
Towards Semantics Driven Generation of
Executable Web Services Compositions

Giusy Di Lorenzo, Nicola Mazzocca, Francesco Moscato,Valeria Vittorini
Dip.di Informatica e Sistemistica, Univ. of Naples Federico II

Email: {giusy.dilorenzo, francesco.moscato}@unina.it

Abstract— Web services composition is a very active area of
research due to the growing interest of public and private
organizations in services integration and/or low cost devel-
opment of value added services. The problem of building an
executable web service from a service description has many
faces since it involves web services discovery, matching, and
integration according to a composition process.

In this paper we propose a life cycle for the automated
composition of web services which is based on the usage
of Domain Ontologies for the description of data and
services, and on workflow patterns for the generation of
executable processes. In particular the paper focuses on
the integration of the matching and composition phases.
The approach aims at producing executable processes that
can be formally verified and validated. This is achieved
by exploiting formal definitions of composition rules and
of BPEL4WS constructs. These definitions are expressed
in operational semantics and are translated into Prolog
programs in order to be throughout the composition process.
A reference architecture for implementing the proposed life
cycle is also described.

I. I NTRODUCTION

The SOA (Service Oriented Architecture) foundation
relies upon basic services, services descriptions and op-
erations (publication, discovery, binding) [29]. One of
the most promising benefits of SOA based web services
is enabling the development of low cost solutions/ap-
plications by composing existing services. Web services
composition is an emerging approach to support the in-
tegration of cross-organizational software components [9]
whose effectiveness may be severely compromised by the
lack of methods and tools to automate the composition
steps. Given a description of a requested service and
the descriptions of several available basic services, the
ultimate goal is to be able:

a) to perform the automatic and dynamic selection of
a proper set of basic services whose combination
provides the required capabilities;

b) to generate the process model that describes how to
implement the requested service;

c) to translate the process model into an executable
definition of the services composition, in case the
selection is successful;

d) to verify the correctness of the definition of the
composition;

e) to validate the composite web service against the
initial description.

Each of these steps has its intrinsic complexity. Ser-
vices descriptions, relations among the involved data and

operations, composition definitions should be unambigu-
ously computer-interpretable to enable the automation of
web services discovery, selection, matching, integration,
and then the verification and validation of web services
compositions [15], [22]. Most of the work on web services
composition address these steps separately.

As for the description of web service capabilities and
process model, the Semantic Web Community has created
OWL-S [27], a web service ontology based on OWL
which, in turn, is a logic based ontology language to
describe web contents [21]. OWL-S has a well defined
semantics and provides a starting point to automate tasks
as discovery and composition [22]. The WSMO (Web
Services Modeling Ontology) initiative has recently de-
veloped a conceptual framework and a formal language
for “semantically describing all relevant aspects of web
services in order to facilitate the automation of discover-
ing, combining and invoking electronic services over the
Web” [40]. These means provide the basis to reason about
services integration in automated contexts. Nevertheless,
they are not been proven expressive enough to solve
the problem of generating executable compositions. For
example, in [31] ad-hoc executable compositions (i.e.,
single-use cases) are described by means of OWL-S and
executed by the Mindswap engine [23], while the OWL-S
process model is shown to be not sufficiently expressive
to characterize more general compositions (i.e., re-usable,
multiple use-cases compositions). Ad-hoc composition
and re-usable composition are also addressed in [25]
and [6], respectively.

A different approach is based on orchestration lan-
guages. In particular, many industry efforts to build web
services composition focus on the workflow to be realized
to implement the requested service. The most popular
flow language oriented to web services composition is
the Business Process Execution Language for Web Ser-
vices (BPEL for short). BPEL is now being standardized
by OASIS (WSBPEL-TC); it enables the definition of
business processes and interaction protocols to meet web
services orchestration requirements [4].

The main drawback of the flow languages is their
lack of formal semantics, hence the composition process
described by means of these languages cannot be handled,
queried and interpreted reliability by a computer based
program. Several formalizations of BPEL have been pro-
posed in the literature (e.g. in [10], [12]–[14], [26]), but
at the best of our knowledge none of them is used for the

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 1

© 2007 ACADEMY PUBLISHER

automated development of web services compositions in
working systems.

Moreover, automatic synthesis of composition pro-
cesses is an hard problem to solve, both in theory and
in practice. Partial solutions have been proposed, based
on formal approaches (e.g. [2], [7]), on the peer-to-
peer model [5], according to the semantic and workflow
approaches [38], focusing on partial automation [30]. In
particular, a technology for semi-automated composition
of SOA components has been recently developed by
IBM [1], [8], which uses AI planning-based techniques.
One of the main difficulties to overcome is that dynamic
composition of services requires component services to
be compatible in order to achieve the composition goal.
Matching algorithms, methods and tool have been devel-
oped aiming at selecting IOPE (Inputs, Outputs, Precon-
ditions and Effects) compatible services [17], [18], [28],
[35], but most of them really address only Inputs and
Outputs matching since the specifications of precondition
and effects is still an open issue of languages such as
OWL-S [16].

Finally, very few work has been done to validate the
results of the composition. This phase can be accom-
plished by means of formal techniques only if both the
composition goal and the composite service capabilities
may be formally expressed. Of course, the validation
may be more easily performed if all the phases of the
composition development process are supported by formal
means.

In this paper we present a first step towards the defi-
nition of an unifying life cycle approach to web service
composition development. The development process may
start from a composition goal that describes a specific
customer’s request (ad-hoc request) or also from a com-
position goal that requires to build a web service able to
satisfy a class of requests. The same objective (automatic
generation of executable compositions) is pursued in [31]
which investigates the integration of discovery/selection
of compatible services and composition.

We propose a life cycle which uses domain ontologies
to describe operations, data and services, and aims at pro-
ducing BPEL executable processes that can be formally
verified and validated. Operational semantics is the formal
basis of all the life cycle phases: it is used to express
the flow of the operations which realizes the composition
goal, to identify the composition pattern described by the
composition flow and automate its translation into a BPEL
executable process, to formalize the BPEL constructs
(so that the resulting executable process can be auto-
matically verified), and to support the validation of the
composition. We also define a reference architecture for
implementing the proposed life cycle, whose components
are partially developed [10], [24] or under development.
An example of composition is described, in order to
prove the effectiveness of the approach. Much more work
has to be done on the theoretical framework and on the
single steps of the composition, also integrating the results
available in the literature. Non-functional aspects, suchas

quality of service and security requirements must also be
considered [34], [42]. We want to show that an unified
approach to the development phases of composite services
can be investigated and successfully used.

The remainder of the paper is organized as follows.
Section II contains an overview of the proposed life
cycle. Section III focuses on the selection of candidate
services and the generation of the process model of the
composition. In Section IV an architecture is described
which supports the generation of an executable compo-
sition according to the phases described in Section II
and III. In Section V the proposed approach is applied
to a case study. Finally Section VI contains some closing
remarks and some hints about future work.

II. L IFE CYCLE

In this Section we describe the phases to automatically
develop an executable web service composition from an
initial specification of the requested service (Request,
in the following). The proposed approach addresses the
generation of both ad-hoc and re-usable compositions.
Nevertheless, the discussion is here focused on the life
cycle of re-usable compositions. The approach is based
on the hypothesis that the Request refers to a well
defined Domain and that a detailed Domain Ontology is
available or can be created. The Domain Ontology must
contain all the concepts (data and operations) to form the
Request in a common (or accepted) Domain vocabulary.
The approach exploits OWL for data and OWL-S for
operations; here an operation is an atomic function de-
scribed by the OWL-S Service Profile and Grounding1.
Hence the proposed composition development process
takes into account the fact that a service may provide
more operations. The life cycle described in the following
requires that a Knowledge BaseKB and a set of Inference
Rules IR are defined. A formal, explicit description
of the Domain is given by OWL and OWL-S. The
components ofKB are axioms, derived from the ontology
descriptions of the Domain and expressed by means of the
Prolog language. They describe the properties of concepts
and the relationships (constraints) among concepts. In
particular, the relations among data and operations involve
the semantic description of the operations, Pre-conditions
and Effects, and the Input/Output of the operations. The
creation ofKB has to be performed once but it is specific
to each Domain. The rules to reason onKB are expressed
by an operational semantics and then written in Prolog.
IR contains the rules to apply in order to build valid
paths of operations in terms of IOPEs and according to
the main workflow operators: sequence, AND, OR, XOR
splits and joins. These inference rules are re-usable and
they do not depend on the Domain.

Given an ontology description of the Domain,KB
andIR, the main phases to generate an executable Web
Services composition according to the proposed approach
are:

1The Service Profile says what an operation does by specifyingits
IOPE, and Grounding is a mapping from OWL-S to WSDL [35].

2 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

• Synthesis of the Operations Flow model (OF);
• Generation of the Services Workflow model (SW)

from OF ;
• Synthesis and Verification of the executable process

implementingSW ;
• Validation of the composite service.

They are briefly described below. Section III will detail
the Synthesis ofOF and the generation ofSW .

a) Synthesis of the Operations Flow model.:The
generation of an executable Web Services composition is
issued by aRequest. The goal of this phase is to obtain
a graph model of the flow of the operations that must
be executed to satisfy the Request. This is accomplished
according to the following steps:

a) Analysis of the Request. We suppose that the user’s
request contains a description of the serviceW to be pro-
vided, expressed by using the Domain Ontology concepts
and relations. This description must specify the semantics
of W , its IOPE parameters and the conditions that it must
verify. The conditions may be defined by means of the
logical connectives of the propositional calculus. From
this information, a Prolog QueryPQW is generated.

b) Generation of the Operations Flow model.PQW is
issued to determine possible operations flows that satisfy
theRequest(if any). In this phase operations compatibility
is exploited by matching Pre-conditions and Effects and
the inference rules inIR are applied to buildOFW .
Input and Output compatibility is addressed in the next
phase.

b) Generation of the Services Workflow model.:
The goal of this phase is to transform the Operations
Flow model in order to obtain a workflow modelSWW

of the composition. In this phase graph transformation
techniques are applied and the workflow patterns which
realize the service are identified. Notice that the opera-
tions specified by the flow model must be mapped to the
available Web Services. We cope with I/O compatibility
by using wrapping services, that can be involved in the
composition if it is necessary.

c) Synthesis and Verification of the executable
process.: The goal of this phase is to generate an
executable and correct orchestration process from the
workflow model. In particular, we address the automatic
generation of BPEL processes from workflow models.
This is achieved by exploiting previous results, in par-
ticular the automatic generation of a BPEL definition of
the composition fromSWW is performed by using the
results described in [24], and the verification of the BPEL
process is accomplished by using the results described
in [10]. These works are based on a formalization of the
control flow constructs of BPEL by means of operational
semantics and Prolog.

d) Validation of the composite service.:The goal
of this phase is to validate the composite service against
the composition goal expressed by the Request. Since the
overall development process is based on Prolog language,
it is possible to validate the composite process by standard
validation procedure, i.e. by trying to obtain the Request

from the composite service.

III. F ROM THE REQUEST TO THEPROCESSMODEL

A. Synthesis of the Operations Flow model

In this phase a set of operations is selected and properly
combined in order to produce the semantic behavior of the
requested service.

According to the OWL-S standard definition, a web
service operation is defined by its Inputs (I) and Outputs
(O) parameters, and by its Pre-conditions (P) and Effects
(E)(IOPE model) [28].

The synthesis of the operations flow model is achieved
by analyzing the Request and the OWL-S definitions of
the operations, and then issuing a Prolog query onKB.

The inference rules inIR defines services compatibil-
ity in terms of pre-conditions and effects. Four possible
types of semantical matchings can be exploited during the
analysis of concepts inKB in order to establish operations
compatibility:

• Perfect Matching: predicate concepts are the same;
• Exact: predicate concepts are equivalent;
• PlugIn: a predicate concept is a subconcept of an-

other one;
• Subsume: a predicate concept is a superconcept of

anothe one;
• Fail: no matchs among predicate concepts.

The analysis of inferential tree for retrieving the re-
quested service leads to composite services. Composi-
tions are defined in terms of precedence relations among
operations. These relations define a graph that we call
Operation Flowgraph.

The workflow constructs we use to build OF are the
following: sequence, split and join. Sequence allows for
sequential activation of operations; split and join allows
for concurrent execution of operations and synchroniza-
tion. Choices and loops can be introduced by means of
proper conditions on OF edges.

In the following the PE matching and flow rules are
formally defined.

We remember thatP and E are sets of predicates, as
explained in Section II. LetPredicate be the set of all
predicates that appear inP and E sets of all operations
in the domain and letσ be the set of evaluations of
all predicates inPredicate (eval(Predicate) for short’s
whereeval is the function that associates to each element
in the set Predicate the couple (predicate, value)),
wherevalue is the truth value ofpredicate).

In the followingPA (EA) will denote the preconditions
(effects) set associated to an operationA. In order to allow
for A operation activation (i.e. to makeA activable),
all predicates inPA must evaluate true. After a correct
termination of theA operation, predicates inEA evaluates
true. In addition we callActA the activation of the
operationA. Finally we indicate withEffA the set of
all Predicates that evaluates true after theActA:

EffA = {p ∈ Predicates|eval(p) = (p, true)afterActA}

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 3

© 2007 ACADEMY PUBLISHER

In the following the operational semantics of therules
we introduced before is reported. These definitions are
translated into Prolog rules which are used during the
synthesis phase.Rulesare defined in terms of precondition
that can enable the activation of a given operation compo-
sition and in terms of the changes in theσ set depending
on E sets of component operations and composition
operators.

The semantics of the activation of an operationA is
the following:

eval(PA)

σA
ActA−→ σ

′

A

(1)

whereσA = eval(Predicate) before the activation of
the operationA and σ

′

A is the sameeval(Predicate)
but after the activation of the operation. Notice that only
predicates inEA may change their evaluation, and then
σ

′

A = eval(¬(Predicate ∩ EA) ∪ EA)

In order to synthesize the requested composed service
all possible combinations of services are analyzed by the
means of a Prolog engine, that tries to find a services
composition to which corresponds the requestedP andE
sets.

Proper pruning techniques are used to allows for ter-
mination of the inferences even when loops are created
in the problem state space exploration.

1) Sequence:In a sequence, an operation is activable
after the completion of another operation in the same pro-
cess. LetA andB two web services operations where the
B operation can be activated only after the completion of
theA operation. We denote withSeq(A, B) the sequential
activation of A and B where the activity order inside the
brackets is related to the activation order.

In order to activate the Sequence, the following condi-
tions must happen:

EffA ⊇ PB , eval(p) = (p, true)

∀p ∈ PA −→ activable(Seq(A, B))

ObviouslyPSeq = PA andESeq ⊇ EB becauseESeq

contains all predicates in the last sequence operation, but
also predicates that belong to theE sets of the other
operations which maintain their truth values during the
execution of the whole sequence (i.e., in sequence with
two operations, thep ∈ EA such thateval(p) = (p, true)
even after the B execution). It is possible to prove that
EA ∪ EB ⊇ ESeq. The relation between the sets is not
an equality since it the B operation should request the
invalidation of a previous effect. For example a service
that first request an authentication for a session, can also
request the end of the authentication session after the
execution of a given task. The predicatehasAuthentication
is an effect of the first operation, but not of the last one
(and thus it is not one of the sequence).

It is also true thatEffSeq = EffB.

Notice that associative property can be applied to
Sequence operator, and it is possible to state that
Sequence(A, Seq(B, C)) = Seq(Seq(A, B), C) =
Seq(A, B, C). In the case of multiple sequence compo-
nent operations, the previous definition can be extended
by recursion.

If Ln denotes a list ofn operationsLn = (A1, · · · , An)
to execute in a sequence then:

Seq(Ln) = Seq(Seq(Ln−1), An)

Seq(A) = A

The semantics of a sequence composition is the fol-
lowing one:

σSeq(Ln−1)

Act(Seq(Ln−1)
−→ σ

′

Seq(Ln−1),

EffSeq(Ln−1) ⊇ PAn , σ
′

Seq(Ln−1)

Act(Ln)
−→ σ

′

Seq(Ln)

σSeq(Ln)
Act(Seq(Ln))

−→ σ
′

Seq(Ln)

(2)

(1) and (2) are the rules which define the execution
of sequential web services operations. They state that in
order to allow for sequential execution of a list of opera-
tions, the last one (An) has to be activable and the other
ones have to be previously activated. In order to allows for
last operation activation, it must beEffSeq(Ln−1) ⊇ PAn

.
For example, the rules are recursively applied for

Seq(A, B) in the following manner:

eval(PA)

σA

Act(A)
−→ σ

′

A

, EffA ⊇ PB ,
eval(PB)

σ
′
a

Act(B)
−→ σ

′

Seq(A,B)

σSeq(A,B)
Act(Seq(A,B))

−→ σ
′

Seq(A,B)

Notice thatEffA ⊇ PB =⇒ eval(PB) , σSeq(A,B) =

σA andσ
′

Seq(A,B) = σ
′

B .
2) Split: A Split is a point in the OF with a single

incoming control flow path and multiple outgoing paths
(Fig. 1). Three types of splits are defined in order to
describe different kind of outgoing paths executions:
AND, XOR and OR splits.

A

B C

SPLIT

C

A B

JOIN

Figure 1. Split and Join

AND splits allow for parallel execution of outgoing
paths. All preconditions needed to enact all paths exe-
cutions have to be verified in order to consider the OF
activable. XOR splits allow for the enactment of only
one of the outgoing paths. The preconditions of only
one outgoing path have to be be verified in order to
consider the OF activable. If more paths can be enabled,
the system must choose one to activate. OR splits allow
for the enactment of one or more of the outgoing paths

4 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

at any time, as soon as paths enabling preconditions
are evaluated true. Obviously any type of split with one
outgoing edge has to be considered a sequence. For
brevity’s sake we will show in the following only the
AND split activation conditions and semantics. Complex
splits can be achieved by associating predicates called
conditionson each outgoing path and discriminating their
activation depending on these predicates values.

Let us consider the AND split in Fig. 1 and let us
indicate a split withSplitAND

(A,B,C) where the first operation
in the brackets is related to the incoming split path and
the other ones to the outgoing paths . The condition that
makes activable the AND split is the following one:

EffA ⊇ PB ∪ PC

eval(p) = (p, true)∀p ∈ PA

Let us consider for simplicity’s sake (here and in
the other following constructs) that theE sets of split
outgoing operations have no predicates that appear in
one of the other set in the negate form. We can say that
PSplitAND

(A,B,C)
= PA and,ESplitAND

(A,B,C)
= E∗

A ∪ EB ∪ EC ,
whereE∗

A is the set ofEA predicates which do not appear
in a negative form inEB andEC . The equality is because
we assume that parallel outgoing operations cannot act
concurrently executing conflicting operations.

More generally we denote withInc the operation on
the incoming path and withOutn = (O1, · · · , On) the
operations on the outgoing paths, indicating the split with
SplitAND

(Inc,Outn). Let be Outn−1 = (O1, · · ·On−1), We
can thus recursively defineOutn = (Outn−1, On), with
O0 = ∅ andSplitAND

(Inc,∅) = Inc

Since we assume no conflicts on outgoing operations,
the AND Split operator can be considered commutative
on Outn list. Thus if we denote withPerm(Outn) the
set of all possible permutations onOutn list, and with
Permi an element of this set,

SplitAND
(Inc,Outn) = SplitAND

(Inc,Permi)
∀i ∈ {1, n!}

It is possible to associate the position in the listOn with
the order of operation completion. With the previous rela-
tion we state that the AND Split execution is independent
on the completion order of outgoing operations.

It is now possible to describe the semantics of the AND
Split:

EffInc ⊇ POn−1 ,

σSplitAND
(Inc,Outn−1)

Act(SplitAND
(Inc,Outn−1)

)

−→ σ
′

SplitAND
(Inc,Outn−1)

σSplitAND
(Inc,Outn)

Act(SplitAND
(Inc,Outn)

)

−→ σ
′

SplitAND
(Inc,Outn)

Notice thatσ
′

SplitAND
(Inc,Outn−1)

is the set of all predicates

evaluations of all the Split operations evaluations except
the operationOn. This may resume the case of having
all operations terminated but theOn. Thanks to the com-
mutative property previously described, this is not a loss

of generality and the rule can be applied independently
on outgoing operation terminations: the final state will be
σ

′

SplitAND
(Inc,Outn)

in every case.

Furthermore,

EffInc ⊇
⋃

i=1,···,n

POi ⇒

EffInc ⊇ POi∀i ∈ {1, · · · , n}

and the preconditionEffInc ⊇ POn−1 is true at any
level of inference tree.

We do not report the rules of other Split types due to
the lack of space.

3) Join: A Join in the OF is a point with multiple
ingoing paths and a single outgoing path (Fig. 1). It is
usually a synchronization point of concurrent or parallel
activities. Three types of joins are defined in order to
describe different kind of synchronization: AND; XOR
and OR joins.

An AND join is a point where all operations on
incoming paths have to terminate their execution in order
to activate the outgoing control flow path. An XOR join
allows for activation of the outgoing path whenever the
operations of one of the incoming paths terminate their
executions. Finally an OR join allows for activation of
the outgoing path every time an incoming path operations
terminate; the outgoing path can be activated more than
once. In addition complex synchronization patterns can be
defined by associating predicates (conditions) on incom-
ing paths. The joins rules in such case apply only to paths
with conditions that evaluate true. In the following for
brevity’s sake, we will describe only AND Join semantics.

With reference to the Fig. 1 we denote with
JoinAND

(A,B,C) the activity with operation A and B on
incoming join path and with operation C (the last in the
join list) on the outgoing path. The conditions that make
activable the AND join are the following:

EffA ∪ EffB ⊇ PC

eval(p) = (p, true)∀p ∈ PA ∪ PB

In order to activate the C operation, the paths with A
and B operations must terminate. This implies that join
can be activated only when all precondition of operations
on incoming paths evaluate true and it is possible to state
that: PJoinAND

(A,B,C)
= PA ∪ PB. Further, if no conflicting

operations on incoming paths, it can be trivially proved
that EJoinAND

(A,B,C)
= E∗

A ∪ E∗
B ∪EC whereE∗

X is the set
of all EX predicates except for predicates that appear in
the negative form inEC . The definitions can be adapted
to a generic number of operations on incoming paths (in
a list Incn) and one on outgoing path (Out) like as we
did previously with Split.

In order to define the semantics of Join, let us extend
the semantics of the Act function to a list of operations.
Let be Incn a list of n operations(Ii, · · · , In). We can
extend the Act semantics as follows:

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 5

© 2007 ACADEMY PUBLISHER

σ
Act(Incn−1)

−→ σ
′

n−1, σ
′

n−1

Act(In)
−→ σ

′

σ
Act(Incn)

−→ σ
′

Whereσ is the state before the activation of all opera-
tions, σ

′

is the state after the activation of all operations
and σ

′

i is the state after the activations of the firsti

activities in the Incn list. In brief the activation of
n operations in a list evolves by activating component
operations in turn.

With this definition and thanks to the commutative
properties on incoming paths operations, it is possible to
define the semantics of a Join:

σJoinAND
Incn,Out

Act(Incn)
−→ σ

′

Incn
,

⋃

i∈{1,···,n}
EffIi ⊇ POut, σ

′

Incn

Act(Out)
−→ σ

′

JoinAND
(Incn,Out)

σJoinAND
(Incn,Out)

Act(JoinAND
(Incn,Out)

)

−→ σ
′

JoinAND
(Incn,Out)

B. Generation of the Services Workflow model

Since the previous synthesis process does not take in
account of operation I/O descriptions, the OF graph may
generate compositions that, even if semantically correct,
may be incorrect in terms of Input and Output. At this
purpose, we introduce in the OF the execution of opera-
tions that execute I/O format translations (wrappers). In
order to establish if a wrapper has to be inserted in the OF,
a proper I/O matching algorithm for operations is used.

Once the rules explained before have been applied in
order to build the OF graph, it is necessary to translate this
representation into a control flow graph which elements
are organized in workflow patterns [33], [41]. We will call
this graphService Workflowgraph (SW).

The main concepts of the translation from OF to SW
will be introduced in the following.

Figure 2. OF Zones

Let us consider the OF in Fig.2. It is composed by
two operations in sequence (A and B in Seq1) and two
parallel paths after an AND split point, that synchronize
in an AND join point. The path on the right contains a

single operation while the path on the left is in turn a spli-
join composed by three parallel branches (each containing
a single operation).

The first step of the translation algorithm consists in
identifying OF graph regions we callzones. Briefly each
zone is identified by a single split-join and by activities
that comes before and after it.

Zones are identified by visiting the OF graph with a
depth first policy, identifying zones recursively also by
using techniques of compiler optimization and program
synthesis [3], [11]. The graph may contain loops that will
be addressed in future works.

In Fig.2 it is possible to identify two zones (Zone1 and
Zone2, where the first is included in the second one)

Depending on split and join types (AND, XOR, OR)
in a zone, and on which kind of conditions are defined
over the edges in OF graph, it is possible to translate a
zone subgraph in a component of SW (which obviously
is a workflow pattern).

Table I shows the relations among some workflow
patterns, split-join types and conditions. Notice that the
Sequencepattern is trivially identified on OF Graph and
translated.

Pattern Split Join Conditions
Parallel Split AND - No
Synchronization - AND No / Yes iff they are the same

on all join incoming edges
Exclusive Choice XOR, OR - Mutually exclusive on

all split outgoing edges
Simple Merge - XOR No
Multi Choiche OR OR, XOR On split outgoing edges
Structured Synchronization Merge * AND Yes
Multiple Merge * OR Yes
Structured Discriminator * XOR Yes
Interleaved routing AND AND No
Interleaved Parallel Routing * AND No
Deferred Choice OR OR, XOR Yes with exeternal event

(trigger) specification

TABLE I.
SW RULES

A workflow patterns description can be found in [33],
[41]. Fig.3 depicts the SW related to the OF in Fig.2.

Figure 3. An Example of SW Model

The SW is a composition of sequences and interleaved
routing patterns. The whole composition must be included
in a sequence pattern.

The composition of WF patterns will be used in the
next phases in order to produce, verify and validate

6 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

executable composed processes. The executable processes
are defined in BPEL4WS language as described before.

C. Synthesis and Verification of the executable process

In the phase of the executable process synthesis the
SW is analyzed in order to build a BPEL process
(BP). The BP is then processed in order to verify its
correctness.

Both synthesis and verification phases are based on
a formal definition of BPEL4WS constructs in terms
of operational semantics. The operational semantics is
translated into Prolog rules (BPEL Semantic Rules) which
are used as explained in the following.

1) BPEL4WS basics:BPEL4WS defines a language
for specifying Web Services compositions in the form
of business processes. In the following we refer to the
BPEL4WS specifications published in May 2003 [4].

BPEL4WS (or BPEL for short) provides a model and
an XML-based grammar for describing the control logic
and the message exchanges required to coordinate the
Web Services involved in a composition. A BPEL compo-
sition is calledprocessand the web services participating
in the process are calledpartners.

Once the partners are defined, how messages are ex-
changed and how to sequence the operations is specified
by means of a set of primitives calledactivities. BPEL
providesbasicandstructuredactivities.

Basic activities are used to define interactions with
something external to the process itself. They mainly
are instructions that handle the communication between
the process and the partners. A typical scenario is the
following.

The BPEL executable process waits a message from
a requestor (which represents a client) by using the
receiveactivity, when the message arrives an instance of
the process is created. Then the process instance might
executes one or more partner by means of theinvoke
activity and finally it sent back a response to the requestor
by using thereply activity.

Since an executable process may specify more than one
receiveactivity, it is necessary to distinguish between the
messages received from a partner during a conversation.
This is done by a mechanism calledcorrelation.

Data flow is realized by sharing data containers that
may exchange data using theassign activity to copy
internal variables.

Structured activities are used to manage the process
flow. They can be combined to write complex algorithms:

• sequence: specifies an ordered sequence of activities;
• while: defines a loop;
• pick: captures events (messages) in order to execute

one of several alternative paths;
• switch,case,otherwise: defines a conditional branch-

ing;
• scope: groups a set of activities in a single transac-

tion;
• flow: specifies a set of activities to be executed in

parallel. Thelink construct may be used to define

precedence relations among activities executing in
parallel. Particular conditions (called transition con-
ditions) may be defined over links. A link produces
the activation of an activity only when its transition
condition evaluates true.

Each activity has optional standard attributes: a name,
a join condition, and an indicator whether a join fault
should be suppressed if it occurs. A join condition is a
Boolean expression on all incoming links of an activity
and is used to specify requirement about concurrent paths
reaching at an activity.

2) BPEL4WS Semantics:In the following the state of
an activity a will be denoted by the symbolσa and the
state of a linkk will be denoted by the symbolσLk

.
Furthermore we will denote structured activities by:

A = ⊤s0a1s1 · · · · · · sN−1aNsM⊥

where:

• ⊤ activity is the activity that precedes the construct
in the process,

• ⊥ activity specifies that the construct is terminated
and no more activities have to be processed within
the construct,

• the symbolssi ∈ S denote a construct;
• ai ∈ LA is the list of the activities specified within

the construct.

The stateσa of the basic activitya, can be:

• ready: a is ready to start;
• exec: a is started;
• terminated: a is ended; depending on the cause of

the termination, this state can assume the values:

– noexec: if the activity completes correctly with-
out faults;

– undefined: if the activity is terminated in an
abnormal way or if it generates a not handled
fault.

Notice that the state of a structured activity depends on
the states of its component activities;

The state of a linkk (σLk
) can assume the following

values:

• undefined: the state of the link before the evalua-
tion of its Transition Condition;

• positive: if the Transition Conditionassociated to
the link is evaluatedtrue;

• negative: if the Transition Conditionassociated to
the link is evaluatedfalse;

3) Derivation Rules:In the following the operational
semantics for some of the BPEL language constructs are
reported.

For brevity’s sake in this paper we will only report
the semantics of the sequence and flow (with links) con-
structs. The sequence is simple enough to let us explain
how the semantic rules are defined and derived; flow
with links is complex enough to describe the semantics
of complex BPEL processes and to make possible the
definition of a non trivial example.

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 7

© 2007 ACADEMY PUBLISHER

In order to define the semantics of the BPEL constructs,
it is needed to introduce some rules that are related
to constructs but not explicitly provided by the BPEL
language.

Implicit constructs
Let us introduce two basic transitions:

〈a, σa = ready〉
µ
→ 〈a, σ′

a = exec〉

〈a, σa = exec〉
τ
→ 〈a, σ′

a ∈ terminated〉

the µ andτ that respectively enable the execution and
the termination of an activity:

Now let us introduce two operators frequently used
in workflow languages:split and join. Split operator
is used, when an activity terminates, to choose the
next activity that may be activated depending on some
boolean conditions defined over outgoing transitions.
Join operator is similar tosplit operator but it applies
to incoming transitions. It is important to notice that
BPEL does not support explicitly these operators, but
their behaviors are obtained by using links. For these
reasons, here we define the semantics rules forjoin and
split operator.

As for the join operator, letLA be a list of activities,
in the ready state, to analyze andLL the list of the links
defined in the process.

In the following, the recursive definition ofLA list will
be used:a list is either the empty list, or it is a head
followed by a tail, where the head is an element and the
tail is a list. With this definition, it is possible to define
the following rule:

LA
first
→ lH · LT

The first transition extracts the first activitylH from
the list of the activitiesLA. TheLT list is composed by
the remaining activities (the tail).

With this definition it is possible to introduce the basic
rules for join semantics:

Rule 1 (Join1):

LA
first
→ aH · LAT

, σaH
= ready,

〈

aH ,LL

〉

vC
→ true

σaH

µ
→σexec

aH
〈

LA, LL, ǫA, σA

〉

join
→

〈

LAT
, LL, aexec

H
, σ′

A

〉

A join of some activities in the stateσA is enacted,
only if for at least one of the activities inner theLA list
has been determinated the status of all its incoming links
and the Join condition can be evaluated. This check is
performed by the rulevC that is omitted for brevity’s
sake. If the evaluation istrue in rule Join1, the join
operator, thought theµ transition, allows the activation
of the activity; changing the stateσA into σ′

A that is the
same of the stateσA except for the state of the component
activity σexec

aH
that becomesexec.

If the join condition isfalse theJoin2 andJoin3 rules
must be applied and thesJF value is evaluated.sJF is
used to establish if thedeath-path-eliminationmust be
applied or if a standard fault must be propagated.Death-
path-elimination does not allows the activation of other
activities which are on the same path of the activity whose
join condition evaluates false, assigning a negative status
to its outgoing links.

Rule 2 (Join2):

LA
first
→ aH · LAT

, σaH
= ready,

〈

σaH
,LL

〉

vC
→ false,sJF=no

σaH

µ
→σ

undefined
aH

〈

LA, LL, σA

〉

join
→

〈

LAT
, LL, σ′

A

〉

Rule 3 (Join3):

LA
first
→ aH · LAT

, σaH
= ready,

〈

σaH
,LL

〉

vC
→ false,sJF=yes

σaH

dPE
→

〈

σ
undefined
aH

,LNew
L

〉

〈

LA, LL, σA

〉

join
→

〈

LAT
, LNew

L
, σ′

A

〉

The Join3 rule handles join failure suppressions, per-
forming death path elimination while theJoin2 rule
put the activity with false transition condition into an
undefined state.

The Split operator is similar but concerning the
activation of outgoing links of terminated activities
and is omitted for brevity’s sake. Another important
construct, that we have defined to handle the termination
of the activities in BPEL is theTauCostruct transition.
The semantics ofTauCostruct transition is:

Rule 1 (Tau 1):

LA
first
→ aH · LAT

, σaH
= exec,

σaH

tau
→ σnoexec

aH
〈

aH ,LL

〉

Split
→ LLNew

〈

LA, LL, σA

〉

T auCostruct
→

〈

LAT
, LLNew

, σ′
A

〉

Rule 2 (Tau 2):

LA
first
→ aH · LAT

, σaH
= exec,

σaH

tau
→ σ

undefined
aH

〈

aH ,LL

〉

Split
→ LLNew

〈

LA, LL, σA

〉

T auCostruct
→

〈

LAT
, LLNew

, σ′
A

〉

LA is the list of activities to analyze,LL is the list
of the links andLLNew

is the list of links activated after
a split operation. ATauCostruct transition is activated
when at least one activity is no more in execution and
applies the split transition toaH outgoing links to verify
if some other activity can be execute. This operation
changes the state of the process links and may activate
some other activities. Since this transition terminates an
activity, its state becomesnoexec, if the activity termina-
tion is normal,undefined otherwise. The state of process
activities changes fromσA to σ′

A whereσ′
A is the same

of σA except for the state of the activityσaT
(because

the τ transition changes the state of theaT activity).
It is now possible to introduce the sequence and flow

constructs:
Sequence

8 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

Let be :

S = ⊤ · a1 · a2 · a3 · · · an · ⊥

the definition of a sequence of activitiesai. ⊤ activity is
the activity that precedes the sequence in the process and
the⊥ activity specifies that S is terminated and no more
activities have to be processed.

Let LA be the activity list ofS andσs the state ofS.
A sequence activity may be in execution (stateexec) or
not (statenoexec). Let beσa the state of thea activity in
the sequence (exec or noexec). The state of the sequence
depends on the state its component activities:

σs = exec ⇔ ∀i, j ∈ {1, · · · , n}σai
= exec, σaj |j 6=i = ready;

σs = noexec ⇔ ∀i ∈ {1, · · · , n}σai
= noexec

The operational semantics specification of thesequence
construct consists of the following four rules:

Rule 1 (S1):

σS = ready, LA
first
→ ⊤ · LAT

, σS
µ
→ σexec

S
〈

LA, σS

〉

sequence
→

〈

LAT
, σexec

S

〉

This rule applies when the sequence is not started
yet. In such case the first activity of the sequence is
the ⊤ activity. The first transition put in theLAT

list
the remaining sequence activities and the state of the
sequence through the application of theµ becomesexec.
The new state of the sequence is thenσexec

S and the
remaining activities to process (LAT

) were pruned of the
⊤ activity.

Rule 2 (S2):

σS = exec, LA
first
→ aH · LAT

, σaH
= ready, σaH

µ
→ σexec

aH
〈

LA, σS

〉

sequence
→

〈

LA, σ′
S

〉

This rule applies when the sequence is already started
and thefirst activity in the sequence is executed:

Rule 3 (S3):

S3.1

σS = exec, LA
first
→ aH · LAT

, σaH
= exec, σexec

aH

τ
→ σnoexec

aH
〈

LA, σS

〉

sequence
→

〈

LAT
, σ′

S

〉

S3.2

σS = exec, LA
first
→ aH · LAT

, σaH
= exec, σexec

aH

τ
→ σ

undefined
aH

〈

LA, σS

〉

sequence
→

〈

LA, σ′
S

= undefined

〉

In this case the activityaH is terminated and its state
can evolve:

1) from exec to noexec, if the termination is normal;
2) from exec to undefined, if a fault has occurred.

With this rule thefirst activity processes the activity
aH and the LA list is pruned of this activity. The
remaining activity list is calledLAT

. Notice that, in
the first case the list of activities to process remains
unchanged and only the sequence of states is changed;
in the second case thesequence termination is abnormal
and its state isundefined.

Rule 4 (S4):

σS = exec, a = ⊥, σS
τ
→ σnoexec

S
〈

a, σS

〉

sequence
→

〈

a, σnoexec
S

〉

This rule applies when the next activity in the sequence
to process is⊥. In such case the sequence state becomes
noexec and the sequence activity ends.

Axiom 1 (SA1)
〈

⊥, σS

〉

sequence
→ END

this axiom states that if no more activities are in the
list of activities to process, the sequence ends.

Axiom 2 (SA2):
σS = undefined

〈

LA, σS

〉

sequence
→ ENDundefined

This axiom states that the state ofsequence, σS is
undefined, because a fault has occurred.

The rules for a sequence construct are applied as
follows:

� �
S : Sequence
end= f a l s e ; f a u l t = f a l s e ;
whi le (! end && ! f a u l t)
{

i f (f i r s t (S)==⊤)
{

app ly S1 ;
}
e l s e i f (f i r s t (S)==⊥)
{

app ly S4 ;
end= t r u e ;
app ly SA1 ;

}
e l s e
{

app ly S2 ;
i f (f a u l t o c c u r r e d)
{

app ly S3 . 2 ;
f a u l t = t r u e ;
app ly SA2

}
e l s e
{

app ly S3 . 1 ;
}

}

}

� �

S1 is applied to start a sequence; no component activity
of the sequence is yet started.S2 is applied the first time to
start the first activity in the sequence.S3 is applied when
the activity executed in the previous step is terminated.
If this activity does not complete correctly theS3.2and
SA2 rules are applied and the sequence terminates in an
undefinedstate, otherwise the other rules can be applied to
the new list of activities to process that is the previous one
pruned of the first activity. If the current list of activities
to process contains only the⊥ activity the S4 and SA1
rules are applied and the process ends, else theS2 rule at
point is applied on the remaining activities.

D. Flow

Let be :

F = ⊤‖a1‖a2‖a3 · · · ‖an‖⊥

Since it is no possible to start all activities simulta-
neously, a way to define an order of activation must be

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 9

© 2007 ACADEMY PUBLISHER

provided. In our definition the order is derived from the
value of the indexi. Thus thefirst transition can be
applied also to flow rules. In addition it is necessary
to remember all activities enacted and all activities that
need to be started. The activities may terminate their
execution only when all of them were started. Likewise
for sequence, the state of the flow depends on the state
of each component activity:

A B

Incoming
 Links

Outgoing
 Links

Outgoing
 Links

lk

Figure 4. Links

σF = exec ⇔ ∃i ∈ {1, · · · , n} : σai
= exec

σF = noexec ⇔ ∀i ∈ {1, · · · , n} : σai
= noexec

If the flow is defined with thelinks, the following
semantics rules apply:

Rule 1 (F1):

σF = ready, LA
first
→ ⊤||LAT

, σF
µ
→ σexec

F
〈

LL, LA, σF

〉

flow
→

〈

LL, LA, σexec
F

〉

This rule applies when theflow is not yet started. In
such case the first activity of theflow is the⊤ activity.
The first transition put in theLAT

list the remaining
flow activities and the state of theflow through the
application of theµ becomesexec. The new state of
the flow is then σexec

F and the remaining activities to
process (LAT

) were pruned of the⊤ activity.

Rule 2 (F2):

F2.1

σF = exec,

〈

LA, LL, σF

〉

join
→

〈

LNew
A

, LNew
L

, σNew
F

= exec

〉

〈

LL, LA, σF

〉

flow
→

〈

LNew
A

, LNew
L

, σNew
F

〉

F2.2

σF = exec,

〈

LA, LL, σF

〉

join
→

〈

LNew
A

, LNew
L

, σNew
F

= undefined

〉

〈

LL, LA, σF

〉

flow
→

〈

LNew
A

, LNew
L

, σ
undefined

F

〉

This rules applies when theflow is already started. At
this point, theJoin transition can be applied. It starts only
the activities whoseTransitionCondition is evaluated
true. The state offlow changes to:

• σexec
F : this state is the same of the stateσF except

for the state of some activities that becomeexec;
• σ

undefined
F : if a fault has occurred and it not is

handled.
Rule 3 (F3):

F3.1

σF = exec,

〈

LA, LL, σF

〉

T auCostruct
→

〈

LNew
A

, LNew
L

, σNew
F

= exec

〉

〈

LL, LA, σF

〉

flow
→

〈

LNew
A

, LNew
L

, σNew
F

〉

F3.2

σF = exec,

〈

LA, LL, σF

〉

TauCostruct
→

〈

LNew
A

, LNew
L

, σNew
F

= undefined

〉

〈

LL, LA, σF

〉

flow
→

〈

LNew
A

, LNew
L

, σ
undefined

F

〉

This rules applies to terminate at least one of the ac-
tivities in execution. TheTauCostruct must be applied.

Rule 4 (F4):

σF = exec,

〈

LL, LA

〉

AnalisysStatusLink
→ true, σF

tau
→ σnoexec

F

〈

LL, LA, σF

〉

flow
→

〈

LL, LA, σnoexec
F

〉

Rule 5 (F5):

σF = exec,

〈

LL, LA

〉

AnalisysStatusLink
→ false, σF

tau
→ σ

undefined

F

〈

LL, LA, σF

〉

flow
→

〈

LL, LA, σ
undefined

F

〉

The AnalisysStatusLink checks if the flow can ter-
minate correctly depending on link status and transition
conditions. In case ofDeathPathElimination appli-
cation, dead links conditions are propagated in the flow
construct.

These rules respectively apply if: F4) all started
activities inside theflow are terminated and theJoin

transition does not start any activity; F5) Errors occur
in the flow definition. In this case the state of the flow
activity becomesundefined.

Rule 6 (F6):

a = ⊥, σF = exec, σF
tau
→ σnoexec

F
〈

LL, a, σF

〉

flow
→

〈

LL, ⊥, σnoexec
F

〉

This rule applies if the only activity in the flow to start
is the ⊥ activity. In such case theflow state becomes
noexec through theτ transition.
Axiom 1(FA1):

〈

LL, ⊥, σF = noexec

〉

flow
→ END

This axiom states that if no more activities are in the
list of activity to process, theflow ends.

Axiom 2(FA2):

〈

LL, LA, σF = noexec

〉

flow
→ END

This axiom states thatflow ends correctly.

Axiom 3(FA3):

σF = undefined

〈

LL, LA

〉

flow
→ ENDundefined

This axiom states that the state offlow is σF =
undefined, because a fault has occurred.

The rules for a flow construct are applied as follows:

10 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

� �
F : Flow
end= f a l s e ; f a u l t = f a l s e ;

whi le (! end && ! f l ow)
{

i f (f i r s t (F)==⊤
app ly F1 ;

e l s e
{

app ly F2 .1 or F2 .2 t o a l l a c t i v i t i e s ready i n F ;
app ly F3 .1 or F3 .2 fo r a l l a c t i v i t i e s t h a t can t e r m i n a t e ;
i f (f a u l t o c c u r r e d)
{

f a u l t = t r u e ;
app ly F5 , FA2 ;

}
e l s e i f (a l l a c t i v i t i e s were ex ecu t ed)
{

end= t r u e ;
app ly F6 , FA3 ;

}
e l s e i f (F ended due t o L inks S t a t e s A n a l y s i s)
{

end= t r u e ;
app ly F4 ; FA1 ;

}
}

}

� �

F1 is applied to start a flow when no component
activity of the Flow is yet started.F2 (2.1 and 2.2) are
then recursively applied when starting new activities in
the flow depending on the execution states of the other
activities andF3 (3.1 and 3.2) are recursively applied
when terminating the activities in the flow.F4 is applied
when terminating the flow activity in presence of general
activities; FA1 is applied too and the derivation process
ends.F5 is applied when terminating the flow activity
incorrectly;FA2 is applied too and the derivation process
ends.F6 is applied when all activities in the flow were
terminated correctly and the⊥ activity is examined; the
FA3 is applied and the process ends;

1) Synthesis of BP:In order to allow for the BP
synthesis, the patterns in the SW graph are analyzed and
associated into proper Prolog Query.

Each pattern is defined in terms of states and activations
sequence of its components activities. A Prolog query is
composed depending on these informations. Inferences
on BPEL Semantics Rulesallows for determining if any
composition of BPEL constructs can implement the given
pattern. Tracing the execution of the inferential engine
also produces informations that are used to build the BP.

2) BP Verification: The analysis of the BP by the
means of derivations on the previously describedBPEL
Semantics Rules, establishes if a given BPEL process is
correct and can help to discover faults before the process
is executed. The BP is again described in terms of a
prolog Query, where its correct termination is requested.
The Prolog Inferential Engine checks if the given BP can
terminate without faults.

Some fault can happen only in presence of some
particular inputs or conditions: this makes difficult their
detection.

This verification phase also allows for retrieving the
cause of the fault (if any), making possible the definition
of compensation actions if needed.

In particular, it is possible to detect:
• wrong usage of BPEL constructs;
• undesirable behaviors of BPEL processes due, for

example, to badlinks use or bad constructs combi-
nations;

• faults due to undiscovered semantics errors;

• wrong usage of fault handlers.
• reachability of any state of the executable process.

E. Validation of the composite service

This phase is not yet implemented. We aim to formally
define this step as future work.

IV. A RCHITECTURE

The life cycle described in the previous section is
supported and automated by the architecture shown in
Figure 5.

Request

Interpreter

Data

Ontology

Domain
 KB

Operations

Ontology

Ontologies

Analyzer

OFGenerator

IR

PQw

SW Graph Builder

Executable Bpel

Process Generator

Executable Process Generator

Services Catalog

BPEL Activities

Skeletons

Service Wrapping

Generator

 S
er

vic
es

 D
es

cr
ib

ed
 B

y

OF

BP

Matcher
Composition Rules

Engine

Bpel2Sem

Bpel Semantics

Rules

Check Rules

Static Analyzer
 Dynamic Analyzer

Tracer

Figure 5. Architecture

First of all the Domain Ontologies have to be analyzed
in order to buildKB. The Ontologies Analyzeris the
component in charge of populatingKB with Prolog
axioms.

The Request Interpreteranalyzes the user request and
produces a description of the required service. The de-
scription is defined by using the IOPE andKB. This
module translates the required service description in the
Prolog queryPQW .

The OF Generatorperforms the automatic generation
of the Operational Flow Graph. It is based on a Prolog
inference engine (Composition Rules Engine) and it uses
the inferenceRules(IR) described in section III in order
to build the OF graph while visiting an inference tree. For
operation matching purposes, a proper component (the
Matcher) implements the PE matching, needed to select
the candidate operations as explained in Section III.

During the OF graph generation,more than one solution
(OFs) can be selected to implement the required service.
The OF generator will chose the first OF whose effects
completely satisfy the request.

The Service Wrapping Generatormodifies the OF
graph if its services are not compatible in terms of I/O.
It introduces in the OF the activation of proper wrapper
operations (retrieved from theService Catalogin order to
perform I/O types translations for operations if needed).
The new OF graph is analyzed by theSW Graph Builder.
It implements the algorithm for the SW graph building
described in section III. The output of this component is

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 11

© 2007 ACADEMY PUBLISHER

a SW graph containing the composition of operations in
terms of workflow patterns. This graph is then analyzed in
order to be translated (if possible) in a BPEL executable
process by theExecutable BPEL Process Generatoras
described in the previous section. This is achieved by
substituting proper BPEL activities skeletons in place of
patterns inside the SW. This last component also uses the
methodology described in [24] in order to establish if a
given pattern can be defined in the BPEL language.

Finally, Bpel2sem[10] is a tool for the automatic
validation of BPEL executable processes, based on the
Prolog language.

The Static Analyzeranalyzes the BP produced in the
previous steps and translates it into an internal represen-
tation. Furthermore, this module performs different kinds
of analysis on the BPEL process like:

• Checks if the BPEL definition contains at least one
activity able to start the process (the creation of a
process instance in BPEL4WS is done by setting
the ”createIstance” attribute of some receive or pick
activity to ”yes”);

• Checks if the elements links are defined in the flow
activity;

• Checks if every link declared within a flow activity
has exactly one source activity and one target activ-
ity;

• Determines, if, for each target activity of a link,the
source activity is declared, and vice versa;

so that, theDynamic Analyzercan elaborate a correct
process relatively the data necessary for the semantic
analysis.

The Dynamic Analyzeraims to explore the full state
space of a BPEL process. This analyzer uses the BPEL
semantics rules translated intoprolog rules and stored into
a knowledge base which contains theBPEL Semantic
Rulesand rules used to detect errors and retrieve their
causes, when the analyzed process is checked to end in
an undefined state (Check Rules).

Derivations leads inevitably to an explosion of states to
analyze. Proper pruning techniques are implemented into
the Dynamic Analyzer in order to cope with the state
space explosion problem.

Finally, the Tracer uses information generated during
the analysis phases in order to produce information about
process execution (traces) both when the semantics incor-
rectness are present in the process definition or not.

V. EXAMPLE

In this section an example is reported which shows how
the lifecycle steps described in section II are exploited in
order to produce a requested service by composition.

Let us suppose that a user requests for a service that
returns the meaning and synonyms, both in the Italian
language, of an Italian word. Furthermore let us assume
that only the following services are available:

• an English Dictionary;
• an Italian Synonyms Dictionary;
• a multi-language translator.

The requested service can be obtained by composition
of available services as we will explain in the following.

The descriptions of Ontology Domain and of available
services operations are stored in theKB. The Domain is
described by Wordnet [43] ontologies while operations
are described by proper OWL-S documents. The opera-
tions IOPE models are shown in Fig. 6, 7, 8

In the following some components of the wordnet
schema used in this case study are descibed.
The WordNet schema has three main classes: Synset,
WordSense and Word. In the Wordnet ontology, aword
form represents a characters sequence such as ”man”,
”cat”; the sameword form can have different meaning
in several languages. AWord(element of Word class) is a
word form in a language; in this Section we denote with
WordE , WordI a word in English and Italian language
respectively. The propertyLexicalForm relates a word
to its word form. A word can have different senses.
A word sense(WordSense class) represents a word used
in particular sense; like the word class we denote with
WordSenseE the sense of a word in a English language
etc. The propertysenserelates a word a their senses (the
propertyword is its inverse). The synsets (SynSet class)
are a synonyms set; a set of words that are interchangeable
in some context. The propertycontainsWordSenserelates
synset to their word sense (the propertyhasSynsetis its
inverse).

Let us describe the available services.

EnglishDictionary service is defined by

Input : inputED type String
Output : outputED type String
Precondition: LexicalForm(WordE , inputED)
Effect: sense(inputED,W ordSenseE)

Figure 6. English Dictionary Service

TheEnglishDictionary service, returns the meaning of
the input word(sense(inputED, WordSenseE)) only if
the input word form is a word belonging to the English
dictionary (LexicalForm(WordE, inputED)).

SynonymsDictionary service is defined by

Input : inputIS type String
Output : outputIS type String
Precondition: LexicalForm(WordI , inputIS)
Effect: sense(inputIS,SenseWordI)
∧ hasSynset(SenseWordI , Synset)

Figure 7. Italian Synonyms Dictionary Service

The Italian Synonyms Dictionary returns a set of Syn-
onyms (Synset) of the inserted word only if the input word
form is an Italian word (LexicalForm(WordI , inputIS)).

Translator service is defined by

Input : inputT type String
inputLanguage type String
outputLanguage type String

Output : outputT type String
Precondition: [canBeTraslated(inputLanuage,outputLanguage)]
∧ LexicalForm(WordIL , inputT)
Effect:[LexicalForm(WordOL , outputT)]∧
semanctics(WordIL ,W ordOL)

Figure 8. Translator Operation

The translator is able to translate a word from a
language to another. The translation is allowed only if the

12 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

input-output languages are supported by the service (can-
BeTranslated(InputLanguage, OutputLanguage)). Fur-
thermore the input word has to be a valid word in the input
language (LexicalForm(WordIL, inputT)). The trans-
lator service must preserve the (semantics) meaning of
the input word after the translation (semantics(WordIL,
WordOL)).

The first step of the life cycle needs to translate the
user request into thePQW query. In Fig. 9 the request
for service in terms of IOPE model is reported.

ItalianDictionary service is defined by

Input : InputWord type Word
Output : OutputWord1 type SenceWord
OutputWord2 type Synset
Precondition: LexicalForm(W ordI , inputWord)
Effect:[sense(inputWord,SenseWordI)
∧hasSynset(SenseWordI, Synset)]
∧ [sense(inputWord,SenseWordI]

Figure 9. WID Service

The second step of the life cycle is the generation of the
OF by exploitingKB andIR. Composition Rules Engine
and Matcher components act together to accomplish this
task. The output of this phase is depicted in Fig. 10.

Split

Join

LexicalForm
(
Word
 I
,
inputWord
)

Italian Synonyms

Dictionary

(Italian/English)

Translator

English Dictionary

(English/Italian)

Translator

lexicalForm
(
Word
 I
,
inputSD
)

lexicalForm
(
Word
 I
,
inputT
)

lexicalForm
(
Word
 E
,
outputT
)

& semantics(
Word
 I
,
Word
 E
)

lexicalForm
(
Word
 E
,
inputT
)

lexicalForm
(
Word
 E
,
inputED
)

lexicalForm
(
Word
 I
,
outputT
)

& semantics(
Word
 E
,
Word
 I
)

sense(
inputED
,
SenseWord
 E
)

sense(
inputSD
,
SenseWord
 I
)

&
hasSynset
(
SenseWord
 I
,
Synset
)

[sense(
inputWord
,
SenseWord
 I
)&
hasSynset
(
SenseWord
 I
,
Synset
)
]

& [
sense(
inputWord
,
SenseWord
 I
)
]

Figure 10. Operation Flow Model

In Figure 10,the squares represent the services, the
expressions above the services represent the preconditions
and the expression below the services represent the ef-
fects.

For example the matching between the (Italian/English)
Translator and the English Dictionary is an exact
match. It is possible to execute the services in a
sequence. In fact, theP set of the second service
(lexicalFormWordE, inputED) is included in the set
Eff of the translator service (lexicalFormWordE, out-
putT∧ semanticsWordI ,WordE).

Furthermore the whole composed service has in
the Eff set all predicates that appear below opera-
tions boxes and in theP set the requestP predi-
cates. Notice thatsense(inputED, SenseWordED) and

sense(inputWord, SenseWordID) are equivalent be-
cause the semantics of the translated words are the same
after translations thanks to thesemantics(· · ·) properties.
Hence theE set of the requested service is a subset of
the Eff set of the composed service.

Then the OF model has to be translated into the SW
model. Some wrapper services are needed in order to
allow for I/O matching. A wrapper (Wr1 Service) is used
since the Translator needs more parameters (the input
language and the output language selections) than the
ones available as Input. HenceWr1 is a wrapper able
to complete this list of the parameter required for the
Translator service (it invokes the service with the constant
languages: Italian and English).

The SW graph obtained after the application of the
algorithm described in section III, is reported in Fig.11

Italian Synonyms

Dictionary

Seq1

(Italian/English)

Translator

English

Dictionary

(English/Italian)

Translator

Wr1
 Service

Wr1
 Service

Interleaved Routing

Sequence

Sequence

Figure 11. Services Workflow model

The SW graph is analyzed by the Executable Bpel
Process Generator in order to establish if the SW process
definition is implementable in the BPEL language. The
BPEL process is the output of step. We do not show the
whole BPEL process definition due to the lack of space.

A scratch of the BPEL process synthesized from the
SW graph is reported in the following.

It is possible to identify in the process the SW pat-
tern implementation. The Interleaved Routing pattern is
implemented by using theflow BPEL construct with
links, while sequences are trivially implemented by using
the sequenceconstruct. Links allow for definition of
proper synchronization among activities present in the
flow construct.

The process is also verified with success by the
Bpel2Sem component. We do not report more informa-
tions about the enactment of derivation rules in verifica-
tion due to the lack of space. More informations can be
found in [10].

VI. CONCLUSION

In recent years many efforts have been made towards
the automated composition of web services. Several re-

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 13

© 2007 ACADEMY PUBLISHER

� �

<?xml v e rs i o n=” 1 .0 ” encod ing =”UTF−8” ?>
<b p e l : p r o c e s s . . .>

. . .
<b p e l : v a r i a b l e s>

<b p e l : v a r i a b l e messageType =” n s 1 : i n p u t I DM ess age”
name=” inpu t IDMessage ” />

<b p e l : v a r i a b l e messageType =” ns1 :ou tpu t IDMessage ”
name=” ou tpu t IDMessage ” />

. . .
</ b p e l : v a r i a b l e s>
<b p e l : s eq u en ce>

<b p e l : r e c e i v e c r e a t e I n s t a n c e =” yes ” o p e r a t i o n=” r e q u e s t ”
p a r t n e r L i n k=” d i c t i o n a r y I t a l i a n L i n k T y p e ”
por tType =” n s 1 : d i c t i o n a r y I t a l i a n P T ”
v a r i a b l e =” inpu t IDMessage ”>

</ b p e l : r e c e i v e>
<b p e l : f l o w>

<b p e l : l i n k s>
<b p e l : l i n k name=”L3” />
<b p e l : l i n k name=”L4” />

</ b p e l : l i n k s>
<b p e l : s eq u en ce name=” Sequence1 ”>

<b p e l : i n v o k e i n p u t V a r i a b l e=” inputWR1Message ” name=”Wr1” . . . />
<b p e l : a s s i g n>

<b p e l : co p y>
. . .<!−− As s i g n r i g h t T r a n s l a t i o n Languages−−>

</ b p e l : co p y>
</ b p e l : a s s i g n>
<b p e l : i n v o k e i n p u t V a r i a b l e=” inpu tTMessage ” name=” T r a n sl a t o r ”

o p e r a t i o n=” t r a n s a l t e ”
o u t p u t V a r i a b l e=” ou tpu tTMessage”
p a r t n e r L i n k=” t r a n s l a t o r L i n k T y p e”
por tType =” ns3 . t r a n s l a t o r P T ” />

<b p e l : i n v o k e i n p u t V a r i a b l e=” inputEDMessage ”
name=” E n g l i s h D i c t i o n a r y ” o p e r a t i o n=” meaning ” . . . />

<b p e l : i n v o k e i n p u t V a r i a b l e=” inputWR1Message ” name=”Wr1” . . . />
<b p e l : a s s i g n>

<b p e l : co p y>
. . .<!−− As s i g n r i g h t T r a n s l a t i o n Languages−−>

</ b p e l : co p y>
</ b p e l : a s s i g n>

<b p e l : i n v o k e i n p u t V a r i a b l e=” inpu tTMessage ” name=” T r a n sl a t o r ”
o p e r a t i o n=” t r a n s a l a t e ” . . . />

<b p e l : s o u r c e s>
<b p e l : s o u r c e l inkName=”L4” />

</ b p e l : s o u r c e s>
</ b p e l : i n v o k e>

</ b p e l : s eq u en ce>
<b p e l : s eq u en ce name=” Sequence2 ”>

<b p e l : i n v o k e i n p u t V a r i a b l e=” inpu t IDMessage ” name=” Synonyms ID ”
o p e r a t i o n=” S D i c t i o n a r y ” . . .>

<b p e l : s o u r c e s>
<b p e l : s o u r c e l inkName=”L3” />

</ b p e l : s o u r c e s>
</ b p e l : i n v o k e>

</ b p e l : s eq u en ce>
<b p e l : a s s i g n>

<b p e l : co p y>
. . .<!−− Outpu ts a re co p i ed i n t o t h e r e p l y message−−>

</ b p e l : co p y>
<b p e l : t a r g e t s>

<b p e l : t a r g e t l inkName=”L3” />
<b p e l : t a r g e t l inkName=”L4” />

</ b p e l : t a r g e t s>
</ b p e l : a s s i g n>
</ b p e l : f l o w>

<b p e l : r e p l y o p e r a t i o n=” r e p l y ” . . . />
</ b p e l : s eq u en ce>

</ b p e l : p r o c e s s>

� �

Figure 12. WID Service BPEL Process

sults are described in literature, addressing different as-
pects of this problem. In this paper a life cycle approach
to the automatic generation of executable web services
compositions is presented, in which many of the available
results may be integrated. The core of the process consists
of the automated synthesis of two graph models of the
composite process: the operations flow model (OF) and
the services workflow model (SW). The construction of
OF requires: a) to select a set of (available) service
operations that are semantically compatible (matching of
Pre-conditions and Effects); b) to determine a composi-
tion of such operations which semantically matches Pre-
conditions and Effects of the requested composite service.
The OF model is then translated into the SW model. The
construction of SW requires: a) to check and provide the
Input/Output matching of the selected operations; b) the
application of graph transformation techniques in order to
express the composition by means of workflow patterns.
SW is then used to generate an executable BPEL process.

An architecture to implement the proposed approach is
also described. Future work will include: investigating the
integration in this reference architecture of more matching
and graph transformation algorithms and tools, supporting
further workflow patterns and loops, addressing quality of
services and security requirements.

REFERENCES

[1] G. Agarwal, K. Chafle, N. Dasgupta, A. Karnik, S. Kumar,
V. Mittal, B. Srivastava, Synthy: A System for End to End
Composition of Web Services, Journal of Web Semantics,
3(4):311-339, 2005.

[2] R. Agarwal, K. Verma, J. Miller, W. Milnor, Constraint
Driven Web Service Composition in METEOR-S, IEEE Intl.
Conf. on Services Computing (SCC 2004):23–30, 2004.

[3] Alfred V. Aho , Ravi Sethi , Jeffrey D. Ullman, Compilers:
principles, techniques, and tools Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, 1986

[4] T. Andrews, F. Curbera, H. Dholakia, et
al., Business Process Execution Language
for Web Services, Version 1.1, 2003.
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel/ws-bpel.pdf

[5] B. Benatallah, Q.Z. Sheng, M. Dumas, The SELF-SERV
Environment for Web Services Composition, IEEE Internet
Computing:40–48, 2003.

[6] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini,
and M. Mecella. Automatic Composition of e-Services that
Export their Behavior, in 1st Intl. Conference on Service
Oriented Computing (ICSOC 2003), LNCS 2910:4-358,
2003.

[7] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, M. Me-
cella, Towards Automatic Web Service Discovery and Com-
position in a Context with Semantics, Messages, and In-
ternal Process Flow, Position paper at W3C Workshop on
Frameworks for semantic web services, 2005.

[8] G. Chafle, G. Das, K. Dasgupta, A. Kumar, S. Mittal,
S. Mukherjea, B. Srivastava, An Integrated Development
Environment for Web Service Composition, In Proc. of the
IEEE Int. Conf. on Web Services (ICWS 2007). Also as
IBM Research Report RI 06009, November 2006.

[9] Jen-Yao Chung, Kwei-Jay Lin, Irvine Richard G. Mathieu,
IEEE Computer, Special Issue on Web Services Computing,
36(10), 2003.

[10] G. Di Lorenzo, F. Moscato, N. Mazzocca, V. Vittorini,
Automatic Analysis of Control Flow in Web Services Com-
position Processes, in PDP 2007:299-306, 2007.

[11] R. Eshuis , R. Wieringa, Verification support for workflow
design with UML activity graphs, Proc. of the 24th Int.
Conf. on Software Engineering, May 19-25, 2002, Orlando,
Florida

[12] D. Fahland and W. Reisig, ASM-based semantics for
BPEL: The negative Control Flow, in 12th Intl. Workshop
on Abstract State Machines (ASM 2005), 131–151, 2005.

[13] R. Farahbod, U. Glässer, and M. Vajihollahi, A formal
semantics for the business process execution language for
Web Services, in third Workshop on Web Services: Model-
ing, Architecture and Infrastructure (WSMDEIS 2005):122–
133, 2005.

[14] A. Ferrara, Web services: a process algebra approach, in
2nd Intl. Conf. on Service Oriented Computing, 242–251,
2004.

[15] M. Grüninger, R. Hull, S. McIlraith, A First-Order On-
tology for Semantic Web Services, Position paper at W3C
Workshop on Frameworks for semantic web services, 2005.

14 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

[16] M.C. Jaeger, L. Engel and K. Geihs, A Methodology
for Developing OWL-S Descriptions, in First Intl. Conf.
on Interoperability of Enterprise Software and Applications
Workshop on Web Services and Interoperability, 2005.

[17] M. Klein, B. König-Ries, M. Müssig, What is Needed for
Semantic Service Descriptions? A Proposal for Suitable
Language Constructs,Int. Journal of Web and Grid Services,
1(3):328–364, 2005.

[18] M. Klusch, B. Fries, M. Khalid, K. Sycara, OWLS-MX:
Hybrid OWL-S Service Matchmaking, in 1st Intl. AAAI
Fall Symposium on Agents and the Semantic Web, 2005.

[19] F. Lécué, A. Léger, Semantic Web Service Composi-
tion through a Matchmaking of Domain, in ECOWS’06
2006:171–180, 2006.

[20] D. Martin, M. Paolucci, S. McIlraith, et al., Bringing
Semantics to Web Services: The OWL-S Approach, in
SWSWPC 2004, 26–42, 2004.

[21] D.L. McGuinness and F. van Harmelen, OWL Web On-
tology Language Over-view, World Wide Web Consor-
tium (W3C) Candidate Recommendation. August 18, 2003.
http://www.w3.org/TR/owl-features/

[22] S. McIlraith, T. Son, and H. Zeng, Semantic Web Services,
IEEE Intelligent Systems (Special Issue on the Semantic
Web), 16(2):46–53, 2001.

[23] Mindswap, Maryland Information and Network
Dynamics Lab Semantic Web Agents Project.
http://www.mindswap.org

[24] F. Moscato, N. Mazzocca, V. Vittorini, G. Di Lorenzo,
P. Mosca, M. Magaldi, Workflow Pattern Analysis in Web
Services Orchestration: The BPEL4WS Example, in HPCC
2005:395-400, 2005.

[25] S. Narayanan and S. McIlraith, Simulation, Verification
and Automated Composition of Web Services, in 11th Intl.
World Wide Web Conference (WWW 2002):77–88, 2002.

[26] C. Ouyang, E. Verbeek, W.M. van der Aalst, S. Breu-
tel, M. Dumas, and A.H. ter Hofstede, Formal Seman-
tics and Analysis of Control Flow in WS-BPEL, Tech-
nical Report 2174, Queensland University of Technology,
2006. http://eprints.qut.edu.au/archive/00002174/01/BPM-
05-15.pdf

[27] OWL-S Coalition. OWL-S 1.0 Release.
http://www.daml.org/services/owl-s/1.0/

[28] M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara, Se-
mantic matching of web services capabilities, in First Intl.
Semantic Web Conference, LNCS 2342:333-347, 2002.

[29] M.P. Papazoglou and D. Georgakopoulos, Service-
Oriented Computing,Communication of the ACM (Special
Issue on Service-Oriented Computing), 46(10), 2003.

[30] J. Pathak, S. Basu, V. Honavar, Modeling Web Services by
Iterative Reformulation of Functional and Non-Functional
Requirements, in 4th Intl. Conf. on Service Oriented Com-
puting (ICSOC-2006), LNCS 4294:314-326, 2006.

[31] M. Pistore, P. Roberti, P. Traverso, Process-Level Com-
position of Executable Web Services: “On-the-fly” Versus
“Once-for-all” Composition, in ESWC 2005: 62–77, 2005.

[32] D Roman, U. Keller, H. Lausen, et al., Web Service
Modeling Ontology,Applied Ontology, 1(1):77–106, 2005.

[33] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst,
and N. Mulyar, Workflow Control-Flow Patterns: A Revised
View. BPM Center Report BPM-06-22 , BPMcenter.org,
2006.

[34] H. Skogsrud, B. Benatallah, F. Casati, F. Toumani, Man-
aging Impacts of Security Protocol Changes in Service-
Oriented Applications, IEEE Proc. of the 29th Int. Conf.
on Sof. Eng. (ICSE 2007):468–477, 2007.

[35] E. Sirin, B. Parsia, J. Hendler, Filtering and Selecting
Semantic Web Services with Interactive Composition Tech-
niques,IEEE Intelligent Systems, 19(4):42–49, 2004.

[36] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyan-
pur, Y. Katz, Pellet: a practical owl-dl reasoner, Sub-

mitted for publication to Journal of Web Semantics.
http://www.mindswap.org/papers/PelletJWS.pdf

[37] SWSL Committee, Semantic web service ontology (swso).
http://www.daml.org/services/swsf/1.0/swso/

[38] P. Traverso, M. Pistore, Automated Composition of Se-
mantic Web Services into Executable Processes, in Intl.
Semantic Web Conference 2004: 380–394.

[39] Workflow Management Coalition, XPDL definition,
http://www.wfmc.org/standards/xpdl.htm

[40] WSMO working group, Web Service Modeling Ontology
(WSMO). http://www.wsmo.org/

[41] NW.M.P van der Aalst, A.H.M. ter Hofstede, B. Kie-
puszewski, and A.P. Barros, Workflow Patterns. Distributed
and Parallel Databases, 14(3), pages 5-51, July 2003.

[42] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas,
J. Kalagnanam, H. Chang, QoS-aware middleware for Web
services composition, IEEE Trans. on Soft. Eng, 30(5), pp.
311–327, 2004.

[43] Wordnet http://www.w3.org/TR/wordnet-rdf/

AUTHOR BIOGRAPHIES

Giusy di Lorenzo is a Ph.D. student in Computer Engineering
at the Department of Computer Science and Systems of the
University of Naples Federico II. She obtained her Master
degree in Computer Engineering in 2005 from the University
of Naples Federico II. Her current research activities include
composite web-services analysis and verification.

Nicola Mazzoccais full professor of Calcolatori Elettronici at
the University of Naples Federico II. He graduated in electronic
engineering from the University of Naples, Italy, in 1987, and
received his Ph.D. from the same university. His scientific
activity involves methodologies and tools for performanceevalu-
ation of computing systems, computer networks, communication
protocols, general and special purpose parallel architectures and
applications. Since 1998 he partecipated in various research
projects as coordinator.

Francesco Moscatois reseach assistant at the Department of
Computer Science and Systems of the University of Naples Fed-
erico II. He obtained his Master degree in Computer Engineering
in 2002 from the University of Naples Federico II and his Ph.D.
in Electronic Engineering in 2005 at the Second University of
Naples (SUN). His research interests include: complex system
modeling by multi-formalism techniques, formal verification
of reactive systems, composite web-services composition and
verification.

Valeria Vittorini is associate professor at the Department of
Computer Science and Systems of the University of Naples
Federico II, Italy. She graduated in Mathematics at the Uni-
versity of Naples in 1990 where she received her Ph.D. degree
in Computer Science in 1996. Her research interests include
distributed system, systems modelling and formal methods in
system specification and design.

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 15

© 2007 ACADEMY PUBLISHER

