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Abstract— The anomaly-based intrusion detection systems 

examine current system activity do find deviations from 

normal system activity. The present paper proposes a 

method for normal activity description using the Hidden 

Markov Models (HMM), which is tuned up using the 

gradient based method. The obtained model is utilized as a 

baseline, depicting the normal system activity. The main 

purpose is to distinguish the normal traces of user activity 

from abnormal ones using the BCJR decoding algorithm. 

Some results from the conducted simulation experiments 

are introduced as well.  

 

Index Terms— intrusion detection, anomaly-based intrusion 

detection, learning problem, Hidden Markov Model, BCJR 

decoding algorithm. 

 

I.  INTRODUCTION 

Network computer systems vulnerabilities such as 

software bugs or incorrect system administration are 

often exploited by malicious users to intrude into target 

systems. An intrusion detection system (IDS) is a defense 

system, which detects hostile activities in the protected 

network. The key is then to detect and possibly prevent 

activities that may compromise system security, or a 

hacking attempt in progress including reconnaissance 

and/or data collection phases that involve subsequent 

attacks. Intrusion is a series of concatenated activities that 

pose threat to the safety of IT resources from 

unauthorized access to a specific computer or address 

domain on the part of authorized users or outsiders. 

The primary assumptions the intrusion detection is 

based on are the system activities are observable and 

normal and intrusive activities have distinct evidence [4]. 

Based on the intrusion detection method IDS can be 

categorized into two main categories: misuse based and 

anomaly based [13]. Misuse based IDS, also referred to 

as signature based IDS, act similar to virus scanners and 

look for attack signatures or selected text strings [26, 35]. 

Since any action that is not clearly considered prohibited 

is allowed, their accuracy is very high, but they do not 

achieve completeness to disclose novel attacks or 

variations of familiar attacks.  

Anomaly-based IDS detect the computer intrusions by 

monitoring system activity and classifying it as either 

normal or anomalous. They rely on the assumption that 

each intrusion will reflect some deviations from normal 

system activity [1]. These systems construct profiles that 

represent normal usage and then use current behavior 

data to detect a possible mismatch between profiles and 

recognize possible attack attempts.  

In order to match event profiles, the IDS is required to 

produce initial user profiles to train the system with 

regard to legitimate user behaviors. Then the system uses 

these profiles as a baseline describing normal or expected 

user activity. It detects intrusion by observing a deviation 

from the normal behavior of the system or the users [33].  

The main advantage of anomaly based IDS is the 

potential to detect novel attacks or unknown attacks, as 

well as attempts to exploit new and unforeseen 

vulnerabilities regardless of whether the source is a 

privileged internal user or an unauthorized external user. 

Anomaly detection approaches have the additional 

advantage that learning to describe normal activity can be 

automated. Another benefit of this approach is the less 

dependence of the IDS on operating environment and the 

ability to detect abuse of user privileges.  

In order to determine what is attack traffic, the system 

must be taught to recognise normal system activity [32]. 

This task can be accomplished in several ways. Denning 

[8] describes an approach that builds profiles based on 

login times and resources (e.g. files, programs) that users 

access. Simple statistical methods are used to determine 

whether observed user behavior conforms to the stored 

model. Unfortunately, this behavior can suddenly change 

and is usually not well predictable. As a consequence the 

focus was shifted from user to program behavior. The 

execution of a program is modeled as a set of system call 
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sequences [11], which occur during 'normal' program 

execution. When the observed sequences deviate from the 

expected behavior the program is assumed to perform 

something unintended, possibly because of a successful 

attack.  

There are different approaches to describe normal user 

activity and the deviations from this baseline – finite 

automata [15, 23], machine learning [24, 34], neural 

networks [7, 36], Hidden Markov Model [21, 25, 27], 

genetic algorithms [9, 14], wavelet analysis [10, 30], 

statistics [18, 19], etc. The present paper focuses its 

considerations on the anomaly detection at application 

level, introduced by [12]. They examined the short 

sequences of system call traces produced by the 

execution of the privileged programs at Sun OS system. 

These processes are of special interest of the attacker, as 

they run with administrative rights and have access to 

system resources that are inaccessible for ordinary users. 

This paper proposes a method of intrusion detection 

identification, which is based on a preliminarily 

composed database of normal user activity patterns. The 

main purpose is to examine the current user activity and 

to calculate the probability the current activity to be 

normal user activity, using the Hidden Markov Model 

(HMM) [28, 29] – a powerful finite state machine, 

expedient for various types of pattern recognition 

problems. The proposed methodology is applied for the 

attacks detection during the normal activities in the 

system. As our goal is to distinguish the normal activity 

patterns from abnormal ones, we consider this detection 

as decoding problem. 

The present method consists of two stages – the first 

contains the HMM initial creation and its adjustment 

using the gradient method, and the second one includes 

the intrusion recognition using the BCJR decoding 

algorithm [2]. In Section 2 we review some of the 

standard facts on these techniques. Some of our 

experimental results are provided in Section 3, including 

the experimental data, the results of the intrusion 

detection itself, as well as some results analysis and 

errors evaluation. 

II.  OUTLINE OF THE METHODOLOGY  

A.  The system model 

Let’s consider a HMM with N states: S1, S2, …, SN  

which the system passes through its work in discrete 

moments of time t=1, 2, .. ,T,…, and that the probability 

of occupying a state is determined solely by the preceding 

state. Let О=(O1, O2, … OT) is the observation sequence 

at the moments t=1, 2, …, T, where each Ot is a certain 

element vkV, where the set V is the observations set with 

M elements in number. We denote the state sequence of 

HMM at the moments t=1, 2, …, T with Q=(q1, q2, …, 

qT). HMM is completely specified by the ordered triple 

( , , )A B  : 

 The vector π is the initial probability distribution 

1 2( , ,..., )N     for the HMM states.  

 The state transition probability matrix A={aij, 

1≤i≤N, 1≤j≤N}, 0 1ija   and 
1

1
N

ij

j

a


  is a square 

matrix with the elements which represent the 

probability of transitioning from given state to another 

possible state.  

 The observation probability distribution is a non-

square matrix B={bj(Ok), 1≤j≤N, 1≤k≤M}, with 

dimensions number of states by number of 

observations. It represents the probability that a given 

observable symbol will be emitted by a given state.  

We consider those processes only in which the state 

transition probabilities do not change with time, i.e. P(qt 

= Sj | qt-1 = Si) = aij  the probability of transiting from 

state Si to state Sj does not depend on the moment of time 

t (stationarity assumption).  

The main goal for the HMM is to describe the system 

behavior during specific period of time. We create an 

initial HMM, which is tuned up using the learning 

problem in order to achieve this goal. 

This adjustment is performed by determination of the 

model parameters A, B and π for given HMM λ in order 

to maximize ( )L P O   for the observation sequence O. 

This problem is known as learning problem. There are 

several optimization criteria for learning, out of which a 

suitable one is selected depending on the application. We 

apply the Maximum Likelihood (ML) as optimization 

criteria in the present paper.  

B.  ML criterion 

In ML we try to maximize the probability of a given 

sequence of observations O, belonging to a given class w, 

given the HMM ( , , )A B   of the class w, with respect 

to the parameters of the model ( , , )A B  . There is no 

known way to analytically determine the model 

( , , )A B  , which maximize the quantity ( )L P O  . 

But we can choose model parameters such that it is 

locally maximized, using an iterative procedure, like a 

gradient based method. In this method any parameter   

of the HMM   is updated according to the standard 

formula 

,

old

new old

J




 
      

                                (1) 

where J is a quantity to be minimized. In our case we set 

 log logJ p O L    . The minimization of J is 

equivalent to the maximization of L. We have 

 

     
1 1

, ,
N N

t t t

i i

L p O q i i i  
 

               (2) 

where: 

 the forward variable  

1 2( ) ( , ,..., , | )t t t ii p O O O q S    

is defined as the probability of the partial observation 
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sequence 1 2, ,..., tO O O , when it terminates at the state 

si and can be calculated using the following recursive 

steps: 

1 1( ) ( ), 1j jj b O j N     

1 1

1

( ) ( ) ( ) , 1 , 1 1
N

t j t t ij

i

j b O i a j N t T  



       (3) 

 the backward variable 

1 2( ) ( , ,..., , | )t t t T t ii p O O O q S   
 

can be defined as the probability of the partial 

observation sequence 21
, ,...,t t TO O O  , given that the 

current state is Si and as in the case of ( )t i there is a 

recursive relationship which can be used to 

calculate ( )t i  efficiently: 

( ) 1, 1T i i N     

1 1

1

( ) ( ) ( ), 1 , 1 1
N

t t ij j t

j

i j a b O i N t T   



        (4) 

Differentiating J with respect to an arbitrary parameter 

  

1
.

J L

L

 
 

 
 

Since there are two main parameter sets in the HMM, 

transition probabilities aij and observation probabilities 

bj(Ok), we can find the derivative 
L


 for each of the 

parameter sets and hence the gradient 
J


. 

1. Gradient with respect to transition probabilities. 

Using the chain rule  

 

 

1

T
t

tij t ij

jL L

a j a





 


  
 . 

 

By differentiating (2) with respect to  t j  we get 

 
 t

t

L
j

j








 and differentiating (3) with respect to 

ija  we obtain 
 

   1 .
t

j t t

ij

j
b O i

a


 





 Then 

     1

1

1
.

T

t j t t

tij

J
j b O i

a L
  




 


  

 

2. Gradient with respect to observation probabilities. 

Using the chain rule  

   

 

 
t

j t t j t

jL L

b O j b O





 


  
. 

By differentiating (3) with respect to  j tb O  we get  

 

 

 

 
t t

j t j t

j j

b O b O

 



. Then  

   

 

1 t t

ij j t

j jJ

a L b O

 
 


. 

The attacks recognition can be considered as a 

decoding problem. One fundamental decoding principle 

is symbolwise maximum a posteriori decoding – the 

concept of optimally decoding each symbol. As an 

example of this decoding we applied BCJR decoding 

algorithm. Our second step is to use this algorithm to 

estimate random parameters with prior distributions. The 

algorithm scans the traces of the system activity and 

compares with the patterns of normal user activity. 

C.  The BCJR algorithm 

The description of the BCJR algorithm can be done 

based on log-likelihood ratios (LLR). The LLR are 

represented as follows 

 
 

1
ln

0

i i

i

i i

P m O

P m O


 


.  

where mi is the message bit associated with the state 

transition qi to qi+1 and  1i iP m O  is the a posteriory 

probability (APP) in which the bit, determining the 

presence of attack, is equal to 1. If the LLR of an 

observation is positive, it implies that im  is most likely to 

be a 1 and if it is negative, im  is most likely to be a zero.  

We can express  1i iP m O  as follows: 

   
 

 
1 1

1

1

,
1

i i i

i i i i i

S S i

P s s O
P m O P s s O

P O






    

, 

where 1S  represents the set of all state transitions for 

which the input symbol is iO . Similarly, 

   
 

 
0 0

1

1

,
0

i i i

i i i i i

S S i

P s s O
P m O P s s O

P O






    

, 

where 0S  is the set of all pairs of states which transient 

from a state is  at time i  to a state 1is   at time 1i   under 

the input symbol not iO . Hence, the LLR of the i
th
 

observation is obtained as: 

 

 
1

0

1

1

,

ln
,

i i i

S

i

i i i

S

P s s O

P s s O







 





. 

We partition the joint probability 

of  1,i i iP s s O into three parts using Bayes’ rule: 

       1 1 1,i i i i i i iP s s O s s s s       , 

where    1,i i is P s O   is the forward variable, 

   1 1 1i i is P O s     is the backward variable and  

   1 1,i i i i is s P s O s     

represents the probability of the state transition from is  

to 1is  , given the current state is is  which is called the 

Branch metric associated with the state transition 

1i is s  . The Branch metric can be expressed as: 
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         1 1 1i i i i i i i i i is s P s s P O s s P m P O x      

The first term  iP m  represents the a priori information. 

The second term  i iP O x  is straight-forward. 

 
 

2

22

1
exp

22

i i

i i

O ax
P O x



 
  

  

, 

where xi is the result of the transition from the state si 

to state si+1 during the normal system activity. 

III.  SIMULATION EXPERIMENTS  

A.  The Experiment Data 

Following the scheme of intrusion detection described 

in section II, we have conducted several experiments. The 

experimental data were obtained from a project 

performed by the researches in the Computer Science 

Department, University of New Mexico [37].  

The data are obtained from Unix and Sun 

SPARCstations system examination during some period 

of time and consist of normal user activity patterns of 

some privileged processes executed with administrative 

rights as well some anomalous data. The privileged 

processes are of special interest of the attacker as they 

perform some services which require access to system 

resources that are inaccessible to ordinary users. The 

methods for pattern generation are described in [11] and 

[12]. They substantiate the short sequences of system 

calls are reliable discriminator between normal and 

anomalous activities in the system. Each pattern is a 

sequence of system calls, which are the results of the 

examined process. The input data files are sequences of 

ordered pairs of numbers, where each line consists of one 

pair. The first number in each pair is the process ID (PID) 

of the process executed, and the second one is the system 

call number. Forks are taken into account as separate 

processes and their execution results are considered as 

normal user activity. Table I contains some examples of 

input data. 

The experimental data include normal user activity 

traces as well as intrusion data. The normal activity 

patterns compose the set of the states S and the intrusion 

activity patterns compose the set V. The initial system 

model was created according to these data. Then the 

model is tuned using the gradient method, described in 

section II.B. The obtained model is used as a database 

describing normal system activity. Then the BCJR 

algorithm was applied in order to distinguish normal 

traces from abnormal ones. As a result of BCJR 

algorithm we obtain the LLRs which represent the 

probability of intrusion occurrence at the given moment 

of time.  

TABLE I.   
SYSTEM CALL DATA, CONTAINING PID AND SYSTEM CALL NUMBER 

PID 1393 1393 ... 1423 

System calls 112 19 ... 105 

TABLE II.   
NUMBERS OF ITERATIONS AND THE VALUES OF L DEPENDING ON THE 

VALUES OF η WHEN T=10 

T=10 Number of iterations L 

η=0,0001 322 4.20353e-13 

η=0,0002 161 3.41980e-13 

η=0,0003 107 3.21028e-13 

η=0,0004 80 7.60207e-14 

η=0,0005 64 1.15635e-13 

η=0,00001 3224 3.94035e-13 

η=0,00002 1611 3.78713e-13 

η=0,00003 1074 3.87351e-13 

η=0,00004 805 3.58734e-13 

η=0,00005 644 3.58219e-13 

TABLE III.   
NUMBERS OF ITERATIONS AND THE VALUES OF L DEPENDING ON THE 

VALUES OF η WHEN T=15 

T=15 
Number of 
iterations 

L 

η=0,0001 322 2.88298e-17 

η=0,0002 162 1.88268e-17 

η=0,0003 108 4.77443e-18 

η=0,0004 82 8.53916e-18 

η=0,0005 65 5.47520e-19 

η=0,00001 3207 2.54814e-17 

η=0,00002 1604 2.47694e-17 

η=0,00003 1070 2.46345e-17 

η=0,00004 802 2.22364e-17 

η=0,00005 642 2.21205e-17 

 

We used a slide window with length T to cross the 

traces of current user activity, i.e. the system 

observations, which compose the set O. We accomplished 

experiments with the following values of T: 10, 15 and 

20. Given an unknown observation sequence, the ML-

criterion finds the model   which maximizes the value 

of ( )L P O  . For standard gradient descent we use 

learning rate η from 0,000001 to 0,000009 with step 

0,000001, from 0,00001 to 0,00009 with step 0,00001 

and from 0,0001 to 0,0009 with step 0,0001 for both 

observation and transition probabilities. Initially we 

examined the data about the process synthetic sendmail. 

Some of the obtained results are summarized in Tables II 

and III which represent the number of iterations and the 

value of L for η=0,0001-0,0005 and η=0,00001-0,00005 

when we examine 10 or 15 unknown observations.  

The algorithm exhibits a tendency of growth of the 

number of iterations when we increase the number of 

observations and decrease the learning rate η. The 

number of iterations necessary for the model training is 

similar when T=10 and 15. One of the greatest problems 

in training large models with gradient descent is to find 

an optimal learning rate. A small one will slow down the 

speed and significantly increase the number of iterations. 

On the other hand, a large one will probably cause 

oscillations during training and finally leading to no 

useful model would be trained.  

B.  The Detection Results 

Anomalous data was examined using the BCJR 

decoding algorithm which compares the traces of the 

system activity for T=10, 15 and 20 with the patterns of 
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normal user activity. The intrusion detection problem is 

considered as a decoding problem. The results of the 

algorithm are the values of LLR, where each LLR is the 

logarithmic ratio of the probability of attack presence and 

the probability of normal activity at specific moment t. 

We assume that the values of LLR greater than 0 denote 

an attack presence. 

Figure 1 contains the values of LLRs when T=10 for 

values of η=0,00006-0,00009. As we can see the 

algorithm recognizes the observation O6 as anomalous 

regardless of the value of η. So the chosen values of η do 

not have significant influence on the method ability for 

attacks detection. 

Some of the results for T=15 and 20 and η=0,00006-

0,00009 are represented at Figure 2 and 3. The positive 

values of LLR stand for observations considered as 

attacks. For instance, from Figure 3 IDS for T=20 the 

method most likely checks O6, O8 , O14,, O19, O20 as 

attacks. 

Figures 4 and 5 contain the comparison between the 

values of LLR’s corresponding to the same observations 

with different values of T. For instance, from Figure 4 we 

see that the IDS for T=15 most likely checks O12 as an 

attack while the IDS for T=20 checks it as normal system 

activities and IDS for T=20 most likely checks O8 and O14 

as attacks while IDS for T=15 checks these observations 

as normal system activities. We assume the results for the 

greater value of T are more reliable due to the larger 

number of observations considered in LLR’s calculation. 

Some of the results for T=10, η=0,00004-0,00006 and 

the processes: synthetic ftp, named and xlock are 

summarized at Figures 6, 7 and 8. 
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Figure 1. Values of LLR depending on the value of η when T=10. 
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Figure 2. Values of LLR’s depending on the values of η when T=15 
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Figure 3. Values of LLR’s depending on the values of η when T=20 

 

-200,0000

-150,0000

-100,0000

-50,0000

0,0000

50,0000

100,0000

150,0000

T=10  0,00009 -180,2 -75,60 -21,16 -21,16 0,0000 125,72 -21,16 -97,13 -151,7 -143,7

T=15  0,00009 -179,7 -75,63 -21,11 -21,11 0,0000 124,99 -21,11 -96,63 -150,7 -143,3 -179,7 22,400 -21,11 -96,63 -179,7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 
Figure 4. Values of LLR for T=10 and T=15 and η=0.00009 
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Figure 5. Values of LLR for T=15 and T=20 and η=0.00004 and η=0.00005. 
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Figure 6. Values of LLR depending on the value of η when T=10 for 

synthetic ftp. 
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Figure 7. Values of LLR depending on the value of η when T=10 for 

named. 
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Figure 8. Values of LLR depending on the value of η when T=10 for 

xlock. 

C.  The Results Analysis 

The false positive rate (FPR) is the frequency with 

which the IDS reports malicious activity in error. The 

true danger of a high false positive rate lies in fact that it 

may cause to ignore the system’s output when legitimate 

alerts are raised. The false negative rate (FNR) is the 

frequency with which the IDS fails to raise an alert when 

malicious activity actually occurs, i.e. it represents the 

undetected attacks on a system. False negative rate 

changes in an inverse proportion to false positive rate.  

In order to evaluate the false positives rate we applied 

a method used by Hoang et.al. [16]. This approach is 

based on the assumption that as a normal trace sequence 

does not contain any intrusions, any reported alarms 

could be considered as false alarms. From the normal 

trace we generated a list of n consecutive short sequences 

of system calls, using a sliding window of length T. Then, 

each short sequence of the list is evaluated by the 

detection method to determine if it is normal or abnormal. 

We counted all abnormal sequences for the whole list as 

m. The false positive rate is calculated as m/n. Figures 9, 

10 and 11 represent some values of LLR for the 

processes: synthetic ftp, named and xlock, which are used 

to determine what short sequence of the list is normal or 

abnormal. 
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Figure 9. Values of LLR representing false positives for named. 
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Figure 10. Values of LLR representing false positives for xlock. 
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Figure 11. Values of LLR representing false positives for synthetic 

ftp. 

 

Table IV contains the values of the false positive rate, 

the false negative rate and the accuracy for processes 

synthetic ftp, named and xlock.  

Figures 12, 13 and 14 contain graphs of the false 

negative rate, fraction of intrusions incorrectly not 

detected, and the false positive rate, fraction of non-

intrusions incorrectly detected, for the same input.  

Another statistical method for evaluation the IDS 

effectiveness is calculation of sensitivity and specificity. 

Sensitivity is defined as the true positive rate (TPR), i.e. 

intrusion correctly detected. Mathematically, sensitivity is 

expressed as follows: 

 

True Positive Rate

True Positive Rate + False Negative Rate
 

 

TABLE IV.   
THE FALSE ALARMS RATE AND THE ALGORITHM ACCURACY 

Process 

False 

positive 
rate 

False 

negative 
rate 

Accuracy 

synthetic ftp 17% 39% 72% 

synthetic sendmail 11% 33% 83% 

named 5% 23% 86% 

xlock 3% 15% 91% 
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Figure 12. Error rate for named. 
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Figure 13. Error rate for xlock. 
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Figure 14. Error rate for synthetic ftp. 

 

The false negative rate is equal to one minus the 

sensitivity. True negative rate (TNR) represents an IDS 

that is correctly reporting that there are no intrusions.  

TABLE V.   
THE CROSSOVER ERROR RATE 

Process CER 

synthetic ftp 0,07 

inetd 0,06 

named 0,05 

xlock 0,03 

stide 0,05 

 

Specificity is expressed as  

 

True Negative Rate

True Negative Rate + False Positive Rate
 

 

The false positive rate is equal to one minus the 

specificity. Sensitivity and specificity for the processes 

inetd and stide are respectively 0,87; 0,93 and 0,92; 0,89.  

The crossover error rate (CER) is defined as adjusting 

the system’s sensitivity until the false positive rate and 

the false negative rate are equal. The crossover error rate 

for considered processes is represented in Table V. In 

order to achieve a balance between false positive rate and 

false negative rate, we may select the IDS with the lowest 

crossover error rate. 

The receiver operating characteristic (ROC) curve is a 
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method of graphically demonstrating the relationship 

between sensitivity and specificity. An ROC space is 

defined by FPR and TPR as x and y respectively, which 

depicts relative trade-offs between true positive and false 

positive. The decision threshold divides the normal 

activities into a true negative and a false positive group, 

and the attack sequences into a true positive and a false 

negative group. As the decision threshold moves to the 

right along the x-axis, sensitivity ranges from one, when 

all tests are read as abnormal (no false negatives), to 0, 

when all are normal (no true positives). Maximal 

sensitivity is realized when all tests are reported as 

abnormal. Specificity moves in concert from 0 (no true 

negatives) to 1 (no false positives). Maximal specificity is 

achieved by reporting all tests as normal. The best 

possible prediction method would yield a point in upper 

left corner (0,1) of the ROC space, representing 100% 

sensitivity (all true positives are found) and 100% 

specificity (no false positives are found). This point is 

called a perfect classification. The diagonal line (from the 

left bottom to the right corner) divides the ROC space in 

areas of good and bad classification. Points above this 

line indicate good classification results; while points 

below the line indicate wrong results (see Figures 15 and 

16). Each sensitive value can be plotted against its 

corresponding specificity value to create the diagram for 

the processes inetd and stide in Figures 17 and 18 

respectively.  
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Figure 15. The ROC curve and the diagonal line for inetd 

 

ROC curve stide and diagonal line
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Figure 16. The ROC curve and the diagonal line for stide 
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Figure 17. The ROC curve for inetd 
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Figure 18. The ROC curve for stide 

IV.  DISCUSSIONS 

Based on simulation results (low crossover error rate 

and false alarm rate, and satisfactory level of accuracy), 

the application of the proposed method for anomaly-

based intrusion detection is technically feasible. 

An advantage of the described probabilistic method is 

its potential to detect an unknown attack the first time it 

appears, as it is based on the BCJR decoding algorithm. 

As a result of the algorithm we obtain the probability of 

attack presence, divided by the probability of attack 

absence instead of one-to-one mapping between the 

current patterns and those in the database. We applied a 

model training using the learning problem based on 

HMMs in order to learn normal and abnormal patterns of 

program behavior from its execution trace to generalize 

upon the method introduced in [11]. The proposed 

method is shown to be able to accurately detect 

anomalous intrusions. It not only increases the level of 

confidence but improves the false alarm and detection 

rates also. Our experiments demonstrate that learning 

problem combined with the BCJR decoding algorithm 

can indeed play an important role in intrusion detection of 

computer systems. 
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Nevertheless, there are some open issues, which 

warrant further attention. A disadvantage of the described 

method is its considerable price, as the BCJR algorithm 

has О(ТN
2
) complexity. As N is the number of the states, 

i.e. the number of normal user activity patterns in the 

database, its value could be significant in the case of a 

large system. Another disadvantage of the anomaly based 

IDS in general is the creation of the database containing 

the user profiles, which could be a task of considerable 

difficulty, especially during the ML training. The gradient 

method has О(ТN
2
) complexity at each training step. We 

should mention this training is accomplished once before 

the observation decoding which is a continuous process 

during the system work.  

Our method is based on the definition of normal 

behavior in terms of short sequences of system calls, 

described by Forrest et. al. ([11] and [12]). With the 

purpose of simplicity, this method ignores the parameters 

passed to the system calls, and look only at their temporal 

orderings. We should mention this definition of normal 

behavior ignores many other important aspects of process 

behavior, such as timing information instruction 

sequences between system calls, and interactions with 

other processes. 

V.  CONCLUSION 

The intrusion detection is beginning to assume 

enormous importance in today's highly connected 

network environment. The combination of facts such as 

the unbridled growth of the Internet and the vast financial 

possibilities opening up in electronic trade makes it an 

important field of research.  

Hidden Markov Methodology, with particular care to 

the parameter estimation and the training phase, 

represents a powerful approach for creating anomaly 

detection method which can find whether the traffic is 

normal or containing some sort of anomaly. This paper 

investigated the capabilities of this methodology in 

anomaly detection method. The model training is 

performed using ML criterion, based on the gradient 

method. Since we considered the attacks recognition as a 

decoding problem, we applied the BCJR algorithm 

combined with gradient based method. The training of 

HMM model is expensive but the detection of the attacks 

is more efficient. This results in a system that would be 

able to accurately detect the intrusions. Although the 

proposed model is a host-based intrusion detection 

scheme, it has the potential for use in networked 

environments. 
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