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Abstract—Influence control is a very challenging issue in 

dynamic reconfiguration and still not well addressed in the 

literature. This paper argues that dynamic reconfiguration 

influences system execution in four ways: functional update, 

functional side-effect, logical influence on performance and 

physical influence on performance. Methods including 

version control, transaction tracing, switching 

reconfiguration plan, and reconfiguration scheduling have 

been proposed for controlling the influence. These methods 

are integrated into the Reconfigurable Data Flow (RDF) 

model, which is designed to support the dynamic 

reconfiguration of stateless data flow systems. The RDF 

platform is an implementation of the RDF model on Java 

platform. The RDF platform is implemented as an open 

frame for different reconfiguration planning algorithms and 

scheduling policies to be simulated and their influence to be 

quantitatively compared on a single platform. Using the 

Data Encryption and Digital Signature System as a case 

study, tests have been done on the RDF platform to examine 

the influence of different reconfiguration planning 

algorithms and scheduling policies. Experimental results 

show that the methods proposed in this paper is effective in 

controlling the influence of dynamic reconfigurations. 

 

Index Terms—dynamic reconfiguration, influence control, 

data flow 

 

I.  INTRODUCTION 

Currently, Dynamic Reconfiguration (DR) i.e. 

changing a system from one configuration to another at 

run-time [11] is becoming a necessary feature of 

software. This trend originates from two facts: 1) 

increasing need for systems to be online 24-hour daily as 

Internet usage rapid increases and 2) continuous update is 

one of the inherent properties of software. DR technique 

makes it possible to evolve a system without disruption. 

Although DR does not need a system to shut down, it 

does have some influence on the running of the system. 

Typically, the system will inevitably suffer a performance 

decline during the reconfiguration period due to the 

necessity of the DR performing blocks to some parts of 

the system [17]. This also involves processor time to 

execute the reconfiguration operations [6]. A DR will 

lose its benefits if it causes severe impact on the system 

performance because it has no essential difference with a 

Static Reconfiguration (SR, reconfiguration after 

shutdown) from an end user’s point of view. An end user 

will encounter the unavailability of a system if the system 

is going through a SR while encountering the no-

response of a system if the system is going through a DR 

with severe performance decline. In comparison, the no-

response state has no significant advantage over the 

unavailability state. Therefore, influence control, i.e. the 

ability to preserve system correctness and maintain 

system performance (throughput or response time), is one 

of the most important aspects that have to be considered 

in designing a DR. 

This paper will discuss the ideal way of DR, which 

satisfies four constraints: 1) Correctness-preservation. A 

DR should preserve the correctness of the system 

functionality while achieving the appropriate change. 2) 

Performance-maintenance. A DR should restrict its 

impact on the system performance to zero if possible or 

to an extent that is acceptable to end users. 3) Minimal-

application-contribution. The DR mechanisms should be 

ideally transparent to component developers. 4) 

Automation. A DR should operate automatically where 

the administrator only needs to input the target 

configuration and the system will complete the remaining 

requirements including reconfiguration planning and 

execution. 

However, such an ideal way of DR does not exist in 

the literature. Although many DR models [2][5][8][9][15] 

have provided methods to correctness preservation, only 

a few [12][14] are concerned about the problem of 

performance-maintenance. And even fewer [14] have 

methods that can maintain the system performance to 

some extent. Finally, there is not a model that has 

integrated the methods to correctness preservation and 

performance maintenance into a single cohesive model 

and at the same time provided automation and the 

framework that requires minimal-application-

contribution. 

The most difficult problem in pursuing an ideal DR is 

the aspect of performance-maintenance. Typically DR 

models are based on software components. Software 
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component is suitable to be the basic entity in 

reconfiguration due to its modularity, well-defined 

interface and inter-connection dependency [16]. In a 

general DR scenario, to guarantee the correctness of the 

system functionality, the system has to be blocked and 

driven into a safe state before reconfiguration operations 

can be executed. In such a state, reconfiguration 

operations will not interrupt interactions between 

components or interfere with the constraint relationships 

between components. Since the blocking operation will 

have an influence on the system performance, researchers 

are striving to restrict the influenced area and period. But 

the influenced area and period are application relevant; 

therefore, there is theoretically a minimum influence for 

each general DR and it cannot be minimized further. 

Since the ideal DR is not always available in general 

DR scenarios, this paper concentrates on whether it is 

available in restricted scenarios and how it can be 

achieved if available. The stateless dataflow model is 

researched in this paper for the goal, and the four 

characteristics are unified into the Reconfigurable Data 

Flow (RDF) model to demonstrate the feasibility of the 

proposed mechanisms for influence control. This paper is 

based on the previous work in [18]. 

This paper is organized as follows. Section II 

overviews the related DR models and compares their 

works on influence control. Section III discusses how DR 

influences the running of a system, how the influence can 

be eliminated or restricted, and what constraints the DR 

scenario should satisfy for the influence control. Section 

IV presents the RDF model to demonstrate the 

workability of the methods for influence control proposed 

in section III. The implementation of the RDF model and 

the experimental results, based on the case study of the 

Data Encryption and Digital Signature System (DEDSS) 

are also given in this section. Finally section V concludes 

the paper and points out the future works. 

II.  RELATED WORKS 

Since Kramer and Magee’s early work [8], many 

models have been proposed for DR. Several 

representative models are selected for review in this 

section. This includes the following models: Kramer and 

Magee [8], SOFA 2 [3], Mitchell [12], OpenRec [7], and 

Naveed [14].  

These models are compared from several aspects, 

including correctness preservation, performance 

maintenance, application contribution, automation, along 

with application scenario and openness of 

implementation. 1) Application scenario reflects the 

applicability of the models. 2) Correctness preservation 

and performance maintenance are the two aspects for 

influence control. 3) Application contribution and 

automation indicate the amount of human intervention 

needed by the models in DR. 4) Openness of 

implementation means whether the implementation is 

open i.e. other algorithms/methods are easy to be 

integrated into and compared within the same platform, 

or conversely, closed. 

The characteristics of the models are listed in TABLE 

I. Kramer and Magee’s model is a general scenario 

model. The problems relevant to correctness preservation 

are well addressed in the model, such as structural 

integrity [16], global consistency [15] and state transfer 

[17]. These problems are solved by using a blocking 

mechanism to drive the system into a safe state before 

applying reconfiguration operations. The application 

contribution it requires is minimal. The drawbacks are: 

the system performance is not maintained because of the 

blocking; the reconfiguration progress is not automated; 

and its implementation is closed. SOFA 2 uses several 

patterns to assure the correctness of reconfiguration 

operations, but it is hard to determine that it can preserve 

the correctness as the problem of global consistency is 

not considered. Mitchell proposed a special DR model for 

codec chain replacement in multimedia systems. In this 

special application scenario, global inconsistency never 

occurs because a DR always replaces an entire codec 

chain with a new one. Performance is maintained by 

establishing the new code chain before removing the old 

one. However, the application scenario of Mitchell’s 

model is too restricted and the DR progress is not 

automated. Hillman presented the OpenRec framework 

for the purpose of comparing different reconfiguration 

algorithms quantitatively on a single platform. It can plan 

a DR automatically using the reconfiguration algorithms 

provided by the users. It is an open platform but itself 

lacks the supports for the algorithms for correctness 

TABLE  I   COMPARISON  OF  THE  DR  MODELS 

Characteristics 

 
DR Models 

Application 

Scenario 
Correctness Performance 

Application 

Contribution 
Automation Implementation 

Kramer‘s model General Preserved - Minimum - 
Conic, Darwin 

-Closed 

SOFA 2 General 
Global consistency is 

not considered 
- Minimum - 

 SOFA 2 

-Closed 

Mitchell’s model 
Codec chain 
replacement 

Global inconsistency is 
supposed to not occur 

Maintained Minimum - 
DJINN 
-Closed 

OpenRec General - - - Planning 
OpenRec 

-Open 

Naveed’s model General - 
-Considered but 

not maintained 
Minimum Planning 

Planit 

-Closed 

RDF Stateless data flow Preserved Maintained Minimum 
Planning / 
Execution 

RDF Platform 
-Open 

“-” means the corresponding aspect is not mentioned in the literature. 
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preservation and performance maintenance. Naveed’s 

model applies AI planning technique to DR. It achieves 

an automated DR but does not provide solution to the 

correctness preservation and performance maintenance. 

Among these models, only Mitchell’s model can 

maintain system performance in DR. However, it is 

restricted to a very special application scenario, in which 

global consistency never occurs. Other models are 

general DR scenario models but none can maintain the 

system performance in DR. Therefore, the aim of this 

paper is to design a DR model that can be applied to a 

certain range of application scenarios and at the same 

time cares for correctness preservation, performance 

maintenance, minimum application contribution, 

automation and open implementation. Based on this 

consideration, the Data Flow model is chosen as the 

underlying component model to design the RDF. The 

characteristics of the RDF are also listed in TABLE I for 

comparison. The methods/mechanisms that support these 

characteristics of the RDF will be explained in the 

following sections. 

To compare the positions of these DR models in the 

study on influence control for DR, a coordinate system 

can be drawn as Fig.1. The X axis represents the 

application scenario and the Y axis represents the degree 

of performance maintenance. Karmer’s model, SOFA 2 

and OpenRec locate at the lower right because they are 

general models but do not consider the performance 

maintenance. Naveed’s model is located at the middle 

right as it is a general model and the performance 

maintenance is considered but not solved. Mitchell’s 

model and the RDF model locate at the top as both are 

able to maintain the performance during DR. The RDF is 

located to the right of Mitchell’s model as it has a wider 

application scenario. 

III.  INFLUENCE CONTROL FOR DYNAMIC 

RECONFIGURATION 

A.  The Four Ways That Dynamic Reconfiguration May 

Influence System Execution 

The influence to be discussed is the effect caused by 

DR on the overall system and just not the effect on a 

single component or a subsystem. As overall system 

performance is the direct indicator that an end user 

encounters, this performance should be the key indicator 

to assess the influence of a DR on the system execution. 

A DR may influence a system in four ways: functional 

update, functional side-effect, logical influence on 

performance, and physical influence on performance. 

Functional update and functional side-effect are the 

influence of DR on system functionality and they are 

relevant to the system correctness. If the purpose of a DR 

is to upgrade the functionality, the end users will see 

these new functions after the DR. This is the influence 

termed as functional update, which is what the DR 

designers expect. However, changing the configuration of 

a running system is usually ‘unsafe’ as the 

reconfiguration may interfere with the ongoing 

interactions and transactions in the system. Even if the 

system works correctly under the original configuration 

and the target configuration, it may generate incorrect 

results during the reconfiguration. This is termed as the 

functional side-effect of DR.  

Along with the configuration evolving from phase to 

phase, a change will typically affect the system 

performance. The performance indicators considered in 

this paper are response time (the period between 

receiving the input and producing the output) and 

throughput (the amount of data items handled per time 

interval). A DR may influence the system performance in 

two ways. The first is logical influence, which is the 

theoretical influence that may be caused by a DR. 

Usually a DR needs to perform a reconfiguration plan, 

which consists of a sequence of atomic operations. Each 

operation may change the system from one configuration 

to another, the system undergoing a sequence of interim 

configurations before subsequently reaching its goal. 

During this time, it is very likely for the system to have 

different performance characteristics under these different 

configurations. The second is the physical influence, 

which can be caused by the execution overhead of a DR. 

The execution of a DR itself also needs some processor 

time, and therefore, the DR procedure may compete with 

the system’s ongoing functional procedures for the 

processor time. If the computational capability of the 

hardware is limited, the reconfiguration procedure 

consuming some processor time means the functional 

procedures loses some processor time, i.e. a decline in 

performance. As this competition is likely to take place, 

the execution of a DR may have in actual influence 

taking place even if its reconfiguration plan has no logical 

influence in theory.  

According to the above analysis, influence control for 

DR includes three aspects: 1) avoiding functional side-

effect, 2) minimizing logical influence on performance, 

and 3) restricting physical influence on performance. 

For further study on to what extent a DR may 

influence a system, formal definitions are given below. 

Using these definitions, the influence of a DR can be 

estimated or measured quantitatively. 

Definition 1. The functionality of a system s is 

represented as a function F, which means s outputs F(e) 

for an input e. F can be stateful or stateless. 

Definition 2. The functional update by a DR r is 

defined as Forigin→Ftarget, where Forigin is the system 

functionality before r and Ftarget is the one after r. 

Figure 1.  The positions of the DR models. 

Codec Chain 

Replacement 

Maintained 

Considered but 

 not maintained 

Application 

Scenario 

Performance 

Maintenance 

Not 

considered 

Stateless  

Data Flow 
General 

RDF Mitchell’s 

Naveed’s 

Karmer’s  

SOFA2  

OpenRec 
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Definition 3. A DR r with functional update 

Forigin→Ftarget has functional side-effect if and only if r 

causes the system output neither Forigin(e) nor Ftarget(e) for 

an input e. 

Definition 4. The performance indicators of a system 

include the response time and the throughput. 

Definition 5. The influence of a DR on system 

performance is a set 

{ iop | iop=| p - porigin |, p∈Preconfig } 

where porigin is the performance indicator of the original 

system and Preconfig is the set of performance indicators 

the system undergoes in the DR. 

Although functional correctness is the precondition for 

DR to be meaningful, the requirement for minimizing 

logical influence on performance has the determinative 

effect on the design of DR models. For this reason, 

minimizing logical influence on performance will be 

discussed first, and then avoiding functional side-effect 

and finally restricting physical influence on performance 

will be discussed thereafter. 

B.  Minimizing Logical Influence on Performance 

To control the logical influence on performance 

requires the theoretical performance indicator of the 

system to be maintained in an acceptable range during 

DR. Blocking should not be allowed because it causes the 

theoretical throughput of the system down to zero in that 

period. The lowest and highest points of the range depend 

on the QoS (Quality of Service) requirement of the 

application scenario. In the ideal DR, the designers do not 

want the end users to feel any unnecessary delay. 

Therefore, the lowest and highest points of the range 

should be the performance indicators of the original 

system and that of the target system. 

Formally, suppose the system undergoes a sequence of 

interim configurations c1,c2,…,cn in a DR and the 

theoretical performance indicators under these 

configurations are p1,p2,…,pn, the ideal minimum 

influence requires pi∈[porigin,ptarget],(1≤i≤n), where porigin 

is the performance indicator of the original system and 

ptarget is that of the target system. 

To satisfy this requirement, such reconfiguration 

operations that change the actual system configuration 

and last for a period should not appear in DR. All 

reconfiguration operations can be categorized into three 

types according to their impact on the system. Type I 

operations are the operations that do not change the 

actually effective part of the system. Thereby they will 

not influence the theoretical performance indicator of the 

system. For example, starting a component but not 

connecting it to other part of the system is such an 

operation. Type II operations are the operations that 

influences the actual system configuration but their 

execution is instantaneous, such as adding a connector, 

which is a very simple memory operation like passing the 

reference of a component to another. The transition from 

one configuration to another caused by a type II operation 

is instantaneous, and therefore, the theoretical 

performance indicator of the system changes from one 

value to another without any intermediate progress. Type 

III operations are the operations that influence the actual 

system configuration and their execution will last for a 

period, such as transferring state variables between old 

and new components. This operation can not be 

considered instantaneous because how much time it takes 

is relevant to the application scenario. Transactions 

relevant to the part changed by type III operations have to 

be blocked during the execution period; otherwise 

functional side-effect is very likely to appear because the 

result of these transactions will be unpredictable. 

Although the blocking period may be very short (usually 

it is decided by the application scenario and 

reconfiguration algorithm), theoretically the response 

time of the system in that period could be extremely 

longer than normal and the throughput of the system 

could be zero. It means a violation to the acceptable 

range. 

On the component/connector model, there are five 

elementary reconfiguration operations, which are start 

component, transfer state variables, stop component, add 

connector and remove connector. Among them, start 

component and stop component are type I operations 

because the execution of these two operations do not 

change the theoretical performance indicator of the 

system. Transfer state variables is a type III operation. It 

changes the configuration (new component takes the 

place of the original component) and will last for a 

period. Add connector and remove connector can be 

considered type II operations. State variable transfer is 

not allowed in a non-blocking DR unless it is such a 

simple operation that can be implemented/considered 

instantaneously. That is a requirement to the application 

scenario for the implementation of the ideal DR. 

If the application scenario does not need state variable 

transfer, the key problem to minimize its logical influence 

on performance is on the arrangement of the operations in 

a reconfiguration plan. It is obvious that the stopping of 

original components first and then starting new 

components is not a practical plan as the system will be 

unable to respond to any requests in the period after the 

original configuration is shut down and before the new 

one can be initiated. The appropriate reconfiguration plan 

should be a switching plan, which is comprised of three 

stages: 1) establish the new configuration, 2) switch from 

the original configuration to the new configuration, 3) 

shutdown and remove the original configuration. The 

progress of the switching plan is shown in Fig.2.  

In the switching plan, the establishment of the new 

configuration can be comprised of type I operations so 

that it does not influence the theoretical performance 

Normal Run 

Normal Run 

Shutdown 

Establishment 

Old Conf. 

New Conf. 

Time 

Execution Switching 

Removal 

Figure 2.  The switching plan for DR. 
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indicator of the system. The theoretical performance 

indicator of the system in this stage is porigin. The 

switching can be achieved through type II operations so 

that it can be considered as instantaneous. After the 

switching, the theoretical performance indicator of the 

system becomes ptarget. And the shutdown (waiting for old 

transactions to complete) and removal of the old 

configuration can be implemented by type I operations. 

Since the theoretical performance indicator of the system 

is kept in the range of [poriginal, ptarget], the switching plan 

has the minimum logical influence on performance. 

C.  Avoiding Functional Side-effect 

The switching reconfiguration plan has the minimum 

logical influence on performance, but other challenges 

may follow: avoidance of functional side-effect. This is 

because the original configuration works in parallel with 

the new configuration during its shutdown period and it 

may share some components with the new configuration. 

This problem needs to be discussed based on the 

concept of transaction. A transaction refers to the 

processing to a request from the time it is received to the 

corresponding result being generated. And it is usually a 

composition of the internal processing of several 

components and the interactions between them. Here 

interaction refers to the communication between two 

components through connectors. In DR, to avoid 

functional side-effect is to assure the correctness of every 

single transaction. This transactional correctness consists 

of two aspects: transactional non-interleaving and 

transactional completeness.  

Transactional interleaving refers to the phenomena 

that transactions belonging to different configurations 

may interfere with each other. Architectural interleaving 

(a component participates in two different configurations) 

is allowed, but transactional interleaving should be 

avoided. 

For instance, in the data encryption/decryption system, 

a DR is to replace the encryption component and 

decryption component with new algorithms (Fig.3). 

Transactional interleaving would appear if a data package 

was encrypted by the original encryption component but 

decrypted by the new decryption component or vice 

versa. The reason that the transactional interleaving is 

easy to happen is due to the functional dependencies 

between components and the sharing of components 

between configurations may break these dependencies. In 

this data encryption/decryption system, the decryption 

component and the encryption component have 

dependency relationship. The sharing of the packing 

component and unpacking component may break the 

dependency relationship between the encryption and 

decryption. In literatures, global consistency [15] is also 

used to describe this problem. 

Transactional completeness means that a transaction 

should complete once it is instantiated. It requires any 

reconfiguration operations not to stop or destroy any 

ongoing interactions or transactions. Particularly it should 

be assured that all transactions belonging to the original 

configuration complete during the shutdown period 

before the removal of components/connectors could take 

place during the removal period (reference to Fig.2). 

To assure transactional correctness needs the support 

of the underlying component model. Transactional non-

interleaving requires a version control mechanism for 

components that can distinguish the transactions 

belonging to different configurations and make them run 

independently. Transaction completeness requires 1) a 

synchronization mechanism that can guarantee any 

reconfiguration operation that may interrupt an ongoing 

interaction being executed after the interaction completes; 

and 2) a tracing mechanism that can make sure that a 

component or connector is not being used currently and 

no longer used in future by a transaction so that it can be 

removed safely. 

D.  Restricting Physical Influence on Performance 

DR may have physical influence on performance 

because the reconfiguration procedure may compete with 

the ongoing functional procedures for processor time. 

How to control this influence can be analyzed from two 

conditions. 

If the system has free processor time, the 

reconfiguration procedure can be executed using the free 

processor time and other functional procedures can run as 

if there was no reconfiguration procedure. Such a 

scheduling mechanism relies on preemptive scheduling 

with the functional procedures assigned a high priority 

and the reconfiguration procedure assigned a low priority. 

Under this scheduling, the reconfiguration procedure 

should not obtain processor time until there is no 

functional procedure acting in the system and it should 

yield the processor to any functional procedures once 

they are ready for execution. Using the preemptive 

scheduling can totally avoid the physical influence of DR 

on performance under the condition that free processor 

time is available. 

If the system has no free processor time, the 

preemptive scheduling does not work because the 

reconfiguration procedure has no chance to get processor 

to execute. Instead, time-slice scheduling is a practical 

way for influence control under this condition. Under the 

time-slice scheduling, the processor time is separated into 

many small slices. In some slices the reconfiguration 

procedure are allowed to run and compete with other 

functional procedures for processor time. In other slices it 

plain  

data 

encryption encrypted  

data 

packaging 

data package 

unpackaging 

encrypted  

data 
plain  

data 

decryption 

Legend Original Transaction 

New Transaction 

Transactional Interleaving 

Figure 3.  Transactional interleaving. 
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is not allowed to do so. Viewing from a longer period, the 

physical influence of DR can be restricted through 

controlling the amount of slices in which the 

reconfiguration procedure is allowed to run. 

Two examples are helpful in understanding the 

executions of DR and their influence under these two 

scheduling mechanisms. Fig.4(A) shows an example of 

the preemptive scheduling. Suppose that four data items 

will be available at time t, t+3(seconds), t+5 and t+8 

separately. The processing to each of these data items 

takes 2 seconds. A reconfiguration process starts at time 

t+2 and it will take 2 seconds if it possesses the processor 

exclusively. Comparing with the execution without DR, 

the data processing of the preemptive scheduling remains 

the same but that of the non-preemptive scheduling is 

different: the processing to the second and the third data 

item is delayed. Fig.4(B) demonstrates the time-slice 

scheduling. Data items will be available every 2 seconds; 

therefore, there is no free processor time. With the 

absence of proper control, the reconfiguration procedure 

will compete with functional procedures for processor 

time during its life-span. It prolongs the processing to the 

second and third data items and also delays the 

processing to the following data items. With time-slice 

scheduling, the execution of the reconfiguration 

procedure is separated into several parts, which are 

distributed in a longer period so that the influence to each 

single processing is restricted. Even though this also 

prolongs the processing of the second to fourth data items 

and delays the processing to the following data items, but 

the influence is smaller than the execution without 

control. 

The precondition of applying these two DR scheduling 

mechanisms is that the reconfiguration procedure is able 

to be rescheduled at any time. As pointed out in part B of 

this section, only type I and type II operations are allowed 

in DR. Because theoretically type II operations are 

instantaneous, its execution will not delay the 

rescheduling. Type I operation will last for a period and 

its execution may be interrupted at any time by functional 

procedures and needs to be resumed in future. This 

interruption will not cause functional side-effect because 

type I operations do not change the actual configuration. 

E.  Summary for Influence Control 

The discussion on the influence of DR in this section is 

summarized in TABLE II. 

IV.  THE RECONFIGURABLE DATA FLOW 

A.  Motivation 

The Reconfigurable Data Flow (RDF) is designed to 

show the feasibility of the methods presented above. 

The RDF is an extension to the conceptual Dataflow 

Process Networks (DPNs) [4] so that it firstly supports 

the fundamental dataflow semantics defined by the 

DPNs. The motivation to use the DPNs as the base model 

for reconfigurable extension comes from three aspects. 

First, the mechanisms for influence control can be 

implemented on the DPNs, including version control, 

synchronization, transaction tracing, switching 

reconfiguration plan, schedulable type I reconfiguration 

operations, and preemptive and time-slice scheduling. 

Second, over the past decades, the DPNs have been 

proved to be a widely used optimized model to describe 

highly concurrent applications in the areas of signal-

processing, linear or nonlinear control systems, image 

processing for geographical information systems, or other 

stream-oriented application systems [13]. Third being 

compatible with the conceptual DPNs, the RDF is able to 

make full advantage of research outcomes realized by the 

DPNs communities in the future. 

Figure 4.  DR scheduling. 
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B.  Basic RDF Elements and an Application Scenario 

The basic elements of the RDF are process, data-store, 

and data-path. A process is such a software component 

that has a single threaded working progress, consuming 

data through its entrances, then processing them, and 

finally producing results through its exits. A data-store is 

a random-accessible data container with infinite capacity. 

A data-path is a connector between a process and a data-

store through which the process can consume data as its 

input from the data-store or save the produced data to the 

data-store. In the RDF, processes’ internal processing to 

data items do not interfere with each other, and the 

interactions between processes are the transmissions of 

data items through data-stores. A data-store has to be 

used to buffer the data items in a transmission because 

the receiver process may be not ready to consume data 

items when the sender process produces the data items.  

The reconfiguration operations of the RDF include 

addition and removal of processes/data-stores (type I 

operations), and addition and removal of data-paths (type 

II operations). 

Graphically, a RDF model could be represented as a 

bi-partite directed graph, in which rectangles represent 

processes, circles represent data-stores, and arrows 

represent data-paths.  

Fig.5 shows an example, the PKI Data Encryption and 

Digital Signature System (DEDSS) [1]. In the system, the 

data items in data-store d1 will be delivered to the 

corresponding receivers after being digitally signed and 

encrypted. The encryption progress and the signature 

progress can be carried on in parallel on the sender side 

as well as the decryption progress and the signature 

verification progress on the receiver side.  

A DR to the system might be to add data 

compression/decompression function and replace the 

digesting algorithm as shown with dashed line in Fig.5. 

Such a reconfiguration scenario can expose the main 

issues in avoiding functional side-effect. There are three 

pairs of functional dependencies that may be broken in 

transactional interleaving in DR. 1) dataEncryption 

encrypts data items with the receiver’s public key and 

dataDecryption decrypts data items with the receiver’s 

private key; 2) mDigest2 and mDigest1 use the same 

message-digesting algorithm; 3) digestEncryption 

encrypts the digest with the sender’s private key and 

digestDecryption decrypts the digest with the sender’s 

public key. 

In addition, to apply the switching reconfiguration 

plan, the DEDSS is designed as it does not need state 

variables transfer in the DR. The data compression 

processes, the data decompression processes and the 

digesting processes are all stateless. 

C.  Mechanisms to Support Dynamic Reconfiguration 

The RDF provides several mechanisms for DR 

including synchronization, version control, transaction 

tracing, reconfiguration planning and reconfiguration 

scheduling. 

The synchronization mechanism of the RDF is able to 

protect the consuming/producing operations of processes 

from being interrupted by the addition/removal of data-

paths. All data transmissions in the RDF are through the 

data consuming or data producing operations of 

processes. All reconfiguration operations that may 

interrupt data transmissions are the addition or removal of 

data-paths. The removal of a process/data-store will not 

interrupt data transmissions because it requires the data-

paths connected to the process/data-store to be removed 

first. Therefore, such a synchronization mechanism can 

protect the data transmissions from being interrupted by 

reconfiguration operations. In another aspect, the 

synchronization will not delay the execution of processes. 

As discussed in the previous sections, theoretically the 

addition and removal of data-paths are instantaneous so 

that their execution will not delay the data consuming or 

data producing operations of processes. Other 

reconfiguration operations such as addition and removal 

of processes/data-stores have no conflict with any 

d1 

d2 d3 

d4 d5 d6 

d7 

dispatcher 

dataEncryption 

mDigest1 digestEncryption 

packer 

unpacker 

digestDecryption 

dataDecryption mDigest2 

verifier 

d8 d9 

d10 d11 d12 

d13 

… 

(to one receiver) 

(to other receivers) 
… 

newMDigest2 

newMDigest1 

dataDecompression 

d14 

d15 

Process 

Data-store 

Data-path 

Legend 

Figure 5.  The DEDSS. 

dataCompression 
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ongoing data transmissions so that they do not need to be 

synchronized with the consuming or producing 

operations of processes. Hence, these are schedulable in 

any time period. 

The version control mechanism of the RDF prevents 

transactional interleaving by isolating the data flows 

belonging to different configurations. The RDF is a data 

flow based model, therefore, the basic idea of the version 

control is to assign every data item (or package) a version 

tag and let processes be able to recognize the version tag. 

The data items of the transactions belonging to the 

original configuration are assigned one version tag and 

those belonging to the new configuration are assigned 

another version tag, therefore, they can be distinguished 

and processed by processes independently. To let the 

version control be transparent to the process developers, 

the version tag is designed as a virtual tag so that the 

process developers do not need to concern about it. They 

can develop processes following the consume-process-

produce pattern without any concern about the versions 

of the data items.  

The version control mechanism is supported by the 

following rules:  

1) A process has three version modes: strict, 

transparent and filter. Under strict mode, denoted as 

(x,y), a process can consume data items of version x and 

produce data items of version y. Under transparent mode, 

denoted as (*,*), a process can consume data items of any 

versions and produce data items of the same version as 

consumed. Under filter mode, denoted as (*,z), a process 

can consume data items of any version but produce data 

items of version z. Changing a process from one version 

mode to another is instantaneous and thereby it is a type 

II reconfiguration operation. 

2) A data-store can store data items of any versions. 

Different versions of data items are stored separately in a 

data-store so that they can be distinguished although there 

is no real version tag on each of the items. 

Transactional interleaving can be avoided by utilizing 

version control. In the data encryption/decryption 

example in Fig.3, transactional interleaving will not 

happen if the processes are set to the proper version 

modes as shown in Fig.6. The data items encrypted by the 

original algorithm will have version v1. This virtual tag 

will be kept till these packages reach data-store d4. And 

then they can only be consumed by the original 

decryption algorithm. By the same principle, the data 

items encrypted by the new algorithm will have version 

v2 and they can only be consumed by the new decryption 

algorithm. For each DR that may have transactional 

interleaving, such a restrict segment can be found and 

version control can be applied to avoid the transactional 

interleaving. 

The transaction tracing mechanism of the RDF is 

based on the following idea. If the incoming data-paths of 

a process (data-paths that connect data-stores to the 

entrances of the process) are removed, the process will 

become idle after its ongoing processing finishes and will 

never be triggered in future. And if the incoming data-

paths of a data-store (data-paths that connect the exits of 

processes to the data-store) are removed, the data-store 

will become empty as its data items will be consumed up 

by the subsequent processes and there is no new data item 

to flow into the data-store. The removal of such idle 

processes or empty data-stores will not influence the 

completeness of any transactions. 

Two operations are designed to support the transaction 

tracing. 

1) Wait-finishing(p,v), which waits for process p to 

finish the current processing of version v data items. 

2) Wait-empty(d,v), which waits for data-store d to be 

empty with version v data items. 

During the original configuration shutdown period in 

DR, all incoming data-paths to the original configuration 

are closed so that there will be no data item to flow into 

this part of the system. Then for each original transaction, 

the wait-finishing operation can be used to wait for the 

processes to finish and then the wait-empty operation can 

be applied to the subsequent data-stores. This progress 

continues until all original version data items are assured 

to flow out of the original configuration, which means 

that the processes and data-stores belonging to the 

original configuration are never to be used so that they 

can be safely removed. In addition, these two operations 

will not block the system because all new data items can 

be processed by the new configuration during this stage. 

For the example in Fig.6, the completeness of the 

original transactions can be assured by the following 

progress. 

(remove data-path d1→encryption;) 

wait-finishing(encryption, v1); 

wait-empty(d2,v1); 

wait-finishing(packaging, v1); 

wait-empty(d3,v1); 

wait-finishing(unpackaging,v1); 

wait-empty(d4,v1); 

wait-finishing(decryption,v1); 

The reconfiguration planer of the RDF is able to 

generate switching plans for DRs. First of all, a 

reconfiguration must have a declarative specification, 

denoted as Corigin→Ctarget, where Corigin is the original 

configuration of the system and Ctarget is the target one. 

Then a declarative specification can be changed to an 

operational plan automatically by the planner provided on 

the RDF. 

encryption packaging 

unpackaging 

decryption 

Legend Original Transaction (Version v1) 

New Transaction (Version v2) 

(v1,v1) 

(v1,v2) 

(*,*) 

(*,*) 
(v1,v1) 

(v2,v1) 

Figure 6.  Version control. 
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The configuration of a system is represented as a route 

map, which consists of all the routes in the system. A 

route is a sequence of processes and data-stores that data 

items must go through in a transaction. A route has the 

format of [d1, (en1,p1,ex1),d2,(en2,p2,ex2),…], which 

means a data item in d1 can flow into process p1 through 

its entrance en1, and the result will flow out of p1 through 

its exit ex1 and flow into d2. Then it can flow into process 

p2 through its entrance en2, and so on. From the route 

map representation, it is easy to know what processes and 

data-stores comprise of the system, how they are 

connected by data-paths, and particularly how 

transactions are carried on. The information is necessary 

for the version control and transaction tracing to be 

applied in the DR. 

The plan generated by the RDF planner is a switching 

plan with the influence control methods integrated, i.e. 

version control is used to assure transactional correctness 

and transaction tracing is used to assure transactional 

completeness. Such a plan is comprised of six steps and 

its progress is shown in Fig.7. 

T1. Apply version control to all the processes once 

they are in the system. 

T2. Add new processes, new data-stores and new data-

paths into the system. 

T3. Start data supply to the new configuration and stop 

data supply to the old (to-be-removed) configuration. 

T4. Wait for the remaining data flow to go through the 

old configuration. 

T5. Remove the old processes, old data-stores and the 

old data-paths from the system. 

T6. Cancel version control. 

As an example, the original and target route maps of 

the DEDSS, and the generated reconfiguration plan are 

given in appendix A. 

The reconfiguration scheduling mechanism of the RDF 

is able to control the execution of DR. Since the 

scheduling mechanism is based on the thread scheduling 

mechanism of the underlying platform, it first requires the 

underlying platform (the operation system or 

middleware) supporting the priority-based preemptive 

scheduling. Given a reconfiguration plan, the preemptive 

scheduler will run the plan in a separate thread that is 

assigned a lower priority than other functional threads. 

Under the priority-based preemptive scheduling of the 

underlying platform, the reconfiguration will be executed 

using the free processor time between functional threads. 

Therefore, it will not cause physical influence on 

performance. The time-slice scheduler will run the plan in 

a thread with the same priority to the functional threads 

so that the reconfiguration thread will have chance to get 

processor time. And the time-slice scheduler will 

periodically suspend the reconfiguration thread so that the 

physical influence of the reconfiguration thread is 

restricted. Choosing which scheduler depends on the 

application scenario, i.e. whether there is free processor 

time and the QoS requirement. 

D. Implementation and Experimental Results 

The RDF platform is an implementation of the RDF 

model on Java platform. It integrates all the mechanisms 

supported by the RDF model. Fig.8 depicts its functions 

and Fig.9 shows its Graphical User Interface (GUI).  

In Fig.8, constraints check checks whether functional 

dependencies are satisfied in architectural configurations. 

This function can help designers in finding errors in 

architecture design. Runtime setting configures the 

running environment for a system, including the data-

sources (feeding the system with data items), the verifiers 

(verifying the functional correctness of the system), and 

the monitors (monitoring the performance indicator of the 

system). Run starts a system according to its 

configuration and thereby the functional correctness and 

performance indicator can be detected. Reconfiguration 

setting establishes a reconfiguration scenario, including 

the original and target configurations, the planner and 

scheduler to be used, and when the reconfiguration starts. 

Then planning generates the reconfiguration plan using 

the designated planner and scheduling controls the 

execution of the reconfiguration using the designated 

scheduler. Verification verifies the functional correctness 

Figure 7.  Reconfiguration state graph. 
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of the system using the verifiers predefined in runtime 

setting, and monitoring records the performance indicator 

using the monitors. Finally, charting collects all the 

results and draws the performance indicators in a line 

chart, from which the influence of DR on system 

performance is easy to uncover. 

The RDF platform is very flexible in that: 1) it has 

well-defined framework for processes and an open 

process library. Therefore, developers can easily 

implement processes needed by applications and put them 

into the library; 2) application specific data-sources and 

verifiers can be designed following the predefined 

interfaces; 3) the architecture, running environment and 

reconfiguration scenario of the system to be tested can be 

set up through the GUI interface and all settings can be 

saved in XML document format; 4) the reconfiguration 

planner and scheduler are pluggable so that other 

planners and schedulers can be imported as plug-ins and 

be tested and compared based on the same 

reconfiguration scenario on the platform. 

Based on the RDF platform and using the DEDSS as a 

case study, two groups of tests have been done to 

examine the effectiveness of the mechanisms for 

influence control. Group A has been done under the 

condition that the system has no free processor time and 

group B has been done under the condition that the 

system has free processor time. Group A consists of five 

tests. Test 1 examines the influence of the DR when these 

mechanisms for influence control are all applied, 

including the version control, the transaction tracing, the 

switching plan, and the time-slice scheduling. Test 2 

examines the influence of the DR when the version 

control and the transaction tracing are not used. Its 

settings are same to test 1 except that it changes the 

system from the original configuration to the target one 

directly without using the version control and the 

transaction tracing. By comparing with test 1, it can be 

found whether the version control and the transaction 

tracing are able to avoid functional side-effect. Based on 

the same idea, test 3 uses the blocking reconfiguration 

plan and test 4 does not use reconfiguration scheduling 

while other settings are the same as test 1. Then 

comparing with test 1, it can be found to what extent the 

switching plan and the time-slice scheduling can restrict 

the influence of DR. Test 5 examines the different effects 

of the time-slice scheduling under different parameters. 

For a time-slice scheduling, 40% means the 

reconfiguration thread is allowed to compete for 

processor time for 40% in a time slice; and 20% means 

the competition for processor time is allowed for 20% of 

a time slice. The settings for group B are almost the same 

as group A. The difference is that group B uses the 

preemptive scheduling because the system has free 

processor time. The settings are listed in TABLE III. For 

each test, both the throughput and the response time of 

the system are recorded. 

In the tests, functional side-effect appears in test 2 of 

both group A and group B. The DRs in other tests have 

no functional side-effect. For the DEDSS, the functional 

side-effect can be detected by checking whether the data 

items outputted to data-store d13 are exactly the same to 

the data items inputted to data-store d1. Considering only 

test 2 does not apply the version control and transaction 

tracing, a conclusion can be drawn that the version 

Figure 9.  The GUI of the RDF platform. 
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control and transaction tracing are able to assure the 

functional correctness of the system in DR. 

The performance indicators of the system in the tests 

excluding test 2 are drawn in line charts in Fig.10. (It is 

no sense to discuss the performance indicator of test 2 

because the precondition i.e. functional correctness is not 

satisfied in test 2). For the DEDSS, the response time is 

the time interval from the instance when a data item 

enters data-store d1 to the instance when the data item is 

put into data-store d13. The throughput is the amount of 

data items consumed from data-store d1 or produced to 

data-store d13 in a time interval. The performance 

indicators of the original system and the target system are 

also drawn in the charts as references (the blue line and 

the orange line). 

The max throughput of the original system is about 50 

dips (data items per second) and that of the target system 

is about 40 dips. In group A, the system is fed with 60 

dips, which is larger than the max throughputs of both the 

original system and the target system so that the system 

has no free processor time. Fig.10(A) gives the 

throughput comparison of the tests. The blocking 

reconfiguration plan has a severe influence on the 

throughput (the red line). The DR without scheduling (the 

pink line) has an influence larger than the DR with the 

time-slice scheduling (the indigo line and the green line). 

And the DR under the 20% time-slice scheduling (the 

green line) has an influence smaller than the DR under 

the 40% time-slice scheduling (the indigo line). Fig.10(B) 

gives the response time comparison. As the feeding rate 

is larger than the max throughput, more and more data 

items are buffered in data-store d1. Therefore, the 

response time of the system to these data items becomes 

larger and larger and it results in slash lines in the chart. 

To make the performance indicators comparable under 

this condition, the starting time of the DRs are adjusted so 

that the new configuration starts to work at the same time. 

It is indicated by the chart that the DR using the blocking 

plan causes the fastest increasing rate to the response time 

(the red line), the DR without scheduling causes a relative 

slower increasing rate (the pink line), and the DR with 

time-slice scheduling causes the slowest increasing rate 

(the indigo line and the green line). The result of group A 

indicates that the mechanisms used in the RDF for 

influence control are effective under the condition that 

the system has no free processor time. 

In group B, the system is fed with 38 dips, which is 

smaller than the max throughputs of both the original 

system and the target system so that the system has free 

processor time. Fig.10(C) gives the throughput 

comparison of the tests. The lines for the input, the 

original system, the target system, and the DR using the 

switching plan and the preemptive scheduling are 

overlapped (only the green line can be seen because it is 

on the top, which corresponds to the DR using the 

switching plan and the preemptive scheduling). That 

means the DR has no any influence on the throughput. 

And the DR using the blocking plan imposes a large 

influence and the DR without scheduling causes manifest 

influence on the throughput. Fig.10(D) gives the response 

time comparison. As the feeding rate is smaller than the 

max throughput, there is no data item waiting in data-

store d1. Therefore, the response time of the original 

system is horizontal (the blue line); and so is the target 

system (the orange line). It also can be seen that the DR 

using the switching plan and the preemptive scheduling 

changes the response time from the original level to the 

target level without other influence (the green line). And 

the DR using the blocking plan causes a very large 

response delay that is out of the chart (the red line) and 

the DR without scheduling causes a large influence too 

(the pink line). The result of group B proves the 

effectiveness of the mechanisms used in the RDF for 

influence control under the condition that the system has 

free processor time. 

IV.  CONCLUSION AND FUTURE WORK 

This paper has three main contributions to the 

influence control for DR. 

First, this paper theoretically analyzes how DR 

influences system execution and how the influence can be 

controlled. DR may influence system execution in four 

ways, which result in the functional update, functional 

side-effect, logical influence on performance, and 

physical influence on performance. To control the 

influence of DR, the functional side-effect should be 

avoided, the logical influence on performance should be 

minimized and the physical influence on performance 

should be restricted. 

TABLE  III.   SETTINGS FOR THE EXPERIMENT 

(A)   THE SYSTEM HAS NO FREE PROCESSOR TIME 

 
Test 

Version 
Control and 

Transaction 
Tracing 

Plan Scheduling 
Influence to 

Test 

1 Use 
Switching 

plan 
Time-slice(40%) 

Restricted 

influence 

2 Not use 
Switching 

plan 
Time-slice(40%) 

Functional 

side-effect 

3 Use 
Blocking 
plan 

Time-slice(40%) 
Logical 
influence on 

performance 

4 Use 
Switching 
plan 

No scheduling 
Physical 
influence on 

performance 

5 Use 
Switching 
plan 

Time-slice(20%) 
Restricted 
influence 

 (B)  THE SYSTEM HAS FREE PROCESSOR TIME 

 
Test 

Version 
Control and 

Transaction 

Tracing 

Plan Scheduling 
Influence to 

Test 

1 Use 
Switching 

plan 
Preemptive 

No 

influence 

2 Not use 
Switching 
plan 

Preemptive 
Functional 
side-effect  

3 Use 
Blocking 

plan 
Preemptive 

Logical 

influence on 
performance 

4 Use 
Switching 

plan 
No scheduling 

Physical 

influence on 
performance 
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Second, this paper proposes the RDF model to 

demonstrate the feasibility of the methods for influence 

control. The RDF has several mechanisms for influence 

control. The version control prevents transactions 

belonging to different configurations from interleaving. 

The transaction tracing assures the completeness of 

transactions. For a DR, the reconfiguration planner 

generates the switching reconfiguration plan, which has 

the minimal logical influence on performance. And the 

reconfiguration scheduler restricts the physical influence 

on performance using preemptive or time-slice 

scheduling policies. 

Third, this paper also presents the RDF platform, 

which is the implementation of the RDF model on Java 

platform. With the support of the RDF platform and using 

the DEDSS as a reconfiguration scenario, a testing 

criterion is designed to simulate different reconfiguration 

plans and scheduling policies on the single platform and 

quantitatively compare their influence. Experimental 

results indicate that the methods for influence control are 

effective in the RDF model. 

Future works will focus on two directions. 

As the current RDF is limited in application to stateless 

system, the first direction of future research is to expand 

the application scenario of the RDF by adopting the 

methods to stateful data flows. Two problems have to be 

solved in the DR to stated systems with influence control: 

how the time cost of state variable transfers can be 

restricted and when these transfers can take place. The 

current exploration in this direction originates from two 

ideas. First, state variable transfer is possible to be 

implemented with object reference passing if stated 

components store their state in special objects. Second, 

the transaction tracing can be utilized to find the 

appropriate opportunity for state variable transfer.  

The second direction is to expand the mechanisms of 

the RDF model for influence control to other component 

models. Besides flow based models, there are a lot of 

procedure-call based models [10], which are also being 

widely used in both academia and industry. The 

procedure-call based models differ from the flow based 

models in that a connector is a procedure-call, i.e. the 

caller asks the recipient (i.e. callee) to start a processing 

and wait for the recipient to return the result. There is 

correspondence between the two kinds of models. A 

procedure-call can be considered as two data-paths, one 

for the parameters passing when the invocation starts and 

one for the result returning when the invocation finishes. 

Based on this correspondence, the mechanisms of the 

RDF model will be further studied to apply to the 

procedure-call based models. 

APPENDIX A  THE RECONFIGURATION SPECIFICATION FOR 

THE DEDSS AND THE PLAN GENERATED 

Although the DEDSS may have multiple branches, the 

specification and reconfiguration for one branch is 

enough to demonstrate the route map representation and 

the switching reconfiguration plan. 

Specification (reference to Fig.5) 
Route map of the original system is R={r1, r2}, where  
r1=[d1,<1,dispatcher,1>,d2,<1,dataEncryption,1>,d3,<1,packer,1>,d

7,<1,unpacker,2>,d10,<1,dataDecryption,1>,d11,<1,mDigest2,1>,d12,<

2,verifier,1>,d13] 

(A) Throughput comparison of group A 

Figure 10.  Experimental results. 

(B) Response time comparison of group A 

(C) Throughput comparison of group B 

(D) Response time comparison of group B 

blk – the blocking plan swt – the switching plan 
ns – no scheduling  ts – the time-slice scheduling 

pre – the preemptive scheduling 
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r2=[d1,<1,dispatcher,1>,d4,<1,mDigest1,1>,d5,<1,digestEncryption,
1>,d6,<2,packer,1>,d7,<1,unpacker,1>,d8,<1,digestDecryption,1>,d9,<

1,verifier,1>,d13] 

Route map of the target system is R’={r3, r4}, where 
r3=[d1,<1,dispatcher,1>,d2,<1,dataCompression,1>,d14,<1,dataEncr

yption,1>,d3,<1,packer,1>,d7,<1,unpacker,2>,d10,<1,dataDecryption,1
>,d11,<1,dataDecompression,1>,d15,<1,newMDigest2,1>,d12,<2,verifi

er,1>,d13] 

r4=[d1,<1,dispatcher,1>,d4,<1,newMDigest1,1>,d5,<1,digestEncryp
tion,1>,d6,<2,packer,1>,d7,<1,unpacker,1>,d8,<1,digestDecryption,1>,

d9,<1,verifier,1>,d13] 

Reconfiguration Plan Generated 
// T1. Apply version control 

set verifier to filter(1) mode; 
set dataEncryption, packer, unpacker, digestDecryption, mDigest1, 

digestEncryption, dataDecryption, mDigest2  to transparent mode; 

// T2. Add new processes, data-stores and data-paths 
start dataCompression, dataDecompression, newMDigest1, 

newMDigest2 and set them to strict(2,2) mode; 
add data-stores d14, d15; 

set up data-paths (newMDigest2,0→d12), (d15→0,newMDigest2), 

(dataDecompression,0→d15), (d11→0,dataDecompression), (d14→0, 

dataEncryption), (dataCompression,0→d14), (d2→0,dataCompression), 

(newMDigest1,0→d5), (d4→0,newMDigest1); 

// T3. Switch data supply 
set dispatcher to strict(1,2) mode; 

// T4. Transaction tracing 
wait for version 1 data elements to flow out of the involved segments 

// T5. Remove the old processes, data-stores, and data-paths 

remove data paths (d2→0,dataEecryption), (d11→0,mDigest2), 

(mDigest2,0→d12), (d4→0,mDigest1), (mDigest1,0→d5); 

remove processes mDigest1, mDigest2; 

// T6. Cancel version control 
set dataCompression, dataDecompression, newMDigest1, 

newMDigest2 to transparent mode; 
set dispatcher to strict(1,1) mode; 

wait for all version 2 data elements to flow out of the involved 

segments of r3 and r4; 
set all processes to strict(1,1) mode; 
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