new behaviour to be used in the initial system is
modularly encapsulated inComponent3which offers its
services toComponent1and Component2. Accordingly,
these two components should update their dependencies
to use the services provided byComponent3(see Figure
2).

To update the system previously described, we may
either re-implementComponent1and Component2(re-
quiring them to be white-box components2), or wrap base
components (in case Component1 and Component2 have
black-box nature). We are interested in the later scenario

2Although there are aspect-oriented languages that allow aspects to be
injected in bytecodes, they are language-implementation specific, which
is not the case of CCM where components may be implemented in
different programming languages.

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 75

© 2008 ACADEMY PUBLISHER

Figure 3. Deployment of the updated system

because component’s source code is not always available
(such is the case of components acquired to third-parties).

Wrappers intercept and forward messages to wrapped
components. However, wrapper implementation should be
done manually; that is to say, developers must implement
all wrappers in the system writing the appropriate code,
which is error prone. Besides, the system design does
not reflect the changes carried out at implementation
level as a result of wrapping. The consequence is a lack
of coherence between implementation and design levels,
making later maintenance and evolution of the system
difficult. We claim that the new functionalities can be
managed from the design phase, thus filling the gap
between design and wrapper implementation.

Going step further, what happens if, in addition, the
new functionality provided byComponent3cuts-across
the initial components? (This would be the case, for
example, whereComponent3encapsulates the functional-
ity of the Java Authentication and Authorization Service
(JAAS)).

Not only should the component implementation be
changed, but the component deployment should be re-
configured. In figure 3,Component1and Component2
instances should use an instance ofComponent3,as a
consequence they should know where this instance (Com-
ponent3) will be deployed. The system configuration is
an important issue in distributed systems like this, and
this configuration should be updated when the system
is designed and evolved. Again, the developer should
change the specific system configuration and these tasks
are tedious and error prone.

So, on the one hand, the component models are com-
plex and specific characteristics to manage the component
model complexity are required. On the other hand, the de-
velopment processes to build very large systems require a
set of basic characteristics such as adaptability, flexibility
and reusability, which can be obtained using new kinds
of modularizations.

Aspect Oriented Software Development (AOSD) is
a set of emerging technologies that seeks new modu-
larizations of software systems. AOSD allows multiple
concerns to be separately expressed but nevertheless be
automatically unified into working systems [5].

In the last few years, several aspect-oriented design ap-

proaches have emerged3. Aspect-oriented design provides
mechanisms for the designer to reason about concerns
separately (whether they are crosscutting or not), and to
capture concern design specifications modularly [6]. Con-
sequently, a way to specify how these concern modules
should be composed in the full system design is required.
This includes both a means to specify how to compose
concerns at a later stage of the development cycle, and
also a means to compose concern design artifacts. The
aforementioned aspect-oriented design approaches (and
others described in [6]) have notably contributed to pro-
vide the AOSD community with specific and explicit
means to model aspect-oriented systems, deriving soft-
ware engineering quality properties as a result. However,
they have been thought for developing new systems from
scratch, without black-box component reuse in mind.
Our intention is not to compete with aspect-oriented
design approaches but to apply aspect-oriented compo-
sition techniques at design level for making component-
based systems to be automatically adapted from design,
enhancing thus both component reuse and evolution of
the systems. The details of our approach are explained in
the next section.

III. A N APPROACH FOR DRIVING COMPONENT-BASED

SYSTEM DEVELOPMENT

This section presents our approach based on model-
driven development (MDD) [3] which allows component
composition to be driven from early stages of the com-
ponent life cycle, by applying aspect-oriented composi-
tion techniques at design level and wrapping concepts
to CBSD. This approach integrates CBSD, AOSD and
MDD to build component based systems using the best
characteristics of each tendency.

This section is structured following the schema de-
picted in Figure 4, which shows a general overview of
our approach:

• Firstly, the software architect uses a new UML2.0-
based profile calledAspectComponent(figure 4-(1))
for describing component and aspects. This profile
is used in component, sequence and deployment
diagrams, allowing the static and behaviour structure
of the system to be described. Section III-A describes
the use of theAspectComponentprofile.

• Once the system including new requirements has
been modeled, a model-to-model transformation is
performed (Figure 4-(2)). The aim of this trans-
formation is twofold: first, to provide a symmetric
separation of concerns at design level, because once
transformation is carried out, components are the
only entities of the models; second, to compose
concerns at design level using wrapping concepts.
Section III-B outlines the transformation process.

• Next, the model based on components previously
obtained is processed in order to obtain an XML

3An exhaustive survey on aspect-oriented design approachesmay be
found in [6].

76 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

Figure 4. Aspect Component Based System Development (ACBSD)

descriptor called CAAD (Component Aspect Assem-
bly Descriptor), which describes all the connections
among components, aspects, interfaces, provides,
uses, etc. (Figure 4-(3)). The XML CAAD file now
becomes the input of our tool UML2CCM (Figure 4-
(4)) to generate the appropriate code automatically:
component definitions in IDL3, wrapper code and
CCM descriptors (CCM components, package and
assembly descriptors) . Section III-C describes spe-
cific code generation to obtain a CCM system.

• Finally, the code previously generated may be packed
with third-party binary components (Figure 4-(5)),
and then, the final system can be deployed using
(Figure 4-(6)). Component packaging and deploy-
ment are detailed in Section III-D.

A. AspectComponent:UML profile to model systems
based on components and aspects

The description of a component based system requires
all phases of component based development to be mod-
eled defining the interfaces, the required and provided
services, the components, the assembly, the deployment,
etc. [7]. In this sense, we may guide the complete software
development process from the models obtained during the
design phase [8], from models to code.

A new UML2.0-based profile calledAspectComponent
has been specified with the aim of modeling adequately
the relationships among components and aspects in the
system [9]. The UML2.0 component model [10] already
supports the description ofcomponent, interface, pro-
vides, uses,and so on. We have extended UML2.0 with
new stereotypes (concern, configconcern, usesconcern,
hooksand actions) for aspect-oriented modeling, facili-
tating the identification of all elements involved in the
system. The use of the AspectComponent UML profile
involves the following points: the basic use of the defined
stereotypes, the composition configuration, the hooks and
the actions to be performed among components and
aspects.

a) Description of the defined stereotypes.:Com-
ponents may be extended with the new functionality
provided by a given concern through the use of the
usesconcern dependency. These kind of dependencies
allow components to be adapted to new requirements
without change the initial component design. The use of
theAspectComponentProfile is shown in Figure 5, where
Component1and Component2are extended to use the
functionalities provided byComponent3andComponent4
in a transparent way by means of theusesconcern
dependency. To do that, the access from Component1 and
Component 2 to Component3 and Component4 must be
configured, through the definition of composition rules,
that are explained below.

The usesconcern dependency could define two tag
values: type and order concern. On the one hand,type
tag value defines whether the new functionalities should
be applied on theprovide interfaces (in) or should be
applied on theusesinterfaces (out). On the other hand,
order concerntag value defines the priority of aconcern
when is applied on a specific component. This allows
us to configure the aspect execution order when a com-
ponent uses several concerns. For example in figure 5,
Component2uses two concerns (concern Component4
andconcern Component3) where the actions associated to
concern Component3 (orderconcern=1)will be executed
before the actions associated withconcern Component4
(order concern=2).

b) How configure the component composition and
aspects: In the same way that ApectJ-like languages
allows abstract and concrete pointcuts to be defined, our
profile provides two different composition configuration
strategies for modeling the relationships among compo-
nent and aspects:generic composition configurationand
concrete composition configuration.

• generic composition configuration. Allows the basic
configuration composition of concern to be expressed
in terms ofsethooksandactions.This configuration
can be reused by all components that use the concern

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 77

© 2008 ACADEMY PUBLISHER

Interface4

<< component >>

Component4

<< concern >>

Component4

<< config_concern >>

Config_C2_Component4

−set_hooks nameHooks2:call * I2_Operation2(*)

+action AStart: before nameHooks2():

+action AStop: after nameHooks2():

<< concern >>

Component3

−set_hooks:AllMethods: call * * (*)

+Action A1: before AllMethods():

<< config_concern >>

Config_C1_Component3

−use_set_hooks:AllMethods

+action NewAction: before AllMethods():

<< interface >>

Interface3

+I3_Operation1():void

+I3_Operation2():void

+...():void

Interface3

<< component >>

Component3

<< component >>

Client
Interface1 Interface2

<< component >>

Component2

<< component >>

Component1

Component and aspect model.

<< uses_concern >>

<< config_concern >>

Config_C1_Component3

−set_hooks nameHooks1:call * I2_Operation2(*)

+use_actions A1: before nameHooks1():

<< uses_concern >>
<< uses_concern >> << uses_concern >>

order_concern=1
order_concern=2

concrete composition
configuration

generic composition
configuration

<< interface >>

Interface4

+I4_Operation1():void

+I4_Operation2():void

+...():void

type=in

type=in
type=in

Figure 5. Analysis of the proposed system

being modeled. This kind of configuration is defined
by concernstereotype.

• concrete composition configuration.Te aim of this
configuration is to provide a concrete composition
among components and concerns. In this kind of
configuration, theactionsand sethooksestablished
in generic composition configurationcan be reused
by usesethooksanduseactions.This configuration
is defined byconfigconcernstereotypes.

c) The hooks.:Hooks are join points at the design
level. They correspond to any location in a component
assembly where a plug may be performed. The hooks in
component based system must be described in terms of
provide/use interfaces. From a theoretical point of view,
this situation is due to the fact that components cannot be
explicitly manipulated but through the provided/required
interfaces. Consequently, thehooks (join points)described
in other aspect oriented approaches such as AspectJ,
HyperJ, JAC, etc. are reduced because we only have
access to component interfaces.

Hooks can be defined using wild-cards (e.g. call int
* (*)) and sethooks is a set of hooks composed by
AND, OR, NOT operators. Theactionsto carry out at the
sethookscan take place before, after or around (before,
after, around) the original invocations in the system. For
example, in Figure 5 thesethook namedAllMethod is
defined on all invocations(e.g. call * * (*)) carried out on
the component which use theconcerncalled Component3.

d) Actions among concerns and components.:The
new functionalities (new concerns) are implemented by
means of components and these components offer their
services by interfaces. Thehooksshould be focused on the
methods of the components interface. Theactionsmake

 :Component3<< concern >>

:Wrapper:

sd A1 (Wrapper: Wrap, Context: P):void

1)

1)

Interface3.I3_Operation(P.thisMethodNmae(),P.ThisIP())

Figure 6. Sequence of A1 action (UML2.0)

reference to an specific sequence diagram which models
how the new functionalities should be used. During the
model of the configuration of the aspect (configconcern
stereotype) each set of hooks (calledsethooks) is de-
scribed, and subsequently the actions to take on these
set of hooks are described in a sequence diagram (see
simple example in Figure 6). The sequence diagrams in
UML 2.0 [10] allow the use of sequences, alternatives,
loops, references to other sequence diagrams, etc. to
describe the interactions among components or objects,
consequently, the same elements allow the definition of
how the composition with the new functionalities should
be carried out.

The definition of the hooks as well as the definition of
the actions to be carried out is external to the definition
of the component that provides the concern functionality,
and external to the component that receives the applica-
tion of the aspect. These definitions can be reused by other
components or be specialized, so that each component
manages the interaction with the aspects in a suitable way.

78 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

Interface4

Interface2Interface3
Interface2

Interface1

Interface1

<< component >>

Component4

<< component >>

Component2

<< component >>

WComponent2

<< component >>

Component3

<< component >>

Component1

<< component >>

WComponent1

<< component >>

Client

New System Architecture

Figure 8. Description of the new system architecture (diagram gener-
ated)

B. Model to model transformation

During the following development phase, the model
defined by AspectComponent UML Profile is automati-
cally transformed to a model defined only by UML 2.0
component model. Including in this transformation the
component diagrams, sequence diagrams and deployment
diagrams. This is kind of transformation called model-to-
model transformation which translate between source and
target models.

The UML model is processed and merged to obtain
the new system model, using at transformation tool called
AspectComponent2UML2.0(point 2 at Figure 4). In order
to this, the UML diagrams are exported to XMI files,
which are loaded in a MetaData Repository (MDR). MDR
implements MOF (Meta Object Facilities) and allows one
to recover the information about the UML diagrams in an
objects structure. The model loaded at MDR is processed
using Model Transformation Language (MTL) (which is
a Query/View/Transformation (QVT) implementation).

In figure 7 an imperative algorithm coded by MTL can
be observed. This MTL short algorithm shows how search
for an interface in the model. So, MTL allow us to process
the UML model using mainly imperative structures.

The output of this process is a model defined by the
UML2.0 component model, and in order for, the compo-
nent diagrams, the sequence diagrams and the deployment
diagrams must be transformed.

1) Model to model transformation: component dia-
grams.: The component diagrams are updated during the
transformation process, applying design patterns. Con-
cretely, the components which had in the base model an
usesconcernhas been extended through wrappers. In this
sense, by means of the application of design patterns we
were able to generate automatically the system architec-
ture. In this case, the system architecture is extended using
a non-intrusive way. An example of component diagram
transformed can be observed in Figure 8.

The wrappers modularize the architectural dependen-

cies described previously using theusesconcernstereo-
type. For example, the component calledWComponent1
use the interfacesInterfaces1andInterface3,and provides
the interfaceInterface1. The output of the component
diagrams transformation is a new system architecture
based only on components.

The transformation rules of the system architecture are
summarized on the algorithm 1:

Algorithm 1 Transformation rules of the system archi-
tecture. From AspectComponentmodelto UML2.0

1) For each component in AspectComponent
component diagram, a new component with
the same characteristics is created in the
UML2.0ComponentModelcomponent diagram.

2) For each interfacein theAspectComponentcompo-
nent diagram, a newinterfacewith the same charac-
teristics is created in theUML2.0ComponentModel
component diagram.

3) For eachprovidesin AspectComponentcomponent
diagram, a newprovideswith the same character-
istics is created in theUML2.0ComponentModel
component diagram.

4) For each uses in AspectComponentcomponent
diagram, a newuseswith the same characteristics is
created in theUML2.0ComponentModelcomponent
diagram.

5) For each configconcernin the AspectComponent
component diagram.

a) The component related byusesconcern at
AspectComponentcomponent diagram is iden-
tified.

b) If the component does not have a component
wrapper linked atUML2.0ComponentModel
then
i) A new wrapper component is created and

linked to the component. The component
wrapper name isW+ComponentNameif
the usesconcerns typeis labeled usingin
or inout.

ii) A new wrapper component is created and
linked to the component. The component
wrapper name isW2+ComponentNameif
theusesconcerns typeis labeled usingout
or inout.

c) Then, the aspect used by the configconcern
description is found. Next, the provides and
uses required by the wrapper components
(created wrappers) and based on theconcern
configured are defined.

d) Then, the connections among the components
are reconfigured, attending to the new wrapper
components.

e) Finally, the attributes and operations are de-
fined at the wrapper, using theconfigconcern
definition.

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 79

© 2008 ACADEMY PUBLISHER

1 //Return an interface called ”name”

2 getInterface (name : Standard::String): source model::Core::Interface{

3 InterfaceIterator : Standard::Iterator;

4 anInterface : source model::Core::Interface;

5 finalInterface : source model::Core::Interface;

6

7 InterfaceIterator :=!source model::Core::Interface!

8 .allInstances().getNewIterator();

9 InterfaceIterator.start();

10 while InterfaceIterator.isOn()

11 {

12 anInterface := InterfaceIterator.item()

13 .oclAsType(!source model::Core::Interface!);

14 if anInterface.name.[=](name){

15 finalInterface := anInterface;

16 }

17 InterfaceIterator.next();

18 }

19 return finalInterface;

20 }

Figure 7. Example of MTL code for model transformation

2) Model to model transformation: Sequence dia-
grams.: The sequence diagrams allow the description
of the interaction among components of the system and
the relations with the new concerns. The interactions
among components defined and the wrapper components
generated to compose the system can be observed in the
sequence diagrams.

Figure 9 represents the interaction among the base
components and the new functionalities added. In this
figure, the wrappers required have been added to the
diagram and then the interconnections among components
have been updated. To obtain this sequence diagram
the initial (sequence diagram) and the actions sequence
diagram (Figure 6) are merged where the hooks are active.
This means carring out the weaving at design phase.

Summarizing the process to carry out the weaving pro-
cess, each component instance at the sequence diagrams
is checked to determine if a wrapper should be used4.
Next, each invocation is checked, and when ahook is
active on a specific invocation, the rightaction sequence
diagram is included (see algorithm 2).

Using UML2.0 sequence diagrams, the references to
the action required (Interaction Fragment [10] sequence
diagram defined during AspectComponent model) are
included in the sequence diagram. For example, in figure 9
at theWComponent1a reference toA1 sequence diagram
(Figure 6) has been included.

Later, the sequence diagrams, along with the class
diagrams defined previously in this design phase, are the
basis for: system code, the search of binary components
which satisfy the requirements specified and the genera-
tion of the corresponding component composition code.

4For performance reasons, only awrapper component is used to
compose several concerns on the same component.

Algorithm 2 Sequence diagrams. Transformation rules
1) For each component instancein sequence diagram

based onAspectComponent
2) If this component instancerequires aninstance of

wrapper componentthen
a) Add an instance of wrapper componentre-

quired
b) For each invocationon the services offered

by the originalcomponent instance

i) Activehooks← false
ii) If this invocationis an active hook based

on any set ofsethooks defined atcon-
fig concern or concern for this kind of
instance of component,then
A) Activehooks←true

iii) If Activehooks= true then
A) Add the actions (after, before and

around) related with theActivehooks
following the order of aspect to be
applied, including the invocations for-
ward the originalcomponent instance

B) elseforward theoriginal invocationto
the originalcomponent instance

As can be observed, component diagrams and sequence
diagrams describe the new system architecture and their
behavior, where the wrapper components allows the addi-
tion of new functionalities, which have been defined using
aspect-oriented techniques.

3) Model to model transformation: deployment dia-
grams: Following the model transformation, the deploy-
ment configuration should be transformed too. In this

80 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

 :Component2 :WComponent2 :Component1 :WComponent1 :Client

I1_Operation1 Sequence diagram

1)

1)

2)

2)

3)

3)

4)
4)

Ref: A1(WComponent2.Interface3,ctx=getContext())

Ref: AStop(WComponent2.Interface4, ctx=getContext())

Ref: A1(WComponent1.Interface3,ctx=getContext())

Interface1.I1_Operation1(..)

Interface1.I1_Operation1(..)

Interface2.I2_Operation2(..)

Interface2.I2_Operation2(..)

Ref: AStart(WComponent2.Interface4,ctx=getContext())

Figure 9. Example of sequence diagram to compose new concerns in the system (UML2.0) (diagram generated)

sense, the deployment diagrams represent when each
component instance will be deployed, including the host
or nodes and the relationships among the component
instances. To manage the new component relationships
(provides, uses and new functionalities) a set of new
component wrapper instances should be added and be
configured to the system. These new component wrapper
instances are generated in a transparent way in deploy-
ment diagrams, making it easy for the developers to
understand the execution architecture.

Figure 10 shows a deployment diagram generated
whereWComponent1and WComponent2instances have
been generated and configured to use and provide the
rights services. On the one hand, these component in-
stances (WComponent1andWComponent2) are instanci-
ated at the same node as the component wrapped. This
decision allows the minimization of the performance cost
facilitating local communication among components and
their wrappers.

C. Model to text transformations: Generation of code and
component descriptors

Once the system has been designed, the generation of
artifacts to compose the final system at implementation
level is carried out by an automatic way. For this, the code
for wrappers designed and the component descriptors
are generated following two phased: the first of them
is independent of the component model used (Figure 4-
(3)), an the second depends of the final component model
used to develop the system (Figure 4-(4)), for us Corba
Component Model.

1) Component Aspect Assembly Descriptor (CAAD):
Independent descriptor of the component model:With
the aim of capturing each of the descriptions added at
the design phase a new XML schema specification called
Component Aspect Assembly Descriptor (CAAD)has been

developed. This schema allows us to identify all the
characteristics added to the software system including
components, wrappers, concerns, hooks and actions. The
XML files which are validated with this XML schema
describe the new concerns added to the system, indicating
the wrappers needed, and how the components should
be composed and be deployed. The generation of XML
CAAD is independent of the component model used
to develop the system, and can be used as basis to
generate code for several component model platforms
(CCM, Fractal [11], etc.). Figure 11 shows an overview of
Component Aspect Assembly Descriptor (CAAD) Schema.

2) Specific CCM generation code and descriptors:
Based on XML CAAD files, the code for a specific
component model can be generated using the appropriate
tool. We are developing a tool called CAAD2CCM which
generates CCM code and descriptors from CAAD files.
Another approach could be the use of a tool to directly
process the design model to generate the same files. How-
ever, based in CAAD the generation process to specific
component model (CCM, Fractal, etc.) is more simple
than to directly process the design model.

Bellow, we present the main artifacts which are re-
quired to implement CCM components, and then we
present the process to generate code and descriptors for
CCM.

a) Summarizing the CCM Component code and de-
scriptors required.: Each one of the components de-
scribed in the design phase which have not been located
in the components repository, or have not been acquired
from third parties, must be implemented. We are now
going to summarize the main steps in developing CCM
components.

Firstly, in CCM, the components should be defined
using theInterface Definition Language (IDL3). Also, the
component implementation structure should be described

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 81

© 2008 ACADEMY PUBLISHER

Figure 10. Example of deployment diagram generated

ComponentAspectAssembly

����������	
��
���������������������

Concerns Concern

∞1..

Interfaces Interface

∞1..
��	
���������������������
�

attribute

∞1..

Method

∞1..

Components Component

∞1..

Deploy

Figure 11. XML Component Aspect Assembly Descriptor schemaoverview

using Component Implementation Definition Language
(CIDL) [2].

Then the component implementation is carried out us-
ing the high level programming languages (Java, C/C++,
etc.), in this sense Java is used as the programming
language. However, other languages can be used to de-
velop CCM components, due to, the CCM specification
being independent of the language used to develop the
components. That is to say, at the end of the process
the components written using several languages can be
deployed successfully.

Finally, several XML files describe the assembly among
components in CCM. These files are the following:Corba
Component Descriptor (.ccd), Component Package De-
scriptor (.csd), Corba Assembly Descriptor (.cad)and
Corba Properties Descriptor (.cpf).

The first of these descriptors (Corba Component De-
scriptor) allows us to configure the CCM container prop-
erties like transactions, life cycle, security, etc. Also,
this XML descriptor describes the services provided and
used by a component.XML Component Package De-
scriptor is a specialization of a general software package
based on Open Software Description (OSD). The software
packaging scheme, could be used to package arbitrary
software entities. Therefore, the XML file namedCorba
Assembly Descriptordescribes the components in the
system (based on references to XML Component Package
Descriptors), the component instances in the systems, and
the connections among them, that is to say, the links

among components which require a service and provide
this service. In this file, the location of each component
is described (this characteristic is extended in the next
section). Finally,Corba Properties Descriptorallows us
to describe the specific configuration properties for the
components in the system.

b) Wrappers code generation.:From Compo-
nent Aspect Assembly Descriptor (CAAD)and using
CAAD2CCM tool, the wrappers IDL3 definition (neces-
sary specification to generate stubs and skeletons in CCM,
see Figure 12-a) and thewrappersimplementation (java
files) are generated. Awrapperimplementation (java files)
comprises: the wrapper skeleton and the wrapper code for
this skeleton.

On the one hand, the wrapper skeleton describes the
interfaces which this component wrapper provides and
uses. On the other hand, the code for these wrappers is
added.

In the example (see Figure 12-b), the implementation
of the method namedI1 Operation1in theWComponent1
wrapper responds to the sequence diagram described
previously (see Figure 9), that is to say, this method
should invoke theI3 Operation1operation in the compo-
nentComponent3which provides theInterface3interface.
Finally, for each component generated, a XML component
descriptor is generated.

c) Generation of CCM descriptors.:From CAAD,
other XML files are generated:XML Component De-
scriptor, XML Component Package Descriptorand XML

82 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

1 Component WComponent1{ // (A) IDL3 for WComponent1

2 usesInterface1 cli Interface1;

3 usesInterface3 cli Interface3;

4 provides Interface1 svr Interface1;

5 };

6 // (B) Java code for I1Operation1 method of WComponent1Impl

7 public classWComponent1Impl extendsorg.objectweb.ccm.mySystem.WComponent1SessionComposition.ComponentImpl {

8 public void I1 Operation1(String text, String textout) {

9 Context P = getContext(); // Obtain the actual wrapper context. Then

10 // Obtain the object reference associated to the ’cliILog’ receptacle.

11 Interface3 cli Interface3 = get context().get connection cli Interface3();

12 if(cli Interface3 == null)// Check if the connection is available.

13 return; // then Calls the I3Operation1 service in Component3

14 cli Interface3.I3 Operation1(P.thisMethodName(), P.thisIP());

15 // Obtain the object reference associated to the ’cliIPDA’ receptacle.

16 Interface1 cli Interface1 = get context().get connection cli Interface1;

17 if(cli Interface1 == null) // Check if the connection is available.

18 return; // then Calls the I1Operation1 service in Component1

19 cli Interaface1.I1 Operation1(text, textout);

20 } // ...

21 }

Figure 12. IDL3 definition and Java code generated forWComponent1wrapper

Properties Descriptor for each component andXML
Corba Assembly Descriptor.The XML Corba Assembly
Descriptor is based on the deployment diagrams where
the kinds of components in the system are described, the
instances in the system and the interactions among them.

Consequently, the system architecture has been devel-
oped as described in the previous phases, in order to
do this, several artifacts (wrapper definition, their imple-
mentation, composition files, etc.) have been generated
from the artifact defined in the design phase.The system
has been adapted to new requirements, composing the
components like COTS or black-box. .

D. Packaging and deployment

Finally, the system artifacts (third-party binary com-
ponents, wrappers code, IDL3 component definitions,
and XML descriptors) should be packaged. A software
package is represented by a XML Descriptor and a set
of files. The descriptor and associated files are grouped
together in a ZIP archive file.

A Component Assembly Package consists of a set
of component packages and an XML Corba Assembly
Descriptor (which have been generated during the phase
of code and descriptors generation). The XML Corba
Assembly Descriptor specifies the components that make
up the assembly, component instances, and connections.
Connections are between interface ports, represented by
provides and uses features.

XML Component and Assembly Packages are provided
as input to a deployment tool. A deployment tool [12]
deploys individual components and assemblies of com-
ponents to an installation site, usually a set of hosts on
a network. Components within an assembly may be in-

stalled on a single machine or scattered across a network.
Based on an assembly descriptor, the deployment tool
installs and activates component homes and instances;
it configures component properties and connects compo-
nents together via interface as indicated in the assembly
descriptor [2].

IV. RELATED WORKS

The work presented includes two areas of interest in
software engineering such us aspect oriented software
development (AOSD) and component based software
engineering (CBSE). Both paradigms are combined in
an adequate way to obtain more adaptable and reusable
software. Next, the related works are presented taking into
account proposals forAnalysis and designand compo-
nents and aspects.

d) Analysis and design.:Currently, UML is a stan-
dard graphical language of modeled software. In this
sense, we can find several approaches for the analysis
and design both aspect-oriented software development
(AOSD) and component based software (CBS).

The component software modeled [7] presents new
challenges for software engineering because several
phases of component based software development should
be modeled, from requirements phase to the deployment
of the system, as has been presented in this proposal.

Theme/UML [13] is an extension to standard UML
to support the modularization of designs intothemes.A
themeis any feature, concern, or requirement of interest
that must be handled in the system. A theme is represented
by a design element which encapsulates a collection of
structure and behaviors. There are two kinds of themes:
crosscutting themes and base themes. Theme/UML allow

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 83

© 2008 ACADEMY PUBLISHER

the crosscutting themes to merge with the base themes
to obtain a specific output. The use of Theme/UML to
model component based systems and crosscutting con-
cerns makes the components reuse difficult because their
static and dynamic view can change as a result of the
multiple perspective merge. That is to say, the component
should be composed by means of the union of each
perspective (eachtheme), consequently, the class diagrams
and collaboration diagrams are updated. Finally, the com-
ponent implementation will also be updated. However, the
components are binary composition unit and we can not
change their interfaces or their implementation. This is a
one of the main properties to favour component reuse.

Aspect Oriented Design Modelling (AODM) [14] pro-
vides a profile to model crosscutting concerns and then
merge them with the functional concerns. Crosscutting
concerns are encapsulated in specific entities called as-
pects where are typical elements described in AOP like
pointcuts and advice. AODM involve both static and dy-
namic views (class diagrams and collaboration diagrams).
In the same sense of Theme, the merge process requires
changing the behavior of the components affected by
crosscutting concerns. AODM can not be used to model
a component based system due to the AODM proposal
hiding several phases on component based development
(CBD) as the deployment phase and AODM does not
handle in a transparent way the crosscutting concerns in
the system.

e) Components and aspects.:The application of
new concerns to a component based system presents
several alternatives focused mainly on the description
of proprietary component platforms. The description of
specific platforms makes it easier to apply aspect to a
component based system.

Pinto [15] presents a framework to include aspect
into component based systems in a dynamic way. In
this framework the aspects and components are different
first class entities. These entities can be composed in
a dynamic way, that is to say, during the execution of
the application through the information stored in the
middleware layer. This framework is based on a specific
component model designed to support the composition
among components and aspects. As a consequence, a
specific component model is needed in order to apply
this proposal.

Grundy [16] presents a new component model called
Jview defined to add new services using the concept
of aspect, which can be identified and incorporated in
the system. Again, in this model the implementation of
the component is required to obtain the new system.
A specific component model is needed to apply this
proposal.

Netinat [17] proposes an approach based on a stratified
framework for the dynamic and automated composition of
aspect in a component based system. This work presents a
structure to describe the coordination among components
and aspects. Each component intercepts its invocations
and sends it to an Aspect Moderator which re-sends the

invocations to the adequate aspect. This model supposes
the existence of one or several central elements called As-
pect Moderator, and as a consequence distributed system
architecture can not be easily implemented.

AspectJ2EE [18] applies aspects to EJB components. In
this sense the EJBs deployment descriptor is extended to
define aspects and pointcuts. The aspects are implemented
like templates (called parametrized aspects) which can be
instantiated by specific components (bean components).
The decorator pattern (also wrapper pattern) is used to
generate the code for the new functionalities based in
the parametrized aspects. The mechanism used to com-
pose the base components and the aspects is based on
inheritance (the classes generated inheritance of the base
component). The inheritance is not a good mechanism
to compose components because the components are not
objects and should be replaced by other compositional
mechanisms like the provide/use protocol [1].

Truyen [19] presents in Lasagne a view based on
pattern design used like wrapper elements. However, the
wrappers should be implemented by the developer, and
they are not generated as they are in our proposal. Besides,
the wrapper implementation is based on inheritance too.

Finally, concerning the containers, Duclos [20] extends
the capabilities of CCM containers by the aspect descrip-
tions. However, the developer should know, during the
phase of the component implementation, which services
or aspect are added to the container and use them.

V. CONCLUSIONS

Component based systems should normally be adapted
to new requirements. For us, Aspect Oriented Software
Development can help to mitigate this problem. In this
sense, an approach has been presented for the reutilization
and adaptation of components which are part of an initial
system. On the one hand, the components can be reused
during the software development process and, on the
other hand, the components can be adapted during future
evolutions of the system.

The proposal presented integrates aspects and compo-
nents to decrease the code tangling phenomenon, which
is present in component based software development.
The building of flexible and adaptable software has been
favoured by means of a new component composition
mechanism based on aspect-oriented techniques. This
proposal, based on model-driven development, allows the
addition of new functionalities to the component based
systems, begins from the model phase, passing through
all phases of the component based development (design,
code, assembly, packaging and deployment). The system
is modeled using components, aspects and their relation-
ships, and then a model to model transformation is carried
out to obtain a new model based only on components.
From the model obtained, a set of XML descriptors and
specific code are generated. In our proposal, the system
is finally updated through wrappers, which are generated
and handled automatically.

84 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

The adequate use of this proposal makes it easier
to reuse, adapt and evolve component based systems
through the transparent composition of new components
in the system. Finally, the joint use of aspect-oriented
and model-driven techniques in the component based
software engineering domain opens up a new dimension
of software development.

REFERENCES

[1] C. Szyperski, Component Software. Beyond Object-
Oriented Programming, 2nd ed. Cambridge, MA:
Addison-Wesley, 2002.

[2] OMG, The CORBA Component Model, Object Manage-
ment Group, June 2002, OMG document formal/2002-06-
65.

[3] B. Selic, “The Pragmatics of Model-Driven Development,”
IEEE Software., vol. 20, no. 5, pp. 19–25, 2003.

[4] D. Schmidt, “Tutorial on the Lightweight CORBA Com-
ponent Model (CCM).” OMG Workshop on Distributed
Object Computing for Real-time and Embedded Systems.
Arlington, VA (USA), 2003.

[5] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit,
Eds., Aspect-Oriented Software Development. Boston:
Addison-Wesley, 2005.

[6] R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia,
M. P. Alarcon, J. Bakker, B. Tekinerdogan,
and A. J. Siobhán Clarke and, “Survey of
Aspect-Oriented Analysis and Design Approaches,”
AOSD-Europe, Tech. Rep. AOSD-Europe-ULANC-
9, May 2005. [Online]. Available: http://www.aosd-
europe.net/documents/index.htm/analys.pdf

[7] J. Chessman and J. Daniels,UML Components: A Sim-
ple Process for Specifying Component-Based Software.
ISBN:0-201-70851-5: Addison-Wesley Longman Publish-
ing Co., Inc., 2001.

[8] P. J. Clemente, J. Hernández, J. L. Herrero, J. M. Murillo,
and F. Sánchez, “Aspect-Orientation in the Software Life-
cycle: Fact and Fiction,” R. E. Filman, T. Elrad, S. Clarke,
and M. Akşit, Eds. Boston: Addison-Wesley, 2005, pp.
407–423.

[9] P. J. Clemente, J. Hernández, and F. Sánchez, “Driving
component composition from early stages using aspect-
oriented techniques,” inSoftware Technology. Adaptive and
Evolvable Software Systems: Techniques, Tools, and Appli-
cations Track at HICSS07., ser. IEEE Computer Society
Press. ISSN: 1530-1605, Hawaii, United Stated., January
2007.

[10] OMG, UML 2.0 Superstructure and Infrastructure Specifi-
cation, Object Management Group. Document formal/05-
07-04, July 2004.

[11] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-
B. Stefani, “An Open Component Model and Its Support
in Java.” inCBSE, ser. Lecture Notes in Computer Science,
I. Crnkovic, J. A. Stafford, H. W. Schmidt, and K. C.
Wallnau, Eds. Springer, 2004, vol. 3054, pp. 7–22.

[12] P. Merle, “OpenCCM - The Open CORBA Component
Model Platform,” Web site: http://openccm.objectweb.org/,
2006.

[13] E. Baniassad and S. Clarke, “Theme: An Approach for
Aspect-Oriented Analysis and Design,” inICSE ’04: Pro-
ceedings of the 26th International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 158–167.

[14] D. Stein, S. Hanenberg, and R. Unland, “An UML-based
Aspect-Oriented Design Notation,” inProc. 1st Int’ Conf.
on Aspect-Oriented Software Development (AOSD-2002),
G. Kiczales, Ed. ACM Press, Apr. 2002, pp. 106–112.

[15] M. Pinto, L. Fuentes, M. Fayad, and J. M. Troya, “Sep-
aration of coordination in a Dynamic Aspect-Oriented
Framework,” inProc. of the First International Conference
on AOSD. The Netherlands: ACM, Apr. 2002, pp. 134–
140.

[16] J. Grundy, “Multi-Perspective Specification, Design and
Implementation of Components Using Aspects,”Interna-
tional Journal of Software Engineering and Knowledge
Engineering.World Scientific,, vol. 10, no. 6, December
2000.

[17] P. Netinant, T. Elrad, and M. E. Fayad, “A Layered
Approach to Building Open Aspect-Oriented Systems: A
Framework for the Design of On-Demand System Demod-
ularization,” Comm. ACM, vol. 44, no. 10, pp. 83–85, oct
2001.

[18] T. Cohen and J. Gil, “AspectJ2EE = AOP + J2EE.”
in ECOOP, ser. Lecture Notes in Computer Science,
M. Odersky, Ed., vol. 3086. Springer, 2004, pp. 219–
243.

[19] E. Truyen, “Dynamic and Context-Sensitive Composition
in Distributed Systems,” Ph.D. dissertation, K.U. Leuven,
Belgium, November 2004.

[20] F. Duclos, J. Estublier, and P. Morat, “Describing and using
non functional aspects in component based applications,”
in Proceedings of the 1st international conference on
Aspect-oriented software development. ACM Press, 2002,
pp. 65–75.

Pedro J. Clemente is currently an associate professor at
the Computer Science Department of Extremadura University
(Spain). He belongs to the Quercus Software Engineering
Group. He received his B.S. in Computer Science from the
University of Extremadura in 1998 and Ph.D. in Computer
Science form the Extremadura University in 2007. His research
interest include aspect orientation, model driven development
and component based software engineering.

Juan Hernández is an Associate Professor of Languages and
Systems and the Head of the Quercus Software Engineering
Group of the Extremadura University (Spain), where he also
currently leads the Computer Science Department. He received
the BSc in Mathematics from the University of Extremadura
and the PhD degree in computer science from the Technical
University of Madrid. His research interests include component-
based software development, aspect orientation and distributed
systems. He is involved in several research projects as respon-
sible and senior researcher related to these subjects. He has
participated in many workshops and conferences as speaker and
member of the program committee. He is currently member of
the Spanish steering committee on Software Engineering, and
organized several workshops and international conferences. He
is a member of both the ACM and the IEEE Computer Society.

Fernando Śanchez-Figueroahas a PhD in Computer Science.
He is currently Head of the Vitual Campus at the University of
Extremadura (Spain). He is involved in several projects related
to Web accessibility for visually impaired people using mobile
devices. He holds the Telefónica grant for the ”Application of
Information and Communication Technologies to the University
Environment”.

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 85

© 2008 ACADEMY PUBLISHER

APPENDIX I. COMPONENT ASPECTASSEMBLY

DESCRIPTOR(CAAD) SCHEMA

ComponentAspectAssembly

����������	
��
���������������������

Concerns Concern

∞1..

Interfaces Interface

∞1..
��	
���������������������
�

attribute

∞1..

Method

∞1..

Components Component

∞1..

Deploy

Concerns Concern

∞1..

ComponentAffected

∞1..

Set_Hooks

∞0..
�����������	
���
����

args

∞0..

Expresion

Actions

∞0..
�	
���
����
�������	����
��
�	�	�����������
��	��

GroupCode

∞1..
�	
���
�����������	�������	���
������	������

Selection

∞0..

Execute

∞0..

Loop

∞0..

Component

provides

∞0..

uses

∞0..

Uses_Concern ConfigConcern

∞1..
���������	
��	��
���	
���	��
�	��	
�
���
���
���	
������

������

Set_Hooks

∞0..
�	�
�	�
�����������	
�

args

∞0..

Expresion

Actions

∞1..
���������	
��	���	����	�
�������
���
�
��	��	
�
�

GroupCode

∞1..
���������	
�	���	����	��
�����
�
�����
����
��

Selection

∞0..

Execute

∞0..

Loop

∞0..

emit

∞0..

consume

∞0..

Deploy

ComponentInstanciation

∞1..
�������������	�
���	��������	�	��
��
���������
�������������

�	�������

Node

Container

lifecycle

transaction

security

Connections

��
������	�����������	

ConnectInterface

∞0..

UsesPort
UsesIdentifiers

ComponentInstanciationRef

ProvidePort
ProvideIdentifiers

ComponentInstanciationRef

ConnectEvent

∞0..

emitPort
ProvideIdentifiers

ComponentInstanciationRef

consumePort
ProvideIdentifiers

ComponentInstanciationRef

86 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

