
Building Self-Configuring Data Centers with
Cross Layer Coevolution

Paskorn Champrasert and Junichi Suzuki
Department of Computer Science, University of Massachusetts, Boston

Email: {paskorn, jxs}@cs.umb.edu

Abstract—This paper describes a biologically-inspired archi-
tecture, called SymbioticSphere, which allows data centers
to autonomously adapt to dynamic environmental changes.
SymbioticSphere follows biological principles such as decen-
tralization, evolution and symbiosis to design application
services and middleware platforms in a data center. Each
service and platform is designed as a biological entity, and
implements biological behaviors such as energy exchange,
migration, reproduction and death. Each service/platform
also possesses behavior policies, as genes, each of which de-
fines when to and how to invoke a particular behavior. This
paper presents a set of behaviors for services and platforms,
and describes how services and platforms act and interact
with each other. Simulation results show that services and
platforms autonomously adapt to dynamic network condi-
tions (e.g., user location, network traffic and resource avail-
ability) by evolving their behavior policies across genera-
tions. Simulation results also show that services and plat-
forms coevolve to improve their adaptability by adjusting
their behavior policies cooperatively.

Index Terms—Autonomic self-configuring network systems,
Biologically-inspired networking, evolvable network systems

I. INTRODUCTION

Data centers are integral components to operate large-
scale network applications. As they are rapidly increasing
in complexity and scale, they face several challenges,
particularly autonomy and adaptability. Data centers are
expected to autonomously adapt to dynamic conditions in
the network (e.g., network traffic and resource availabil-
ity) in order to improve user experience, expand opera-
tional longevity and reduce maintenance cost [1, 2].

In order to meet these challenges (i.e., autonomy and
adaptability), the authors of the paper propose to apply
key biological principles and mechanisms to design data
centers. This is motivated by an observation that various
biological systems have already developed the mecha-
nisms necessary to achieve autonomy and adaptability.
For example, bees act autonomously, influenced by local
environmental conditions and local interactions with
other bees. A bee colony adapts to dynamic environ-

mental conditions. When the amount of honey in a hive is
low, many bees leave the hive to gather nectar from
nearby flowers. When the hive is nearly full of honey,
most bees remain in the hive and rest.

SymbioticSphere is an architecture that applies bio-
logical principles and mechanisms to design data centers.
It consists of two kinds of components: application ser-
vices and middleware platforms. Each of them is modeled
as a biological entity, analogous to an individual bee in a
bee colony. They are designed to follow several biologi-
cal principles such as decentralization, emergence, evolu-
tion and symbiosis. An application service is designed as
a software agent. Each agent implements a functional
service (e.g., web service) and biological behaviors such
as energy exchange, reproduction, migration and death. A
middleware platform runs on a network host and operates
agents. Each platform provides runtime services that
agents use to perform their services and behaviors, and
implements biological behaviors such as energy ex-
change, reproduction and death. SymbioticSphere models
agents and platforms as different biological species.

In SymbioticSphere, each agent and platform autono-
mously senses its surrounding environment conditions
and adaptively invokes a behavior suitable for the condi-
tions. For example, an agent may invoke the migration
behavior to move toward a network host that receives a
large number of user requests for its services. This results
in the adaptation of agent location; the agent can improve
its response time to user requests. Also, a platform may
invoke the reproduction behavior to make its offspring on
a neighboring network host where resource availability is
high. This results in the adaptation of resource availabil-
ity; the platforms provide more resources to agents.

In addition to these (regular) behaviors, agents and
platforms implement a special type of behaviors: symbi-
otic behaviors. A symbiotic behavior is a sequence of
regular behaviors that an agent and its underlying plat-
form invoke in order. As described above, agents and
platforms can adapt to dynamic network environments by
performing regular behaviors; however, regular behaviors
of one species (e.g., agents) can degrade the adaptation of
the other species (e.g., platforms) in some circumstances.
For example, if too many agents migrate toward a user,
the platforms near from the user have a risk to crash due
to overloading or resource extinction. Symbiotic behav-
iors are intended for agents and platforms to balance and

Based on “Exploring Adaptive Data Centers through Cooperative
Symbiotic Networking”, by P. Champrasert and J. Suzuki, which ap-
peared in the Proceedings of the IEEE International Workshop on Fu-
ture Trends of Distributed Computing Systems 2007, Sedona, AZ, USA,
March 2007. © 2007 IEEE.

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 29

© 2007 ACADEMY PUBLISHER

augment their adaptability by allowing the two species to
cooperate for pursuing their mutual benefits.

Each agent/platform possesses behavior policies, each
of which defines when to and how to invoke a particular
(regular or symbiotic) behavior. A behavior policy is en-
coded as a gene. In SymbioticSphere, evolution occurs on
behavior policies (i.e., genes) via genetic operations such
as mutation and crossover, which alter behavior policies
when agents/platforms replicate themselves or reproduce
their offspring. This evolution process is intended to in-
crease the adaptability of agents/platforms by allowing
them to adjust their behavior policies to dynamic network
conditions across generations. Evolution also frees data
center designers from anticipating all possible network
conditions and tuning their agents and platforms to the
conditions at design time. Instead, agents and platforms
can evolve and autonomously adapt themselves to net-
work conditions. This can significantly simplify the im-
plementation and maintenance of agents/platforms.

This paper describes the biologically-inspired mecha-
nisms in SymbioticSphere and evaluates their impacts on
the adaptability of data centers. Simulation results show
that agents and platforms autonomously adapt to dynamic
network conditions (e.g., user location, network traffic
and resource availability) by evolving their regular be-
havior policies. Simulation results also show that agents
and platforms coevolve to improve their adaptability by
cooperatively adjusting their symbiotic behavior policies.

II. DESIGN PRINCIPLES IN SYMBIOTICSPHERE

SymbioticSphere applies the following biological prin-
ciples to design agents and platforms.

(1) Decentralization: In various biological systems
(e.g., bee colony), there are no central leader entities to
control or coordinate individual entities in order to in-
crease scalability and survivability. Similarly, in Symbi-
oticSphere, there are no central entities to control and
coordinate agents/platforms so that they can be scalable
and survivable by avoiding a single point of performance
bottlenecks [3] and failures [4].

(2) Autonomy: Inspired by biological entities (e.g.,
bees), agents/platforms sense their local network condi-
tions, and based on the conditions, they autonomously
behave and interact with each other without any interven-
tion from/to other agents, platforms and human users.

(3) Emergence: In biological systems, collective
(group) behaviors emerge from interactions of individual
entities. In SymbioticSphere, agents/platforms interact
only with nearby peers. Desirable system characteristics
(e.g., adaptability) emerge through collective behaviors
and interactions of individual agents/platforms. Note that
they are not present in any single agent/platform.

(4) Lifecycle and Food Chain: Biological entities
strive to seek and consume food for living. In Symbiotic-
Sphere, agents/platforms store and expend energy for
living. Each agent gains energy in exchange for perform-
ing its service to other agents or human users, and ex-
pends energy to use network and computing resources.
Each platform gains energy in exchange for providing
resources to agents, and periodically evaporates energy.

The abundance or scarcity of stored energy in
agents/platforms affects their lifecycle. For example, an
abundance of stored energy indicates high demand to an
agent/platform; thus, the agent/platform may be designed
to favor reproduction or replication to increase its avail-
ability. A scarcity of stored energy indicates lack of de-
mand; it causes death of the agent/platform.

Also, in the ecosystem, the energy accumulated from
food is transferred between different species to balance
their populations. For example, producers (e.g., shrubs)
convert the Sun light energy to chemical energy. The
chemical energy is transferred to consumers (e.g., hares)
as consumers consume producers [5] (Fig. 1). In Symbi-
oticSphere, the energy exchange among users, agents and
platforms is designed after ecological food chain (Fig. 1).
SymbioticSphere models a user as the Sun, agents as pro-
ducers, and platforms as consumers. Similar to the Sun,
users have an unlimited amount of energy. The users pro-
vide energy to agents in proportion of the services that
the users require. When a user requests a service imple-
mented by an agent, the user transfers a certain amount of
energy to the agent. (Each agent specifies the price in
energy units of its service.). Each agent gains energy
from users and transfers 10% of its energy level to the
underlying platform for consuming resources provided by
the platform. Each platform gains energy from agents and
periodically evaporates 10 % of its energy level to the
environment. This energy exchange rule follows an eco-
logical fact that a consumer species acquires about 10%
of the energy maintained by a producer species [5].

Figure 1. Energy Exchange in SymbioticSphere and Ecosystem

(5) Evolution: Biological entities evolve as a species

so that the entities that fit better to the environment be-
come more abundant [6]. In SymbioticSphere, agents and
platforms evolve their genes (i.e., behavior policies) by
generating behavioral diversity and executing natural
selection. Behavioral diversity means that different
agents/platforms possess different behavior policies. This
is generated via mutation and crossover during replication
and reproduction. Natural selection is triggered with
agents’ and platforms’ energy levels. It retains the agents
whose energy levels are high (i.e., the agents that have
effective behavior policies, such as moving toward a user
to gain more energy) and eliminates the agents whose
energy levels are low (i.e., the agents that have ineffec-

30 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

tive behavior policies, such as moving too often).
Through successive generations, effective behavior poli-
cies become abundant in an agent/platform species while
ineffective ones become dormant or extinct. This allows
agents/platforms to adapt to dynamic network conditions.

(6) Symbiosis through Coevolution: Competition for
food and terrain always occurs in the biological world;
however, several species coevolve and establish mutual
relationships to avoid excessive competition and support
with each other to survive [7]. In SymbioticSphere,
agents and platforms cooperate as different species work-
ing at different network layers (i.e., application layer and
middleware layer) in order to pursue their mutual benefits
(e.g., gaining more energy to survive) and improve their
adaptability. This is driven by coevolution between
agents and platforms, which cooperatively evolves behav-
ior policies for symbiotic behaviors.

III. SYMBIOTICSPHERE

A. Agents
Each agent consists of three parts: attributes, body and

behaviors. Attributes carry descriptive information on an
agent, such as its ID, energy level, description of a ser-
vice it provides, and price (in energy units) of the service
it provides. Body implements a service that an agent pro-
vides. For example, an agent may implement a web ser-
vice, while another may implement a physical model for
scientific simulations. Behaviors (regular behaviors) im-
plement actions that are inherent to all agents:

• Replication: Agents may make a copy of themselves. A
replicated (child) agent is placed on the platform that
its parent agent resides on, and it inherits the half
amount of the parent’s energy level.

• Reproduction: Agents may produce their offspring with
their mating partners. A child agent is placed on the
platform that its parent1 agent resides on, and it re-
ceives the half amount of the parent’s energy level.

• Death: Agents die due to energy starvation. When an
agent dies, its underlying platform removes the agent
and releases all resources allocated to the agent.

• Migration: Agents may move from one platform to
another.

B. Platforms
Each platform runs on a host and operates agents (Fig.

1). It consists of attributes, behaviors and runtime ser-
vices. Attributes carry descriptive information on the plat-
form, such as platform ID, energy level and health level.

Health level is defined as a function of three proper-
ties: the resource availability on, the age of and the fresh-
ness of an underlying host. Resource availability indi-
cates how much resources are available for agents and
platforms on a host. Age indicates how long a host has
been alive (i.e., how much stable the host is). Freshness
indicates how recently a host joined the network. Once a
host joins the network, its freshness gradually decreases
from the maximum. When an unstable host resumes from

1 The parent is an agent/platform that invokes the reproduction behavior.

a failure, its freshness starts with the value that the host
had when it went down. Using age and freshness, unsta-
ble hosts and new hosts can be distinguished (Table I).

TABLE I.
FRESHNESS AND AGE IN DIFFERENT TYPES OF HOSTS

Host Type Freshness

Behaviors (regular behaviors) are the actions inherent
to all platforms:

• Replication: Platforms may make a copy of themselves.
A replicated (child) platform is placed on a neighboring
host that does not run a platform. (Since there is only
one type of platform, two or more platforms are not al-
lowed to run on each host.) It inherits the half of the
parent’s energy level.

• Reproduction: Platforms may produce their offspring
with their mating partners. A child platform is placed
on a neighboring host that does not run a platform. It
inherits the half of the parent’s1 energy level.

• Death: Platforms die due to lack of energy. A dying
platform kills agents running on it, uninstalls itself and
releases all resources the platform uses. Despite the
death of a platform, its underlying host remains active
so that another platform can run on it in the future.

Runtime services are the middleware services that
agents and platforms use to perform their behaviors.

C. Regular Behavior Policies
Regular behavior policies are the behavior policies that

each agent/platform has for its regular behaviors. Each
policy consists of factors (Fi), which evaluate network
conditions (e.g., network traffic) or agent/platform status
(e.g., energy/health level). Each factor is given a weight
(Wi). A behavior is invoked if the weighted sum of corre-
sponding factor values (Σ Fi*Wi) exceeds a threshold.

The factors for the agent migration behavior are:

• Energy Level: Agent energy level, which encourages
agents to move in response to their high energy level.

• Health Level Ratio: The ratio of health level on a
neighboring platform to the local platform, which en-
courages agents to move to healthier platforms. This
ratio is calculated with three health level properties
(HLPs; resource availability, freshness and age):

Health Level Ratio =

HLPi on a neighboring platform /host − HLPion the local platform /host
HLPi on the local platform /host

⎛

⎝
⎜

⎞

⎠
⎟

i=1

3

∑ (1)

• Service Request Ratio: The ratio of the number of in-

coming service requests on a neighboring platform to
the local platform. This factor encourages agents to
move toward users.

Age

Unstable Host Lower Lower

New Host Higher Lower

Stable Host Lower Higher

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 31

© 2007 ACADEMY PUBLISHER

• Migration Interval: Time interval to perform migra-
tion, which discourages agents to migrate too often.

If there are multiple neighboring platforms that an
agent can migrate to, the agent calculates the weighted
sum of the above factors for each neighboring platform,
and moves to a platform that generates the highest sum.

The factors for the agent reproduction behavior are:

• Energy Level: Agent energy level, which encourages
agents to reproduce their offspring in response to their
high energy levels.

• Request Queue Length: The length of a queue, which
the local platform stores incoming service requests.
This factor encourages agents to reproduce their off-
spring in response to high demands for their services.

When the weighted sum of the above factor values ex-
ceeds a threshold, an agent seeks a mating partner from
the local and neighboring platforms. If a mating partner is
found, the agent invokes the reproduction behavior. Oth-
erwise, the agent invokes the replication behavior. Sec-
tion III.F describes how an agent seeks its mating partner.

The factors for the agent death behavior are:

• Energy Level: Agent energy level. Agents die when
they run out of their energy.

• Energy Loss Rate: The rate of energy loss, calculated
with Eq. (2). Et and Et-1 denote the energy levels in the
current and previous time instants. Agents die in re-
sponse to sharp drops in demands for their services.

)2(
1

1

−

− −
=

t

tt

E
EE

RateLossEnergy

The factors for the platform reproduction behavior are:

• Energy Level: Platform energy level, which encour-
ages platforms to reproduce their offspring in response
to their high energy levels.

• Health Level Ratio: The ratio of health level on a
neighboring host to the local host. This factor encour-
ages platforms to reproduce their offspring on the
hosts that generate higher values with Eq. (1).

• The Number of Agents: The number of agents working
on each platform. This factor encourages platforms to
reproduce their offspring in response to high agent
population on them.

When the weighted sum of the above factor values ex-
ceeds a threshold, a platform seeks a mating partner from
its neighboring hosts. If a mating partner is found, the
platform invokes the reproduction behavior. Otherwise, it
invokes the replication behavior. Section III.F describes
how a platform finds its mating partner. If there are mul-
tiple neighboring hosts that a platform can place its child
platform on, it places the child on a host whose health
ratio is highest among others.

The factors for the platform death behavior are:

• The Number of Agents: The number of agents run-
ning on each platform. This factor discourages plat-
forms to die when agents run on them.

• Energy Loss Rate: The rate of energy loss, calculated
with Eq. (2). Platforms die in response to sharp drops
in demands for their resources.

Each agent/platform expends energy to invoke behav-
iors (i.e., behavior cost) except the death behavior. When
the energy level of an agent/platform exceeds the cost of
a behavior, it decides whether it performs the behavior by
calculating a weighted sum described above.

D. Symbiotic Behaviors
Each symbiotic behavior is defined as a sequence of

regular behaviors that an agent and its underlying plat-
form perform in order. There are two types of symbiotic
behaviors: agent-initiated symbiotic behaviors (A1, A2
and A3 behaviors) and platform-initiated symbiotic be-
haviors (P1, P2 and P3 behaviors) as described below.

A1: When an agent wants to move toward a user but
there is no platform running on a neighboring host closer
to the user, the agent may propose the local platform to
replicate itself on the neighboring host (Fig. 2). If the
local platform’s health level is low, the platform accepts
the agent’s proposal. The agent gives the platform the
energy units of platform replication cost, and the platform
replicates itself on a host that the agent wants to migrate
to. As a result, the agent can migrate to the child platform
and improve response time. The platform can improve its
health level because resource availability becomes higher.

A2: When an agent is dying due to energy starvation,
the agent may ask the local platform to shoulder agent
migration cost so that it can migrate to a platform on a
healthier platform (i.e., a platform less crowded with
agents) (Fig. 3). If the local platform’s health level is low,
it agrees with the agent. As a result, the agent can have a
chance to receive more service requests (i.e., energy) and
survive longer. The platform can improve its health level
because resource availability becomes higher.

A3: When an agent is dying due to energy starvation,
the agent may ask the local platform to shoulder agent
migration cost so that the agent can migrate to a
neighboring platform closer to a user (Fig. 4). If the local
platform’s health level is low, the platform agrees with
the agent. As a result, the agent can improve response
time. The platform can improve its health level because
resource availability becomes higher.

P1: When a platform replicates itself on a neighboring
host, the platform may propose an agent working on it to
migrate to a replicated (child) platform (Fig. 5). If the
agent’s energy level is low, it accepts the platform’s pro-
posal. The platform provides the agent with the energy
units of agent migration cost. As a result, the platform
can increase its health level because resource availability
becomes higher. A child platform can survive longer be-
cause it gains energy from the migrating agent. On its
destination platform (i.e., a platform less crowded with
agents), the agent can have a chance to receive more ser-
vice requests (i.e., energy) from users and survive longer.

P2: When a platform’s health level is low, the platform
may propose an agent working on it to migrate to a
healthier neighboring platform (Fig. 6). If the agent’s
energy level is low, it accepts the platform’s proposal.

32 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

The platform provides the agent with the energy units of
agent migration cost. As a result, the platform can in-
crease its health level because resource availability be-
comes higher. The migrating agent can avoid working on
an unhealthy platform that may crash, and have a chance
to receive more service requests (i.e., energy) from users
and survive longer on a healthier platform (i.e., a plat-
form less crowded with agents).

P3: When a platform is dying due to energy starvation,
the platform may ask the local agents to shoulder plat-
form replication cost so that it can replicate itself on a
host closer to a user (Fig. 7). If the platform dies, the
agents die off on the platform. Thus, some of them accept
the platform’s proposal if their energy level is high. As a
result, the migrating agents can avoid death and gain
more energy from a user and survive longer on their des-
tination platform. A child platform can secure energy
intake from the migrating agents and survive longer.

E. Symbiotic Behavior Policies
A symbiotic behavior policy is a behavior policy that

each agent/platform possesses to determine whether it
invokes a particular symbiotic behavior. Each symbiotic
behavior policy consists of a proposer policy and an ac-
ceptor policy. A proposer policy determines when one
species (e.g., an agent) proposes a symbiotic behavior to
the other species (e.g., a platform). An acceptor policy
determines when one species (e.g., a platform) accepts a
proposal that the other species (e.g., an agent) makes to
invoke a symbiotic behavior.

Each proposer policy consists of a proposer’s precon-
dition and a factor (FP) (Table II.). A proposer prepares to
propose a symbiotic behavior when its precondition is
satisfied. For example, an agent prepares to propose the
A1 behavior when it wants to move toward a user but
there is no platform running on a neighboring host closer
to the user. A platform prepares to propose the P3 behav-
ior when it is dying (i.e., when its weighted sum of the
death behavior factors exceeds a threshold). Each FP

(proposer policy factor) represents a proposer’s status
such as energy/health level. Each factor is given a weight
(WP). As far as a proposer’s precondition is satisfied, the
proposer proposes a symbiotic behavior if a correspond-
ing weighted factor value (FP*WP) is below a threshold.

Each acceptor policy contains a factor (FA), which
evaluates the acceptor’s status such as energy level and
health level (Table III). Each factor is given a weight
(WA). When an acceptor receives a proposal that a pro-
poser makes to invoke a symbiotic behavior, the acceptor
calculates the weighted factor value (FA*WA) for the
symbiotic behavior. If it is below a threshold, the accep-
tor accepts the proposal. Once a proposal is accepted, a
proposer initiates a symbiotic behavior.

F. Evolutionary Process
The weight and threshold values in behavior policies

have significant impacts on the adaptability of agents and

A

An agent wants to
migrate toward a user

Platform Platform

Energy for
platform
replication

Destination host
information.

A

Replicate

Migrate

1 2

3

4

Low health level A platform replicated
closer to a user

Figure 2. Symbiotic Behavior A1

A

Dying agent

Platform Platform

Energy for agent
migration

A
Migrate

1

2

Higher health levelLow health level
Figure 3. Symbiotic Behavior A2

A

Dying agent

Platform Platform

Energy for agent
migration

A
Migrate

1

2

A platform closer to a userLow health level

Figure 4. Symbiotic Behavior A3

A

Replicating platform

Platform Platform

Energy for agent
migration

Destination host
information.

A

Replicate

Migrate

2 3

1

4

Higher health level

Low energy level

Figure 5. Symbiotic Behavior P1

A

Platform Platform

Energy for
platform
replication

A
Migrate

1

4

A platform closer to a userDying platform

Replicate

3

2

Destination host
information.

High energy level

A

Low health level

Platform Platform

Energy for agent
migration

Destination host
information.

A
Migrate

2

3

1

Higher health level

Low energy level

Figure 7. Symbiotic Behavior P3 Figure 6. Symbiotic Behavior P2

TABLE II.
PROPOSER POLICIES

Proposer Symbiotic
Behavior Factor (FP) Proposer’s

Precondition
 A1 1/Energy Level Wants to migrate?

Agent A2 Energy Level Is dying?
 A3 Energy Level Is dying?
 P1 1/Energy Level Replicating?

Platform P2 Health Level N/A
 P3 Energy Level Is dying?

TABLE III.
ACCEPTOR POLICIES

Acceptor Symbiotic
Behaviors Factor (FA)

 A1 Health Level
Platform A2 Health Level

 A3 Health Level
 P1 Energy Level

Agent P2 Energy Level
 P3 1/Energy Level

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 33

© 2007 ACADEMY PUBLISHER

platforms. However, it is hard to anticipate all possible
network conditions and find an appropriate set of weight
and threshold values for the conditions. As shown in Sec-
tions III.C and III.E, there are 42 weight and threshold
values in total (18 for regular behaviors and 24 for sym-
biotic behaviors). Assuming that 10 different values can
be assigned to each weight and threshold, there are 1042
possible combinations of weight and threshold values.

Instead that data center designers manually assign
weight and threshold values, SymbioticSphere allows
agents and platforms to autonomously find appropriate
values in an evolutionary manner, thereby adapting them-
selves to network conditions. Both regular and symbiotic
behavior policies are encoded as genes of agents and plat-
forms. Each gene contains one or more weight values and
a threshold value for a particular behavior.

For regular behaviors, each agent/platform has a gene
(i.e., a set of weight and threshold values) for each behav-
ior. Figs. 8 and 9 show the gene structure for
agent/platform behaviors. For example, for the agent re-
production behavior, a gene is structured to have three
elements: (1) Wr1, a weight value for the energy level
factor; (2) Wr2, a weight value for the factor of request
queue length; and (3) Tr, a threshold value (Fig. 8).

Each weight value is a decimal number in the range of
[0…1], and it is initialized randomly. Each threshold
value is a decimal number in the range of [0…M], where
M denotes the number of considered factors. Each
threshold value is also initialized randomly. For example,
the agent reproduction behavior has a threshold value in
the range of [0...2] because the behavior considers two
factors: Wr1 and Wr2 (see Section 3.C and Fig. 8).

For symbiotic behaviors, each agent/platform has a
gene (i.e., a set of weight and threshold values) for each
symbiotic behavior. Fig. 10 shows the gene structure of
agents for symbiotic behaviors. The structure consists of
the genes for agent-initiated symbiotic behaviors (i.e.,
proposer policy) and the genes for platform-initiated
symbiotic behaviors (i.e., acceptor policy). For example,
for the A1 symbiotic behavior, each agent has a gene
consisting of two elements: (1) WP

A1, a weight value used
to examine whether or not to propose the A1 behavior;
and (2) TP

A1, a threshold value. Fig. 11 shows the gene
structure of platforms for symbiotic behaviors. The struc-
ture consists of the genes for platform-initiated symbiotic
behaviors (i.e., proposer policy) and the genes for agent-
initiated symbiotic behaviors (i.e., acceptor policy). For

example, for the A1 symbiotic behavior, each platform
has a gene consisting of two elements: (1) WA

A1, a weight
value used to examine whether or not to accept a proposal
on the A1 behavior; and (2) TA

A1, a threshold value. Each
weight and threshold value is a decimal number in the
range of [0…1], and it is initialized randomly.

The genes of agents and platforms are altered via ge-
netic operations (genetic crossover and mutation) when
they perform the reproduction and replication behaviors.
As described in Sections III.A and III.B, each
agent/platform selects a mating partner when it performs
the reproduction behavior. A mating partner is selected
by ranking agents/platforms running on the local and
neighboring hosts. For this ranking process, Symbiotic-
Sphere uses a domination ranking mechanism [8].

Agents and platforms are ranked with two objectives:
(1) energy utility (Eq. (3)) and (2) behavior invocation
efficiency (Eq. (4)). Behavior invocation efficiency indi-
cates how an agent/platform behaves in an energy effi-
cient manner. In both objectives, the higher, the better.

Energy Utility = 1−
Total Energy Expenditure

Total Energy Gain
(3)

Behavior Invocation Efficiency =
Total Energy Gain

Total # of Behavior Invocations
(4)

Agents/platforms are plotted on a two dimensional

space whose axes are the objectives described above. Fig.
12 shows an example to rank four different agents (Agent
A to D). In this example, Agent A dominates the other
three agents in both of two objectives. (In other words,
Agent A is non-dominated.) Therefore, the agent is given
Rank 1. Agent B is dominated by Agent A; however, it
dominates the other two agents (Agent C and D). Thus,
Agent B is given Rank 2. Agent C and D are dominated
by Agent B, and they cannot dominate with each other.
Thus, they are given Rank 3.

During reproduction, an agent/platform ranks other
agents/platforms running on the local and neighboring
hosts, as described above, and selects the one in the high-
est rank as a mating partner. If the parent agent/platform,
which invokes the reproduction behavior1, is in the high-
est rank, it fails to find its mating partner and performs
the replication behavior.

Figure 9. Gene Structure for Platform Regular Behaviors

Figure 8. Gene Structure for Agent Regular Behaviors

Figure 11. Gene Structure of Platforms for Symbiotic Behaviors

Figure 10. Gene Structure of Agents for Symbiotic Behaviors

34 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

In reproduction, a genetic crossover occurs. A parent
and its mating partner contribute their genes and ran-
domly combine them for a child’s gene (Fig. 13). Then, a
genetic mutation occurs on the child’s gene. Each gene
element (i.e., weight or threshold value) is randomly al-
tered with a mutation probability (Fig. 13).

In replication, a parent copies its gene to its child.
Then, a mutation occurs on the child’s gene in the same
way as the mutation in reproduction.

IV. SIMULATION RESULTS

This section shows a set of simulation results to
evaluate how agents and platforms adapt to dynamics of
the network by using their regular and symbiotic behav-
iors through evolution. Section IV.A evaluates how regu-
lar behaviors impact the adaptability of agents and plat-
forms. Section IV.B evaluates how symbiotic behaviors
improve the adaptability of agents and platforms. Section
IV.C demonstrates how agents and platforms evolve their
behavior policies (genes). The same set of simulation
configurations is used for all of the three experiments.
Simulations were carried out with the SymbioticSphere
simulator2, which implements the biologically-inspired
mechanisms described in Section III.

Figure 14 shows a simulated network. A data center
operates on the network, and consists of hosts connected
in a 7x7 grid topology. Users send service requests to
agents via user access point. This paper assumes that a
single (virtual) user runs on the access point, and it emu-
lates multiple users to send service requests. At the be-

2 The current code base of the SymbioticSphere simulator contains
15,100 lines of Java code. This simulator is freely available at
http://dssg.cs.umb.edu/projects/SymbioticSphere/.

ginning of each simulation, one agent and one platform
are deployed on a host that is farthest from the user.

Each host has 256 MB memory space3. Of the space,
an operating system and a Java VM consume 128 and 64
MB, respectively. The remaining space is available for a
platform and agents on each host. Each agent and plat-
form consumes 5 and 20 MB, respectively. This assump-
tion is obtained from a prior empirical experiment [9].

A host operates in the active or inactive state. When a
platform works on a host, the host is active and consumes
60W power. The host becomes inactive when a platform
dies on it. An inactive host consumes 5W power. This
assumption on power consumption is obtained from [10].
A host is assumed to become active from the inactive
state using the Wake On LAN (WOL) technology [11].
When a platform replicates itself on an inactive host, the
platform sends a WOL packet to the host to wake it up.

Figure 15 shows how the user changes service request
rate over time. This service request rate is taken from a
workload trace of the 1998 Olympic official website [12].
The peak workload is 9,600 requests/min.

0

2000

4000

6000

8000

10000

0 2 4 6 8 10 12 14 16 18 20 22 24

Se
rv

ic
e

R
eq

ue
st

 R
at

e
(#

 o
f r

eq
ue

st
s /

 m
in

)

Simulation time (hour)

Figure 15. Service Request Rate

se
rv

ic
e

re
qu

es
ts

User
access point

Data Center

Host

(Simulated User)se
rv

ic
e

re
qu

es
ts

User
access point

Data Center

Host

(Simulated User)

Figure 14. Simulated Network

Figure 12. An Example Domination Ranking

Figure 16 shows a pseudo code to run the user, agents
and platforms in each simulation cycle.

In this paper, adaptability is defined as service adapta-
tion and resource adaptation. Service adaptation repre-
sents the quality and availability of services provided by
agents. The quality of services is measured as response
time for the user. Service availability is measured as the
number of agents. Resource adaptation represents re-
source availability and resource efficiency. Resource
availability is measured as the number of platforms that
makes resources available for agents. Resource efficiency
indicates how many service requests are processed per
resource utilization of agents and platforms. It is meas-
ured as (the total number of service requests processed by

3 In this paper, memory availability represents resource availability.

Wr1 Wr2 Tr Wd1 Wd2 TdWr3 WA
A1 TA

A1 WA
A2 TA

A2 WA
A3 TA

A3 WP
P1 TP

P1 WP
P2 TP

P2 WP
P3 TP

P3

Wr1 Wr2 Tr Wd1 Wd2 TdWr3 WA
A1 TA

A1 WA
A2 TA

A2 WA
A3 TA

A3 WP
P1 TP

P1 WP
P2 TP

P2 WP
P3 TP

P3

Crossover

Wr1 Wr2 Tr Wd1 Wd2 TdWr3 WA
A1 TA

A1 WA
A2 TA

A2 WA
A3 TA

A3 WP
P1 TP

P1 WP
P2 TP

P2 WP
P3 TP

P3

Wr1 Wr2 Tr Wd1 Wd2 TdWr3 WA
A1 TA

A1 WA
A2 TA

A2 WA
A3 TA

A3 WP
P1 TP

P1 WP
P2 TP

P2 WP
P3 TP

P3

Mutation

Parent

Mating
partner

Child

Mutated genes

Figure 13. Example Genetic Operations

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 35

© 2007 ACADEMY PUBLISHER

agents) / (the total amount resources consumed by agents
and platforms).

A. Evaluation of Regular Behaviors
This section evaluates how agents and platforms

autonomously adapt to dynamic network conditions by
using regular behaviors except the reproduction behavior.
For the experiments in this section, no agents and plat-
forms invoke symbiotic behaviors and perform evolu-
tionary process. Rather, agents and platforms use the
regular behavior policies that the authors manually con-
figured through trial and errors. (The authors spent ap-
proximately 170 hours for the trial and errors.)

The simulation results in this section are compared
with the analytically optimal results. Fig. 17 shows an
analytical model used in this paper. The analytical model
is written in AMPL [14], and designed to generate the
number of agents (a), the number of platforms (p), re-
sponse time (responseTime) and resource efficiency (re-
soureEff), while minimizing response time and maximiz-
ing resource efficiency. Since this analytical model is not
linear, it is solved with MINOS (Modular In-core Nonlin-
ear Optimization System) solver [15].

In this analytical model, response time includes the

processing overhead for an agent to process a service
request and the transmission latency of the request be-
tween the agent and user. The processing overhead is

calculated with the number of service requests, the num-
ber of available agents, and the number of service re-
quests that an agent can process in one second. (Each
agent processes a service request in 0.1 second; therefore,
it can process 10 requests in one second). The transmis-
sion latency is calculated with the average hop count be-
tween an agent and the user4 and the time required for a
service request to travel between two nodes (0.01 sec.).
The (optimal) number of platforms is calculated with the
number of available agents and the maximum number of
agents that can work on each platform. (This maximum
number is eight.) Throughput is calculated as the ratio of
the number of service requests processed by agents to the
number of given service requests. It is assumed to be
100% when response time is less than three seconds.

While(not simulation last cycle)

Fig. 18 shows how service availability (i.e., the num-
ber of agents) and resource availability (i.e., the number
of platforms) change dynamically. Starting with one
agent and one platform deployed at 0:00, they change
their populations through replication in order to process
the demand placed on them (6,000 requests/min; See Fig.
15.). When service request rate increases from 12:00 to
14:00, agents gain more energy from the user and repli-
cate themselves more often. In response to higher energy
intake, they also transfer more energy to platforms. As a
result, platforms also increase their population through
replication. When service request rate decreases at 15:00,
some agents and platforms die because they cannot bal-
ance their energy gain and expenditure due to less energy
transfer from the user. Fig. 18 shows that agents and plat-
forms autonomously adapt their availability to dynamic
demand changes with their regular behaviors.

Fig. 18 also shows the analytical results on the number
of agents/platform. Between analytical and simulation
results, differences are 15% and 21% on average for the
number of agents platforms, respectively.

Fig. 19 shows the average response time (i.e., the qual-
ity of services) and throughput of agents. At the begin-
ning of a simulation, response time is high (over 20 sec-
onds) because there exists only one agent and one plat-
form to process 6,000 requests a minute. Thus, through-
put does not reach 100%. However, the agent and plat-
form immediately replicate themselves, and agents mi-

4 Assuming a mesh network, the average hop count is (N+M)/3, where
N and M denotes the number of columns and rows, respectively [13].

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16 18 20 22 24
simulation time (hour)

Th
e

nu
m

be
r o

f a
ge

nt
s

0

10

20

30

40

50

60

Th
e

nu
m

be
r o

f p
la

tfo
rm

s# of agents
of agents (optimal)
of platforms
of platforms (optimal)

Figure 18. The Number of Agents and Platforms

var a >=1, integer; # the number of agents
var p >=1, integer; # the number of platforms
var N >=1, integer; # the number of columns in a mesh network
var M >=1, integer; # the number of rows in a mesh network
param requests := 9600; # the number of user requests (input)
var responseTime;
var resourceEff;

minimize objective: 0.5*responseTime-0.5*resourceEff;
 subject to

responseTime = (requests/(10*a)) + (0.01 * (N+M)/3);
resourceEff = requests/(20*p + 5*a);

 p = ceil (a/8);
p <= 49;

 N = ceil (p/ 7);

 The user sends service requests to agents according to a certain rate.
 For each agent Do
 If (a service request(s) received)

 Process the request(s) and gain energy.
 End If
 Decide whether or not to invoke regular behaviors.
 Decide whether or not to invoke symbiotic behaviors.
 Expend energy to the local platform.
 End For
 For each platform Do
 Decide whether or not to invoke regular behaviors.
 Decide whether or not to invoke symbiotic behaviors.
 Update health level.
 Evaporate energy.
 End For
End While

Figure 16. Pseudo Code of Simulation Cycle

 M = floor (p / N);
M*N <=49;
responseTime <= 3;

Figure 17. An Analytical Model to Evaluate Service
and Resource Adaptation

36 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

grate toward the user. As a result, response time drops
below five seconds at 1:00, and throughput reaches
100%. After 1:00, response time is constantly around five
seconds, and throughput is constantly almost 100%.
When service request rate increases from 12:00 to 14:00,
response time spikes. However, agents decrease response
time again through replication. See also Fig. 18 for the
changes in the number of agents from 12:00 to 14:00.
Fig. 19 shows that agents and platforms collectively re-
tain response time and throughput performance by adapt-
ing their populations and locations to demand changes.

Fig. 19 also shows the analytical results on the average
response time and throughput. The average difference is
only 2% between analytical and simulation results. Re-
sponse time is mostly same after 14:00 between analyti-
cal and simulation results.

Fig. 20 shows resource efficiency. Platforms adapt re-
source efficiency according to demand changes by adjust-
ing their availability. (See also Fig. 18.) On average, dif-
ference is only 3% between analytical and simulation
results.

Figs. 18 to 20 show that SymbioticSphere yields the
service and resource adaptation results close enough to
the analytically optimal results.

B. Evaluation of Symbiotic Behaviors
This section evaluates how symbiotic behaviors com-

plement regular behaviors and augment the adaptability
of agents and platforms. For the experiments in this sec-
tion, no agents and platforms perform evolutionary proc-
ess. Rather, agents and platforms use the regular and

symbiotic behavior policies that the authors manually
found through trial and errors. (The authors spent ap-
proximately 170 hours for the trial and errors.)

Fig. 21 shows that agent-initiated symbiotic behaviors
(A1, A2 and A3) contribute to improve response time
(i.e., service adaptation), compared with using regular
behaviors only. Agents help platforms increase their
availability near the user, and platforms help agents move
toward the user or to healthier platforms. As a result,
agents can process service requests more quickly.

Fig. 22 shows that agent-initiated symbiotic behaviors
improve resource efficiency (i.e., resource adaptation),
compared with using regular behaviors only. Agents help
platforms increase their availability near the user, and
platforms help agents move toward the user or to health-
ier platforms. Then, the availability of platforms de-
creases on the hosts far from the user due to energy star-
vation. As a result, agents can process more service re-
quests in a timely manner, while platforms can reduce
their resource consumption. This allows agents and plat-
forms to cooperatively increase resource efficiency.

Figs. 21 and 22 show that symbiotic behaviors can im-
prove the adaptability of agents and platforms. However,
it is not completely clear whether symbiotic behaviors
significantly improve response time and resource avail-
ability because of high variance. Therefore, this simula-
tion study carried out an ANOVA (analysis of variance)
method to evaluate how the response time and resource
efficiency results are better in using symbiotic behaviors,
compared with using regular behaviors only. The
ANOVA results demonstrate that symbiotic behaviors
yield better response time and resource efficiency results
than regular behaviors with the confidence of 99.99%.

Figs. 23, 24, 25, 26, 27 and 28 show the average re-
sults of load balancing, throughput, platform health level,
agent energy level, platform energy level and power con-
sumption in both cases to use regular behaviors only and
symbiotic behaviors as well as regular behaviors.

0

2

4

6

8

0 2 4 6 8 10 12 14 16 18 20 22 24

Simulation time (hour)

R
es

ou
rc

e
Ef

fic
ie

nc
y

Resource efficiency
Resource efficiency (optimal)

Figure 20. Resource Efficiency

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20 22 24
Simulation time (hour)

0%

20%

40%

60%

80%

100%
Th

ro
ug

hp
ut

 (%
)Average response time

Average response time (optimal)
Throughput
Throughput (optimal)

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
)

Figure 19. Response Time and Throughput

Figure 23 shows the average load balancing index
(LBI), which indicates how workload (i.e., the number of
service requests) is distributed over available platforms.
LBI is measured with Eq. (5). It is the standard deviation
of workload among platforms.

)5(
)(2

N

X
IndexBalancingLoad

N

i
i∑ −

=
μ

Xi denotes (the number of messages processed by
agents running on platform i) / (the amount of resources
utilized by platform i and agents running on platform i). μ
is the average of Xi, which means (the total number of
messages processed by all agents) / (the total amount of
resources utilized by all platforms and all agents). N de-
notes the number of available platforms. Platform-
initiated symbiotic behaviors contribute to improve LBI.
Platforms help agents to move to healthier platforms. The
workload is distributed over available platforms.

Fig. 24 shows the average throughput of agents. It il-
lustrates that some of symbiotic behaviors contribute to
improve agent throughput.

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 37

© 2007 ACADEMY PUBLISHER

Symbiotic Behavior
Normal A1 A2 A3 P1 P2 P3

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(S
ec

)

0

2

4

6

8

10

12

Symbiotic Behavior
Normal A1 A2 A3 P1 P2 P3

R
es

ou
rc

e
Ef

fic
ie

nc
y

2

4

6

8

10

Symbiotic Behavior
Normal A1 A2 A3 P1 P2 P3

LB
I

0

1

2

3

4

5

3.5
3.9 4.0

3.5

3.0
2.6

4.0
0.68

0.67

0.33
14

16

5.9

4.3 4.2

9.4 9.1

7.1

4.6

3.6
2.8

1.0 2.7
4.53.2

12

8.8 9.1 9.2 9.3

8.1
8.6

7.2

1.4 1.1
1.4

1.1 1.0 1.1
1.3

Regular
Behaviors

A1 A2 A3 P1 P2 P3
Symbiotic Behaviors

4.4

Regular
Behaviors

A1 A2 A3 P1 P2 P3
Symbiotic Behaviors

Figure 21. Average Response Time

Fig. 25 shows the average health level of platforms.
All symbiotic behaviors improve health level, compared
with using regular behaviors only. This occurs because
platforms help agents move to healthier platforms and
agents help platforms replicate on healthier hosts.

Fig. 26 shows the average energy level of agents.
Agent-initiated symbiotic behaviors increase agent en-
ergy level because platforms help agents move toward the
user and gain more energy.

Fig. 27 shows the average energy level of platforms.
The P3 behavior increases platform energy level because
agents help platforms replicate on hosts closer to the user
and agents can migrate to the replicated platforms. This
way, agents gain more energy and transfer more energy
to platforms.

Fig. 28 shows the average power consumption of
agents and platforms. Agent-initiated symbiotic behaviors
contribute to save power consumption. Agents help plat-
forms increase their availability near the user, and plat-
forms help agents move toward the user or to healthier
platforms. Then, platforms die on the hosts far from the
user due to energy starvation. As a result, power con-
sumption is reduced.

Fig. 29 shows the total number of failed hosts during a
simulation. This simulation study assumes that each host
has 40% probability to crash when available memory

space is less than 5MB for 15 minuets5. (A failed host
resumes in 5 minutes.) Platform-initiated symbiotic be-
haviors, particularly the P2 behavior, contribute to reduce
the number host failures because platforms help agents
move to healthier platforms.

Fig. 30 shows how the number of agents changes
against a data center failure, where the link between the
user access point to a data center fails at 14:00 for five
minutes. Agents with regular behaviors immediately die
off because energy transfer stops from the user to them
due to a link failure. On the other hand, if agents have the
A3 behavior, they can cooperate with platforms to move

5 Memory utilization in overload is the most common reason for host
crashes [16].

Figure 22. Resource Efficiency

0.64 0.61
0.55

0.62

Regular
Behaviors

A1 A2 A3 P1 P2 P3
Symbiotic Behaviors

Figure 23. LBI

Symbioitc Behaviors
A1 A2 A3 P1 P2 P3

Th
ro

ug
hp

ut
 (%

)

0

20

40

60

80

100

Regular
Behaviors

98.7 97.8 97.8 98.8 97.8 98.7 98.9

7.2 7.9 7.9 7.3 7.3 7.27.2

Figure 24. Throughput

Symbiotic Behavior
Normal A1 A2 A3 P1 P2 P3

A
ve

ra
ge

 H
ea

lth
 L

ev
el

0

500

1000

1500

2000

2500

3000

3500

1448

1986

2641

1948

10
3130

1973

389 380

311
3135

29

378

248

Regular
Behaviors

A1 A2 A3 P1 P2 P3
Symbiotic Behaviors

Regular
Behaviors

A1 A2 A3 P1 P2 P3
Symbiotic Behaviors

Regular
Behaviors

A1 A2 A3 P1 P2 P3
Symbiotic Behaviors

Figure 25. Average Health Level

Symbiotic Behavior
Normal A1 A2 A3 P1 P2 P3

A
ve

ra
ge

 A
ge

nt
 E

ne
rg

y
Le

ve
l

0

200

400

600

800

1000

1200

1400

1600

984
1094

987
1093

315

916

1087

389 380

311

990

205

378

248

Regular
Behaviors

A1 A2 A3 P1 P2 P3
Symbiotic Behaviors

Regular
Behaviors

A1 A2 A3 P1 P2 P3
Symbiotic Behaviors

Regular
Behaviors

A1 A2 A3 P1 P2 P3
Symbiotic Behaviors

Figure 26. Average Agent Energy Level

Symbiotic Behavior
Normal A1 A2 A3 P1 P2 P3

A
ve

ra
ge

 P
la

tfo
rm

 E
ne

rg
y

Le
ve

l

0

200

400

600

800

1000

1200

904

24

34

30
820

1015

757

603
653

850

20

35

27

18

Regular
Behaviors

A1 A2 A3 P1 P2 P3
Symbiotic Behaviors

Regular
Behaviors

A1 A2 A3 P1 P2 P3
Symbiotic Behaviors

Regular
Behaviors

A1 A2 A3 P1 P2 P3
Symbiotic Behaviors

 Symbioitc Behaviors
A1 A2 A3 P1 P2 P3

 P
ow

er
 C

on
su

m
pt

io
n

(k
W

at
t)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Regular
Behaviors

1.85
1.62

1.81 1.80

2.48

1.82

2.75

0.34
0.28

0.39

0.34

0.35

0.5

0.37

Figure 28. Average Power Consumption

Symbioitc Behaviors
A1 A2 A3 P1 P2 P3

Th
e

N
um

be
r o

f F
ai

le
d

H
os

ts

0

10

20

30

40

50

60

Regular
Behaviors

47 48
42

45

28

20

38

Figure 29. The Number of Failed Hosts Figure 27. Average Platform Energy Level

Th
e

nu
m

be
r o

f a
ge

nt
s

Simulation time (hour)

0

50

100

150

0 2 4 6 8 10 12 14 16 18 20 22 24

Regular behaviors only
Regular behaviors + A3

Figure 30. The Number of Agents

38 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

to platforms closer to a user so that they gain service re-
quests (i.e. energy) once a failed link resumes. Fig. 30
shows that the A3 behavior contributes for agents to sur-
vive link failures and retain service availability.

Fig. 31 shows how agents and platforms perform better
when they perform individual (or a combination of) sym-
biotic behaviors, compared with performing regular be-
haviors only. The performance of agents and platforms is
measured with Eq. (6) using seven metrics: response
time, resource efficiency, LBI, throughput, platform
health level, agent energy level and platform energy
level. PSi denotes the performance result in terms of the
metric i when agents and platforms perform symbiotic
behaviors as well as regular behaviors. PRi denotes the
performance result in terms of the metric i when agents
and platforms perform regular behaviors only.

Performance Ratio =
PSi − PRi

PRi
⎛

⎝
⎜

⎞

⎠
⎟

i=1

7

∑ (6)

Fig. 31 shows that agents and platforms yield better
performance ratio when they perform multiple symbiotic
behaviors, compared with performing individual symbi-
otic behaviors. Combinations of symbiotic behaviors al-
low agents and platforms to perform better in multiple
performance metrics simultaneously. For example, P3A1
improves response time and LBI simultaneously because
agents can reduce response time with the A1 behavior
and platforms can decrease LBI with the P3 behavior.

C. Evaluation of Evolution and Coevolution
This section evaluates how evolution and coevolution

contribute to the adaptability of agents and platforms.
Each simulation was carried out for 10 days by repeating
the daily workload trace 10 times. At the beginning of a
simulation, an agent and a platform are deployed on each
host (49 agents and 49 platforms in total).

Four simulation scenarios are used to evaluate the
adaptability of agents and platforms.

Scenario R: This scenario is same as the one used in
Section IV.A. Agents and platforms invoke behaviors
(except the reproduction behavior), and do not perform
evolution. They use the behavior policies that the authors
manually configured.

Scenario R+S: Agents and platforms invoke the A3
and P3 symbiotic behaviors as well as regular behaviors
(except the reproduction behavior). They invoke the two
behaviors because a combination of A3 and P3 yields the
best performance in Fig. 30. They do not perform evolu-

tion, and use the behavior policies that the authors manu-
ally configured.

Scenario RG: This scenario is similar to the scenario
R in that agents and platforms invoke regular behaviors.
The difference between this scenario and the scenario R
is that agents and platforms perform evolution. They use
the mutation probability of 0.05.

Scenario 4 (RG+SG): This scenario is similar to the
scenario R+S in that agents and platforms invoke the A3
and P3 symbiotic behaviors as well as regular behaviors.
The difference between this scenario and the scenario
R+S is that agents and platforms perform evolution. They
use the mutation probability of 0.05.

Fig. 32 shows how service availability (i.e., the num-
ber of agents) changes dynamically in the scenarios RG
and RG+SG. Fig. 33 shows the daily average number of
agents in the scenarios R, R+S, RG and RG+SG. At the
beginning of a simulation, the daily average number of
agents fluctuates in the RG and RG+SG scenarios be-
cause agents still search appropriate behavior policies by
altering their genes through evolution. However, as the
time goes, the RG and RG+SG results become more sta-
ble and closer to the R and R+S results. This indicates
that agents evolve and autonomously adapt their behavior
policies to dynamic network conditions.

At Day 10, the daily average number of agents is
higher in the scenario R+S than the scenario R, and it is
also higher in the RG+SG scenario than the scenario RG.
This demonstrates that symbiotic behaviors (A3 and P3)
allow agents to gain more energy from the user and sur-
vive longer, thereby retaining higher service availability.

0

0.5

1

1.5

2

A
1

A
2

A
3 P1 P2 P3

P1
A

2

P1
A

3

P2
A

1

P2
A

2

P2
A

3

P3
A

1

P3
A

2

P3
A

3

P1
P2

P1
P3

A
1A

2

A
1A

3

Single symbiotic behaviors Combinations of symbiotic behaviors

Pe
rf

or
m

an
ce

 R
at

io

0

0.5

1

1.5

2

A
1

A
2

A
3 P1 P2 P3

P1
A

2

P1
A

3

P2
A

1

P2
A

2

P2
A

3

P3
A

1

P3
A

2

P3
A

3

P1
P2

P1
P3

A
1A

2

A
1A

3

Single symbiotic behaviors Combinations of symbiotic behaviors

Pe
rf

or
m

an
ce

 R
at

io

Figure 31. The Performance Ratio

Fig. 34 shows how resource availability (i.e., the num-
ber of platforms) changes dynamically in the scenario RG
and RG+SG. Fig. 35 shows the daily average number of
platforms in the scenarios R, R+S, RG and RG+SG. At
the beginning of a simulation, the daily average number
of platforms fluctuates in the RG and RG+SG scenarios
because platforms still search appropriate behavior poli-
cies by altering their genes through evolution. However,
as the time goes, the RG and RG+SG results become
more stable and closer to the R and R+S results. This
indicates that platforms evolve and autonomously adapt
their behavior policies to dynamic network conditions.

At Day 10, the daily average number of platforms is
higher in the scenario R+S than the scenario R, and it is
also higher in the RG+SG scenario than the RG scenario.
This demonstrates that symbiotic behaviors allow plat-
forms to gain more energy from agents and survive
longer, thereby retaining higher resource availability.

Fig. 36 shows how average response time (i.e., the
quality of services) changes dynamically in the scenario
RG and RG+SG. Fig. 37 shows the daily average re-
sponse time in the scenarios R, R+S, RG and RG+SG. At
the beginning of a simulation, agents and platforms still
search appropriate behavior policies by altering their
genes through evolution. Thus, they do not behave adap-
tively yet; the RG and RG+SG results are higher and less
stable than the RG and RG+SG results. However, the RG
and RG+SG results gradually become more stable and
closer to the R and R+G results. This indicates that agents

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 39

© 2007 ACADEMY PUBLISHER

and platforms evolve and successfully adapt their behav-
ior policies to dynamic network conditions.

At Day 10, the daily average of response time is lower
in the scenario R+S than the scenario R, and it is also
lower in the RG+SG scenario than the scenario RG. This

demonstrates that symbiotic behaviors allow agents and
platforms to make themselves available closer to the user
and better distribute workload, thereby retaining lower
response time.

0

50

100

150

200

0 24 48 72 96 120 144 168 192 216 240

R Avg R+S Avg
RG Avg RG+SG Avg

0 1 2 3 4 5 6 7 8 9 10
Simulation time (day)

D
ai

ly
 a

ve
ra

ge

nu
m

be
r o

f a
ge

nt
s

0

50

100

150

200

0 24 48 72 96 120 144 168 192 216

RG
RG+SG

0 1 2 3 4 5 6 7 8 9 10

Th
e

nu
m

be
r o

f a
ge

nt
s

Simulation time (day)

Figure 33 Daily Average Number of Agents Figure 32 The Number of Agents

0

10

20

30

40

50

TIME 24 48 72 96 120 144 168 192 216

RG
RG+SG

0 1 2 3 4 5 6 7 8 9 10

Th
e

nu
m

be
r o

f p
la

tfo
rm

s

Simulation time (day)

Figure 34 The Number of Platforms

0

10

20

30

40

50

TIME 24 48 72 96 120 144 168 192 216 240

R Avg R+S Avg
RG Avg RG+SG Avg

0 1 2 3 4 5 6 7 8 9 10
Simulation time (day)

D
ai

ly
 a

ve
ra

ge

nu
m

be
r o

f p
la

tfo
rm

s

Figure 35 Daily Average Number of Platforms

0

5

10

15

20

Time 24 48 72 96 120 144 168 192 216

RG
RG+SG

0 1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
tim

e
(s

ec
)

Simulation time (day)

Figure 36 Response Time

0

5

10

15

20

Time 24 48 72 96 120 144 168 192 216 240

R Avg R+S Avg

RG Avg RG+SG Avg

0 1 2 3 4 5 6 7 8 9 10
Simulation time (day)

D
ai

ly
 a

ve
ra

ge

re
sp

on
se

 ti
m

e
(s

ec
)

Figure 37 Daily Average Response Time

0

5

10

15

TIME 23 47 71 95 119 143 167 191 215

RG
RG+SG

0 1 2 3 4 5 6 7 8 9 10

R
es

ou
rc

e
ef

fic
ie

nc
y

Simulation time (day)

Figure 38 Resource Efficiency

0

5

10

15

TIME 23 47 71 95 119 143 167 191 215 239

R Avg R+S Avg
RG Avg RG+SG Avg

0 1 2 3 4 5 6 7 8 9 10
Simulation time (day)

D
ai

ly
 a

ve
ra

ge

re
so

ur
ce

 e
ff

ic
ie

nc
y

Figure 39 Daily Average Resource Efficiency

0

20

40

60

80

100

TIME 24 48 72 96 120 144 168 192 216

RG
RG+SG

0 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (%

)

Simulation time (day)

Figure 40 Throughput

0

20

40

60

80

100

TIME 24 48 72 96 120 144 168 192 216 240

R Avg R+S Avg
RG Avg RG+SG Avg

0 1 2 3 4 5 6 7 8 9 10
Simulation time (day)

D
ai

ly
 a

ve
ra

ge

th
ro

ug
hp

ut
(%

)

Figure 41 Daily Average Throughput

40 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

Fig. 38 shows how resource efficiency changes dy-
namically in the scenario RG and RG+SG. Fig. 39 shows
the daily average of resource efficiency in the scenarios
R, R+S, RG and RG+SG. At the beginning of a simula-
tion, the daily average resource efficiency fluctuates in
the RG and RG+SG scenarios because agents and plat-
forms still search appropriate behavior policies by alter-
ing their genes through evolution. However, agents and
platforms evolve and gradually adapt their behavior poli-
cies to dynamic network conditions. As a result, the RG
and RG+SG results become more stable and closer to the
R and R+G results.

At Day 10, the daily average of resource efficiency is
higher in the scenario R+S than the scenario R. This
demonstrates that agents and platforms can better manage
resource efficiency. With symbiotic behaviors, agents can
process more service requests and platforms can reduce
their availability on unnecessary hosts (e.g., the ones far
from the user).

As Figs. 32 to 39 show, similar to manually-configured
agents/platforms, evolutionary agents/platforms take ad-
vantage of symbiotic behaviors to augment their adapta-
bility (i.e., service adaptation and resource adaptation).
Agents and platforms successfully coevolve by finding
appropriate behavior policies for symbiotic behaviors.

Fig. 40 shows how throughput changes dynamically in
the scenario RG and RG+SG. Fig. 41 shows the daily
average throughput in the scenarios R, R+S, RG and
RG+SG. At the beginning of a simulation, the daily aver-
age throughput fluctuates in the RG and RG+SG scenar-
ios because agents and platforms still search appropriate
behavior policies by altering their genes through evolu-
tion. However, as the time goes, the RG and RG+SG re-
sults become more stable and closer to the R and R+G
results. This demonstrates that agents and platforms
evolve and autonomously adapt their behavior policies to
dynamic network conditions.

In order to compare evolutionary agents/platforms with
manually-configured agents/platforms, Fig. 42 shows the
performance ratio between evolutionary and manually-
configured agents/platforms. Similar to Eq. (6), perform-
ance ratio is measured with Eq. (7) with seven perform-
ance metrics (response time, throughput, LBI, resource
efficiency, platform health level, agent energy level and
platform energy level). PGi denotes the performance in
the metric i when agents and platforms obtain their be-
havior policies through evolution. Pi denotes the perform-
ance in the metric i when agents and platforms use manu-
ally-configured behavior policies.

Performance Ratio =
PGi − Pi

Pi
⎛

⎝
⎜

⎞

⎠
⎟

i=1

7

∑ (7)

In Fig. 42, each gray bar shows the performance ratio
that compares the scenarios R and RG. Each black bar
shows the performance ratio that compares the R+S and
RG+SG scenarios. At the beginning of a simulation, the
performance of evolutionary agents/platforms is worse
than that of manually-configured ones. They do not be-
have adaptively yet because they still search appropriate

behavior policies through evolution. As the evolution
progresses, evolutionary agents/platforms outperform
manually-configured ones. At Day 10, the performance of
evolutionary agents/platforms in the RG scenario is 12%
better than that of manually-configured ones in the R
scenario. Also, evolutionary agents/platforms in the
RG+SG scenario perform 63% better than manually-
configured ones in the R+S scenario. This result demon-
strates that agents and platforms can successfully improve
the quality of their behavior policies by themselves. In
fact, evolution produces higher quality of behavior poli-
cies than the ones that the authors manually configured
through trial and errors for 340 hours. In the Symbiotic-
Sphere simulator, it takes six hours to run a 10 days simu-
lation. Thus, via offline simulation, a quality set of be-
havior policies can be obtained though evolution in much
shorter time than trial and errors.

Pe
rf

or
m

an
ce

 ra
tio

Simulation Time (day)
1 2 3 4 5 6 7 8 9 10

-2
-1.5

-1
-0.5

0
0.5

1 R vs RG R+S vs RG+SG

Figure 42. Performance Ratio

Figs. 43 and 44 show the standard deviations of energy
utility and behavior invocation efficiency in the agent
population, respectively. Note that energy utility and be-
havior invocation efficiency are two objectives to rank
agents. (See Section III.F.) Figs. 43 and 44 demonstrates
that the standard deviation of each objective value de-
creases over time in the agent population. This means that
most agents gain appropriate behavior policies through
evolution and behave well (adaptively). Agents success-
fully evolve as a population as well as individuals.

St
an

da
rd

 d
ev

ia
tio

n
of

en

er
gy

 u
til

ity

Simulation time (day)

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 1 2 3 4 5 6 7 8 9 10

RG RG+SG

Figure 43. Standard Deviation of Energy Utility

St
an

da
rd

 d
ev

ia
tio

n
of

be

ha
vi

or
 in

vo
ca

tio
n

ef
fic

ie
nc

y

Simulation time (day)

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

RG RG+SG

Figure 44. Standard Deviation of Behavior Invocation Efficiency

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 41

© 2007 ACADEMY PUBLISHER

V. RELATED WORK

This work is an extension to the authors’ prior work
[17, 18]. [17] shows that agents and platforms improve
their adaptability with their regular behaviors; however,
the work did not investigate symbiotic behaviors and evo-
lutionary adaptation. [18] shows that symbiotic behaviors
improve the adaptability of agents and platforms; how-
ever, the work did not study the evolution of
agents/platforms. To the best of the authors’ knowledge,
this paper is the first attempt to investigate how applica-
tion services (agents) and middleware (platforms) can
evolve and coevolve across network layers in order to
adapt to dynamic network conditions in a decentralized
manner.

[9, 19] propose biologically-inspired agents to achieve
service adaptation in a decentralized manner. However,
[9, 17] do not consider resource adaptation because plat-
forms are static and non-biological entities. In Symbiot-
icSphere, both agents and platforms are designed as bio-
logical entities, and they achieve service adaptation and
resource adaptation simultaneously. In addition, Symbiot-
icSphere considers symbiosis between agents and plat-
forms to augment their adaptability.

[19] studies an evolutionary adaptation mechanism in
agents. However, the threshold values of behavior poli-
cies are not included in genes. This means that agent de-
signers need to manually configure them through trial and
errors. In contrast, no manual work is necessary to con-
figure thresholds in SymbioticSphere because they are
included in genes. Also, [19] uses a fitness function to
rank agents in mating partner selection. It has a weight
value for each objective. Agent designers need to manu-
ally configure these weight values as well. In Symbiotic-
Sphere, no parameters exist for ranking agents/platforms
because of a domination ranking mechanism. As a result,
SymbioticSphere incurs much less configuration cost.

[20] is designed after population ecology and intended
to adapt agent availability to the availability of hosts in a
decentralized way. Agent behaviors are governed with
the concept of food, which is similar to energy in Symbi-
oticSphere. While [20] follows a single species popula-
tion model, SymbioticSphere considers two species:
agents and platforms. The two species coevolve to aug-
ment their adaptability. Unlike [20], which focuses only
on the adaptation of agent availability, SymbioticSphere
exhibits many other types of adaptation such as the adap-
tation of response time, throughput, resource availability,
resource efficiency and workload distribution.

Rainbow achieves both service adaptation and resource
adaptation for grid computing [21]. A centralized server
periodically monitors the current network conditions and
performs an adaptation strategy such as service migration
and platform replication/death. SymbioticSphere provides
a wider range of adaptation strategies: more
agent/platform regular behaviors (e.g., agent replication
and death) and symbiotic behaviors. In SymbioticSphere,
agents/platforms perform their behaviors in a decentral-
ized manner. In addition, agents and platforms evolve to
adjust their behavior policies even for unanticipated net-
work conditions. However, Rainbow predefines static

adaptation strategies for anticipated network conditions;
they do not work for unanticipated conditions.

[22] proposes a decentralized design for adaptive data
centers that guarantee response time. SymbioticSphere
does not guarantee any performance measures because
performance improvement (i.e., adaptation) is an emer-
gent and evolutionary product of collective behavior in-
vocations and interactions of agents/platforms. As a re-
sult, agents and platforms can adapt to unanticipated net-
work conditions. [22] does not consider to adapt to unan-
ticipated conditions. Unlike [22], which focuses only on
response time, SymbioticSphere exhibits many other
types of adaptation, such as the adaptation of response
time, throughput, resource availability, resource effi-
ciency and workload distribution.

 [23] proposes to a centralized evolutionary mechanism
to adapt network topology to a given QoS requirement
(end-to-end delay of packet transmission). It uses a fit-
ness function to rank genes in its evolution process. The
function has a weight value for each objective. Network
designers need to manually configure these weight val-
ues. SymbioticSphere requires no manual parameter con-
figuration because of its domination ranking. [23] guaran-
tees a required QoS; however, SymbioticSphere does not.
It focuses on satisfying service adaptation and resource
adaptation simultaneously through coevolution.

[24] implements the concept of symbiosis between dif-
ferent groups of peers (hosts) in peer-to-peer networks.
Peer groups symbiotically connect or disconnect with
each other to improve search speed and quality. A special
type of peers, cooperative peers, implement the symbiotic
behaviors and invoke them with fixed policies. In Symbi-
oticSphere, all agents and platforms invoke symbiotic
behaviors. They coevolve to dynamically adapt their be-
havior policies to unanticipated network conditions.

VI. CONCLUSION

This paper describes the biologically-inspired mecha-
nisms in SymbioticSphere, such as evolution and coevo-
lution as well as regular/symbiotic behaviors, and evalu-
ates their impacts on the adaptability of data centers.
Simulation results show that agents and platforms evolve
and autonomously adapt to dynamic network conditions
Simulation results also show that agents and platforms
augment their adaptability through coevolution.

Several extensions to SymbioticSphere are planed. For
example, multiple types of agents will be deployed to
implement different functional services. (Currently, Sym-
bioticSphere considers a single type of agents.) In order
to stabilize energy flows in SymbioticSphere, a certain
mechanism will be investigated to assign appropriate
service price (in energy units) for each agent type.

42 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

REFERENCES

[1] J. Rolia and S. Singhal and R. Friedrich, “Adaptive Inter-
net Data Centers,” Proc. of Int’l Conference on Advances
in Infrastructure for Electronics Business, Science, and
Education on the Internet, July 2000.

[2] R. Sterritt and D. Bustard, “Towards an Autonomic Com-
puting Environment,” Proc. of IEEE Int’l Workshop on
Database and Expert Systems Applications, Sept. 2003.

[3] R. Albert, H. Jeong and A. Barabasi, “Error and Attack
Tolerance of Complex Networks,” Nature 406, July 2000.

[4] N. Minar, K. H. Kramer and P. Maes, “Cooperating Mo-
bile Agents for Dynamic Network Routing,” Software
Agents for Future Comm. Sys., Chap. 12, Springer, 1999.

[5] R. M. Alexander, Energy for Animal Life, Oxford Univer-
sity Press, May 1999.

[6] E. Mayr, What Evolution Is, Basic Books, 2001.
[7] L. Margulis, Symbiotic Planet: A New Look at Evolution,

Basic Books, 1998.
[8] K. Deb, Multi-Objective Optimization using Evolutionary

Algorithms, John Wiley & Son, 2001.
[9] J. Suzuki and T. Suda, “A Middleware Platform for a Bio-

logically-inspired Network Architecture Supporting
Autonomous and Adaptive Applications,” IEEE J. on Se-
lected Areas in Communications, 23(2), 2005.

[10] P. Gunaratne, K. Christensen, and B. Nordman, “Managing
Energy Consumption Costs in Desktop PCs and LAN
Switches with Proxying, Split TCP connections, and
Scaling of Link Speed,” Int’l Net. Mgt. J., 15(5), 2005.

[11] Advanced Micro Devices, Inc., Magic Packet Technology,
Technical White Paper 20213, November 1995.

[12] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Ki-
stler, and T. Keller, “Energy Management for Commercial
Servers,” IEEE Computer, 36(12), 2003.

[13] L. Miller, “Connectivity Properties of Mesh and
Ring/Mesh Networks,” Technical Report, National Insti-
tute of Standards and Technology, April 2001.

[14] R. Fourer, D. M. Gay, and B.W. Kernighan, AMPL: A
Modeling Language for Mathematical Programming,
Duxbury Press, 2002.

[15] B. A. Murtagh and M. A. Saunders, “MINOS 5.5 User’s
Guide,” Technical Report, Stanford University, July 1998.

[16] J. Devale, “High Performance Robust Computer Systems,”
Ph.D. dissertation, Carnegie Mellon University, 2001

[17] P. Champrasert and J. Suzuki, “SymbioticSphere: A Bio-
logically-Inspired Autonomic Architecture for Self-
Adaptive and Self-Healing Server Farms,” Proc. of IEEE
Int’l Workshop on Autonomic Comm. Comp., June 2006.

[18] P. Champrasert and J. Suzuki, "Exploring Adaptive Data
Centers through Cooperative Symbiotic Networking,"
Proc. of IEEE Int’l Workshop on Future Trends of Distrib-
uted Computing Systems, March 2007.

[19] T. Nakano and T. Suda, “Self-Organizing Network Ser-
vices With Evolutionary Adaptation,” IEEE Trans. on
Neural Networks, 16(5), 2005.

[20] T. Suzuki, T. Izumi, F. Ooshita and T. Masuzawa, “ Self-
Adaptive Mobile Agent Population Control in Dynamic
Networks Based on the Single Species Population Model,”
IEICE Trans. Info. Syst., E90-D(1), 2007.

[21] D. Garlan, S. Cheng, A. Huang, B. Schmerl and P. Steen-
kiste, “Rainbow: Architecture-Bases Self Adaptation with
Reusable Infrastructure,” IEEE Computer, 37(10), 2004.

[22] C. Adam and R. Stadler, “Adaptable Server Clusters with
QoS Objectives,” Proc. of IFIP/IEEE Int’l Symposium on
Integrated Network Management, May 2005.

[23] D. Montana, T. Hussain and T. Sexana, “Adaptive Recon-
figuration of Data Networks Using Genetic Algorithms,”
Proc. of Genetic and Evolutionary Comp. Conf., July 2002.

[24] J. Konishi, N. Wakamiya and M. Murata, “Proposal and
Evaluation of a Cooperative Mechanism for Pure P2P File
Sharing Networks,” Proc. of Int’l Workshop on Bio-
Inspired Approaches to Advanced Info. Tech., Jan. 2006.

Mr. Paskorn Champrasert was born in Bangkok, Thailand
in 1976. He is a Ph.D. student at University of Massachusetts,
Boston. He received his B.Eng. in computer engineering and
M.S. in industrial and organization psychology from Chiangmai
University, Thailand. He received his M.S. in computer science
from University of Massachusetts, Boston in 2006.

Mr. Champrasert worked for the Department of Computer
Engineering, Chiangmai University, as a faculty member from
1998 to 2001. In 1999, he received a Thailand Innovation
Award from the Thailand National Research Consortium. In
2002, he worked at the National Science and Technology De-
velopment Agency Northern Network (NSTDA-NN) as a pro-
ject manager for strategic planning and R&D for various or-
ganizations in the northern area in Thailand. In 2003, he re-
ceived Thai Government Scholarship for his Ph.D. work.

Dr. Junichi Suzuki received the Ph.D. in computer science
from Keio University, Japan, in 2001.

Dr. Suzuki joined the Department of Computer Science,
University of Massachusetts, Boston in September 2004, where
he is currently an assistant professor. From 2001 to 2004, he
was with the School of Information and Computer Science,
University of California, Irvine (UCI), as a postdoctoral re-
search fellow. Before joining UCI, he was with Object Man-
agement Group Japan, Inc., as the Technical Director. His re-
search interests include autonomous adaptive distributed sys-
tems, biologically-inspired (e.g., ecological, genetic, immu-
nological and developmental) software designs, and model-
driven software engineering. In these areas, Dr. Suzuki has au-
thored two books, published over 75 refereed papers including
five award papers, and served on technical program committees
of over 25 conferences including IEEE AINA 2008 and
IEEE/ACM/Create-Net/ICST BIONETICS 2007.

Dr. Suzuki is an active participant and contributor of the In-
ternational Standard Organization SC7/WG19 and the Object
Management Group, Super Distributed Objects SIG. He is a
member of IEEE and ACM.

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 43

© 2007 ACADEMY PUBLISHER

