JOURNAL OF SOFTWARE, VOL. 2, NO. 4, OCTOBER 2007 1

Designing Efficient Algorithms for the
Eventually Perfect Failure Detector Class

Mikel Larrea, Alberto Lafuente, Iratxe Soraluze and Robézortifias
The University of the Basque Country, San Sebastian, Spain
Email: {mikel.larrea, alberto.lafuente, iratxe.soraluze, raheortinag@ehu.es

Joachim Wieland
RWTH Aachen, Aachen, Germany
Email: joachim.wieland@rwth-aachen.de

Abstract— This paper focuses on the design of unreliable there is a time after which correct processes are not
failure detectors of the Eventually Perfect class ¢P) in suspected by any correct process.

crash-prone partially synchronous systems. We adopt a

monitoring mechanism based on heartbeats over a logi- TABLE 1.

cal ring arrangement of processes as the common design TWO CLASSES OF FAILURE DETECTORS

feature. This provides good communication efficiency, a | [Eveniual Stiong Accuracy |
performance parameter which refers to the number of Stong Completenssd]— Evenal Per?ect) Y |
links that carry messages forever. We follow two different | WeaI?ComppIetenessH Eventually Q{Jasi Perfectt0] |
approaches that result in two families of failure detectors

a nearly communication-efficient family, which usesn + C

links forever, being C the number of correct processes out _ .
of the n processes in the system, and a communication- Combining each one of the two completeness properties

efficient family, which uses only n links forever. Besides ~ With the eventual strong accuracy property, we obtain two
communication efficiency, we evaluate the algorithms in different classes of failure detectors, which are presente
terms of QoS parameters, which include the capability of iy Table I. Chandra and Toueg showed in [1] that any of
the fr_:ulurg detector to provide right answers as well as its the two classes>Q and OP can be used to solve the
reaction time. . .
Consensus problem in an asynchronous system with a
Index Terms—distributed algorithms, fault tolerance, Con- majority of correct processes. To do so, they first showed
sensus, unreliable failure detectors that classes>Q and ©P are equivalent from a problem
solvability point of view, i.e., a problem which is solvable
with &P is also solvable with®Q and vice versa. It is
worth noting that the equivalence 6fQ and &P does
The concept of annreliable failure detectowas intro- not come for free, i.e., not all failure detectorsd® are
duced by Chandra and Toueg [1] as a mechanism that prin OP. Instead, it means that any failure detectoKi@
vides (possibly incorrect) information about process-fail can be extended with a simple distributed algorithm to
ures. This mechanism has been used to solve several pratistain a failure detector i®P.
lems in asynchronous distributed systems, in particukar th ~ Actually, Consensus can be solved with a weaker
Consensus problem [2]. Chandra and Toueg characterizésilure detector class calleBventually Strongdenoted
a class of failure detectors in terms of two propertiesi>S, which satisfies strong completeness and eventual
completenessind accuracy Completeness characterizesweakaccuracy: there is a time after whiclomecorrect
the failure detector's capability of suspecting incorrectprocess is not suspected by any correct process. Note
processes, while accuracy characterizes the failure detethat any implementation o7 trivially implements<S.
tor's capability of not suspecting correct processes, i.e Moreover, for certain problems [3] and Consensus pro-
restricts the mistakes that the failure detector can make. ltocols [4] failure detectorOP is required. Also,OP
this paper, we focus on the following completeness angs a morenatural failure detector, in the sense that it
accuracy properties: (iYWeak Completenesgventually ensures that eventually all correct processes output a list
every process that crashes is permanently suspected bgntaining exactly the incorrect processes, providing a
somecorrect process. (iptrong Completenessventually higher degree of accuracy. This may be a relevant quality
every process that crashes is permanently suspected by service (QoS) parameter for some applications.
every correct process. (ii)Eventual Strong Accuracy: Several algorithms implementing failure detector
classes>Q and<P have been proposed in the literature.
Research partially supported by the Spanish Research Toumder The algorithm proposed by Chandra and Toueg in [1]
grants TIN2006-15617-C03-01 and TIN2004-07474-C0242 Basque . .
Government, under grant S-PEO6IKO1, and the Comunidad dirija USE€S @ heartbeat mechanism and all-to-all communication
under grant S-0505/TIC/0285. to detect faulty processes. The algorithms proposed by

I. INTRODUCTION

© 2007 ACADEMY PUBLISHER

2 JOURNAL OF SOFTWARE, VOL. 2, NO. 4, OCTOBER 2007

Aguilera et al. in [5] and by Larrea et al. in [6] use of processesy, p;) is connected by two unidirectional
heartbeats too, and rely on a leader-based approach. @nd reliable communication links; — p; andp; — p;.
the other hand, the algorithms proposed by Larrea et al. Processes can only fail by crashing, that is, by pre-
in [7] use a polling —or query/reply— mechanism on amaturely halting. Moreover, crashes are permanent, i.e.,
ring arrangement of processes. The leader-based and tbeshed processes do not recover. In every run of the
ring-based algorithms are more efficient than the all-to-alsystem we identify two complementary subsetdlotthe
algorithm regarding the number of messages sent (lineaubset of processes that do not fail, denaied-ect, and
vs. quadratic). Observe also that compared to polling, théhe subset of processes that do fail, denetedhed. We
heartbeat mechanism reduces the number of messagesuse C to denote the number of correct processes in the
the half. Moreover, heartbeats inherently provide commusystem in the run of interest, which we assume is at least
nication reliability in a system with fair lossy links, wkil one, i.e.,C = |correct| > 1.
polling usually requires reliable communication. We consider that processes are arranged in a logical
Recently, we have proposed several algorithms foring. Without loss of generality, procegs is preceded
implementingOP that rely on a heartbeat-based detectionby proces;_, and followed by process; ;. As usual,
mechanism over a ring arrangement of processes [8j follows p, in the ring. In general, we will use the
[9]. Some of these algorithms outperform the formerfunctionspred(p) andsucc(p) respectively to denote the
ones in terms ofommunication efficiency performance predecessor and the successor of a progeasthe ring.
measure introduced in [5] consisting in the number of Concerning timing assumptions, we consider a partially
links that carry messages forever. synchronous model [1], [11] which stipulates that, in
Our Contribution. In this paper, we revisit the design every run of the system, there are bounds on relative
of heartbeat, ring-based algorithms ferQ and OP process speeds and on message transmission times, but
in order to implement efficient algorithms that provide these bounds are not known and they hold only after
good Qo0S. We start with a common skeleton definingsome unknown but finite time (calle@ST for Global
the basic ring communication pattern. Then, we studybtabilization Timg Actually, the bounds must exist and
the mechanisms required in order to provide the desirefiold only for theC links that eventually form the ring of
properties. We present two different approaches thattresutorrect processes, i.e., the links from every correct m®ce
in two families of algorithms. The first family, which we to its correct successor in the ring. Hence, the bounds
denote asnearly communication-efficienhas been de- must only hold for a linear number of links.
signed in a modular way. We start with a basic algorithm Finally, in the algorithms presented in this paper we
implementing®Q, and then a transformation is applied in assume that a local clock that can measure real-time
order to get>P. The second family directly implements intervals is available to each process. Clocks are not
OP, and algorithms are communication-efficient, i.e.synchronized.
eventually just: links carry messages forever, beinghe
number of processes in the system. We have evaluated the|||. D ESIGNING RING-BASED FAILURE DETECTOR
performance of the algorithms in terms of QoS measures, ALGORITHMS
mainly query accuracy probability and crash detection

latency [10]. For that, we have developed and tested Be used in all the algorithms presented in this work.

number ofCP algorithms for each family. As we will see, The basic idea is to keep each process monitoring its

some_algorlthms mglu_de_ sporadic exira communication, o ¢ predecessor in the ring by hearing heartbeats from
breaking the ring discipline. However, they always pre-

the original cati fici h aristi it. Figure 1 presents the definitions and the three core
2?3’12" ;r?\rill?/ma communication etliciency charactensti asks that try to converge, for every processto its

. _ correct predecessor in the ring. This core does not provide
The rest of the paper is organized as follows. INyy jiseif the properties of any failure detector, and will
Section I, we describe the system model consideregle 5,gmented with some mechanisms in order to every
in_this Work. In Section “|3 we discus the_ design of processp converge to both its correct predecessor and
heartbeat, ring-based algorithms and describe the basig .orrect successor in the ring (denotedr_pred, and

common skeleton to be used by all the algorithms. In Secz,,.,. o, .. respectively), that will provide the properties
tion 1V, we describe the nearly communication-efficient ¢ &0 and OP

family, while in Section V we present the communication- In Figure 1, every procegsstarts sending periodically

efficient family. In Section VI, we evaluate the perfor- 5 peartheat message to its successor in the ring, denoted
mance of the algorithms. Finally, Section VII concludesby the variablesuce, (Task 1). Also, every procegawaits
the paper. for periodical heartbeats from its predecessor in the ring,
denoted by the variablgred,,. If p does not receive such
Il. SYSTEM MODEL a heartbeat on a specific time-out inte.rvalmlt(predpl),
thenp suspects thatred, has crashed, includgged, in
We consider a distributed system composed of a finitéts local list of suspected processés, and setgred, to
setll of n processedI = {p1, p2,...,pn}, that commu- pred(pred,) (Task 2). If later onp receives a heartbeat
nicate only by sending and receiving messages. Every paimessage from a procesgsit is erroneously suspecting,

In this section, we describe a common core that will

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 4, OCTOBER 2007 3

Every proces® executes the following . . .
and their messages have been delivered, eventually either

pred, <« pred(p) {p’s estimated correct predecessor in the rjng (1)) Stabi|iZESp7“€dp to some correct procesg # p

(1)
(2) sucey, «— suce(p) {p’s estimated correct successor in the ring
(3) L,—0 {L, provides the properties ob Q} becauseg sends a message periodically powhich is
(4) forallqgell {A,(g) denotes the duration qf's time-out forq} received before the time-out (q) expires (e_g_ because
(5) A, (q) — default time-out interval T P ’ o
A,(q) is bigger than the bound on message transmission
(16) cobegin time), or (2) the rest of processes are incorrect and
(7) || Task Lirepeat periodically stabilizespred,, to p. [|
(8 if succp # p then As we have said above, the core tasks do not solve by
(9) send p-is-alive) to succ, R . .
themselves some key questions required to provide the
(10) || Task 2:repeat periodically i i i i
an T pred. o pand p did not receive fred, -is-alive) properties of the failure detectors we are interested in.
during the lastA, (pred,,) ticks of p's clock then First, it is not proved thapred, = corr_pred,. Secondly,
(12) Lp <= Ly U{predy} — {p suspectpred, has crashed jt js not defined how thesucc, variable is updated,
(13) pred, «— pred(predpy) . e
in order to converge to a correct process, specifically
(14) || Task 3:when receive g-is-alive) for someg
(15) if ¢ € L, then {p was erroneously suspecting COTT-SUCCp. . X
(16) Lp — L, — {succ(predy), . .., q} In order to complete the algorithm, two strategies can
gg Av(éﬂ — Aple) +1 be followed. The first approach consists in introducing a
pre “—q apr
! specific interaction mechanism betwegrmand pred,, in
(19) coend order to askpred, to update its successor o Doing

Figure 1. Common core tasks for a heartbeat, ring-baseddailetector. |ike that, some messages will be sent in the Opposite
direction of heartbeats. The second approach consists
. . . . in including into heartbeats global information about

p correctsL,, increments the time-out interval, () in suspected process, and relying on the regular heartbeat

order to adapt the time-out, and changes the perception, ;m nication to informpred, about its successor. We
of its correct predecessor in the ring ¢qTask 3). r ; ;
. ; esent both approaches in the next sections.
Observe that the core itself does not modify the:c P PP

variable of a process. We assume that there will be an
out-of-the-core mechanism to change thec variable.

The following observation can be derived:

Observation 1:The list L,, of suspected processes of
a procesp contains exactly the processes betwgend,
andp, both excluded, i.e., whepred,, # pred(p), L, =
{succ(predy), ..., pred(p)}, otherwise, wherpred, =
pred(p), L, = 0.

From now on, we will assume that any time instant
considered is larger than a timg, ;. that occurs after the
stabilization timeGST (i.e., tpase > GST), after every
incorrect process has crashed, and after all messages séntA Basic Ring-Based Algorithm ferQ
by incorrect processes have been delivered. Note that this We present here a basic ring-based algorithm im-
eventually happens. Hence, any new message delivergdementing<Q. For that, we add to the core skele-
has necessarily been sent by a correct process. Then, wen of Figure 1 three new tasks. Specifically, every
can enunciate the following lemma: processp periodically sends a heartbeat message to

Lemma 1:For every correct procegs eventually and the processes in the ring between itself amdcc,
permanentlypred, stabilizes on some correct process. (Task 4), and every procesg periodically sends a

Proof: Note first thatpred, is only modified in (ST ART _sending_heartbeats, p) message to its current
Task 2 (Line 13) and Task 3 (Line 18) of the algorithm. predecessor in the ringred, (Task 5). When a process
If pred, ¢ correct, since we are assuming that incorrectp receives a 7T ART _sending_heartbeats, new_succ)
processes have already crashed and their messages hawvessage, it setsucc_p to new_succ (Task 6).

IV. A NEARLY COMMUNICATION-EFFICIENT
APPROACH

In this section, we present a first approach to the design
of algorithms implementing>Q and &P. We introduce
several additional tasks to allow a procgsso update
its successosucc,. We start with a basic algorithm that
implements® Q. Then, we transform the algorithm to
implement a failure detector of the clag$, introducing
some optimizations oriented to improve the QoS.

been delivered, by Task 2 will suspectpred,, include Note that Task 1 and Task 4 could be integrated into a
it in L,, and setpred, to pred(pred,). Observe that single task in which a proceggeriodically sends a heart-
this could happen even ipred, € correct, e.g., if beat message to all processes{iucc(p), ..., succ,}.

pred, does not send any messageptor, even if doing Having two separated tasks, allows the use of independent
so, if A,(pred,) is smaller than the bound on messageperiods for them, which is interesting from a performance
transmission time. This scheme could be repeated at worpbint of view.

until p suspects every other process in the ring and sets We show now that the algorithm of Figure 2 im-
pred, = p andL, = II — {p}. At any time, ifp receives plements a failure detector of clagsQ. The key of

a message from a (necessarily correct) progessL,, the proof is to show that eventually and permanently
by Task 3p removesq from L, increments the time- pred, = corr_pred, and succ, = corr_succ, for every

out A,(¢), and setspred, to ¢. Hence, since we are correct proces®. In other words, the ring stabilizes in
assuming that incorrect processes have already crashtgtms of both thepred and succ variables of processes,

© 2007 ACADEMY PUBLISHER

4 JOURNAL OF SOFTWARE, VOL. 2, NO. 4, OCTOBER 2007

Every proces® executes the following .
incorrect, and by Lemma 2 eventually and permanently

(1) predy, < pred(p) {p's estimated correct predecessor in the rjng = i i
(2 su(:c:,) — suce(p) {p's estimated correct successor in the ring predw”“suwp corr_predy. By _Observatlon 1p will
(3) L,—0 {L,, provides the properties b0} eventually and permanently be included in, . _succ, -
(4) forallqgell {A,(g) denotes the duration qf's time-out forq} i i
(5) A {g) — default fme-out interval This provides th(=T weal_< complgteness propertyo@.
From the algorithmyp is never included irL,,. Once the

(6) cobegin ring has stabilized, by Observation 1 no correct process is
(7) || Task L:repeat periodically included (in Task 2) in the listé of any correct process.
(8 if succ, # p then Hence, once the ring has stabilized no correct process
(9 send p-is-alive) to succ, X X . X

will be present in any list of suspected processes. This
(10) || Task 2:repeat periodically H
1) it pred, # p and p did not receive fred,-is-alive) provides the eventual sft_rong accuracy propert;béj. [|

during the lastA, (pred,,) ticks of p’s clock then 1) On a faster stabilization of the ringWe present
03 Ly = Ly U dpredp) - {p suspectpred, has crashedl hare some modifications made to the basic algorithm of
pred, «— pred(predpy)) o . i
| Figure 2 that lead to a faster stabilization of the ring,

14) Task 3:when receive g-is-alive) for someg f :
(15) it g € L, then {p was eroneously suspecting 1€, Processes react faster to changes in thg structure
(16) Lp « Ly — {succ(predp), ..., q} of the ring due to failures or erroneous suspicions. The
e o) — Al modifications affect tasks 2, 3, 5 and 6 of the algorithm.

Figure 3 presents the modified tasks in detail.
(19) || Task 4:repeat periodically
(20) if suce, # succ(p) then .
(21) send g-is-alive) to suce(p), . . . , pred(succy) Every proces® executes the following

(22) || Task 5:repeat periodically

(23) send §T ART _sending_heartbeats, p) to pred, Lo
(10) || Task 2:repeat periodically
(24) || Task 6:whenreceive ST ART _sending-heartbeats, (11 it pred, # p a”d, p did not rece'veﬁTEdl?"s'al've)
new_succ) during the lastA , (pred,,) ticks of p's clock then
(25) succp «— new-succ (12) Lp — Lp U {predp} {p suspectgpred, has crashed
(13) pred, «— pred(predy)
(26) coend (al1) if pred, # p then
. . . (a2) send p, START _sending-heartbeats, p) to pred,
Figure 2. Basic algorithm fof>Q. (a3) else {p is suspecting the rest of processes: it setg:c, to p}
(ad) succy < p
14) || Tgsk 3:when receive g-is-alive) for somegq)
which guarantees the correct construction of the loca Iistggg a € Ly then (suce(pred){p Wa;}e""”eous'y suspecting
L of suspected processes. 17 A(g) wAp@+1
Lemma 2:For every correct procegs eventually and | (@9) if predy, # p then _
(ab) send p, START _sending_-heartbeats, q) to pred,
permanentlypred, = corr_pred,. (@a7) else
Proof: The proof is by contradiction. Since by |@8) succy — zej;fhglrosest process following the ring,
succ q
Lemma 1 we have seen that eventually and permanentjys; -

. predy, «— q
pred, stabilizes on some correct process, let us assume

that eventually and permanentpyed, # corr_pred,.

In the following, let beq = pred,. Then, by Obser- (22) || Task 5:repeat periodically

vation 1 corr_pred, € L. Als0, succeorr_pred, € Ly, |(a9) if pred, # p then .

i.e., corr_pred, does not send messages periodically td® sendp, START -sending-heartbeats, p) to pred,
p neither by Task 1 nor by Task 4, since otherwise (24) || Task 6:whenreceive ¢, START -sending-heartbeats,
should sepred,, to corr_pred, (which is a contradiction). new-succ) for someg

. . ; (25) succp < new-succ
Finally, succ, must be set tgp or further in the ring [(a10) it ¢ # new-suce then
in order to p not suspecting;, and hence by Task 4 |@1) sendyt-is-alive) tonew-suce
g sends messages periodically ¢orr_pred,. Clearly, Figure 3. Faster stabilization of the ring.
eventuallypredcorr_pred, = q, @and by Tasks 5 and 6 of
the algorithm eventually will set succ, to corr_pred,, The first modification consists in sending a

and hence; will stop sending messages periodically 10 (57 ART sending_heartbeats, —p) message to
p. Consequentlyp will suspectq, which contradicts the pred(pred,) when p suspects pred, in Task 2

fact thatp stabilizespred, to . B (Lines al-ad), i.e., independently of the periodical
Lemma 3:For every correct procegs eventually and activation of p's Task 5. However, we avoid that a
permanentlysucc, = corr_succ. process p sends ETART_sending_heartbeats, p)
Proof: Follows directly from Lemma 2 and Tasks 5 messages to itself. This occurs whensuspects the
and 6 of the algorithm. B rest of processes in the system. In this case we have
Theorem 1:The algorithm of Figure 2 implements a pred, = p after executing Line 13. Instead of sending
failure detector of clas® Q. the (START _sending_heartbeats, p) message, p

Proof: From Lemmas 2 and 3, given a process acts as if it instantaneously sent and received (in
if p is a correct process, then eventuallwill be in the Task 6) the message:directly sets its supposed correct
stable ring formed by correct processes. Otherwises, ~ successor in the ring to itself, i.esucc, < p. With

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 4, OCTOBER 2007

this modification, we can avoid that a processends
(ST ART _sending_heartbeats, p) messages to itself in E;;
Task 5 (Line a9).

Every proces® executes the following

pred, < pred(p)
sucey «— succ(p)

{p's estimated correct predecessor in the rjng
{p’s estimated correct successor in the ring

A second modification consists in sending a|(b1)

(3 L,—10 {L, provides the properties o Q}
Gp — 10 {G, provides the properties obP}
(4) forallqell {A,(q) denotes the duration gf's time-out forqg}

(ST ART _sending_heartbeats, ¢) message top’'s
current pred, in Task 3 whenp learns that it is
erroneously suspecting and before settingred, to ¢
(Lines a5-a6). This helps in the stabilization of the ring,
since by Task @’s currentpred, will set its successor to (1)
¢ and thus redirect its heartbeatsgoAs in the previous

(5)

Ap(q) < default time-out interval

|| Task 2:repeat periodically
if pred, # p and p did not receive gred,-is-alive, —)
during the lastA, (pred,) ticks of p's clock then
L, — L, U{predy} {p suspectpred, has crashed

Gp — Gp U {pred,}

(12)
modification, in the case thats currentpred, was itself, | (b2)
i.e., pred, = p, we could directly sebucc, to ¢ without (@3

sending any message. However, due to the reception @‘g
other (ST ART _sending_-heartbeats, -) messages it is (a3)
possible that even havingred, = p, p hassucc, setto @
a process- other thanp, in which case the best choice (14)

is to setsucc, to p's closest process following the ring, o)
eitherr (i.e., the currentuccy) or ¢ (Lines a7-a8). (17

Finally, another modification consists in sending afg)
heartbeat message tecw_succ in Task 6 when the Egg

(ST ART _sending_heartbeats, new_succ) message has
been sent by Task 3 (Lines al0-all). To distinguish thesgs)

pred, «— pred(predy)
if pred, # p then
send p, START _sending_heartbeats, p) to pred,
else {p is suspecting the rest of processes: it setg:c,, to p}
succp < p

|| Task 3:when receive @-is-alive, G) for someq
if ¢ € L, then {p was erroneously suspecting

L, «— Ly, — {succ(predy),...,q}
Ap(q) « Ap(g) +1
if pred, # p then

send p, START _sending_heartbeats, q) to pred,
else

sucey, «— p's closest process following the ring,

either succy, or ¢

predp < g

messages from those sent by tasks 2 and 5, we add th&3)

if ¢ = pred, then
Gp — (Gg—{pH ULy

:) : b4
sender as a first parameter. Again, this speeds up tHE?Y
stabilization of the ring, sincecw_succ will receive as

soon as possible a first heartbeat frpmindependently rigure 4. Transformation obQ into & with linear detection latency.

of the periodical activation gf’'s Task 1.

B. Transforming®Q into OGP
A simple way for obtaining &P failure detector from

global listG,..q, carried by the heartbeat (removipgf
P € Gprea,) With its own local listL, (Lines b3-b4).

©Q is to apply the transformation algorithm proposed Ve show now that the algorithm of Figure 4 imple-
by Chandra and Toueg in [1], which has an all-to-Ments & failure detector o_f clagsP. First of all, it is

all communication pattern. We rather want to keep the?@Sy o0 see that Observation 1, Lemma 1, Lemma 2, and
message complexity of the resulting algorithm linear, sg-€mma 3 hold for this algorithm.

we have first designed a transformation algorithm on top Observation 2:L,, € G, permanently for every pro-

of the logical ring formed by processes. Consequently, thi§€SSP-

algorithm has a linear detection latency of real failures. Theorem 2:The algorithm of Figure 4 implements a
Then, we present another transformation that has a lowefgilure detector of class>P.

constant detection latency, based on the broadcast of
suspicions.

1) Propagating Suspicions Through the Rirfgigure 4
presents a transformation of tkeQ algorithm of Figure 3

Proof: From Lemmas 2 and 3, the ring formed ex-
clusively by correct processes eventually stabilizes.eOnc
this happens, every incorrect procegss permanently
included in Leorr_suce,- By Observation 2,q is also

into ©P. Besides its local list of suspected processegermanently included itG.o,r_suce,- By the algorithm,

L,, now every processeg has a global listG, that
provides the properties o®P. In order to get®>P out

Georr_suce, 1S piggybacked into every heartbeat message
sent bycorr_succ, in Task 1. By the periodical heart-

of ©Q, processes propagate the global lists around theeat messages sent by correct processes in Task 1 and
ring. Furthermore, instead of using specific messages tbines b3-b4 of the algorithm, eventually every correct
propagate the global lists, they are piggybacked in th@roces will permanently include in G,. This provides
heartbeat messages that processes send in the algorittine strong completeness property ofP. Finally, it is

of Figure 3. This way there is no need of extra messages t®mple to see that the algorithm of Figure 4 preserves the
implement&P. Every time a process sends a heartbeat strong accuracy property 6fP provided by the algorithm
message either by Task 1, Task 4 or Task 6, it piggybackef Figure 2. |

its global list of suspected process@s in the heartbeat.
Also, wheneverp includes a procesg in L, (Task 2),
p also includes; in G, (Line b2). Finally, each time

2) Broadcasting Suspicions to Reduce the Detection
Latency: We present here another modification that, ap-
plied to the algorithm of Figure 4, allows to reduce the

receives a heartbeat message from its supposed corrafgtection latency of real failures. The modification, pre-

predecessorpfed,) in the ring (Task 3),p builds a

sented in detail in Figure 5, affects Task 2 and introduces

new global list of suspected processes by merging thawo additional tasks to handle two new types of messages

© 2007 ACADEMY PUBLISHER

6 JOURNAL OF SOFTWARE, VOL. 2, NO. 4, OCTOBER 2007

Every proces® executes the following
of suspected processés, every procesp has a global

list G, that provides the properties c®P. Processes

(10) || Task 2:repeat periodically propagate the global lists around the ring, piggybacked
an if pred, # p and p did not receive gred, -is-alive,) in the heartbeat messages they sent in Task 1 and Task 4.
during the lastA, (pred,) ticks of p’s clock then . .
(12) Ly — Ly U {pred,} {p suspectgred, has crashey ~ WWheneverp includes a procesg in L, (Task 2),p also
(b2) Gp — Gp U {predy} - f includesq in G,,. Finally, each timey receives a heartbeat
(1) send §USPICION, p, predy) to the rest of processes | message from its supposed correct predecegseti) in
13) pred, — pred(predy) . . .
(@1 if pred, # p then the ring (Task 3)p builds a new global list of suspected
(a2) send p, START -sending-heartbeats, p) t0 pred,, processes by merging the global li&t,,..q, carried by
(a3) else {p is suspecting the rest of processes: it setg:c, to p} ; . P, .
(ad) succp — the heartbeat (removing if p € Gpeq,) With its own
local list L,,. Also, p sets its supposed correct successor
(succp) in the ring to its nearest process following the
(c2) || Task 7:whenreceive SUSPICION, q, r) for somegq ring not be|0nging t((;’p_
(c3) if » # p then
(c4) Gp — GpU{r} —{q} i
(c5) else . {11)0 sends a refutation heartbeat to the rest of procepges Every procesy executes the following
(c6) send REFUTATION, p) to the rest of processes (1) pred, «— pred(p) {p's estimated correct predecessor in the rjng
(c7) || Task 8:when receive REFUT ATION, q) for someq (2) succp «— suce(p) {p's estimated correct successor in the ring
(c8) Gp — Gp — {q} (3) Lp,—0 {L, provides the properties cdQ}
(4 Gp—10 {G, provides the properties cbP}
Figure 5. Transformation of>Q into ©P with constant detection (5) forallgelIl: = {A,(q) denotes the duration gf's time-out forg}
latency. (6) Ap(q) < default time-out interval
(7) cobegin

|| Task 1:repeat periodically
if suce, # p then
send g-is-alive, G,) to succy

used for the notification of failure suspicions and refuta-g S;
tions, respectively. Every timg suspects in Task 2 that (10)
pred, has crashedy sends a§USPICION, p, pred,) (1)

|| Task 2:repeat periodically

message to the rest of processes (Line cl), in order to 1€
them know as soon as possible the (potential) crash qfs

pred,. In Task 7, whenp receives a §USPICION, 19
q, r) message for some, if »r # p thenp adds the

suspected processto its global listG)y,, removing the 8%
sender of the message, i.g, from G,. On the other (ig)

hand, ifr = p, i.e., p has been erroneously suspected by19)
q, p sends a REFUTATION, p) message to the rest g%
of processes (Lines c2-c6). The reception of refutatiori22)
messages is done in Task 8, consisting in the removal

the sender front7, (Lines c7-c8). The modification does (24)

not affect the correctness of the algorithm, since after thggg

if pred, # p and p did not receive fred, -is-alive, —)
during the lastA, (pred,,) ticks of p’s clock then
L, «— L, U {predy,} {p suspectpred, has crashegl
Gp — Gp U {pred,}
predy, < pred(predy)

|| Task 3:when receive @-is-alive, G4) for someq

if ¢ € L, then {p was erroneously suspecting
L, «— L, — {succ(predy),...,q}
Ap(q) < Ap(g) +1
predy, — q

if ¢ = pred, then
Gp — (Gqg—{pH ULy))
sucep < p's nearest process following the rirg G,

|| Task 4:repeat periodically
if suce, # suce(p) then
send gp-is-alive, G) to succ(p), . . ., pred(succy)

coend

stabilization of the ring no moreSUSPICION, -, -) e
messages will be sent, and hence Lines c2-c8 will never - 6 Basi cation-efficient impl at
be executed. igure 6. Basic communication-efficient implementationCgP.

Assuming a failure-free scenario, the number of mes-
V. A COMMUNICATION-EFFICIENT APPROACH sages periodically sent in the algorithm of Figure 6 in

In this section, we present a second approach to thet@bility isn, since every process sends just one heartbeat
design of algorithms implementingQ and &P, that re- 10 its successor in the ring. In the general case, the
lies on including into heartbeats global information abou@/gorithm periodically sends: messages as well, due
suspected process. We start with a basi@ algorithm, 0 the messages sent by Task 4 to crashed processes
that is a minimal, non optimized version of the algorithm {succ(p), - .., pred(succ,)}. As a consequence, the algo-
in [8]. As done in the first family of algorithms, several "ithm of Figure 6 is communication-efficient. In practice,

optimizations are also introduced in order to improve thend assuming that erroneous suspicions are not very
QosS. frequent, the period of Task 4 could be bigger than the

period of Task 1.
) o . . Some optimizations will be incrementally introduced
A. A Basic Communication-EfficientP Algorithm in the algorithm of Figure 6 in order to provide a faster
Figure 6 presents the basic communication-efficienstabilization of the ring and reduce the detection laterfcy o
algorithm implementing®P. With respect to the core real failures, as we will see in the following subsections.
skeleton of Figure 1, in this algorithm every process It is important to note that communication efficiency is
periodically sends a heartbeat message to the procesgaeserved in the new versions of the algorithm.
in the ring between itself anducc, (Task 4), as done We show now that the algorithm of Figure 6 imple-
in the algorithm of Figure 2. Also, besides its local list ments a failure detector of classP. First of all, observe

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 4, OCTOBER 2007 7

that Observation 1 and Lemma 1 of Section Il hold. Weconsequence, eventually-ed, will permanently receive

start by making an additional observation: lists of suspected processes containing the processes in

Observation 3:L, C G, permanently for every pro- succ(pred,),...,pred(p) and not containing. Hence,
cessp. by Line 23 of the algorithnpred, will permanently set

The following two lemmas, identical to Lemma 2 and SucCpred, 10 p = corr_succpreq,, and the lemma holds.
Lemma 3 of the previous section, require a new proof, _ _ _ u
since we do no longer rely on Tasks 5 and 6 of the Theorem 3:The algorithm of Figure 6 implements a
algorithm of Figure 2. failure detector of clas®P.

Lemma 4:For every correct procegs eventually and _ Pf0_0f1 From Lemmas 4 and 5, given a process
permanentlypred, = corr_pred,. p, if p is a correct process, then eventuallywill be

Proof: The proof is by contradiction. Since by in the stable ring formed by correct processes, and will
Lemma 1 we have seen that eventually and perma?ropagate by Task 1 its global li&t,, which is built based
nently pred, stabilizes on some correct process, leto" the global list received from its correct predecessor in
us assume that eventually and permanemttyd, # the ring corr_pred,. Otherwise,p is incorrect, and by
corr_pred,. Then, by Observation torr_pred, € L. Lemma 4 eventually and_ permanenﬁyedwﬁ_sump =
AISO, $UCCeorr pred, € Ly, i-€., corr_pred, does not corr_pred,. By Observatpns 1 an_d F will eventu-
send messages periodically o neither by Task 1 &lly and permanently be included ibeorr suce, @nd in
nor by Task 4, since otherwisg should setpred, to ~ Georr_suce,» Which will be propagated around the ring.
corr_pred, (which is a contradiction). Finallysuccyreq, As a consequence, eventually and permanenthill be
must be set top at the closest in order tp not included in the global list of suspected processes of every
suspectingpred,, and hence by Task 4red, sends correct process. This provides the strong completeness
messages periodically i@rr_pred,. By Observations 1 Property ofop. _ _
and 3, eventually and permanently all incorrect processes From the algorithm, every time a procegsbuilds
succ(corr_predy), ..., pred(p) will be included in L,, its global list of suspected process@s (in Task 3),p

and hence transmitted in all the global list, thatp ~ femoves itself front, * Once the ring has stabilized, by
will send. Observation 1 no correct process is included (in Task 2)

in the lists L and G of any correct process. Hence, once
the ring has stabilized and every correct process has built
its global list of suspected processes in Task 3 (Line 22),
no correct process will be present in any global list of
suspected processes. This provides the eventual strong
accuracy property oPP. []

In general, we have for every correct processhat
eventually and permanently (13uccprcq, iS Set top
at the closest, and hence by Taskp#ed, sends mes-
sages periodically t@orr_pred,, and by Task 4 or by
Task 1pred, sends messages periodicallygpand (2)
succ(corr_predy), ..., pred(p) € G,. A consequence of
(1) is that eventually and permanently messages are prop-
agated around a unique ring formed by all correct proB. On a Faster Stabilization of the Ring
cesses. This feature, combined with (2) and the fact that, gjgre 7 presents some modifications made to the basic
by the algorithm, no other process in the ring removes any,4qrithm of Figure 6 that lead to a faster stabilization of

of the processesucc(corr-preds),. ..., pred(p) included g ring "and a more accurate list,. The modifications

by p in the messages that are propagated, makes that evelke .t tasks 2 and 3 of the algorithm, and introduce a new
tually a list containing those processes will be received by,

corr_predp. At the reception Of that |iSTc.0rT_predp W|") A firSt modiﬁcation COhSiStS in Sending a
set SUCCeorr pred, to p at the_ clqsest (Line 23), anq will (ST ART _sending_heartbeats, — p) message to
Zt?:essesgdg‘gfr?rgssagesgere'og'cagw?;vshkegp rv?/ﬁlegleets pred(predp? when p suspectspred, in Task 2 (Lines

g orr-predp ps DY P al-a4). This new type of message will help processes

predy, t0 corr_pred,, which is a contradiction. ® {0 correct as soon as possible theiuce variables.
Lemma 5:For every correct procegs eventually and Upon reception of a §TART_sending_heartbeats,

permanentlysucc, = corr_succy. new_succ) message in the new Task 5, a procgssets
Proof: By Lemma 4, we have that for every cor- gcc, to new_succ (Lines al0-all). However, we avoid
rect processp, eventually and permanentlyred, = that a procesp sends a §7 ART _sending_heartbeats,

corr_pred,. Moreover, we have seen that eventually there)) message to itself. This occurs whensuspects the

is a unique ring formed by all correct processes aroungest of processes in the system. In this case we have
which the lists of suspected processes are propagategh..q, — p after executing Line 15 of the algorithm.
Observe that, by the way global lists are constructed (Lingnstead of sending theS{"ART _sending_heartbeats,

22), the list of suspected process&s propagated by p) messagep directly setssucc, — p.

around the ring will permanently contain the incorrect A second modification consists in sending a
processes iy, i.e., succ(predy), . ..,pred(p), and Wil (ST ART _sending_heartbeats, q) message to p's

never containp. Also, no other process in the ring current pred, in Task 3 whenp learns that it is
neither removes any of those processes nor adahen

constructing its own list of suspected processes. As a !Note that, from the algorithmy is never included irl,,.

© 2007 ACADEMY PUBLISHER

8 JOURNAL OF SOFTWARE, VOL. 2, NO. 4, OCTOBER 2007

Every proces® executes the following

The fact that eventually no
(ST ART _sending_heartbeats, —) message is sent
(11) || Task 2:repeat periodically indirectly shows that the algorithm of Figure 7 is
12) if pred, # p and_ p did not receive;Qv-edP-is-alive: -) communication-efficient as well.
during the lastA, (pred,) ticks of p’s clock then
gig ép — ép @] J,;{precfip}} {p suspectpred,, has crashegl
— U {pre
(15) pred, — pred(predy) C. Broadcasting Suspicions to Reduce the Detection La-
(al) if pred, # p then tency
(a2) send ST ART _sending-heartbeats, p) to pred,
(a3) else {p is suspecting the rest of processes: it seig:c,, to p} Finally, the modification presented in Section IV-B.2
(a4) sueey — P can also be applied to either the basic algorithm of
(16) || Task 3:when receive g-is-alive, G,) for someg i i i i
an Tac L then 1), was enroneously suspecing Figure 6 or the improved one of Figure 7,_ reducing
(18) Ly — Ly, — {succ(predy), . .., q} the detection latency of real failures. As previously, the
(19) Aplg) = Ap(g) 11 modification does not affect neither the correctness of the
(ab) if pred, # p then . : : . s .
(a6) send BT ART sending_heartbeats, q) to pred, algorithm nor its communication efficiency, since after
0 pred, —q the stabilization of the ring no moréUSPICION
(21) if ¢ = pred, then m will nt.
o2 e L, essages be sent
(23) succy, «— p's nearest process following the ring G,
Eag elseG G{p re?{ei;es a heartbeat from ¢ L, andq # predy} VI. PERFORMANCEEVALUATION
al p — Gp —{q . .
(29) send §TART -sending-heartbeats, predy) 10 q In this section, we compare the performance ofdye

algorithms implemented ove® Q (described in Subsec-

(a10) || Task 5:whenreceive 6T ART -sending-heartbeats, new_succ) tions 1V-B.1 and IV_BZ’ and .henceforth referre.d '.:O as

(all) suce, « new_succ LLWp1 and LLWg po respectively), and the optimized

Eiiii gégnd}-%aﬁ/ é?gi;%“ﬁi) v versions of the communication-efficiedt? algorithms
"’ ~ (described in Subsections V-B and V-C, and henceforth

Figure 7. Faster stabilization of the ring. New code for $a8k3, and referred to as LLW and LLW; respectively).

new Task 5. Besides results directly obtained from the analysis of

the algorithms, we provide some QoS measures, obtained

erroneously suspecting and before settingred, to g by simulation. Chandra-Toueg’s all-to-all algorithm (CT)

(Lines a5-a6). This helps in the stabilization of the ring,"as been also evaluated as a reference.

since by Task &'s currentpred, will set its successor

to ¢ and thus redirect its heartbeatsd¢o A. Communication Efficiency

A third modification consists in removing from G, Assuming a failure-free scenario, the number of mes-
and sending a messagf(ART sending-heartbeals, gages periodically sent in the algorithms LW, and
predp) 10 q in Task 3 whenp receives a heartbeat |y , ., in stability is 2n, since every process sends
message fromy ¢ L, and g # pred, (Lines a7-a9). ne (,-is-alive) message to its successor in the ring
Besides improving the accuracy 6f,, this helps in the (Task 1), and one START _sending_heartbeats, p)
stabilization of the ring as in the previous modification. message to its predecessor in the ring (Task 5). In the

Finally, another modification consists in removing -1 algorithm, this number is:(n — 1). Finally, the
new_succ from G, (to improve the accuracy o&;) cost of the basic communication-efficient algorithm of
and sending a heartbeat messagedw_succ in Task 5 Figure 6 (denoted LL\), as well as the LLW and

(Lines al2-al3). This speeds up the stabilization of thg |\, aigorithms isn, since every process sends just one
ring, sincenew_succ Will receive as soon as possible message to its successor in the ring.

a new heartbeat from, independently of the periodical

activation ofp’s Task 1. TABLE II.
It should be pointed out that the PERFORMANCE ANALYSIS.
ST ART _sending_heartbeats messages do not need to ‘ _ H # messages [# messages
. X Algorithm (failure-free case)| (general case)
be r_ehably sent, i.e., they can be lost. o T =D G
It is easy to see that the proposed modifications do not [LLW¢p1 and LLWg p2 2n n+C
affect the correctness of the algorithm. Indeed, observe [t-Wo. LW and LLW, n n

that the modifications do not affect the management of

the pred Variables, which is the basis of the correctness Table Il summarizes the performance ana|ysis of the
proof of the basic algorithm of Figure 7. Also, note gifferent algorithms, including the general case with fiaul
that the modified algorithm preserves that, eventualljyrocesses (assuming that> 2 out of then processes of
and permanently, theucc variables are set to a correct the system are correct). In the general case, the algorithms
process. LLW o p1 and LLWg po periodically sendv+C messages,
- — : : due to the messages sent by Task)l Task 4 ¢—C) and
2Actually, this is sufficient to implementP. Nevertheless, to achieve K h i

communication efficiency theucc variables must be set to the closest Task 5 (). However, note t_ atonce a '”?_Orrec'f processes
correct process following the ring. have crashed and the ring has stabilized, by Task 4

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 4, OCTOBER 2007 9

TABLE IIl.
every correct procesg sends heartbeat messages only SIMULATION SETTINGS (IN SECONDS).
to crashed processesucc(p),...,pred(succy)}. As a
conseqguence, in practice, and assuming that erroneous [_Parameter [Value |
suspicions are not very frequent, the period of Task 4 Minimum message delay 0.001

. : . Maximum message delay 0.005
could be bigger than the period of Task 1. An adaptive al- Periodicity of ALV E messages|| 0.5
ternative consists in setting initially the periods of Tdsk Initial time-outs 0.5
Time-out increment 0.001

and Task 4 to similar values (to facilitate a fast reaction
to erroneous suspicions during initial stabilization)dan

increasing the period of Task 4 every time it executesthe algorithm during 2000 seconds, that has been empiri-
This way eventually the number of messages sent byally proved to be sufficient for comparative purposes. In
Task 4 will become negligible, and hence the numbekact, after this time the simulations have either stabilize
of messages periodically sent by this algorithm will tendor are near stabilization. We assume that no process
to 2C. Furthermore, if the period of Task 5 is bigger crashes during the 2000 seconds. The crash detection time
than the period of Task 1, the number of messagefas been measured in a longer execution, introducing a
periodically sent by this algorithm will tend 16, which crash at a time instant (2500 seconds) in which the system
is optimal for C correct processes. Note that the samenas stabilized. In both cases, every simulation has been
reasoning concerning the periodicity of Task 4 applies tQepeated a sufficiently large number of times. In fact, the
the communication-efficient algorithms too. averages become stable after few executions.
Actually, the values of the general case of Table Il Figures 8 and 9 summarize the average results obtained
correspond to the number of links that carry messages fofor each QoS measure. For clarity, instead of the prob-
ever. Observe that the algorithms LIg¥; and LLWgp2 ability of getting a right answer, we have used its com-
are not communication-efficient, since they use more thaplement, the bad answer probability, i.e., the probability
n links. On the other hand, the algorithms LlWWLLW: that a failure detection module gives a wrong answer.
and LLW, are communication-efficient. Figure 8 shows that the bad answer probability is very
similar and quite low for the algorithms of both families.
For Chandra and Toueg’s algorithm, the bad answer
probability is negligible, at the price of using an all-thh-a
We present here performance results obtained by simcommunication pattern periodically and forever. We can
ulation. We have analyzed the following QoS measuresighserve too that algorithms using a broadcast mechanism
« Query accuracy probability. It is the probability to notify suspicions have a higher bad answer probability.
that a failure detection module that is queried byThis is due to the fact that erroneous suspicions are
its associated process gives the right answer. Thigotified to all the processes in the system, provoking
measure is based on [10], but has been enhanced that all the processes make a mistake for each erroneous
this work to apply to scenarios with more than justsuspicion.
two processes,

« Crash detection latency. It is the time interval be- 001
tween the crash of a process and the time in which
the rest of the processes suspect it in a permanent ooos
way. This measure quantifies how fast the failure
detector reacts.

We have used the ns-2 simulator
(http://lwww.isi.edu/nsnam/ns/) to compare the
performance of the algorithms. In Table Ill we show
the simulation settings for a typical local area network
scenario. The simulation generates message delays
at random with a uniform distribution. However, we

B. Evaluating the Quality of Service

0.006

0.004

Bad answer probability

0.002 B

have set minimum and maximum message bounds. 3 6 12 24
Apparently, this contradicts our partially synchronous # processes
system model. Nevertheless, the algorithms do not exploit Figure 8. Bad answer probability.

the knowledge of the maximal message delay when
initializing the time-outs. This allows us to generate This same strategy, i.e., the broadcast of suspicions,
erroneous suspicions under the same conditions fds very useful to reduce the crash detection time in the
different algorithms. Moreover, from a practical point of case of a real failure, as can be seen in Figure 9. For
view the setting of a maximum message delay allows talgorithms LLW, »; and LLW;, the crash detection time
determine the duration of the simulations. increases linearly with the number of processes; hence,
The tests have been carried out for a number of nodethese algorithms do not scale well for a large number of
going from 3 to 24, using the settings of Table Ill. The processes. On the other hand, for algorithms IJMW
qguery accuracy probability has been measured executirand LLW,, the crash detection time is constant and

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 4, OCTOBER 2007

7 T

The second approach includes a minimal version of
the communication-efficient algorithm of [8], and two
variants that improve QoS parameters while preserving
1 communication efficiency.

We have compared the algorithms in terms of two
QoS parameters: query accuracy probability and crash
1 detection time. From the simulation results, we have
observed that both families exhibit similar QoS perfor-
mance. Hence, we can conclude that the communication-
| efficient algorithms are a better choice, since they use
a lower number of links. Also, we have observed that
some variants perform better in the presence of real
failures, while others do when erroneous suspicions occur.
Interestingly, this fact can be exploited following a hybri
approach, in which the broadcast mechanism is disabled
during stabilization, and later activated when the number

similar to Chandra and Toueg’s algorithm, thanks to thePf suspicions d_e_cregses, which indicates that the system
broadcast of suspicions. It could be interesting to use thil§ €l0se to stabilization.
mechanism only once the system has stabilized and no
more erroneous suspicions occur. We can consider that
the systems is stabilizing when the number of failure
suspicions drops below a given threshold. This strateg¥n
could help to provide a near optimal performance.
Finally, Figure 10 corroborates that, for the algorithms
LLWgp1 and LLWgps, setting the period of Task 5
higher than the period of Task 1 (4 and 16 times re-
spectively), does not affect the query accuracy probgbilit
while reduces considerably the communication cost. For
example, it passes fro@(2n) to O(n) when the period
of Task 5 is 16 times that of Task 1.

—— LLw,
—%— LW,

—5— LLWgP1
—m— LLWGP2

Crash detection time

\P

L = .

3 6 12 24
processes

Figure 9. Crash detection time.

ACKNOWLEDGMENT

We are grateful to Neeraj Mittal for his helpful com-
ents.

REFERENCES

[1] T. D. Chandra and S. Toueg, “Unreliable failure detestor
for reliable distributed systemsJournal of the ACM
vol. 43, no. 2, pp. 225-267, March 1996.

M. Pease, R. Shostak, and L. Lamport, “Reaching agree-
ment in the presence of faultsJournal of the ACM
vol. 27, no. 2, pp. 228-234, April 1980.

R. Guerraoui, M. Kapalka, and P. Kouznetsov, “The
weakest failure detector to boost obstruction-freedom,” i
Proceedings of the 20th International Symposium on Dis-
tributed Computing (DISC’2006) Stockholm, Sweden:
LNCS 4167, Springer-Verlag, September 2006, pp. 399—
412.

[4] W. Wu, J. Cao, J. Yang, and M. Raynal, “A hierarchical
consensus protocol for mobile ad hoc networks, Piro-
ceedings of the 14th Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing
(PDP’2006) Montbeliard-Sochaux, France: IEEE Com-
puter Society, February 2006, pp. 64-72.

M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg, “Stable leader election,” Proceedings of the
15th International Symposium on Distributed Computing
(DISC’2001) Lisbon, Portugal: LNCS 2180, Springer-
Verlag, October 2001, pp. 108-122.

M. Larrea, A. Fernandez, and S. Arévalo, “Eventually
consistent failure detectorsjJournal of Parallel and Dis-
tributed Computing vol. 65, no. 3, pp. 361-373, March
2005.

M. Larrea, S. Arévalo, and A. Fernandez, “Efficient@lg
rithms to implement unreliable failure detectors in pélgia

(2]

(3]

0.01 T T
—+— LLW,P1-4

—5— LLwgp2-16
0.008 :

0.006 - B

0.004 b

Bad answer probability

0.002 B

(5]

o Lo . . .
3 6 12 24

processes

Figure 10. Incidence of task periodicity on bad answer podiba

(6]

VII. CONCLUSION [7]

In this paper, we have explored the design of efficient

failure detectors of the Eventually Perfect classP).

We have identified core definitions and tasks shared by
some heartbeat, ring-based algorithms we had developed
previously. We have formally proved some basic prop- [8]
erties of this core, and used it to derive two families

of algorithms that follow two different approaches. The
first family includes a set of algorithms that are nearly
communication-efficient, and use + C links forever.

© 2007 ACADEMY PUBLISHER

synchronous systems,” ifroceedings of the 13th Interna-
tional Symposium on Distributed Computing (DISC’99)
Bratislava: LNCS 1693, Springer-Verlag, September 1999,
pp. 34-48.

M. Larrea and A. Lafuente, “Brief announcement:
Communication-efficient implementation of failure de-
tector classes¢Q and ¢P,” in Proceedings of the
19th International Symposium on Distributed Computing
(DISC'2005) Krakow, Poland: LNCS 3724, Springer-
Verlag, September 2005, pp. 495-496.

JOURNAL OF SOFTWARE, VOL. 2, NO. 4, OCTOBER 2007

[9] J. Wieland, M. Larrea, and A. Lafuente, “An evaluation
of ring-based algorithms for the eventually perfect faglur
detector class,” ifProceedings of the 15th Euromicro Inter-
national Conference on Parallel, Distributed and Network-
based Processing, PDP 2007Naples, Italy: IEEE Com-
puter Society, February 2007, pp. 163-170.

[10] W. Chen, S. Toueg, and M. K. Aguilera, “On the quality
of service of failure detectors,JEEE Transactions on
Computersvol. 51, no. 5, pp. 561-580, 2002.

[11] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in
the presence of partial synchronyldurnal of the ACM
vol. 35, no. 2, pp. 288-323, April 1988.

Mikel Larrea received his PhD degree in computer science
from the University of the Basque Country in 2000, and his MS
degree in computer science from the Swiss Federal Institute
Technology in 1995. He is currently an Assistant Profesgor o
Computer Science at the University of the Basque Country. Hi
research interests include distributed algorithms andesys
fault tolerance and ubiquitous computing.

Alberto Lafuente received his PhD degree in computer science
from the University of the Basque Country in 1989, and his
MS degree in computer science from the Technical University
of Madrid in 1981. He is currently an Associate Professor of
Computer Science at the University of the Basque Country. Hi
research interests include distributed algorithms andesys
fault tolerance and ubiquitous computing.

Iratxe Soraluze received her PhD and MS degrees in computer
science from the University of the Basque Country in 2004 and
1999 respectively. She is currently an Assistant Profes$or
Computer Science at the University of the Basque Country. He
research interests include distributed algorithms andesys
fault tolerance and ubiquitous computing.

Roberto Cortifiasis currently a PhD candidate at the University
of the Basque Country. He received his MS degree in computer
science from the University of the Basque Country in 1996.
He is currently an Assistant Professor of Computer Sciemce a
the University of the Basque Country. His research intsrest
include distributed algorithms and systems, fault toleeaand
ubiquitous computing.

Joachim Wieland received his MS degree in computer science
from the Aachen University in 2007. His research interests
include distributed algorithms and systems, and faultréwiee.

© 2007 ACADEMY PUBLISHER

