
Influence Control for Dynamic Reconfiguration

of Data Flow Systems

Wei Li
School of Computing Sciences, Central Queensland University, Rockhampton, Australia

Email: w.li@cqu.edu.au

Zhikun Zhao
School of Computing Sciences, Central Queensland University, Rockhampton, Australia

Email: z.zhao@cqu.edu.au

Abstract—Influence control is a very challenging issue in

dynamic reconfiguration and still not well addressed in the

literature. This paper argues that dynamic reconfiguration

influences system execution in four ways: functional update,

functional side-effect, logical influence on performance and

physical influence on performance. Methods including

version control, transaction tracing, switching

reconfiguration plan, and reconfiguration scheduling have

been proposed for controlling the influence. These methods

are integrated into the Reconfigurable Data Flow (RDF)

model, which is designed to support the dynamic

reconfiguration of stateless data flow systems. The RDF

platform is an implementation of the RDF model on Java

platform. The RDF platform is implemented as an open

frame for different reconfiguration planning algorithms and

scheduling policies to be simulated and their influence to be

quantitatively compared on a single platform. Using the

Data Encryption and Digital Signature System as a case

study, tests have been done on the RDF platform to examine

the influence of different reconfiguration planning

algorithms and scheduling policies. Experimental results

show that the methods proposed in this paper is effective in

controlling the influence of dynamic reconfigurations.

Index Terms—dynamic reconfiguration, influence control,

data flow

I. INTRODUCTION

Currently, Dynamic Reconfiguration (DR) i.e.

changing a system from one configuration to another at

run-time [11] is becoming a necessary feature of

software. This trend originates from two facts: 1)

increasing need for systems to be online 24-hour daily as

Internet usage rapid increases and 2) continuous update is

one of the inherent properties of software. DR technique

makes it possible to evolve a system without disruption.

Although DR does not need a system to shut down, it

does have some influence on the running of the system.

Typically, the system will inevitably suffer a performance

decline during the reconfiguration period due to the

necessity of the DR performing blocks to some parts of

the system [17]. This also involves processor time to

execute the reconfiguration operations [6]. A DR will

lose its benefits if it causes severe impact on the system

performance because it has no essential difference with a

Static Reconfiguration (SR, reconfiguration after

shutdown) from an end user’s point of view. An end user

will encounter the unavailability of a system if the system

is going through a SR while encountering the no-

response of a system if the system is going through a DR

with severe performance decline. In comparison, the no-

response state has no significant advantage over the

unavailability state. Therefore, influence control, i.e. the

ability to preserve system correctness and maintain

system performance (throughput or response time), is one

of the most important aspects that have to be considered

in designing a DR.

This paper will discuss the ideal way of DR, which

satisfies four constraints: 1) Correctness-preservation. A

DR should preserve the correctness of the system

functionality while achieving the appropriate change. 2)

Performance-maintenance. A DR should restrict its

impact on the system performance to zero if possible or

to an extent that is acceptable to end users. 3) Minimal-

application-contribution. The DR mechanisms should be

ideally transparent to component developers. 4)

Automation. A DR should operate automatically where

the administrator only needs to input the target

configuration and the system will complete the remaining

requirements including reconfiguration planning and

execution.

However, such an ideal way of DR does not exist in

the literature. Although many DR models [2][5][8][9][15]

have provided methods to correctness preservation, only

a few [12][14] are concerned about the problem of

performance-maintenance. And even fewer [14] have

methods that can maintain the system performance to

some extent. Finally, there is not a model that has

integrated the methods to correctness preservation and

performance maintenance into a single cohesive model

and at the same time provided automation and the

framework that requires minimal-application-

contribution.

The most difficult problem in pursuing an ideal DR is

the aspect of performance-maintenance. Typically DR

models are based on software components. Software

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 1

© 2007 ACADEMY PUBLISHER

component is suitable to be the basic entity in

reconfiguration due to its modularity, well-defined

interface and inter-connection dependency [16]. In a

general DR scenario, to guarantee the correctness of the

system functionality, the system has to be blocked and

driven into a safe state before reconfiguration operations

can be executed. In such a state, reconfiguration

operations will not interrupt interactions between

components or interfere with the constraint relationships

between components. Since the blocking operation will

have an influence on the system performance, researchers

are striving to restrict the influenced area and period. But

the influenced area and period are application relevant;

therefore, there is theoretically a minimum influence for

each general DR and it cannot be minimized further.

Since the ideal DR is not always available in general

DR scenarios, this paper concentrates on whether it is

available in restricted scenarios and how it can be

achieved if available. The stateless dataflow model is

researched in this paper for the goal, and the four

characteristics are unified into the Reconfigurable Data

Flow (RDF) model to demonstrate the feasibility of the

proposed mechanisms for influence control. This paper is

based on the previous work in [18].

This paper is organized as follows. Section II

overviews the related DR models and compares their

works on influence control. Section III discusses how DR

influences the running of a system, how the influence can

be eliminated or restricted, and what constraints the DR

scenario should satisfy for the influence control. Section

IV presents the RDF model to demonstrate the

workability of the methods for influence control proposed

in section III. The implementation of the RDF model and

the experimental results, based on the case study of the

Data Encryption and Digital Signature System (DEDSS)

are also given in this section. Finally section V concludes

the paper and points out the future works.

II. RELATED WORKS

Since Kramer and Magee’s early work [8], many

models have been proposed for DR. Several

representative models are selected for review in this

section. This includes the following models: Kramer and

Magee [8], SOFA 2 [3], Mitchell [12], OpenRec [7], and

Naveed [14].

These models are compared from several aspects,

including correctness preservation, performance

maintenance, application contribution, automation, along

with application scenario and openness of

implementation. 1) Application scenario reflects the

applicability of the models. 2) Correctness preservation

and performance maintenance are the two aspects for

influence control. 3) Application contribution and

automation indicate the amount of human intervention

needed by the models in DR. 4) Openness of

implementation means whether the implementation is

open i.e. other algorithms/methods are easy to be

integrated into and compared within the same platform,

or conversely, closed.

The characteristics of the models are listed in TABLE

I. Kramer and Magee’s model is a general scenario

model. The problems relevant to correctness preservation

are well addressed in the model, such as structural

integrity [16], global consistency [15] and state transfer

[17]. These problems are solved by using a blocking

mechanism to drive the system into a safe state before

applying reconfiguration operations. The application

contribution it requires is minimal. The drawbacks are:

the system performance is not maintained because of the

blocking; the reconfiguration progress is not automated;

and its implementation is closed. SOFA 2 uses several

patterns to assure the correctness of reconfiguration

operations, but it is hard to determine that it can preserve

the correctness as the problem of global consistency is

not considered. Mitchell proposed a special DR model for

codec chain replacement in multimedia systems. In this

special application scenario, global inconsistency never

occurs because a DR always replaces an entire codec

chain with a new one. Performance is maintained by

establishing the new code chain before removing the old

one. However, the application scenario of Mitchell’s

model is too restricted and the DR progress is not

automated. Hillman presented the OpenRec framework

for the purpose of comparing different reconfiguration

algorithms quantitatively on a single platform. It can plan

a DR automatically using the reconfiguration algorithms

provided by the users. It is an open platform but itself

lacks the supports for the algorithms for correctness

TABLE I COMPARISON OF THE DR MODELS

Characteristics

DR Models

Application

Scenario
Correctness Performance

Application

Contribution
Automation Implementation

Kramer‘s model General Preserved - Minimum -
Conic, Darwin

-Closed

SOFA 2 General
Global consistency is

not considered
- Minimum -

 SOFA 2

-Closed

Mitchell’s model
Codec chain
replacement

Global inconsistency is
supposed to not occur

Maintained Minimum -
DJINN
-Closed

OpenRec General - - - Planning
OpenRec

-Open

Naveed’s model General -
-Considered but

not maintained
Minimum Planning

Planit

-Closed

RDF Stateless data flow Preserved Maintained Minimum
Planning /
Execution

RDF Platform
-Open

“-” means the corresponding aspect is not mentioned in the literature.

2 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

preservation and performance maintenance. Naveed’s

model applies AI planning technique to DR. It achieves

an automated DR but does not provide solution to the

correctness preservation and performance maintenance.

Among these models, only Mitchell’s model can

maintain system performance in DR. However, it is

restricted to a very special application scenario, in which

global consistency never occurs. Other models are

general DR scenario models but none can maintain the

system performance in DR. Therefore, the aim of this

paper is to design a DR model that can be applied to a

certain range of application scenarios and at the same

time cares for correctness preservation, performance

maintenance, minimum application contribution,

automation and open implementation. Based on this

consideration, the Data Flow model is chosen as the

underlying component model to design the RDF. The

characteristics of the RDF are also listed in TABLE I for

comparison. The methods/mechanisms that support these

characteristics of the RDF will be explained in the

following sections.

To compare the positions of these DR models in the

study on influence control for DR, a coordinate system

can be drawn as Fig.1. The X axis represents the

application scenario and the Y axis represents the degree

of performance maintenance. Karmer’s model, SOFA 2

and OpenRec locate at the lower right because they are

general models but do not consider the performance

maintenance. Naveed’s model is located at the middle

right as it is a general model and the performance

maintenance is considered but not solved. Mitchell’s

model and the RDF model locate at the top as both are

able to maintain the performance during DR. The RDF is

located to the right of Mitchell’s model as it has a wider

application scenario.

III. INFLUENCE CONTROL FOR DYNAMIC

RECONFIGURATION

A. The Four Ways That Dynamic Reconfiguration May

Influence System Execution

The influence to be discussed is the effect caused by

DR on the overall system and just not the effect on a

single component or a subsystem. As overall system

performance is the direct indicator that an end user

encounters, this performance should be the key indicator

to assess the influence of a DR on the system execution.

A DR may influence a system in four ways: functional

update, functional side-effect, logical influence on

performance, and physical influence on performance.

Functional update and functional side-effect are the

influence of DR on system functionality and they are

relevant to the system correctness. If the purpose of a DR

is to upgrade the functionality, the end users will see

these new functions after the DR. This is the influence

termed as functional update, which is what the DR

designers expect. However, changing the configuration of

a running system is usually ‘unsafe’ as the

reconfiguration may interfere with the ongoing

interactions and transactions in the system. Even if the

system works correctly under the original configuration

and the target configuration, it may generate incorrect

results during the reconfiguration. This is termed as the

functional side-effect of DR.

Along with the configuration evolving from phase to

phase, a change will typically affect the system

performance. The performance indicators considered in

this paper are response time (the period between

receiving the input and producing the output) and

throughput (the amount of data items handled per time

interval). A DR may influence the system performance in

two ways. The first is logical influence, which is the

theoretical influence that may be caused by a DR.

Usually a DR needs to perform a reconfiguration plan,

which consists of a sequence of atomic operations. Each

operation may change the system from one configuration

to another, the system undergoing a sequence of interim

configurations before subsequently reaching its goal.

During this time, it is very likely for the system to have

different performance characteristics under these different

configurations. The second is the physical influence,

which can be caused by the execution overhead of a DR.

The execution of a DR itself also needs some processor

time, and therefore, the DR procedure may compete with

the system’s ongoing functional procedures for the

processor time. If the computational capability of the

hardware is limited, the reconfiguration procedure

consuming some processor time means the functional

procedures loses some processor time, i.e. a decline in

performance. As this competition is likely to take place,

the execution of a DR may have in actual influence

taking place even if its reconfiguration plan has no logical

influence in theory.

According to the above analysis, influence control for

DR includes three aspects: 1) avoiding functional side-

effect, 2) minimizing logical influence on performance,

and 3) restricting physical influence on performance.

For further study on to what extent a DR may

influence a system, formal definitions are given below.

Using these definitions, the influence of a DR can be

estimated or measured quantitatively.

Definition 1. The functionality of a system s is

represented as a function F, which means s outputs F(e)

for an input e. F can be stateful or stateless.

Definition 2. The functional update by a DR r is

defined as Forigin→Ftarget, where Forigin is the system

functionality before r and Ftarget is the one after r.

Figure 1. The positions of the DR models.

Codec Chain

Replacement

Maintained

Considered but

 not maintained

Application

Scenario

Performance

Maintenance

Not

considered

Stateless

Data Flow
General

RDF Mitchell’s

Naveed’s

Karmer’s

SOFA2

OpenRec

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 3

© 2007 ACADEMY PUBLISHER

Definition 3. A DR r with functional update

Forigin→Ftarget has functional side-effect if and only if r

causes the system output neither Forigin(e) nor Ftarget(e) for

an input e.

Definition 4. The performance indicators of a system

include the response time and the throughput.

Definition 5. The influence of a DR on system

performance is a set

{ iop | iop=| p - porigin |, p∈Preconfig }

where porigin is the performance indicator of the original

system and Preconfig is the set of performance indicators

the system undergoes in the DR.

Although functional correctness is the precondition for

DR to be meaningful, the requirement for minimizing

logical influence on performance has the determinative

effect on the design of DR models. For this reason,

minimizing logical influence on performance will be

discussed first, and then avoiding functional side-effect

and finally restricting physical influence on performance

will be discussed thereafter.

B. Minimizing Logical Influence on Performance

To control the logical influence on performance

requires the theoretical performance indicator of the

system to be maintained in an acceptable range during

DR. Blocking should not be allowed because it causes the

theoretical throughput of the system down to zero in that

period. The lowest and highest points of the range depend

on the QoS (Quality of Service) requirement of the

application scenario. In the ideal DR, the designers do not

want the end users to feel any unnecessary delay.

Therefore, the lowest and highest points of the range

should be the performance indicators of the original

system and that of the target system.

Formally, suppose the system undergoes a sequence of

interim configurations c1,c2,…,cn in a DR and the

theoretical performance indicators under these

configurations are p1,p2,…,pn, the ideal minimum

influence requires pi∈[porigin,ptarget],(1≤i≤n), where porigin

is the performance indicator of the original system and

ptarget is that of the target system.

To satisfy this requirement, such reconfiguration

operations that change the actual system configuration

and last for a period should not appear in DR. All

reconfiguration operations can be categorized into three

types according to their impact on the system. Type I

operations are the operations that do not change the

actually effective part of the system. Thereby they will

not influence the theoretical performance indicator of the

system. For example, starting a component but not

connecting it to other part of the system is such an

operation. Type II operations are the operations that

influences the actual system configuration but their

execution is instantaneous, such as adding a connector,

which is a very simple memory operation like passing the

reference of a component to another. The transition from

one configuration to another caused by a type II operation

is instantaneous, and therefore, the theoretical

performance indicator of the system changes from one

value to another without any intermediate progress. Type

III operations are the operations that influence the actual

system configuration and their execution will last for a

period, such as transferring state variables between old

and new components. This operation can not be

considered instantaneous because how much time it takes

is relevant to the application scenario. Transactions

relevant to the part changed by type III operations have to

be blocked during the execution period; otherwise

functional side-effect is very likely to appear because the

result of these transactions will be unpredictable.

Although the blocking period may be very short (usually

it is decided by the application scenario and

reconfiguration algorithm), theoretically the response

time of the system in that period could be extremely

longer than normal and the throughput of the system

could be zero. It means a violation to the acceptable

range.

On the component/connector model, there are five

elementary reconfiguration operations, which are start

component, transfer state variables, stop component, add

connector and remove connector. Among them, start

component and stop component are type I operations

because the execution of these two operations do not

change the theoretical performance indicator of the

system. Transfer state variables is a type III operation. It

changes the configuration (new component takes the

place of the original component) and will last for a

period. Add connector and remove connector can be

considered type II operations. State variable transfer is

not allowed in a non-blocking DR unless it is such a

simple operation that can be implemented/considered

instantaneously. That is a requirement to the application

scenario for the implementation of the ideal DR.

If the application scenario does not need state variable

transfer, the key problem to minimize its logical influence

on performance is on the arrangement of the operations in

a reconfiguration plan. It is obvious that the stopping of

original components first and then starting new

components is not a practical plan as the system will be

unable to respond to any requests in the period after the

original configuration is shut down and before the new

one can be initiated. The appropriate reconfiguration plan

should be a switching plan, which is comprised of three

stages: 1) establish the new configuration, 2) switch from

the original configuration to the new configuration, 3)

shutdown and remove the original configuration. The

progress of the switching plan is shown in Fig.2.

In the switching plan, the establishment of the new

configuration can be comprised of type I operations so

that it does not influence the theoretical performance

Normal Run

Normal Run

Shutdown

Establishment

Old Conf.

New Conf.

Time

Execution Switching

Removal

Figure 2. The switching plan for DR.

4 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

indicator of the system. The theoretical performance

indicator of the system in this stage is porigin. The

switching can be achieved through type II operations so

that it can be considered as instantaneous. After the

switching, the theoretical performance indicator of the

system becomes ptarget. And the shutdown (waiting for old

transactions to complete) and removal of the old

configuration can be implemented by type I operations.

Since the theoretical performance indicator of the system

is kept in the range of [poriginal, ptarget], the switching plan

has the minimum logical influence on performance.

C. Avoiding Functional Side-effect

The switching reconfiguration plan has the minimum

logical influence on performance, but other challenges

may follow: avoidance of functional side-effect. This is

because the original configuration works in parallel with

the new configuration during its shutdown period and it

may share some components with the new configuration.

This problem needs to be discussed based on the

concept of transaction. A transaction refers to the

processing to a request from the time it is received to the

corresponding result being generated. And it is usually a

composition of the internal processing of several

components and the interactions between them. Here

interaction refers to the communication between two

components through connectors. In DR, to avoid

functional side-effect is to assure the correctness of every

single transaction. This transactional correctness consists

of two aspects: transactional non-interleaving and

transactional completeness.

Transactional interleaving refers to the phenomena

that transactions belonging to different configurations

may interfere with each other. Architectural interleaving

(a component participates in two different configurations)

is allowed, but transactional interleaving should be

avoided.

For instance, in the data encryption/decryption system,

a DR is to replace the encryption component and

decryption component with new algorithms (Fig.3).

Transactional interleaving would appear if a data package

was encrypted by the original encryption component but

decrypted by the new decryption component or vice

versa. The reason that the transactional interleaving is

easy to happen is due to the functional dependencies

between components and the sharing of components

between configurations may break these dependencies. In

this data encryption/decryption system, the decryption

component and the encryption component have

dependency relationship. The sharing of the packing

component and unpacking component may break the

dependency relationship between the encryption and

decryption. In literatures, global consistency [15] is also

used to describe this problem.

Transactional completeness means that a transaction

should complete once it is instantiated. It requires any

reconfiguration operations not to stop or destroy any

ongoing interactions or transactions. Particularly it should

be assured that all transactions belonging to the original

configuration complete during the shutdown period

before the removal of components/connectors could take

place during the removal period (reference to Fig.2).

To assure transactional correctness needs the support

of the underlying component model. Transactional non-

interleaving requires a version control mechanism for

components that can distinguish the transactions

belonging to different configurations and make them run

independently. Transaction completeness requires 1) a

synchronization mechanism that can guarantee any

reconfiguration operation that may interrupt an ongoing

interaction being executed after the interaction completes;

and 2) a tracing mechanism that can make sure that a

component or connector is not being used currently and

no longer used in future by a transaction so that it can be

removed safely.

D. Restricting Physical Influence on Performance

DR may have physical influence on performance

because the reconfiguration procedure may compete with

the ongoing functional procedures for processor time.

How to control this influence can be analyzed from two

conditions.

If the system has free processor time, the

reconfiguration procedure can be executed using the free

processor time and other functional procedures can run as

if there was no reconfiguration procedure. Such a

scheduling mechanism relies on preemptive scheduling

with the functional procedures assigned a high priority

and the reconfiguration procedure assigned a low priority.

Under this scheduling, the reconfiguration procedure

should not obtain processor time until there is no

functional procedure acting in the system and it should

yield the processor to any functional procedures once

they are ready for execution. Using the preemptive

scheduling can totally avoid the physical influence of DR

on performance under the condition that free processor

time is available.

If the system has no free processor time, the

preemptive scheduling does not work because the

reconfiguration procedure has no chance to get processor

to execute. Instead, time-slice scheduling is a practical

way for influence control under this condition. Under the

time-slice scheduling, the processor time is separated into

many small slices. In some slices the reconfiguration

procedure are allowed to run and compete with other

functional procedures for processor time. In other slices it

plain

data

encryption encrypted

data

packaging

data package

unpackaging

encrypted

data
plain

data

decryption

Legend Original Transaction

New Transaction

Transactional Interleaving

Figure 3. Transactional interleaving.

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 5

© 2007 ACADEMY PUBLISHER

is not allowed to do so. Viewing from a longer period, the

physical influence of DR can be restricted through

controlling the amount of slices in which the

reconfiguration procedure is allowed to run.

Two examples are helpful in understanding the

executions of DR and their influence under these two

scheduling mechanisms. Fig.4(A) shows an example of

the preemptive scheduling. Suppose that four data items

will be available at time t, t+3(seconds), t+5 and t+8

separately. The processing to each of these data items

takes 2 seconds. A reconfiguration process starts at time

t+2 and it will take 2 seconds if it possesses the processor

exclusively. Comparing with the execution without DR,

the data processing of the preemptive scheduling remains

the same but that of the non-preemptive scheduling is

different: the processing to the second and the third data

item is delayed. Fig.4(B) demonstrates the time-slice

scheduling. Data items will be available every 2 seconds;

therefore, there is no free processor time. With the

absence of proper control, the reconfiguration procedure

will compete with functional procedures for processor

time during its life-span. It prolongs the processing to the

second and third data items and also delays the

processing to the following data items. With time-slice

scheduling, the execution of the reconfiguration

procedure is separated into several parts, which are

distributed in a longer period so that the influence to each

single processing is restricted. Even though this also

prolongs the processing of the second to fourth data items

and delays the processing to the following data items, but

the influence is smaller than the execution without

control.

The precondition of applying these two DR scheduling

mechanisms is that the reconfiguration procedure is able

to be rescheduled at any time. As pointed out in part B of

this section, only type I and type II operations are allowed

in DR. Because theoretically type II operations are

instantaneous, its execution will not delay the

rescheduling. Type I operation will last for a period and

its execution may be interrupted at any time by functional

procedures and needs to be resumed in future. This

interruption will not cause functional side-effect because

type I operations do not change the actual configuration.

E. Summary for Influence Control

The discussion on the influence of DR in this section is

summarized in TABLE II.

IV. THE RECONFIGURABLE DATA FLOW

A. Motivation

The Reconfigurable Data Flow (RDF) is designed to

show the feasibility of the methods presented above.

The RDF is an extension to the conceptual Dataflow

Process Networks (DPNs) [4] so that it firstly supports

the fundamental dataflow semantics defined by the

DPNs. The motivation to use the DPNs as the base model

for reconfigurable extension comes from three aspects.

First, the mechanisms for influence control can be

implemented on the DPNs, including version control,

synchronization, transaction tracing, switching

reconfiguration plan, schedulable type I reconfiguration

operations, and preemptive and time-slice scheduling.

Second, over the past decades, the DPNs have been

proved to be a widely used optimized model to describe

highly concurrent applications in the areas of signal-

processing, linear or nonlinear control systems, image

processing for geographical information systems, or other

stream-oriented application systems [13]. Third being

compatible with the conceptual DPNs, the RDF is able to

make full advantage of research outcomes realized by the

DPNs communities in the future.

Figure 4. DR scheduling.

Data Available

No DR

Preemptive

Time

Execution

Functional Procedure

 2 1 2 2 1 2

2 1 2

2 1 2

 2 2 2 2 2
Non-

Preemptive

Data Processing

Data Processing

Data Processing

Idle Processor Time

Reconfiguration Procedure

(A). The preemptive scheduling

Data Available

No DR

Time-Slice

Time

Execution

No Control

Data Processing

Data Processing

Data Processing

(B). The time-slice scheduling

2 2 2 2 2

2 2.2 2.2 2.2 2

2 2.3 2.3 2 2

TABLE II. INFLUENCE CONTROL

Influence
Functional

side-effect

Logical influence

on performance

Physical influence

on performance

What

should be
down

Avoidance Minimization Restricting

How to

achieve

Assuring

transactional
correctness

Using the

switching
reconfiguration

plan

Restricting the

competition on
processor time

Control
applied in

what stage

Reconfiguration
design

Reconfiguration
planning

Reconfiguration.
execution

Supports
needed

from the
underlying

model

Version control

Synchronization

Transaction
tracing

The switching
reconfiguration

plan

Type I operation
schedulable,

Preemptive
scheduling

Time-slice

scheduling

Requireme

nts to the
application

scenario

No need for type

III operations (e.g.
state variables

transfer)

6 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

B. Basic RDF Elements and an Application Scenario

The basic elements of the RDF are process, data-store,

and data-path. A process is such a software component

that has a single threaded working progress, consuming

data through its entrances, then processing them, and

finally producing results through its exits. A data-store is

a random-accessible data container with infinite capacity.

A data-path is a connector between a process and a data-

store through which the process can consume data as its

input from the data-store or save the produced data to the

data-store. In the RDF, processes’ internal processing to

data items do not interfere with each other, and the

interactions between processes are the transmissions of

data items through data-stores. A data-store has to be

used to buffer the data items in a transmission because

the receiver process may be not ready to consume data

items when the sender process produces the data items.

The reconfiguration operations of the RDF include

addition and removal of processes/data-stores (type I

operations), and addition and removal of data-paths (type

II operations).

Graphically, a RDF model could be represented as a

bi-partite directed graph, in which rectangles represent

processes, circles represent data-stores, and arrows

represent data-paths.

Fig.5 shows an example, the PKI Data Encryption and

Digital Signature System (DEDSS) [1]. In the system, the

data items in data-store d1 will be delivered to the

corresponding receivers after being digitally signed and

encrypted. The encryption progress and the signature

progress can be carried on in parallel on the sender side

as well as the decryption progress and the signature

verification progress on the receiver side.

A DR to the system might be to add data

compression/decompression function and replace the

digesting algorithm as shown with dashed line in Fig.5.

Such a reconfiguration scenario can expose the main

issues in avoiding functional side-effect. There are three

pairs of functional dependencies that may be broken in

transactional interleaving in DR. 1) dataEncryption

encrypts data items with the receiver’s public key and

dataDecryption decrypts data items with the receiver’s

private key; 2) mDigest2 and mDigest1 use the same

message-digesting algorithm; 3) digestEncryption

encrypts the digest with the sender’s private key and

digestDecryption decrypts the digest with the sender’s

public key.

In addition, to apply the switching reconfiguration

plan, the DEDSS is designed as it does not need state

variables transfer in the DR. The data compression

processes, the data decompression processes and the

digesting processes are all stateless.

C. Mechanisms to Support Dynamic Reconfiguration

The RDF provides several mechanisms for DR

including synchronization, version control, transaction

tracing, reconfiguration planning and reconfiguration

scheduling.

The synchronization mechanism of the RDF is able to

protect the consuming/producing operations of processes

from being interrupted by the addition/removal of data-

paths. All data transmissions in the RDF are through the

data consuming or data producing operations of

processes. All reconfiguration operations that may

interrupt data transmissions are the addition or removal of

data-paths. The removal of a process/data-store will not

interrupt data transmissions because it requires the data-

paths connected to the process/data-store to be removed

first. Therefore, such a synchronization mechanism can

protect the data transmissions from being interrupted by

reconfiguration operations. In another aspect, the

synchronization will not delay the execution of processes.

As discussed in the previous sections, theoretically the

addition and removal of data-paths are instantaneous so

that their execution will not delay the data consuming or

data producing operations of processes. Other

reconfiguration operations such as addition and removal

of processes/data-stores have no conflict with any

d1

d2 d3

d4 d5 d6

d7

dispatcher

dataEncryption

mDigest1 digestEncryption

packer

unpacker

digestDecryption

dataDecryption mDigest2

verifier

d8 d9

d10 d11 d12

d13

…

(to one receiver)

(to other receivers)
…

newMDigest2

newMDigest1

dataDecompression

d14

d15

Process

Data-store

Data-path

Legend

Figure 5. The DEDSS.

dataCompression

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 7

© 2007 ACADEMY PUBLISHER

ongoing data transmissions so that they do not need to be

synchronized with the consuming or producing

operations of processes. Hence, these are schedulable in

any time period.

The version control mechanism of the RDF prevents

transactional interleaving by isolating the data flows

belonging to different configurations. The RDF is a data

flow based model, therefore, the basic idea of the version

control is to assign every data item (or package) a version

tag and let processes be able to recognize the version tag.

The data items of the transactions belonging to the

original configuration are assigned one version tag and

those belonging to the new configuration are assigned

another version tag, therefore, they can be distinguished

and processed by processes independently. To let the

version control be transparent to the process developers,

the version tag is designed as a virtual tag so that the

process developers do not need to concern about it. They

can develop processes following the consume-process-

produce pattern without any concern about the versions

of the data items.

The version control mechanism is supported by the

following rules:

1) A process has three version modes: strict,

transparent and filter. Under strict mode, denoted as

(x,y), a process can consume data items of version x and

produce data items of version y. Under transparent mode,

denoted as (*,*), a process can consume data items of any

versions and produce data items of the same version as

consumed. Under filter mode, denoted as (*,z), a process

can consume data items of any version but produce data

items of version z. Changing a process from one version

mode to another is instantaneous and thereby it is a type

II reconfiguration operation.

2) A data-store can store data items of any versions.

Different versions of data items are stored separately in a

data-store so that they can be distinguished although there

is no real version tag on each of the items.

Transactional interleaving can be avoided by utilizing

version control. In the data encryption/decryption

example in Fig.3, transactional interleaving will not

happen if the processes are set to the proper version

modes as shown in Fig.6. The data items encrypted by the

original algorithm will have version v1. This virtual tag

will be kept till these packages reach data-store d4. And

then they can only be consumed by the original

decryption algorithm. By the same principle, the data

items encrypted by the new algorithm will have version

v2 and they can only be consumed by the new decryption

algorithm. For each DR that may have transactional

interleaving, such a restrict segment can be found and

version control can be applied to avoid the transactional

interleaving.

The transaction tracing mechanism of the RDF is

based on the following idea. If the incoming data-paths of

a process (data-paths that connect data-stores to the

entrances of the process) are removed, the process will

become idle after its ongoing processing finishes and will

never be triggered in future. And if the incoming data-

paths of a data-store (data-paths that connect the exits of

processes to the data-store) are removed, the data-store

will become empty as its data items will be consumed up

by the subsequent processes and there is no new data item

to flow into the data-store. The removal of such idle

processes or empty data-stores will not influence the

completeness of any transactions.

Two operations are designed to support the transaction

tracing.

1) Wait-finishing(p,v), which waits for process p to

finish the current processing of version v data items.

2) Wait-empty(d,v), which waits for data-store d to be

empty with version v data items.

During the original configuration shutdown period in

DR, all incoming data-paths to the original configuration

are closed so that there will be no data item to flow into

this part of the system. Then for each original transaction,

the wait-finishing operation can be used to wait for the

processes to finish and then the wait-empty operation can

be applied to the subsequent data-stores. This progress

continues until all original version data items are assured

to flow out of the original configuration, which means

that the processes and data-stores belonging to the

original configuration are never to be used so that they

can be safely removed. In addition, these two operations

will not block the system because all new data items can

be processed by the new configuration during this stage.

For the example in Fig.6, the completeness of the

original transactions can be assured by the following

progress.

(remove data-path d1→encryption;)

wait-finishing(encryption, v1);

wait-empty(d2,v1);

wait-finishing(packaging, v1);

wait-empty(d3,v1);

wait-finishing(unpackaging,v1);

wait-empty(d4,v1);

wait-finishing(decryption,v1);

The reconfiguration planer of the RDF is able to

generate switching plans for DRs. First of all, a

reconfiguration must have a declarative specification,

denoted as Corigin→Ctarget, where Corigin is the original

configuration of the system and Ctarget is the target one.

Then a declarative specification can be changed to an

operational plan automatically by the planner provided on

the RDF.

encryption packaging

unpackaging

decryption

Legend Original Transaction (Version v1)

New Transaction (Version v2)

(v1,v1)

(v1,v2)

(*,*)

(*,*)
(v1,v1)

(v2,v1)

Figure 6. Version control.

d1

d2

d3

d4 d5

8 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

The configuration of a system is represented as a route

map, which consists of all the routes in the system. A

route is a sequence of processes and data-stores that data

items must go through in a transaction. A route has the

format of [d1, (en1,p1,ex1),d2,(en2,p2,ex2),…], which

means a data item in d1 can flow into process p1 through

its entrance en1, and the result will flow out of p1 through

its exit ex1 and flow into d2. Then it can flow into process

p2 through its entrance en2, and so on. From the route

map representation, it is easy to know what processes and

data-stores comprise of the system, how they are

connected by data-paths, and particularly how

transactions are carried on. The information is necessary

for the version control and transaction tracing to be

applied in the DR.

The plan generated by the RDF planner is a switching

plan with the influence control methods integrated, i.e.

version control is used to assure transactional correctness

and transaction tracing is used to assure transactional

completeness. Such a plan is comprised of six steps and

its progress is shown in Fig.7.

T1. Apply version control to all the processes once

they are in the system.

T2. Add new processes, new data-stores and new data-

paths into the system.

T3. Start data supply to the new configuration and stop

data supply to the old (to-be-removed) configuration.

T4. Wait for the remaining data flow to go through the

old configuration.

T5. Remove the old processes, old data-stores and the

old data-paths from the system.

T6. Cancel version control.

As an example, the original and target route maps of

the DEDSS, and the generated reconfiguration plan are

given in appendix A.

The reconfiguration scheduling mechanism of the RDF

is able to control the execution of DR. Since the

scheduling mechanism is based on the thread scheduling

mechanism of the underlying platform, it first requires the

underlying platform (the operation system or

middleware) supporting the priority-based preemptive

scheduling. Given a reconfiguration plan, the preemptive

scheduler will run the plan in a separate thread that is

assigned a lower priority than other functional threads.

Under the priority-based preemptive scheduling of the

underlying platform, the reconfiguration will be executed

using the free processor time between functional threads.

Therefore, it will not cause physical influence on

performance. The time-slice scheduler will run the plan in

a thread with the same priority to the functional threads

so that the reconfiguration thread will have chance to get

processor time. And the time-slice scheduler will

periodically suspend the reconfiguration thread so that the

physical influence of the reconfiguration thread is

restricted. Choosing which scheduler depends on the

application scenario, i.e. whether there is free processor

time and the QoS requirement.

D. Implementation and Experimental Results

The RDF platform is an implementation of the RDF

model on Java platform. It integrates all the mechanisms

supported by the RDF model. Fig.8 depicts its functions

and Fig.9 shows its Graphical User Interface (GUI).

In Fig.8, constraints check checks whether functional

dependencies are satisfied in architectural configurations.

This function can help designers in finding errors in

architecture design. Runtime setting configures the

running environment for a system, including the data-

sources (feeding the system with data items), the verifiers

(verifying the functional correctness of the system), and

the monitors (monitoring the performance indicator of the

system). Run starts a system according to its

configuration and thereby the functional correctness and

performance indicator can be detected. Reconfiguration

setting establishes a reconfiguration scenario, including

the original and target configurations, the planner and

scheduler to be used, and when the reconfiguration starts.

Then planning generates the reconfiguration plan using

the designated planner and scheduling controls the

execution of the reconfiguration using the designated

scheduler. Verification verifies the functional correctness

Figure 7. Reconfiguration state graph.

Normal Run Shutdown Old Conf.

Reonf.

Time

Execution Switching

Removal

Normal Run Establishment New Conf.

 T1,T2 T3 T4 T5,T6

Time

Figure 8. Functions of the RDF Platform.

Architectural Config.

Runtime Config.

Reconfiguration Config.

Reconfiguration Plan

Run

Architectural Config.

Runtime Config.

Scheduling

Plannning

Running System

Original Target

Runtime

Setting

Running System

Constraints

Check

Running System

Functional Correctness &

Performance Indicator

Reconfig.

Setting

Verification &

Monitoring
Charting

Legend

Information Activity System

Transfer Corresponds to

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 9

© 2007 ACADEMY PUBLISHER

of the system using the verifiers predefined in runtime

setting, and monitoring records the performance indicator

using the monitors. Finally, charting collects all the

results and draws the performance indicators in a line

chart, from which the influence of DR on system

performance is easy to uncover.

The RDF platform is very flexible in that: 1) it has

well-defined framework for processes and an open

process library. Therefore, developers can easily

implement processes needed by applications and put them

into the library; 2) application specific data-sources and

verifiers can be designed following the predefined

interfaces; 3) the architecture, running environment and

reconfiguration scenario of the system to be tested can be

set up through the GUI interface and all settings can be

saved in XML document format; 4) the reconfiguration

planner and scheduler are pluggable so that other

planners and schedulers can be imported as plug-ins and

be tested and compared based on the same

reconfiguration scenario on the platform.

Based on the RDF platform and using the DEDSS as a

case study, two groups of tests have been done to

examine the effectiveness of the mechanisms for

influence control. Group A has been done under the

condition that the system has no free processor time and

group B has been done under the condition that the

system has free processor time. Group A consists of five

tests. Test 1 examines the influence of the DR when these

mechanisms for influence control are all applied,

including the version control, the transaction tracing, the

switching plan, and the time-slice scheduling. Test 2

examines the influence of the DR when the version

control and the transaction tracing are not used. Its

settings are same to test 1 except that it changes the

system from the original configuration to the target one

directly without using the version control and the

transaction tracing. By comparing with test 1, it can be

found whether the version control and the transaction

tracing are able to avoid functional side-effect. Based on

the same idea, test 3 uses the blocking reconfiguration

plan and test 4 does not use reconfiguration scheduling

while other settings are the same as test 1. Then

comparing with test 1, it can be found to what extent the

switching plan and the time-slice scheduling can restrict

the influence of DR. Test 5 examines the different effects

of the time-slice scheduling under different parameters.

For a time-slice scheduling, 40% means the

reconfiguration thread is allowed to compete for

processor time for 40% in a time slice; and 20% means

the competition for processor time is allowed for 20% of

a time slice. The settings for group B are almost the same

as group A. The difference is that group B uses the

preemptive scheduling because the system has free

processor time. The settings are listed in TABLE III. For

each test, both the throughput and the response time of

the system are recorded.

In the tests, functional side-effect appears in test 2 of

both group A and group B. The DRs in other tests have

no functional side-effect. For the DEDSS, the functional

side-effect can be detected by checking whether the data

items outputted to data-store d13 are exactly the same to

the data items inputted to data-store d1. Considering only

test 2 does not apply the version control and transaction

tracing, a conclusion can be drawn that the version

Figure 9. The GUI of the RDF platform.

10 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

control and transaction tracing are able to assure the

functional correctness of the system in DR.

The performance indicators of the system in the tests

excluding test 2 are drawn in line charts in Fig.10. (It is

no sense to discuss the performance indicator of test 2

because the precondition i.e. functional correctness is not

satisfied in test 2). For the DEDSS, the response time is

the time interval from the instance when a data item

enters data-store d1 to the instance when the data item is

put into data-store d13. The throughput is the amount of

data items consumed from data-store d1 or produced to

data-store d13 in a time interval. The performance

indicators of the original system and the target system are

also drawn in the charts as references (the blue line and

the orange line).

The max throughput of the original system is about 50

dips (data items per second) and that of the target system

is about 40 dips. In group A, the system is fed with 60

dips, which is larger than the max throughputs of both the

original system and the target system so that the system

has no free processor time. Fig.10(A) gives the

throughput comparison of the tests. The blocking

reconfiguration plan has a severe influence on the

throughput (the red line). The DR without scheduling (the

pink line) has an influence larger than the DR with the

time-slice scheduling (the indigo line and the green line).

And the DR under the 20% time-slice scheduling (the

green line) has an influence smaller than the DR under

the 40% time-slice scheduling (the indigo line). Fig.10(B)

gives the response time comparison. As the feeding rate

is larger than the max throughput, more and more data

items are buffered in data-store d1. Therefore, the

response time of the system to these data items becomes

larger and larger and it results in slash lines in the chart.

To make the performance indicators comparable under

this condition, the starting time of the DRs are adjusted so

that the new configuration starts to work at the same time.

It is indicated by the chart that the DR using the blocking

plan causes the fastest increasing rate to the response time

(the red line), the DR without scheduling causes a relative

slower increasing rate (the pink line), and the DR with

time-slice scheduling causes the slowest increasing rate

(the indigo line and the green line). The result of group A

indicates that the mechanisms used in the RDF for

influence control are effective under the condition that

the system has no free processor time.

In group B, the system is fed with 38 dips, which is

smaller than the max throughputs of both the original

system and the target system so that the system has free

processor time. Fig.10(C) gives the throughput

comparison of the tests. The lines for the input, the

original system, the target system, and the DR using the

switching plan and the preemptive scheduling are

overlapped (only the green line can be seen because it is

on the top, which corresponds to the DR using the

switching plan and the preemptive scheduling). That

means the DR has no any influence on the throughput.

And the DR using the blocking plan imposes a large

influence and the DR without scheduling causes manifest

influence on the throughput. Fig.10(D) gives the response

time comparison. As the feeding rate is smaller than the

max throughput, there is no data item waiting in data-

store d1. Therefore, the response time of the original

system is horizontal (the blue line); and so is the target

system (the orange line). It also can be seen that the DR

using the switching plan and the preemptive scheduling

changes the response time from the original level to the

target level without other influence (the green line). And

the DR using the blocking plan causes a very large

response delay that is out of the chart (the red line) and

the DR without scheduling causes a large influence too

(the pink line). The result of group B proves the

effectiveness of the mechanisms used in the RDF for

influence control under the condition that the system has

free processor time.

IV. CONCLUSION AND FUTURE WORK

This paper has three main contributions to the

influence control for DR.

First, this paper theoretically analyzes how DR

influences system execution and how the influence can be

controlled. DR may influence system execution in four

ways, which result in the functional update, functional

side-effect, logical influence on performance, and

physical influence on performance. To control the

influence of DR, the functional side-effect should be

avoided, the logical influence on performance should be

minimized and the physical influence on performance

should be restricted.

TABLE III. SETTINGS FOR THE EXPERIMENT

(A) THE SYSTEM HAS NO FREE PROCESSOR TIME

Test

Version
Control and

Transaction
Tracing

Plan Scheduling
Influence to

Test

1 Use
Switching

plan
Time-slice(40%)

Restricted

influence

2 Not use
Switching

plan
Time-slice(40%)

Functional

side-effect

3 Use
Blocking
plan

Time-slice(40%)
Logical
influence on

performance

4 Use
Switching
plan

No scheduling
Physical
influence on

performance

5 Use
Switching
plan

Time-slice(20%)
Restricted
influence

 (B) THE SYSTEM HAS FREE PROCESSOR TIME

Test

Version
Control and

Transaction

Tracing

Plan Scheduling
Influence to

Test

1 Use
Switching

plan
Preemptive

No

influence

2 Not use
Switching
plan

Preemptive
Functional
side-effect

3 Use
Blocking

plan
Preemptive

Logical

influence on
performance

4 Use
Switching

plan
No scheduling

Physical

influence on
performance

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 11

© 2007 ACADEMY PUBLISHER

Second, this paper proposes the RDF model to

demonstrate the feasibility of the methods for influence

control. The RDF has several mechanisms for influence

control. The version control prevents transactions

belonging to different configurations from interleaving.

The transaction tracing assures the completeness of

transactions. For a DR, the reconfiguration planner

generates the switching reconfiguration plan, which has

the minimal logical influence on performance. And the

reconfiguration scheduler restricts the physical influence

on performance using preemptive or time-slice

scheduling policies.

Third, this paper also presents the RDF platform,

which is the implementation of the RDF model on Java

platform. With the support of the RDF platform and using

the DEDSS as a reconfiguration scenario, a testing

criterion is designed to simulate different reconfiguration

plans and scheduling policies on the single platform and

quantitatively compare their influence. Experimental

results indicate that the methods for influence control are

effective in the RDF model.

Future works will focus on two directions.

As the current RDF is limited in application to stateless

system, the first direction of future research is to expand

the application scenario of the RDF by adopting the

methods to stateful data flows. Two problems have to be

solved in the DR to stated systems with influence control:

how the time cost of state variable transfers can be

restricted and when these transfers can take place. The

current exploration in this direction originates from two

ideas. First, state variable transfer is possible to be

implemented with object reference passing if stated

components store their state in special objects. Second,

the transaction tracing can be utilized to find the

appropriate opportunity for state variable transfer.

The second direction is to expand the mechanisms of

the RDF model for influence control to other component

models. Besides flow based models, there are a lot of

procedure-call based models [10], which are also being

widely used in both academia and industry. The

procedure-call based models differ from the flow based

models in that a connector is a procedure-call, i.e. the

caller asks the recipient (i.e. callee) to start a processing

and wait for the recipient to return the result. There is

correspondence between the two kinds of models. A

procedure-call can be considered as two data-paths, one

for the parameters passing when the invocation starts and

one for the result returning when the invocation finishes.

Based on this correspondence, the mechanisms of the

RDF model will be further studied to apply to the

procedure-call based models.

APPENDIX A THE RECONFIGURATION SPECIFICATION FOR

THE DEDSS AND THE PLAN GENERATED

Although the DEDSS may have multiple branches, the

specification and reconfiguration for one branch is

enough to demonstrate the route map representation and

the switching reconfiguration plan.

Specification (reference to Fig.5)
Route map of the original system is R={r1, r2}, where
r1=[d1,<1,dispatcher,1>,d2,<1,dataEncryption,1>,d3,<1,packer,1>,d

7,<1,unpacker,2>,d10,<1,dataDecryption,1>,d11,<1,mDigest2,1>,d12,<

2,verifier,1>,d13]

(A) Throughput comparison of group A

Figure 10. Experimental results.

(B) Response time comparison of group A

(C) Throughput comparison of group B

(D) Response time comparison of group B

blk – the blocking plan swt – the switching plan
ns – no scheduling ts – the time-slice scheduling

pre – the preemptive scheduling

12 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

r2=[d1,<1,dispatcher,1>,d4,<1,mDigest1,1>,d5,<1,digestEncryption,
1>,d6,<2,packer,1>,d7,<1,unpacker,1>,d8,<1,digestDecryption,1>,d9,<

1,verifier,1>,d13]

Route map of the target system is R’={r3, r4}, where
r3=[d1,<1,dispatcher,1>,d2,<1,dataCompression,1>,d14,<1,dataEncr

yption,1>,d3,<1,packer,1>,d7,<1,unpacker,2>,d10,<1,dataDecryption,1
>,d11,<1,dataDecompression,1>,d15,<1,newMDigest2,1>,d12,<2,verifi

er,1>,d13]

r4=[d1,<1,dispatcher,1>,d4,<1,newMDigest1,1>,d5,<1,digestEncryp
tion,1>,d6,<2,packer,1>,d7,<1,unpacker,1>,d8,<1,digestDecryption,1>,

d9,<1,verifier,1>,d13]

Reconfiguration Plan Generated
// T1. Apply version control

set verifier to filter(1) mode;
set dataEncryption, packer, unpacker, digestDecryption, mDigest1,

digestEncryption, dataDecryption, mDigest2 to transparent mode;

// T2. Add new processes, data-stores and data-paths
start dataCompression, dataDecompression, newMDigest1,

newMDigest2 and set them to strict(2,2) mode;
add data-stores d14, d15;

set up data-paths (newMDigest2,0→d12), (d15→0,newMDigest2),

(dataDecompression,0→d15), (d11→0,dataDecompression), (d14→0,

dataEncryption), (dataCompression,0→d14), (d2→0,dataCompression),

(newMDigest1,0→d5), (d4→0,newMDigest1);

// T3. Switch data supply
set dispatcher to strict(1,2) mode;

// T4. Transaction tracing
wait for version 1 data elements to flow out of the involved segments

// T5. Remove the old processes, data-stores, and data-paths

remove data paths (d2→0,dataEecryption), (d11→0,mDigest2),

(mDigest2,0→d12), (d4→0,mDigest1), (mDigest1,0→d5);

remove processes mDigest1, mDigest2;

// T6. Cancel version control
set dataCompression, dataDecompression, newMDigest1,

newMDigest2 to transparent mode;
set dispatcher to strict(1,1) mode;

wait for all version 2 data elements to flow out of the involved

segments of r3 and r4;
set all processes to strict(1,1) mode;

ACKNOWLEDGMENT

This work was supported by Central Queensland

University, Australia under Research Advancement

Awards Scheme (RAAS) grants, 2006~2007. Authors

would like to thank Dr. Andrew Chiou for his proof

reading of the paper.

REFERENCES

[1] C. Adams, S. Lloyd, “Understanding Public-key

Infrastructure”, Macmillan Technical Publishing, 1999.

[2] S. Ajmani, B. Liskov, and L. Shrira, “Scheduling and

Simulation: How to Upgrade Distributed Systems” in 9th

Workshop on Hot Topics in Operating Systems (HotOS-

IX), Hawaii, USA, 2003, pp.43-48.

[3] T. Bures, P. Hnetynka, F. Plasil, "SOFA 2.0: Balancing

Advanced Features in a Hierarchical Component Model" in

4th International Conference on Software Engineering

Research, Management and Applications (SERA'06),

Seattle, USA, 2006, pp. 40-48.

[4] G. Cheng, “A Dataflow-Based Software Integration Model

in Parallel and Distributed Computing and Applications”,

Ph.D. Dissertation, Syracuse University, Italy, 1997.

[5] P. Feiler, J. Li, “Consistency in Dynamic Reconfiguration”

in 4th International Conference on Configurable

Distributed Systems, Annapolis, USA, 1998, pp.189-196.

[6] J. Gorinsek, S. Van Baelen, Y. Berbers and K. De

Vlaminck, “Managing Quality of Service during Evolution

using Component Contracts” in ETAPS 2003 Workshop on

Unanticipated Software Evolution (USE2003), Warsaw,

Poland, 2003, pp.57-62.

[7] J. Hillman, I. Warren, “Quantitative Analysis of Dynamic

Reconfiguration Algorithms” in International Conference

on Design, Analysis and Simulation of Distributed (DASD)

Systems, Virginia, USA, 2004.

[8] J. Kramer, J. Magee, “The evolving philosophers problem:

Dynamic change management” in IEEE Transactions on

Software Engineering, vol. 16, 1990, pp.1293-1306.

[9] S. Kulkarni and K. Biyani, “Correctness of Component-

based Adaptation” in International Symposium on

Component-based Software Engineering, Edinburgh,

Scotland, 2004, pp.48-58.

[10] K.K. Lau and Z. Wang, “A taxonomy of software

component models” in 31st Euromicro Conference on

Software Engineering and Advanced Applications, Porto,

Portugal, 2005, pp.88–95.

[11] N. Medvidovic and R.N. Taylor, “A classification and

comparison framework for software architecture

description languages” in IEEE Transactions on Software

Engineering, 26(1), 2000, pp.70–93.

[12] S.R. Mitchell, “Dynamic Configuration of Distributed

Multimedia Components”, PhD thesis, University of

London, UK, 2000.

[13] W.A. Najjar et al, “Advances in the Dataflow

Computational Model” in Parallel Computing, 25(13-14)

1999, pp.1907-1929.

[14] A. Naveed, et al., “Deployment and Dynamic

Reconfiguration Planning for Distributed Software

Systems” in 15th IEEE International Conference on Tools

with Artificial Intelligence (ICTAI'03), Sacramento, USA,

2003, pp.39-46.

[15] N.D. Palma, P. Laumay, and L. Bellissard, “Ensuring

Dynamic Reconfiguration Consistency” in 6th

International Workshop on Component-Oriented

Programming (WCOP 2001), Budapest, Hungary, 2001.

[16] I. Warren, “A Model for Dynamic Configuration which

Preserves Application Integrity”, PhD thesis, Lancaster

University, UK. 2000.

[17] M. Wegdam, “Dynamic Reconfiguration and Load

Distribution in Component Middleware”, PhD thesis,

University of Twente, Netherlands, 2003.

[18] Z. Zhao and W. Li, “Influence Control for Dynamic

Reconfiguration” in Australian Software Engineering

Conference 2007, Melbourne, Australia, 2007, pp.59-68.

Wei Li is a Senior Lecturer in Computer Science in the

School of Computing Sciences at the Central Queensland

University, Australia. He received his PhD degree from

the Institute of Computing Technology, Chinese

Academy of Sciences in July 1998. His research interests

include dynamic software architecture and multi-agent

systems.

Zhikun Zhao received his Ph.D. degree in Computer

Science at the Graduate University of Chinese Academy of

Sciences (GUCAS), Beijing, China in 2003. He has been a

Postdoctoral Research Fellow of Central Queensland University

(CQU), Rockhampton, Australia since 2006. His research

interests include software dynamic reconfiguration and agent

technology.

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 13

© 2007 ACADEMY PUBLISHER

