JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 1

Towards Semantics Driven Generation of
Executable Web Services Compositions

Giusy Di Lorenzo, Nicola Mazzocca, Francesco MoscatofifaMittorini

Dip.di Informatica e Sistemistica, Univ. of Naples Federlt
Email: {giusy.dilorenzo, francesco.mosch@unina.it

Abstract— Web services composition is a very active area of operations, composition definitions should be unambigu-
research due to the growing interest of public and private ously computer-interpretable to enable the automation of
organizations in services integration and/or low cost deve web services discovery, selection, matching, integration

opment of value added services. The problem of building an d then th ificati d validati f b .
executable web service from a service description has many an en the veriiication and vafidation of web Services

faces since it involves web services discovery, matchingach =~ COmpositions [15], [22]. Most of the work on web services
integration according to a composition process. composition address these steps separately.

In this paper we propose a life cycle for the automated As for the description of web service capabilities and
composition of web services which is based on the usage . ,.a55 model, the Semantic Web Community has created

of Domain Ontologies for the description of data and .
services, and on workflow patterns for the generation of OWL-S [27], @ web service ontology based on OWL

executable processes. In particular the paper focuses on Which, in turn, is a logic based ontology language to
the integration of the matching and composition phases. describe web contents [21]. OWL-S has a well defined
The approach aims at producing executable processes that semantics and provides a starting point to automate tasks

can be formally verified and validated. This is achieved ¢ giseovery and composition [22]. The WSMO (Web
by exploiting formal definitions of composition rules and

of BPEL4AWS constructs. These definitions are expressed Services Modeling Ontology) initiative has recently de-
in operational semantics and are translated into Prolog Vveloped a conceptual framework and a formal language
programs in order to be throughout the composition process. for “semantically describing all relevant aspects of web
A reference architecture for implementing the proposed lie services in order to facilitate the automation of discover-
cycle is also described. ing, combining and invoking electronic services over the
Web” [40]. These means provide the basis to reason about
. INTRODUCTION services integration in automated contexts. Nevertheless
The SOA (Service Oriented Architecture) foundationthey are not been proven expressive enough to solve
relies upon basic services, services descriptions and ofhe problem of generating executable compositions. For
erations (publication, discovery, binding) [29]. One of example, in [31] ad-hoc executable compositions (i.e.,
the most promising benefits of SOA based web servicesingle-use cases) are described by means of OWL-S and
is enabling the development of low cost solutions/ap-executed by the Mindswap engine [23], while the OWL-S
plications by composing existing services. Web serviceprocess model is shown to be not sufficiently expressive
composition is an emerging approach to support the into characterize more general compositions (i.e., re-esabl
tegration of cross-organizational software componerjts [9multiple use-cases compositions). Ad-hoc composition
whose effectiveness may be severely compromised by theénd re-usable composition are also addressed in [25]
lack of methods and tools to automate the compositiomnd [6], respectively.
steps. Given a description of a requested service and A different approach is based on orchestration lan-
the descriptions of several available basic services, thguages. In particular, many industry efforts to build web
ultimate goal is to be able: services composition focus on the workflow to be realized
a) to perform the automatic and dynamic selection oo implement the requested service. The most popular
a proper set of basic services whose combinatioflow language oriented to web services composition is

provides the required capabilities; the Business Process Execution Language for Web Ser-
b) to generate the process model that describes how tdces (BPEL for short). BPEL is now being standardized
implement the requested service; by OASIS (WSBPEL-TC); it enables the definition of

c) to translate the process model into an executablbusiness processes and interaction protocols to meet web
definition of the services composition, in case theservices orchestration requirements [4].
selection is successful; The main drawback of the flow languages is their
d) to verify the correctness of the definition of the lack of formal semantics, hence the composition process
composition; described by means of these languages cannot be handled,
e) to validate the composite web service against theueried and interpreted reliability by a computer based
initial description. program. Several formalizations of BPEL have been pro-
Each of these steps has its intrinsic complexity. Serposed in the literature (e.g. in [10], [12]-[14], [26]), but
vices descriptions, relations among the involved data andt the best of our knowledge none of them is used for the

© 2007 ACADEMY PUBLISHER

2 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

automated development of web services compositions iquality of service and security requirements must also be
working systems. considered [34], [42]. We want to show that an unified
Moreover, automatic synthesis of composition pro-approach to the development phases of composite services
cesses is an hard problem to solve, both in theory an@an be investigated and successfully used.
in practice. Partial solutions have been proposed, based The remainder of the paper is organized as follows.
on formal approaches (e.g. [2], [7]), on the peer-to-Section Il contains an overview of the proposed life
peer model [5], according to the semantic and workflowcycle. Section Il focuses on the selection of candidate
approaches [38], focusing on partial automation [30]. Inservices and the generation of the process model of the
particular, a technology for semi-automated compositioreomposition. In Section IV an architecture is described
of SOA components has been recently developed byhich supports the generation of an executable compo-
IBM [1], [8], which uses Al planning-based techniques. Sition according to the phases described in Section II
One of the main difficulties to overcome is that dynamicand lll. In Section V the proposed approach is applied
composition of services requires component services t& a case study. Finally Section VI contains some closing
be compatible in order to achieve the composition goalfemarks and some hints about future work.
Matching algorithms, methods and tool have been devel-
oped aiming at selecting IOPE (Inputs, Outputs, Precon- Il. LiFE CYCLE

ditions and Effects) compatible services [17], [18], [28], |n this Section we describe the phases to automatically
[35], but most of them really address only Inputs anddevelop an executable web service composition from an
Outputs matching since the specifications of preconditiofnitial specification of the requested servicReguest
and effects is still an open issue of languages such a§ the following). The proposed approach addresses the
OWL-S [16]. generation of both ad-hoc and re-usable compositions.
Finally, very few work has been done to validate theNevertheless, the discussion is here focused on the life
results of the composition. This phase can be acconmeycle of re-usable compositions. The approach is based
plished by means of formal techniques only if both theon the hypothesis that the Request refers to a well
composition goal and the composite service capabilitieglefined Domain and that a detailed Domain Ontology is
may be formally expressed. Of course, the validatioravailable or can be created. The Domain Ontology must
may be more easily performed if all the phases of thecontain all the concepts (data and operations) to form the
composition development process are supported by form@equest in a common (or accepted) Domain vocabulary.
means. The approach exploits OWL for data and OWL-S for
In this paper we present a first step towards the defioperations; here an operation is an atomic function de-
nition of an unifying life cycle approach to web service scribed by the OWL-S Service Profile and Grounding
composition development. The development process mayence the proposed composition development process
start from a composition goal that describes a specifitakes into account the fact that a service may provide
customer’s request (ad-hoc request) or also from a conmore operations. The life cycle described in the following
position goal that requires to build a web service able tgequires that a Knowledge Ba&&3 and a set of Inference
satisfy a class of requests. The same objective (automatiRules TR are defined. A formal, explicit description
generation of executable compositions) is pursued in [319f the Domain is given by OWL and OWL-S. The
which investigates the integration of discovery/selectio components ok3 are axioms, derived from the ontology
of compatible services and composition. descriptions of the Domain and expressed by means of the
We propose a life cycle which uses domain ontologied’rolog language. They describe the properties of concepts
to describe operations, data and services, and aims at prd0d the relationshipsconstrainty among concepts. In
ducing BPEL executable processes that can be forma"particular, the relations among data and operations ievolv
verified and validated. Operational semantics is the formdfie semantic description of the operations, Pre-condition
basis of all the life cycle phases: it is used to expres@nd Effects, and the Input/Output of the operations. The
the flow of the operations which realizes the compositiorfreation of5 has to be performed once but it is specific
goal, to identify the composition pattern described by thd® €ach Domain. The rules to reason/o8 are expressed
composition flow and automate its translation into a BPELPY an operational semantics and then written in Prolog.
executable process, to formalize the BPEL constructdé R contains the rules to apply in order to build valid
(so that the resulting executable process can be aut®aths of operations in terms of IOPEs and according to
matically verified), and to support the validation of the the main workflow operators: sequence, AND, OR, XOR
composition. We also define a reference architecture fopPlits and joins. These inference rules are re-usable and
implementing the proposed life cycle, whose componentd1€y do not depend on the Domain.
are partially developed [10], [24] or under development. Given an ontology description of the Domaiki3
An example of composition is described, in order to@NdZR, the main phases to generate an executable Web
prove the effectiveness of the approach. Much more worle€rvices composition according to the proposed approach
has to be done on the theoretical framework and on tha®:

single steps of the composition, also integrating the t8SUl 17he service Profile says what an operation does by specifing
available in the literature. Non-functional aspects, sa€h 10PE, and Grounding is a mapping from OWL-S to WSDL [35].

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 3

« Synthesis of the Operations Flow modélx); from the composite service.
« Generation of the Services Workflow mod&Ww)
froth}'; g . - o I1l. FROM THE REQUEST TO THEPROCESSMODEL
« Synthesis and Verification of the executable proces . .
implementingSW: i Synthesis of the Operations Flow model
. Validation of the composite service. In this phase a set of operations is selected and properly

combined in order to produce the semantic behavior of the
requested service.

According to the OWL-S standard definition, a web
Iservice operation is defined by its Input¥ &nd Outputs
(Q'O) parameters, and by its Pre-conditio®3 énd Effects

They are briefly described below. Section Il will detail
the Synthesis o©OF and the generation a$WV.
a) Synthesis of the Operations Flow model.:The
generation of an executable Web Services composition
issued by aRequestThe goal of this phase is to obtain t(E)(IOPE model) [28].

Ebl egéizzuggdtil s(,);titsr:; tf#ZWRZ;Lzestogiit:gr;scct;gir: pr|Ti18uhs d The synthesis of the operations flow model is achieved
' eby analyzing the Request and the OWL-S definitions of

according to the following steps: . C
. the operations, and then issuing a Prolog queryigh
a) Analysis of the Request. We suppose that the users The inference rules iR defines services compatibil-

L?gggséfoggégzT)diss(i::pttlﬁg g]:)t:;iiegh:fgg beC%rr(])ée t%y in terms of pre-conditions and effects. Four possible
» €XP y 9 gy P pes of semantical matchings can be exploited during the

and relations. This description must specify the semantic

of W, its IOPE parameters and the conditions that it musf”m‘f’IIySIS of concepts i3 in order to establish operations

verify. The conditions may be defined by means of thecompaubmty:

logical connectives of the propositional calculus. From ¢ Perfect Matching: predicate concepts are the same;

this information, a Prolog QuerfQ,y is generated. « Exact: predicate concepts are equivalent;
b) Generation of the Operations Flow modBiQyy is « Plugin: a predicate concept is a subconcept of an-
issued to determine possible operations flows that satisfy ~ Other one; , ,
the Requesif any). In this phase operations compatibility ~ * Subtshume a predicate concept is a superconcept of
anothe one;

is exploited by matching Pre-conditions and Effects and , .
the inference rules ifR are applied to buildOF)y. « Fail: no matchs among predicate concepts.
Input and Output compatibility is addressed in the next The analysis of inferential tree for retrieving the re-
phase. quested service leads to composite services. Composi-
b) Generation of the Services Workflow model.: tions are defined in terms of precedence relations among
The goal of this phase is to transform the Operation®Perations. These relations define a graph that we call
Flow model in order to obtain a workflow modé&lv,, ~ Operation Flowgraph.
of the composition. In this phase graph transformation The workflow constructs we use to build OF are the
techniques are applied and the workflow patterns whicfollowing: sequencesplit and join. Sequence allows for
realize the service are identified. Notice that the operasequential activation of operations; split and join allows
tions specified by the flow model must be mapped to thdor concurrent execution of operations and synchroniza-
available Web Services. We cope with /0O compatibility tion. Choices and loops can be introduced by means of
by using wrapping services, that can be involved in theProper conditions on OF edges.
Composition if it is necessary. In the fOIIOWing the PE matChing and flow rules are

c) Synthesis and Verification of the executable formally defined.
process.: The goal of this phase is to generate an We remember thaP and E are sets of predicates, as
executable and correct orchestration process from th@xplained in Section Il. LePredicate be the set of all
workflow model. In particular, we address the automatid®redicates that appear i and E sets of all operations
generation of BPEL processes from workflow modelsin the domain and let be the set of evaluations of
This is achieved by exploiting previous results, in par-all predicates inPredicate (eval(Predicate) for short's
ticular the automatic generation of a BPEL definition ofWwhereeval is the function that associates to each element
the composition fromSW,y, is performed by using the in the set Predicate the couple (predicate,value)),
results described in [24], and the verification of the BPELWherevalue is the truth value opredicate).
process is accomplished by using the results described !N the following P4 (E4) will denote the preconditions
in [10]. These works are based on a formalization of theeffects) set associated to an operatiorin order to allow

control flow constructs of BPEL by means of operationalfor A operation activation (i.e. to maké activable),
semantics and Prolog. all predicates inP4 must evaluate true. After a correct

d) Validation of the composite service.:The goal termination of Fheﬁl operation, predicates. iEA_ evaluates
of this phase is to validate the composite service againdfue: In addition we callAct4 the activation of the
the composition goal expressed by the Request. Since tffperationA. Finally we indicate withE'ff4 the set of
overall development process is based on Prolog languag®!l Predicates that evaluates true after théct 4:
it is possible to validate the composite process by standard
validation procedure, i.e. by trying to obtain the RequestE ffa = {p € Predicates|eval(p) = (p, true)after Acta}

© 2007 ACADEMY PUBLISHER

4 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

Notice that associative property can be applied to

In the following the operational semantics of thees Sequence operator, and it is possible to state that
we introduced before is reported. These definitions aréequence(4, Seq(B,C)) = Seq(Seq(4,B),C) =
translated into Prolog rules which are used during theébeq(A, B, C). In the case of multiple sequence compo-
synthesis phas®ulesare defined in terms of precondition nent operations, the previous definition can be extended
that can enable the activation of a given operation compddy recursion.
sition and in terms of the changes in theset depending If L,, denotes a list of. operations.,, = (A1, -, Ay)
on E sets of component operations and compositiofio execute in a sequence then:
operators.

The semantics of the activation of an operatidns
P Seq(Ly,) = Seq(Seq(Ly—1), Ayn)

the following:
Seq(A) = A
eval(Py) The semantics of a sequence composition is the fol-
Acta (1) lowing one:
oA — O'A
whereo 4 = eval(Predicate) before the activation of Oseq(n,_yy LG oL)
. ’ . € n— e n—1)7
the operation4 and o, is the sameeval(Predicate) , Act(Ln) 7
but after the activation of the operation. Notice that only Effsearn_1) 2 Pans0seqr,) — TScallngyy
redicates inE4 may change their evaluation, and then Act(Seq(Ln)) A
P Snd J TSea(Ln) T Tseq(Ly)

o'y = eval(~(Predicate N E4) U E,)
In order to synthesize the requested composed service (1) and (2) are the rules which define the execution
all possible combinations of services are analyzed by thgf sequential web services operations. They state that in
means of a Prolog engine, that tries to find a servicegrder to allow for sequential execution of a list of opera-
composition to which corresponds the requefeahdE tions, the last one4,,) has to be activable and the other
sets. ones have to be previously activated. In order to allows for

Proper pruning techniques are used to allows for tertast operation activation, it must B8 fseq(r,) 2 Pa,-
mination of the inferences even when loops are created For example, the rules are recursively applied for

in the problem state space exploration. Seq(A, B) in the following manner:

1) Sequencein a sequence, an operation is activable
after the completion of another operation in the same pro- cvl(Pa) ppp S p eval(Pg)
cess. Letd and B two web services operations where the 04 2P A="8 o, "ol nm
B operation can be activated only after the completion of Act(Seq(A.B)) ’
the A operation. We denote withieq(A, B) the sequential OSeq(A,B) — T Seq(A,B)

activation of A and B where the activity order inside the
brackets is related to the activation order.

In order to activate the Sequence, the following condi”
tions must happen:

Notice thatEff4 O Pg — eval(PB) y OSeq(A,B) =

4 and o:‘;eq AB) = O‘/B.

2) Split: A Split is a point in the OF with a single
incoming control flow path and multiple outgoing paths
(Fig. 1). Three types of splits are defined in order to
Effa D Py, eval(p) = (p, true) describe different kind of outgoing paths executions:

AND, XOR and OR splits.
Vp € P4 — activable(Seq(A, B)) an splits

Obviously Ps.q = P4 and Eg., 2 Ep becausels., e 0 e
contains all predicates in the last sequence operation, but
also predicates that belong to tlie sets of the other S Con>
operations which maintain their truth values during the e e 6
execution of the whole sequence (i.e., in sequence with
two operations, the € E4 such thatval(p) = (p, true) Figure 1. Split and Join

even after the B execution). It is possible to prove that
EA U Ep D Egeq. The relation between the sets is not AND splits allow for parallel execution of outgoing
an equality since it the B operation should request thgaths. All preconditions needed to enact all paths exe-
invalidation of a previous effect. For example a servicecutions have to be verified in order to consider the OF
that first request an authentication for a session, can alsactivable. XOR splits allow for the enactment of only
request the end of the authentication session after thene of the outgoing paths. The preconditions of only
execution of a given task. The predicatsAuthentication one outgoing path have to be be verified in order to
is an effect of the first operation, but not of the last oneconsider the OF activable. If more paths can be enabled,
(and thus it is not one of the sequence). the system must choose one to activate. OR splits allow
It is also true thatl' f fseq = Ef fB. for the enactment of one or more of the outgoing paths

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 5

at any time, as soon as paths enabling preconditionsf generality and the rule can be applied independently
are evaluated true. Obviously any type of split with oneon outgoing operation terminations: the final state will be
outgoing edge has to be considered a sequence. Fo'gplitAND in every case.

brevity's sake we will show in the following only the Fyrtharmore,

AND split activation conditions and semantics. Complex
splits can be achieved by associating predicates called
conditionson each outgoing path and discriminating their
activation depending on these predicates values.

Let us consider the AND split in Fig. 1 and let us
indicate a split withSplz‘t{‘Angc) where the first operation
in the brackets is related to the incoming split path and and the preconditio® f f1.. 2 Fo, _,
the other ones to the outgoing paths . The condition thaevel of inference tree.
makes activable the AND split is the following one: We do not report the rules of other Split types due to
the lack of space.

3) Join: A Join in the OF is a point with multiple
Effa2 PpUrFc ingoing paths and a single outgoing path (Fig. 1). It is
eval(p) = (p,true)Vp € Pa usually a synchronization point of concurrent or parallel
activities. Three types of joins are defined in order to
describe different kind of synchronization: AND; XOR

Effme2 |J Po.=

i=1,--,n

Efflnc 2 }DOLVZ € {1,"',71}

is true at any

Let us consider for simplicity’s sake (here and in
the other following constructs) that the sets of split -
outqoi ; - -ﬂnd OR joins.

going operations have no predicates that appear i An AND ioin i int wh I i
one of the other set in the negate form. We can say that n. join 1S a point wnere all operations on

_ . iIncoming paths have to terminate their execution in order
PSPl’itAANgc) = Py and,ESplitANéy = EA UFEpUEC,

B A.B.C) . to activate the outgoing control flow path. An XOR join
yvhereEA IS the set Ot 4 precjlcates which _do_not aPPeaA . 1ows for activation of the outgoing path whenever the
in a negative form ik andE¢ . The equality is because

. . operations of one of the incoming paths terminate their
we assume that parallel outgoing operations cannot ac . . . I
) 2 . éxecutions. Finally an OR join allows for activation of
concurrently executing conflicting operations.

More generally we denote witne the operation on o= T 821D PR U R €0 OIS PO PO
the incoming path and witlDut, = (O1,---,0,) the ' going p

operations on the outgoing paths, indicating the split witronee- In addition complex synchronization patterns can be
Splitéjxfomn)' Let be Outy 1 — (O1,---On_1), We defined by associating predicateniiditiong on incom-

. . B . ing paths. The joins rules in such case apply only to paths
cOe:)n:th@uZﬂrggt;r;;&e}%deir\l@nitn = (Outn—1,0n), With ity conditions that evaluate true. In the following for

. (Inc,0) , . . brevity's sake, we will describe only AND Join semantics.
Since we assume no conflicts on outgoing operations, With reference to the Fig. 1 we denote with

the AND Split operator can be considered commutativeJ . AND

] . . in the activity with operation A and B on
: (A,B,C) . . .
on Quty, list. Thus it we den_ote WlthPeTm(OUt”) the incoming join path and with operation C (the last in the
set of all possible permutations abut,, list, and with

P | ¢ of thi ; join list) on the outgoing path. The conditions that make
erm; an element ot this set, activable the AND join are the following:

L AND _ @ 7ipAND - |
Spllt(InC,Outn) - Spl?’t(lnc,Permi)VZ € {1) Tl} EffA U E.ffB D P¢

Itis possible to associate the position in the dist with eval(p) = (p, true)Vp € P4 U Pp
the order of operation completion. With the previous rela-

tion we state that the AND Split execution is independent In order to _actlvate the C _operatlon_, the p_aths W'th A
on the completion order of outgoing operations. and B operations must terminate. This implies that join

It is now possible to describe the semantics of the ANDcan be activated only when all precondition of operations
Split: on incoming paths evaluate true and it is possible to state

Effine 2 Po, .y, that: Promanp . = PaU Pp. Further, if no conflicting

Aet(SplitAND operations on incoming paths, it can be trivially proved
c pla

nec,Ou) ’ 1
T, (Ine:Outn_1) Tomagye, that £ JonAND = ELZUELUEC Wh.ereEg} is the set .
n of all E'x predicates except for predicates that appear in
. AtSPIE Sown) . the negative form inE.. The definitions can be adapted
SPU e Outn) sty P01,y to a generic number of operations on incoming paths (in
. ,)) a list Inc,) and one on outgoing patlD¢t) like as we
Notice thatasplitAND is the set of all predicates ;g previously with Split.

(Inc,Out,, _

evaluations of all the Split 1c;perations evaluations except In order to define the semantics of Join, let us extend
the operation0O,,. This may resume the case of havingthe semantics of the Act function to a list of operations.
all operations terminated but th{®,. Thanks to the com- Let be Inc, a list of n operationg7;,---,I,). We can
mutative property previously described, this is not a losextend the Act semantics as follows:

© 2007 ACADEMY PUBLISHER

6 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

single operation while the path on the left is in turn a spli-
Act(Inen,_1) f Act(In) join composed by three parallel branches (each containing
A AU"—l"T”—l — 9 a single operation).
etlmen) o The first step of the translation algorithm consists in
] o identifying OF graph regions we catbnes Briefly each
Whereo is the state before the activation of all opera-;qne s identified by a single split-join and by activities
tions, o is the state after the activation of all operationsinat comes before and after it.
and o, is the state after the activations of the first Zones are identified by visiting the OF graph with a
activities in the Inc, list. In brief the activation of depth first policy, identifying zones recursively also by
n operations in a list evolves by activating component,sing techniques of compiler optimization and program
operations In turn. synthesis [3], [11]. The graph may contain loops that will
With this definition and thanks to the commutative he addressed in future works.

properties on incoming paths operations, it is possible to |n Fig.2 it is possible to identify two zoneg€6ne; and

define the semantics of a Join: Zones, Where the first is included in the second one)
Depending on split and join types (AND, XOR, OR)
O oinAND Act(Inen) 0}%, in a zone, and on which kind of conditions are defined
fren, Out '/ det(Out) over the edges in OF graph, it is possible to translate a
Uieqr,.ny Eff1; 2 Pout, 01pe, = TjomAND ZONE subgraph in a component of SW (which obviously

is a workflow pattern).

Act(]oinéN{j o t)> .
O oinAND T e D Table | shows the relations among some workflow
ne ” oin g s s ae .

(nen Out) (Imen,Out) patterns, split-join types and conditions. Notice that the
Sequencattern is trivially identified on OF Graph and
translated.

B. Generation of the Services Workflow model
. . . . Pattern Split Join Conditions
Since the previous synthesis process does not take ifi Paarerspr AND - No
. .. Synchronization - AND No / Yes iff they are the same
account of operation 1/0O descriptions, the OF graph may on al join incoming edges
. . . Exclusive Choice XOR, OR - Mutually exclusive on
generate compositions that, even if semantically correct) — all split outgoing edges
may be incorrect in terms of Input and Output. At this [k cres 5= B, YO | n S R S
purpose, we introduce in the OF the execution Of Operaf e o een e - Ao Tee
tions that execute 1/0O format translationsrgppers. In T etor 5 XoR ves
i i i i [| d Parallel Routi * AND N
order to establish if a wrapper has to be inserted in the OFf_geresrerae fone L ORXOR | ex Wi e S
a proper 1/O matching algorithm for operations is used. (trigger) specification
Once the rules explained before have been applied in TABLE I.
order to build the OF graph, it is necessary to translate this SWRULES

representation into a control flow graph which elements
are organized in workflow patterns [33], [41]. We will call

this graphService Workflovgraph SW). A workflow patterns description can be found in [33],

The main concepts of the translation from OF to SW(41]. Fig.3 depicts the SW related to the OF in Fig.2.
will be introduced in the following.

Sequence

‘Zq[re{ 7777777777777777777 1‘ Sequence
3 | &
i | ®
i ‘f Se ‘ Interleaved &outing
. |

- i

. | |

. | |

. | | |

i ! .

i ! .

=~ R ¢

i .

I C R |

Figure 3. An Example of SW Model
Figure 2. OF Zones
The SW is a composition of sequences and interleaved
Let us consider the OF in Fig.2. It is composed byrouting patterns. The whole composition must be included
two operations in sequencdl (@nd B in Seq;) and two in a sequence pattern.
parallel paths after an AND split point, that synchronize The composition of WF patterns will be used in the
in an AND join point. The path on the right contains a next phases in order to produce, verify and validate

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 7

executable composed processes. The executable processes precedence relations among activities executing in
are defined in BPEL4AWS language as described before. parallel. Particular conditions (called transition con-
ditions) may be defined over links. A link produces
C. Synthesis and Verification of the executable process ~ the activation of an activity only when its transition
In the phase of the executable process synthesis the cond|t|<.)r.1 evaluates. true. i
SW is analyzed in order to build a BPEL process Each activity has optional standard attributes: a name,
(BP). The BP is then processed in order to verify its & join condition, and an indicator whether a join fault
correctness. should be suppressed if it occurs. A join condition is a
Both synthesis and verification phases are based dgcolean expression on all incoming links of an activity
a formal definition of BPEL4AWS constructs in terms &Nd IS used to spe_cnfy requirement about concurrent paths
of operational semantics. The operational semantics {&aching at an activity. .
translated into Prolog rule8PEL Semantic Rulgsvhich 2) BPEL4AWS Semanticén the following the state of
are used as explained in the following. an activity e will be denoted by the symbat, and the
1) BPELAWS basicsBPELAWS defines a language State of a linkk will be denoted by the symbaty, .
for specifying Web Services compositions in the form Furthermore we will denote structured activities by:
of business processes. In the following we refer to the
BPEL4WS specifications published in _May 2003 [4]. A = Tsgaysy
BPEL4WS (or BPEL for short) provides a model and
an XML-based grammar for describing the control logicwhere:
and the message exchanges required to coordinate thes T activity is the activity that precedes the construct

...... 5N71aN51\4J—

Web Services involved in a composition. A BPEL compo- in the process,
sition is calledprocessand the web services participating « | activity specifies that the construct is terminated
in the process are callguhrtners. and no more activities have to be processed within

Once the partners are defined, how messages are ex- the construct,
changed and how to sequence the operations is specifieds the symbolss; € S denote a construct;
by means of a set of primitives callettivities. BPEL e a; € L, is the list of the activities specified within
providesbasic and structuredactivities. the construct.

Basic activities are used to define interactions with The states, of the basic activitys, can be:
something external to the process itself. They mainly
are instructions that handle the communication between
the process and the partners. A typical scenario is the
following.

The BPEL executable process waits a message from
a requestor (which represents a client) by using the
receive activity, when the message arrives an instance of
the process is created. Then the process instance might o
executes one or more partner by means of itheke abnormal way or if it generates a not handled
activity and finally it sent back a response to the requestor fault.
by using thereply activity. Notice that the state of a structured activity depends on

Since an executable process may specify more than ofiBe states of its component activities;
receiveactivity, it is necessary to distinguish between the The state of a linki (s,) can assume the following
messages received from a partner during a conversatioalues:

o ready: a is ready to start;

e exec. a IS started;

o terminated: a is ended; depending on the cause of
the termination, this state can assume the values:

— noexec. if the activity completes correctly with-
out faults;
— undefined: if the activity is terminated in an

This is done by a mechanism calledrrelation. « undefined: the state of the link before the evalua-
Data flow is realized by sharing data containers that tion of its Transition Condition

may exchange data using tressign activity to copy « positive: if the Transition Conditionassociated to

internal variables. the link is evaluatedrue;

Structured activities are used to manage the process e« negative: if the Transition Conditionassociated to
flow. They can be combined to write complex algorithms: the link is evaluatedalse

« sequencespecifies an ordered sequence of activities; 3) Derivation Rules:In the following the operational

« while: defines a loop; semantics for some of the BPEL language constructs are
« pick: captures events (messages) in order to executeported.
one of several alternative paths; For brevity’s sake in this paper we will only report
« switch,case,otherwisedefines a conditional branch- the semantics of the sequence and flow (with links) con-
ing; structs. The sequence is simple enough to let us explain
« Scope groups a set of activities in a single transac-how the semantic rules are defined and derived; flow
tion; with links is complex enough to describe the semantics

« flow: specifies a set of activities to be executed inof complex BPEL processes and to make possible the
parallel. Thelink construct may be used to define definition of a non trivial example.

© 2007 ACADEMY PUBLISHER

8 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

In order to define the semantics of the BPEL constructs, If the join condition isfalse the Join2 andJoin3 rules
it is needed to introduce some rules that are relatechust be applied and the/F' value is evaluatedsJ F' is
to constructs but not explicitly provided by the BPEL used to establish if theleath-path-eliminatioomust be

language. applied or if a standard fault must be propagatedath-
Implicit constructs path-elimination does not allows the activation of other
Let us introduce two basic transitions: activities which are on the same path of the activity whose

join condition evaluates false, assigning a negative statu
to its outgoing links.
Rule 2 (Join2)

(a,04 = ready) & (a, 0!, = exec)

T . vC _
(a,0, = exec) — (a, 0!, € terminated) first (vam Lr)"™ satse.saP=no
a La’ = am-Lap,oay =ready, P undefined
Eo
QH

Sap

<LAT,LL,U:4>

the i and 7 that respectively enable the execution and
the termination of an activity: (Lartpioa)’™
Now let us introduce two operators frequently used Ryle 3 (Join3)
in workflow languages:split and join. Split operator

JOL7L

vC
is used, when an activity terminates, to choose the | Fimse B " <«aH,LL>~fazse,sJF:yes
TS ek LA, cay = ready, :
next activity that may be activated depending on some o aaHdiE<f,g;;defmd,Lgew>
boolean conditions defined over outgoing transitions. (tatoion) @ (Lag Lyem o)

Join operator is similar tosplit operator but it applies

to incoming transitions. It is important to notice that
BPEL does not support explicitly these operators, bu}O
their behaviors are obtained by using links. For thes
reasons, here we define the semantics rulegdiar and
split operator.

The Join3 rule handles join failure suppressions, per-
rming death path elimination while thdoin2 rule
?)ut the activity with false transition condition into an
undefined state.

The Split operator is similar but concerning the
activation of outgoing links of terminated activities
and is omitted for brevity’'s sake. Another important
construct, that we have defined to handle the termination
of the activities in BPEL is th@ auCostruct transition.
The semantics of'auCostruct transition is:

As for the join operator, lef. 4 be a list of activities,
in the ready state, to analyze anfl;, the list of the links
defined in the process.

In the following, the recursive definition df 4 list will
be used:a list is either the empty list, or it is a head
followed by a tail, where the head is an element and the Rule 1 (Tau 1}
tail is a list. With this definition, it is possible to define
the following rule: LAt ey Lagoay = cvee, — M

Split
ap,Ly, — LLNeu)

’
LAT'LLNW“’A>

tauUTLOE(EEC
ap

TauCostruct
La,Lyp,opn —

Lal 0y Ly Rule 2 (Tau 2)

The first transition extracts the first activitiy from Firet vagy S gundefined
the list of the activitiesL 4. The L list is composed by ba” = e Lagp, cag = cvee (emin) 2,
the remaining activities (the tail). = e
With this definition it is possible to introduce the basic (rarrpioa) - (Bar Pyew o)
rules for join semantics:)) o))
Rule 1 (Joini) L4 is the list of activities to analyzel.;, is the list
o of thelinks and L., is the list of links activated after
LA T g Eayoay = ready, <“H’Li>ﬂ””" a split operation. ATauCostruct transition is activated
van &y " when at least one activity is no more in execution and
(Latpieaoa)’™" (Lag. Lpagpee.al,) applies the split transition tay outgoing links to verify

if some other activity can be execute. This operation

A join of some activities in the state, is enacted, changes the state of the process links and may activate
only if for at least one of the activities inner they list ~ some other activities. Since this transition terminates an
has been determinated the status of all its incoming linkgctivity, its state becomesoezec, if the activity termina-
and the Join condition can be evaluated. This check igon is normalunde fined otherwise. The state of process
performed by the rulexC that is omitted for brevity’s activities changes fromr4 to ¢’y whereg’, is the same
sake. If the evaluation igrue in rule Joinl, the join of o4 except for the state of the activity,, (because
operator, thought the: transition, allows the activation the 7 transition changes the state of the activity).

of the activity; changing the state, into ¢/, that is the It is now possible to introduce the sequence and flow
same of the state, except for the state of the component constructs:
activity o;7° that becomegxec Sequence

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 9

Let be : Rule 4 (S4)

noexec

.
S:T.al.a2.a3...an.J_ o5 =ezec,a= 1,05 — o}

the definition of a sequence of activities T activity is < ' S> < o >
the activity that precedes the sequence in the process andThis rule applies when the next activity in the sequence
the L activity specifies that S is terminated and no moreyg process islL. In such case the sequence state becomes

activities have to be processed. noexec and the sequence activity ends.
Let L4 be the activity list ofS ando, the state ofS. _

A sequence activity may be in execution (statec) or Axiom 1 (SA1)

not (statenoexec). Let beo, the state of the activity in <L ds> Tequenee

the sequencefec or noexec). The state of the sequence

depends on the state its component activities: this axiom states that if no more activities are in the

list of activities to process, the sequence ends.

os = ewec® Vij € {l,--: n}oa; = ewee,oq, |z = ready;
os = noewec< Vi€ {l,- -, n}og; =noevec Axiom 2 (SAZ)Z
og = undefined
The operational semantics specification of stequence (avas) """ BNDypac pinea

construct consists of the following four rules: . . .
This axiom states that the state efquence, og is

Rule 1 (S1) unde fined, because a fault has occurred.
o5 = ready, La T T L o B otee The rules for a sequence construct are applied as
Sequence — follows:
(o) T (g o)
S: Sequence
end=false; fault=false;

This rule applies when the sequence is not starte{hne (fend & ! fault)
yet. In such case the first activity of the sequence |js i rirst (9)==T)

the T activity. The first transition put in theL 4, list , apply S1;
the remaining sequence activities and the state of the else if (firsi(9)==1)
sequence through the application of théecomes:zec. apply S
The new state of the sequence is thegf*c and the ey sal;
remaining activities to process. f,.) were pruned of the else
T activity. apply S2;
if (fault_occurred)
Rule 2 (S2) apply $3.2;
fault=true;
First b emee apply SA2
og =ewec, Lo — ag-Lap,oag =ready,cap — g% e
<LA’US> Se‘“f;"'ce <LA’ UZS‘> { apply S3.1;
}
This rule applies when the sequence is already starfed *
and thefirst activity in the sequence is executed: }
Rule 3 (S3) i i -
piver Slis applied to start a sequence; no component activity
gy J5Tcwecla’ — am Lagioap = emec oqy® — oqp e of the sequence is yet start&dRis applied the first time to
(£aves) " (Lag. o) start the first activity in the sequenc®3is applied when

the activity executed in the previous step is terminated.
Fivet T degined If this activity does not complete correctly ti88.2 and
ggq ST cmecba = e LAp.Tag =0t %ay” — Tay SA2 rules are applied and the sequence terminates in an
<LA’ °S> = <LA’ o5 = “"dcfi"5d> undefinedstate, otherwise the other rules can be applied to
) o) _) the new list of activities to process that is the previous one
In this case the activity; is terminated and its state pruned of the first activity. If the current list of activitie
can evolve: to process contains only the activity the S4 and SA1
1) from exec to noexec, if the termination is normal; rules are applied and the process ends, els&fhale at
2) from exec to unde fined, if a fault has occurred. point is applied on the remaining activities.
With this rule thefirst activity processes the activity
ag and the L, list is pruned of this activity. The D. Flow
remaining activity list is calledL 4,.. Notice that, in Let be -
the first case the list of activities to process remains '
unchanged and only the sequence of states is changed;
in the second case thequence termination is abnormal
and its state isinde fined. Since it is no possible to start all activities simulta-
neously, a way to define an order of activation must be

F=Tllalazllas - - [lan || L

© 2007 ACADEMY PUBLISHER

10 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

provided. In our definition the order is derived from the
value of the indexi. Thus thefirst transition can be
applied also to flow rules. In addition it is necessary — op = coce. (LaiLy.op) "X (LN ew LNew oNew — undefined)
to remember all activities enacted and all activities thaf®? (22 taor) 15" (ohew, oow qurderined)

need to be started. The activites may terminate their - aEr
execution only when all of them were started. Likewise

for sequence. the state of the flow depends on the sta eThis rules applies to terminate at least one of the ac-
q ' - P Elvities in execution. Thé& auCostruct must be applied.
of each component activity:

Rule 4 (F4)

Incoming

AnalisysStatusLink U npoexec
— °r

ta
UF:c:ccc,<LL,LA> true, op —

Outgoing <LL, LAv°'F> flow <LL1 LA'O.noczec>
Links F

Rule 5 (F5)

AnalisysStatusLink t o fi
op =ewec,<LL.LA> sysot s false,op au U’ZJIde,f?ned

i H flow vde fine
Figure 4. Links <LL,LA,0F> Lo <LL,LA,U;ndr=fmed>

The AnalisysStatusLink checks if the flow can ter-
minate correctly depending on link status and transition

= S Jief{l, - ,n}:o, = " NN ;
or erec ’ _{ n}: 0o = exec conditions. In case ofDeathPathElimination appli-
op = noexec < Vi€ {l,---,n}: 04, = noexec cation, dead links conditions are propagated in the flow
If the flow is defined with thelinks, the following — construct.
semantics rules apply: These rules respectively apply if: F4) all started
activities inside theflow are terminated and thdoin
Rule 1 (F1) transition does not start any activity; F5) Errors occur
o = ready, Lo T T LA, op B gtree in t_h_e flow definition. In this case the state of the flow
Flow — activity becomesinde fined.
(pavop) " (Lp g o5ee)
) _) Rule 6 (F6)
This rule applies when thélow is not yet started. In
such case the first activity of th&low is the T activity. a=L,op=erec,op o gpoeTee
The first transition put in theL 4, list the remaining <LL,MF> flow <LLL¢,F>

flow activities and the state of th¢low through the

application of theu becomesexcc. The new state of Thjs rule applies if the only activity in the flow to start
the flow is then oz and the remaining activities 10 s the 1| activity. In such case the¢low state becomes

process L 4,) were pruned of thél activity. noexec through ther transition.
op =ewec, (L, Lp,0 Jjoim Llew pNew GNew _ cgpec
F2.1 r < S F> < A L u > <LL, l,op = nnemec> flow pNp

flow N N N
<LL’LA’(7F> — LASW’LLEUJ"UFMH

This axiom states that if no more activities are in the
o list of activity to process, thglow ends.
op = exec, <LA, Lp, ch> g <L1Xm“, LNew oNew — undefined> Axiom 2(FA2):

Lot)
<LL,LA,UF> flow <L1Xew’Lgew’o,;‘ndeflned>

F2.2

flow
Ly,Lg,op =noexec) " — END

This rules applies when thBow is already started. At
this point, theJoin transition can be applied. It starts only
the activities whosé ransitionCondition is evaluated
true. The state oflow changes to:

» o%rc¢: this state is the same of the statg except

for the state of some activities that becomec;
gindelined. it 3 fault has occurred and it not is

handled.
Rule 3 (F3)

This axiom states thafiow ends correctly.

Axiom 3(FA3):

op = undefined

<LL= LA> flow ENDyndefined

This axiom states that the state ¢glow is op =
undefined, because a fault has occurred.
(Lp.Laior Tow (£yew Lyew aNew) The rules for a flow construct are applied as follows:

TauCostruct
oF:ezec,<LA,LL,UF> 27 <LZA\75w,Lng,0ng:czﬁc>

F3.1

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 11

« wrong usage of fault handlers.

endcralse; fault= false; « reachability of any state of the executable process.
while (lend & !flow)
R E. Validation of the composite service
0 rooy 21 o 22t at asieiios renty i £ This phase is not yet implemented. We aim to formally
?fpp(\)f/asi’s“._locirurFy?ae.dZ)for all activities that can terminate; define this step as future work.
anply . Pz, IV. ARCHITECTURE
glse T all activities were executed) The life cycle described in the previous section is
ey e A supported and automated by the architecture shown in
}else it (F ended due to Links States Analysis) Figure 5.
{ endlz‘“lj:i :FAl -
) apply F4;FAL; m
PQW -
F1 is applied to start a flow when no component
activity of the Flow is yet started2 (2.1 and 2.2) are 4 Compngr“l;:‘gu\% —
then recursively applied when starting new activities in . &
the flow depending on the execution states of the other Jor o ‘
activities andF3 (3.1 and 3.2) are recursively applied [svoamnae | [iepram r /E‘“@
when terminating the activities in the flow4 is applied e e —
when terminating the flow activity in presence of general l | e e
activities; FA1 is applied too and the derivation process E*““‘a"‘ep’mf:fe"““” I
ends.F5 is applied when terminating the flow activity SN — t/
incorrectly;FA2 is applied too and the derivation process e
ends.F6 is applied when all activities in the flow were %@
terminated correctly and thé activity is examined; the) N
FA3 is applied and the process ends; Figure 5. Architecture

1) Synthesis of BP:In order to allow for the BP
synthesis, the patterns in the SW graph are analyzed and First of all the Domain Ontologies have to be analyzed
associated into proper Prolog Query. in order to build £B. The Ontologies Analyzers the

Each pattern is defined in terms of states and activationsomponent in charge of populatingB with Prolog
sequence of its components activities. A Prolog query isaxioms.
composed depending on these informations. Inferences The Request Interpreteanalyzes the user request and
on BPEL Semantics Ruleslows for determining if any produces a description of the required service. The de-
composition of BPEL constructs can implement the giverscription is defined by using the IOPE ardB. This
pattern. Tracing the execution of the inferential enginemodule translates the required service description in the
also produces informations that are used to build the BRProlog queryPQyy.

2) BP \Verification: The analysis of the BP by the The OF Generatorperforms the automatic generation
means of derivations on the previously descriliBfEL of the Operational Flow Graph. It is based on a Prolog
Semantics Rulesstablishes if a given BPEL process is inference engineGomposition Rules Engipand it uses
correct and can help to discover faults before the proces$ie inferenceRules(ZR) described in section Il in order
is executed. The BP is again described in terms of ao build the OF graph while visiting an inference tree. For
prolog Query, where its correct termination is requestedoperation matching purposes, a proper component (the
The Prolog Inferential Engine checks if the given BP canMatchel) implements the PE matching, needed to select
terminate without faults. the candidate operations as explained in Section IlI.

Some fault can happen only in presence of some During the OF graph generation,more than one solution
particular inputs or conditions: this makes difficult their (OFs) can be selected to implement the required service.
detection. The OF generator will chose the first OF whose effects

This verification phase also allows for retrieving the completely satisfy the request.
cause of the fault (if any), making possible the definition The Service Wrapping Generatomodifies the OF

of compensation actions if needed. graph if its services are not compatible in terms of 1/O.
In particular, it is possible to detect: It introduces in the OF the activation of proper wrapper
« wrong usage of BPEL constructs; operations (retrieved from thgervice Catalogn order to

« undesirable behaviors of BPEL processes due, foperform I/O types translations for operations if needed).
example, to badinks use or bad constructs combi- The new OF graph is analyzed by t8&/ Graph Builder
nations; It implements the algorithm for the SW graph building

« faults due to undiscovered semantics errors; described in section Ill. The output of this component is

© 2007 ACADEMY PUBLISHER

12 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

a SW graph containing the composition of operations in The requested service can be obtained by composition
terms of workflow patterns. This graph is then analyzed irof available services as we will explain in the following.
order to be translated (if possible) in a BPEL executable The descriptions of Ontology Domain and of available
process by thé&xecutable BPEL Process Generat@s services operations are stored in #i8. The Domain is
described in the previous section. This is achieved bylescribed by Wordnet [43] ontologies while operations
substituting proper BPEL activities skeletons in place ofare described by proper OWL-S documents. The opera-
patterns inside the SW. This last component also uses thimns IOPE models are shown in Fig. 6, 7, 8
methodology described in [24] in order to establish if a In the following some components of the wordnet
given pattern can be defined in the BPEL language. schema used in this case study are descibed.

Finally, Bpel2sem[10] is a tool for the automatic The WordNet schema has three main classes: Synset,
validation of BPEL executable processes, based on th@&/ordSense and Word. In the Wordnet ontologyward
Prolog language. form represents a characters sequence such as "man”,

The Static Analyzeranalyzes the BP produced in the "cat”; the sameword form can have different meaning
previous steps and translates it into an internal represein several languages. Word(element of Word class) is a
tation. Furthermore, this module performs different kindsword form in a language; in this Section we denote with
of analysis on the BPEL process like: Wordg, Word; a word in English and Italian language

« Checks if the BPEL definition contains at least onerespectively. The propertyexicalForm relates a word

activity able to start the process (the creation of afo its word form. A word can have different senses.
process instance in BPEL4WS is done by settingA word senseéffordSense class) represents a word used
the "createlstance” attribute of some receive or pickin particular sense; like the word class we denote with

activity to "yes”); WordSenser the sense of a word in a English language
« Checks if the elements links are defined in the flowetc. The propertgenserelates a word a their senses (the
activity; propertyword is its inverse). The synset§ynSet class)

« Checks if every link declared within a flow activity are a synonyms set; a set of words that are interchangeable
has exactly one source activity and one target activin some context. The propergontainsWordSenselates

ity; synset to their word sense (the propenysSynseis its
« Determines, if, for each target activity of a link,the inverse).
source activity is declared, and vice versa, Let us describe the available services.

so that, theDynamic Analyzecan elaborate a correct
process relatively the data necessary for the semantic ~ ,
. Input: inputED type String
anaIyS|s. Output: outputED type String
. . Precondition: LexicalForm(W ord g, inputED)
The Dynamic Analyzeaims to explore the full state etex Sens@npULED, W ord Sen's¢ 1)
space of a BPEL process. This analyzer uses the BPEL Figure 6. English Dictionary Service

semantics rules translated imimlog rules and stored into

a knowledge base which contains tBPEL Semantic TheEnglishDictionary service, returns the meaning of
Rulesand rules used to detect errors and retrieve theifhe input word(sens@nputED, WordSenser)) only if
causes, when the analyzed process is checked to end e input word form is a word belonging to the English

an undefined stateCpeck Rules _ dictionary (exicalForm(W ordg, inputED)).
Derivations leads inevitably to an explosion of states to

analyze. Proper pruning techniques are implemented into synonymsbictionary service is defined by

the Dynamic Analyzer in order to cope with the state pu: inpus typesting

. Output: outputlS type String
Space eXpIOS'On pr0b|em Precondition: LexicalForm(W ord y, inputlS)

Effect: sens@inputlS,SenseWordy)

Finally, the Tracer uses information generated during A hassynsetSenseword;, synset
the analysis phases in order to produce information about Figure 7. ltalian Synonyms Dictionary Service
process execution (traces) both when the semantics incor-

rectness are present in the process definition or not. The Italian Synonyms Dictionary returns a set of Syn-
onyms (Synset) of the inserted word only if the input word
V. EXAMPLE form is an Italian word I(exicalForm (W ord;, inputlS)).
In this section an example is reported which shows how
the lifecycle steps described in section Il are exploited in
. g Input: inputT type String
order to produce a requested service by composition. inputLanguage type String

. outputLanguage type String
Let us Suppose that a user I’equeStS fOI’ a Sservice thatompul: outputT type String
. . . Precondition: [canBeTraslatedinputLanuage,outputLanguage)]
returns the meaning and synonyms, both in the Italian cexcaromword; ., inputn)
Effect:[LexicalForm(W ord g r,, outputT)A

language, of an Italian word. Furthermore let us assume semanctc¢w ord; . wordo)

EnglishDictionary service is defined by

Translator service is defined by

that only the following services are available: Figure 8. Translator Operation
« an English Dictionary;
« an ltalian Synonyms Dictionary; The translator is able to translate a word from a
« a multi-language translator. language to another. The translation is allowed only if the

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 13

input-output languages are supported by the serndgas-(sense(inputWord, SenseWord;p) are equivalent be-
BeTranslatedInputLanguage, OutputLanguage)Fur- cause the semantics of the translated words are the same
thermore the input word has to be a valid word in the inputafter translations thanks to themantics(- - -) properties.
language I(exicalForm(Word;;, inputT)). The trans- Hence theE set of the requested service is a subset of
lator service must preserve the (semantics) meaning dhe Ef f set of the composed service.
the input word after the translatiosgmantic§Word;y,, Then the OF model has to be translated into the SW
Wordor)). model. Some wrapper services are needed in order to
The first step of the life cycle needs to translate theallow for I/O matching. A wrapperi{’r1 Service) is used
user request into théQ,y query. In Fig. 9 the request since the Translator needs more parameters (the input
for service in terms of IOPE model is reported. language and the output language selections) than the
ones available as Input. Hend&r1 is a wrapper able
to complete this list of the parameter required for the

ItalianDictionary service is defined by

Input: InputWord type Word

Output: Outputword1. type SenceWord Translator service (it invokes the service with the coristan
Procondiion: LodealForm W or .7, inputWord) languages: Italian and English).
Ahasoymsetsanseword: Synsed] The SW graph obtained after the application of the

A [sens@nputWordSenseWord]

algorithm described in section Ill, is reported in Fig.11
Figure 9. Wzp Service

Sequence

The second step of the life cycle is the generation of the
OF by exploitingkCB andZ'R. Composition Rules Engine Literlese PO g
and Matcher components act together to accomplish this
task. The output of this phase is depicted in Fig. 10.

—_————
Sequence

WriService

(Italian/English)
Translator

English
Dictionary

LexicalFornv/ord linputWorg

Italian Synonyms
Dictionary

lexicalForri/ord linput®
(Italian/English)

lexicalForrd/ord linputSD Translator
Italian Synonyms lexicalForri/ord EoutputT)
ti W I E
Dictionary & semantics(Word IWord) (English/talian)
sense{nputSBenseWord 1) . . Translator
&asSynsefenseWord 1Synse} lexicalForri/ord EinputED

English Dictionary

sense{nputEBenseWord E)

lexicalForri/ord Einputl 895

(English/Italian) X i
Translator Figure 11. Services Workflow model

lexicalForri/ord loutputT)
& semantics(Word EWord I)

The SW graph is analyzed by the Executable Bpel
Process Generator in order to establish if the SW process
definition is implementable in the BPEL language. The
BPEL process is the output of step. We do not show the

[senseinputWoiglenseWord I)&asSynsefenseWord ISynset]

& [senseinputwoenseword 1] whole BPEL process definition due to the lack of space.
A scratch of the BPEL process synthesized from the
Figure 10. Operation Flow Model SW graph is reported in the following.

It is possible to identify in the process the SW pat-
In Figure 10,the squares represent the services, thern implementation. The Interleaved Routing pattern is
expressions above the services represent the precorsditioiinplemented by using thdlow BPEL construct with
and the expression below the services represent the efnks, while sequences are trivially implemented by using
fects. the sequenceconstruct. Links allow for definition of
For example the matching between the (ltalian/Englishproper synchronization among activities present in the
Translator and the English Dictionary is an exactflow construct.
match. It is possible to execute the services in a The process is also verified with success by the
sequence. In fact, the” set of the second service Bpel2Sem component. We do not report more informa-
(lexicalFormWordg, inputED) is included in the set tions about the enactment of derivation rules in verifica-
Eff of the translator servicdexicalFormWordg, out- tion due to the lack of space. More informations can be

putT A semantic$V ord;,Wordg). found in [10].
Furthermore the whole composed service has in
the Eff set all predicates that appear below opera- VI. CONCLUSION
tions boxes and in theP set the requestP predi- In recent years many efforts have been made towards

cates. Notice thatense(inputED, SenseWordgp) and the automated composition of web services. Several re-

© 2007 ACADEMY PUBLISHER

14 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

) An architecture to implement the proposed approach is
Shpeliprocess L5 ClceAmeTUTEE™ also described. Future work will include: investigating th
<bpelivariables v integration in this reference architecture of more matghin
rames imputiDMessagen L TPutPMessage and graph transformation algorithms and tools, supporting
ame=-ouputiDMessager o ipuipMessage further workflow patterns and loops, addressing quality of
<Lb'p'le'\;vaname> services and security requirements.
N n
< pe<ieplLI|:ere?eive createlnstance="yes"” operation="request”
partnerLink="dictionaryltalianLinkType"
portType="nsl:dictionaryltalianPT"
iable="i IDM 2
Llbpelrecaive o 0E REFERENCES
<bpel:flow>
<bpel:links>
Shpelilink name=ria-t [1] G. Agarwal, K. Chafle, N. Dasgupta, A. Karnik, S. Kumar,
/bpel:link . . 8
ijZﬁse'qm:ﬁce name="Sequences” V. Mittal, B. Srivastava, Synthy: A System for End to End
Shpelinvoke inputvariable=rinputiRiNessage” name="wit /> Composition of Web Services, Journal of Web Semantics,

<bbe\:c0p>))) 3(4)311-339, 2005.

Ibpelicopy | (oS19n rieht Transiation Languages> [2] R. Agarwal, K. Verma, J. Miller, W. Milnor, Constraint
</bpel:assigp o) ») Driven Web Service Composition in METEOR-S, IEEE Intl.
<bpel:invoke inputVariable="inputTMessage” name="Tra@asor i R

operation="transalte’ Conf. on Services Computing (SCC 2004):23-30, 2004.
tputV =" " . . .
partnerLink="translatorLinkType" [3] Alfred V. Aho , Ravi Sethi , Jeffrey D. Uliman, Compilers:
bpeliinvoke Tnpuvariani et DM essage” principles, techniques, and tools Addison-Wesley Longman
Chpatinots “InpueyariabiochapataR Mossagel namecew | 1> Publishing Co., Inc., Boston, MA, 1986
<bpelassign P ¢ B [4] T. Andrews, F. Curbera, H. Dholakia, et
bpel: - .
</:e ‘Cop%.<!— Assign right Translation Languages> falr \?,uzlnesss .ProceSS V Elxecuuor:l 1 Laggolé%ge
</bpel:copy or e ervices, ersion A, .
<bperinioke. mputvariable="inputTMessage” name="Traasor" http://download.boulder.ibm.com/ibmdl/pub/softwale/specs/ws-
gpe‘ration="transalate” - bpel/ws-bpel pdf
<bpel:sources .
o arse NinkName=TLeT [5] B. Benatallah, Q.Z. Sheng, M. Dumas, The SELF-SERV
Sbpetiinvokes Environment for Web Services Composition, IEEE Internet
< el:sequenc -
<Epe\:_sgquencve name:':Sequen_ce}" Computlng:40—48, 2003
o D etiamary L Message” name="Synons D" [6] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini,
<DRIISOUTCES kName=-L" and M. Mecella. Automatic Composition of e-Services that
</bpelisources) Export their Behavior, in 1st Intl. Conference on Service
BrAS RO Oriented Computing (ICSOC 2003), LNCS 2910:4-358,
<bpel:assigp 2003.
bpel: . .
=pe cop% ...<— Outputs are copied into the reply message [7] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, M. Me-
<bpel tamais P cella, Towards Automatic Web Service Discovery and Com-
<bpel:target linkName="L3"5 position in a Context with Semantics, Messages, and In-
<bpel:target linkName="L4"% . ! !
</bpel:targets ternal Process Flow, Position paper at W3C Workshop on
Zﬁ’;,‘jz:;ﬂiswf’? Frameworks for semantic web services, 2005.
i e perationzIreply” [8] G. Chafle, G. Das, K. Dasgupta, A. Kumar, S. Mittal,
</bpel:process S. Mukherjea, B. Srivastava, An Integrated Development

Environment for Web Service Composition, In Proc. of the
IEEE Int. Conf. on Web Services (ICWS 2007). Also as
IBM Research Report RI 06009, November 2006.

[9] Jen-Yao Chung, Kwei-Jay Lin, Irvine Richard G. Mathieu,

) o) . IEEE Computer, Special Issue on Web Services Computing
sults are described in literature, addressing different as 36(10), 2003.

pects of this problem. In this paper a life cycle approach10] G. Di Lorenzo, F. Moscato, N. Mazzocca, V. Vittorini,
to the automatic generation of executable web services Automatic Analysis of Control Flow in Web Services Com-
compositions is presented, in which many of the available p;snElork]‘ Erocss\s/s.s, n PD\'? 2,?07t:,299'306' 2t(1)‘07. i
results may be integrated. The core of the process consi deéigrsw vly:h UML'ZZE\%%/ gfggﬁi,'ogﬁ)”fpgfr th?er \évzcl)trh Icr)n.
of the automated synthesis of two graph models of the cqnf, on Software Engineering, May 19-25, 2002, Orlando,
composite process: the operations flow model (OF) and Florida

the services workflow model (SW). The construction of[12] D. Fahland and W. Reisig, ASM-based semantics for
OF requires: a) to select a set of (a\/ai|ab|e) service BPEL: The negative Colntrol Flow, in 12th Intl. Workshop
operations that are semantically compatible (matching o{13]°g Aﬁ;:;a;}cgoitatj '\g’:;z;”eers ;ﬁiMMZO\(l):ji)ﬁ cﬁ?alr:ilSAllfgr?g:II
E’re-condltlons and. Eﬁects); b) to detgrmlne & COMPOSI® g0 mantics for ’the business: process execution ’Ianguage for
tion of such operations which semantically matches Pre- \yep Services, in third Workshop on Web Services: Model-
conditions and Effects of the requested composite service. ing, Architecture and Infrastructure (WSMDEIS 2005):122—
The OF model is then translated into the SW model. The 133, 2005.

construction of SW requires: a) to check and provide thdl4] A. Ferrara, Web services: a process algebra approach, i

Input/Output matching of the selected operations; b) the ggg 4|m|' Coni. on Service Oriented Computing, 242-251,

application of graph transformation techniques in order t 15] M. Grininger, R. Hull, S. Mcllraith, A First-Order On-

express the composition by means of workflow patterns. “tology for Semantic Web Services, Position paper at W3C
SW is then used to generate an executable BPEL process. Workshop on Frameworks for semantic web services, 2005.

Figure 12. Wzp Service BPEL Process

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 15

[16] M.C. Jaeger, L. Engel and K. Geihs, A Methodology mitted for publication to Journal of Web Semantics

for Developing OWL-S Descriptions, in First Intl. Conf. http://www.mindswap.org/papers/PelletJWS.pdf
on Interoperability of Enterprise Software and Applicaso [37] SWSL Committee, Semantic web service ontology (swso).
Workshop on Web Services and Interoperability, 2005. http://www.daml.org/services/swsf/1.0/swso/

[17] M. Klein, B. Konig-Ries, M. Mussig, What is Needed for [38] P. Traverso, M. Pistore, Automated Composition of Se-
Semantic Service Descriptions? A Proposal for Suitable mantic Web Services into Executable Processes, in Intl.

Language Constructit. Journal of Web and Grid Services Semantic Web Conference 2004: 380-394.
1(3):328-364, 2005. [39] Workflow Management Coalition, XPDL definition,
[18] M. Klusch, B. Fries, M. Khalid, K. Sycara, OWLS-MX: http://www.wfmc.org/standards/xpdl.htm

Hybrid OWL-S Service Matchmaking, in 1st Intl. AAAl [40] WSMO working group, Web Service Modeling Ontology
Fall Symposium on Agents and the Semantic Web, 2005. (WSMO). http://www.wsmo.org/

[19] F. Lécué, A. Léger, Semantic Web Service Composi- [41] NW.M.P van der Aalst, A.H.M. ter Hofstede, B. Kie-
tion through a Matchmaking of Domain, in ECOWS’'06 puszewski, and A.P. Barros, Workflow Patterns. Distributed
2006:171-180, 2006. and Parallel Databases, 14(3), pages 5-51, July 2003.

[20] D. Martin, M. Paolucci, S. Mcllraith, et al., Bringing [42] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas,
Semantics to Web Services: The OWL-S Approach, in J. Kalagnanam, H. Chang, QoS-aware middleware for Web
SWSWPC 2004, 26-42, 2004. services composition, IEEE Trans. on Soft. Eng, 30(5), pp.

[21] D.L. McGuinness and F. van Harmelen, OWL Web On- 311-327, 2004.
tology Language Over-view, World Wide Web Consor- [43] Wordnet http://www.w3.0rg/TR/wordnet-rdf/
tium (W3C) Candidate Recommendation. August 18, 2003.
http://www.w3.org/TR/owl-features/

[22] S. Mcllraith, T. Son, and H. Zeng, Semantic Web Seryices
IEEE Intelligent Systems (Special Issue on the SemantiaUTHOR BIOGRAPHIES
Web) 16(2):46-53, 2001.

[23] Mindswap, Maryland Information and Network
Dynamics Lab Semantic Web Agents Project.
http://www.mindswap.org Giusy di Lorenzo is a Ph.D. student in Computer Engineering

[24] F. Moscato, N. Mazzocca, V. Vittorini, G. Di Lorenzo, at the Department of Computer Science and Systems of the
P. Mosca, M. Magaldi, Workflow Pattern Analysis in Web University of Naples Federico Il. She obtained her Master
Services Orchestration: The BPELAWS Example, in HPCOdegree in Computer Engineering in 2005 from the University
2005:395-400, 2005. of Naples Federico Il. Her current research activities uidel

[25] S. Narayanan and S. Mcllraith, Simulation, Verificatio composite web-services analysis and verification.
and Automated Composition of Web Services, in 11th Intl.
World Wide Web Conference (WWW 2002):77-88, 2002.

[26] C. Ouyang, E. Verbeek, W.M. van der Aalst, S. Breu-
tel, M. Dumas, and A.H. ter Hofstede, Formal Seman-
tics and Analysis of Control Flow in WS-BPEL, Tech-

Nicola Mazzoccais full professor of Calcolatori Elettronici at
the University of Naples Federico Il. He graduated in etaut

nical Report 2174, Queensland University of Technology,engineering from the University of Naples, Italy, in 198hda

2006. http://eprints.qut.edu.au/archive/000021788M- received his Ph.D. from the same university. His scientific
05_15 pdf ’ B activity involves methodologies and tools for performaegalu-

[27] OWL-S Coalition OWL-S 1.0 Release ation of computing systems, computer networks, commuigicat

. ’ " protocols, general and special purpose parallel architestand
applications. Since 1998 he partecipated in various rebear
projects as coordinator.

http://www.daml.org/services/owl-s/1.0/

[28] M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara, Se-
mantic matching of web services capabilities, in First.Intl
Semantic Web Conference, LNCS 2342:333-347, 2002.

[29] M.P. Papazoglou and D. Georgakopoulos, Service-

Oriented ComputingCommunication of the ACM (Special Francesco Moscatois reseach assistant at the Department of
Issue on Service-Oriented Computingp(10), 2003. Computer Science and Systems of the University of Naples Fed
[30] J. Pathak, S. Basu, V. Honavar, Modeling Web Services byarico |1. He obtained his Master degree in Computer Enginger
Iterative Reformulation of Functional and Non-Functional jn 2002 from the University of Naples Federico Il and his Ph.D
Requirements, in 4th Intl. Conf. on Service Oriented Com-jn Electronic Engineering in 2005 at the Second University o
puting (ICSOC-2006), LNCS 4294:314-326, 2006. Naples (SUN). His research interests include: complexesyst
[31] M. Pistore, P. Roberti, P. Traverso, Process-Level Commodeling by multi-formalism techniques, formal verificati

position of Executable Web Services: “On-the-fly” Versus of reactive systems, composite web-services compositih a
“Once-for-all” Composition, in ESWC 2005: 62—77, 2005. ygrification.

[32] D Roman, U. Keller, H. Lausen, et al., Web Service
Modeling Ontology,Applied Ontology 1(1):77-106, 2005.
[33] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst,
and N. Mulyar, Workflow Control-Flow Patterns: A Revised Valeria Vittorini is associate professor at the Department of
View. BPM Center Report BPM-06-22 , BPMcenter.org, Computer Science and Systems of the University of Naples
2006. Federico I, Italy. She graduated in Mathematics at the Uni-
[34] H. Skogsrud, B. Benatallah, F. Casati, F. Toumani, Man-versity of Naples in 1990 where she received her Ph.D. degree
aging Impacts of Security Protocol Changes in Servicein Computer Science in 1996. Her research interests include
Oriented Applications, IEEE Proc. of the 29th Int. Conf. distributed system, systems modelling and formal methods i
on Sof. Eng. (ICSE 2007):468-477, 2007. system specification and design.
[35] E. Sirin, B. Parsia, J. Hendler, Filtering and Selegtin
Semantic Web Services with Interactive Composition Tech-
niques,|EEE Intelligent Systemd9(4):42—-49, 2004.
[36] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyan-
pur, Y. Katz, Pellet: a practical owl-dl reasoner, Sub-

© 2007 ACADEMY PUBLISHER

