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Abstract— This paper focuses on the design of unreliable
failure detectors of the Eventually Perfect class (3P) in
crash-prone partially synchronous systems. We adopt a
monitoring mechanism based on heartbeats over a logi-
cal ring arrangement of processes as the common design
feature. This provides good communication efficiency, a
performance parameter which refers to the number of
links that carry messages forever. We follow two different
approaches that result in two families of failure detectors:
a nearly communication-efficient family, which usesn + C

links forever, being C the number of correct processes out
of the n processes in the system, and a communication-
efficient family, which uses only n links forever. Besides
communication efficiency, we evaluate the algorithms in
terms of QoS parameters, which include the capability of
the failure detector to provide right answers as well as its
reaction time.

Index Terms— distributed algorithms, fault tolerance, Con-
sensus, unreliable failure detectors

I. I NTRODUCTION

The concept of anunreliable failure detectorwas intro-
duced by Chandra and Toueg [1] as a mechanism that pro-
vides (possibly incorrect) information about process fail-
ures. This mechanism has been used to solve several prob-
lems in asynchronous distributed systems, in particular the
Consensus problem [2]. Chandra and Toueg characterized
a class of failure detectors in terms of two properties:
completenessand accuracy. Completeness characterizes
the failure detector’s capability of suspecting incorrect
processes, while accuracy characterizes the failure detec-
tor’s capability of not suspecting correct processes, i.e.,
restricts the mistakes that the failure detector can make. In
this paper, we focus on the following completeness and
accuracy properties: (i)Weak Completeness:eventually
every process that crashes is permanently suspected by
somecorrect process. (ii)Strong Completeness:eventually
every process that crashes is permanently suspected by
every correct process. (iii)Eventual Strong Accuracy:
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there is a time after which correct processes are not
suspected by any correct process.

TABLE I.
TWO CLASSES OF FAILURE DETECTORS.

Eventual Strong Accuracy

Strong Completeness Eventually Perfect (3P)
Weak Completeness Eventually Quasi Perfect (3Q)

Combining each one of the two completeness properties
with the eventual strong accuracy property, we obtain two
different classes of failure detectors, which are presented
in Table I. Chandra and Toueg showed in [1] that any of
the two classes3Q and 3P can be used to solve the
Consensus problem in an asynchronous system with a
majority of correct processes. To do so, they first showed
that classes3Q and3P are equivalent from a problem
solvability point of view, i.e., a problem which is solvable
with 3P is also solvable with3Q and vice versa. It is
worth noting that the equivalence of3Q and 3P does
not come for free, i.e., not all failure detectors in3Q are
in 3P . Instead, it means that any failure detector in3Q
can be extended with a simple distributed algorithm to
obtain a failure detector in3P .

Actually, Consensus can be solved with a weaker
failure detector class calledEventually Strong, denoted
3S, which satisfies strong completeness and eventual
weakaccuracy: there is a time after whichsomecorrect
process is not suspected by any correct process. Note
that any implementation of3P trivially implements3S.
Moreover, for certain problems [3] and Consensus pro-
tocols [4] failure detector3P is required. Also,3P
is a morenatural failure detector, in the sense that it
ensures that eventually all correct processes output a list
containing exactly the incorrect processes, providing a
higher degree of accuracy. This may be a relevant quality
of service (QoS) parameter for some applications.

Several algorithms implementing failure detector
classes3Q and3P have been proposed in the literature.
The algorithm proposed by Chandra and Toueg in [1]
uses a heartbeat mechanism and all-to-all communication
to detect faulty processes. The algorithms proposed by
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Aguilera et al. in [5] and by Larrea et al. in [6] use
heartbeats too, and rely on a leader-based approach. On
the other hand, the algorithms proposed by Larrea et al.
in [7] use a polling —or query/reply— mechanism on a
ring arrangement of processes. The leader-based and the
ring-based algorithms are more efficient than the all-to-all
algorithm regarding the number of messages sent (linear
vs. quadratic). Observe also that compared to polling, the
heartbeat mechanism reduces the number of messages to
the half. Moreover, heartbeats inherently provide commu-
nication reliability in a system with fair lossy links, while
polling usually requires reliable communication.

Recently, we have proposed several algorithms for
implementing3P that rely on a heartbeat-based detection
mechanism over a ring arrangement of processes [8],
[9]. Some of these algorithms outperform the former
ones in terms ofcommunication efficiency, a performance
measure introduced in [5] consisting in the number of
links that carry messages forever.

Our Contribution. In this paper, we revisit the design
of heartbeat, ring-based algorithms for3Q and 3P
in order to implement efficient algorithms that provide
good QoS. We start with a common skeleton defining
the basic ring communication pattern. Then, we study
the mechanisms required in order to provide the desired
properties. We present two different approaches that result
in two families of algorithms. The first family, which we
denote asnearly communication-efficient, has been de-
signed in a modular way. We start with a basic algorithm
implementing3Q, and then a transformation is applied in
order to get3P . The second family directly implements
3P , and algorithms are communication-efficient, i.e.
eventually justn links carry messages forever, beingn the
number of processes in the system. We have evaluated the
performance of the algorithms in terms of QoS measures,
mainly query accuracy probability and crash detection
latency [10]. For that, we have developed and tested a
number of3P algorithms for each family. As we will see,
some algorithms include sporadic extra communication,
breaking the ring discipline. However, they always pre-
serve the original communication efficiency characteristic
of their family.

The rest of the paper is organized as follows. In
Section II, we describe the system model considered
in this work. In Section III, we discus the design of
heartbeat, ring-based algorithms and describe the basic
common skeleton to be used by all the algorithms. In Sec-
tion IV, we describe the nearly communication-efficient
family, while in Section V we present the communication-
efficient family. In Section VI, we evaluate the perfor-
mance of the algorithms. Finally, Section VII concludes
the paper.

II. SYSTEM MODEL

We consider a distributed system composed of a finite
setΠ of n processes,Π = {p1, p2, . . . , pn}, that commu-
nicate only by sending and receiving messages. Every pair

of processes (pi, pj) is connected by two unidirectional
and reliable communication linkspi → pj andpj → pi.

Processes can only fail by crashing, that is, by pre-
maturely halting. Moreover, crashes are permanent, i.e.,
crashed processes do not recover. In every run of the
system we identify two complementary subsets ofΠ: the
subset of processes that do not fail, denotedcorrect, and
the subset of processes that do fail, denotedcrashed. We
useC to denote the number of correct processes in the
system in the run of interest, which we assume is at least
one, i.e.,C = |correct| ≥ 1.

We consider that processes are arranged in a logical
ring. Without loss of generality, processpi is preceded
by processpi−1, and followed by processpi+1. As usual,
p1 follows pn in the ring. In general, we will use the
functionspred(p) andsucc(p) respectively to denote the
predecessor and the successor of a processp in the ring.

Concerning timing assumptions, we consider a partially
synchronous model [1], [11] which stipulates that, in
every run of the system, there are bounds on relative
process speeds and on message transmission times, but
these bounds are not known and they hold only after
some unknown but finite time (calledGST for Global
Stabilization Time). Actually, the bounds must exist and
hold only for theC links that eventually form the ring of
correct processes, i.e., the links from every correct process
to its correct successor in the ring. Hence, the bounds
must only hold for a linear number of links.

Finally, in the algorithms presented in this paper we
assume that a local clock that can measure real-time
intervals is available to each process. Clocks are not
synchronized.

III. D ESIGNING RING-BASED FAILURE DETECTOR

ALGORITHMS

In this section, we describe a common core that will
be used in all the algorithms presented in this work.
The basic idea is to keep each process monitoring its
correct predecessor in the ring by hearing heartbeats from
it. Figure 1 presents the definitions and the three core
tasks that try to converge, for every processp, to its
correct predecessor in the ring. This core does not provide
by itself the properties of any failure detector, and will
be augmented with some mechanisms in order to every
processp converge to both its correct predecessor and
its correct successor in the ring (denotedcorr predp and
corr succp respectively), that will provide the properties
of 3Q and3P .

In Figure 1, every processp starts sending periodically
a heartbeat message to its successor in the ring, denoted
by the variablesuccp (Task 1). Also, every processp waits
for periodical heartbeats from its predecessor in the ring,
denoted by the variablepredp. If p does not receive such
a heartbeat on a specific time-out interval of∆p(predp),
thenp suspects thatpredp has crashed, includespredp in
its local list of suspected processes,Lp, and setspredp to
pred(predp) (Task 2). If later onp receives a heartbeat
message from a processq it is erroneously suspecting,
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Every processp executes the following:

( 1) predp ← pred(p) {p’s estimated correct predecessor in the ring}
( 2) succp ← succ(p) {p’s estimated correct successor in the ring}
( 3) Lp ← ∅ {Lp provides the properties of3Q}
( 4) for all q ∈ Π: {∆p(q) denotes the duration ofp’s time-out forq}
( 5) ∆p(q)← default time-out interval

( 6) cobegin

( 7) || Task 1:repeat periodically
( 8) if succp 6= p then
( 9) send (p-is-alive) tosuccp

(10) || Task 2:repeat periodically
(11) if predp 6= p and p did not receive (predp-is-alive)

during the last∆p(predp) ticks of p’s clock then
(12) Lp ← Lp ∪ {predp} {p suspectspredp has crashed}
(13) predp ← pred(predp)

(14) || Task 3:when receive (q-is-alive) for someq
(15) if q ∈ Lp then {p was erroneously suspectingq}
(16) Lp ← Lp − {succ(predp), . . . , q}
(17) ∆p(q)← ∆p(q) + 1
(18) predp ← q

(19) coend

Figure 1. Common core tasks for a heartbeat, ring-based failure detector.

p correctsLp, increments the time-out interval∆p(q) in
order to adapt the time-out, and changes the perception
of its correct predecessor in the ring toq (Task 3).

Observe that the core itself does not modify thesucc
variable of a process. We assume that there will be an
out-of-the-core mechanism to change thesucc variable.

The following observation can be derived:
Observation 1:The list Lp of suspected processes of

a processp contains exactly the processes betweenpredp

andp, both excluded, i.e., whenpredp 6= pred(p), Lp =
{succ(predp), . . . , pred(p)}, otherwise, whenpredp =
pred(p), Lp = ∅.

From now on, we will assume that any time instantt
considered is larger than a timetbase that occurs after the
stabilization timeGST (i.e., tbase > GST ), after every
incorrect process has crashed, and after all messages sent
by incorrect processes have been delivered. Note that this
eventually happens. Hence, any new message delivered
has necessarily been sent by a correct process. Then, we
can enunciate the following lemma:

Lemma 1:For every correct processp, eventually and
permanentlypredp stabilizes on some correct process.

Proof: Note first thatpredp is only modified in
Task 2 (Line 13) and Task 3 (Line 18) of the algorithm.
If predp /∈ correct, since we are assuming that incorrect
processes have already crashed and their messages have
been delivered, by Task 2p will suspectpredp, include
it in Lp, and setpredp to pred(predp). Observe that
this could happen even ifpredp ∈ correct, e.g., if
predp does not send any message top or, even if doing
so, if ∆p(predp) is smaller than the bound on message
transmission time. This scheme could be repeated at worst
until p suspects every other process in the ring and sets
predp = p andLp = Π− {p}. At any time, if p receives
a message from a (necessarily correct) processq ∈ Lp,
by Task 3p removesq from Lp, increments the time-
out ∆p(q), and setspredp to q. Hence, since we are
assuming that incorrect processes have already crashed

and their messages have been delivered, eventually either
(1) p stabilizespredp to some correct processq 6= p
becauseq sends a message periodically top which is
received before the time-out∆p(q) expires (e.g., because
∆p(q) is bigger than the bound on message transmission
time), or (2) the rest of processes are incorrect andp
stabilizespredp to p.

As we have said above, the core tasks do not solve by
themselves some key questions required to provide the
properties of the failure detectors we are interested in.
First, it is not proved thatpredp = corr predp. Secondly,
it is not defined how thesuccp variable is updated,
in order to converge to a correct process, specifically
corr succp.

In order to complete the algorithm, two strategies can
be followed. The first approach consists in introducing a
specific interaction mechanism betweenp and predp, in
order to askpredp to update its successor top. Doing
like that, some messages will be sent in the opposite
direction of heartbeats. The second approach consists
in including into heartbeats global information about
suspected process, and relying on the regular heartbeat
communication to informpredp about its successor. We
present both approaches in the next sections.

IV. A N EARLY COMMUNICATION -EFFICIENT

APPROACH

In this section, we present a first approach to the design
of algorithms implementing3Q and 3P . We introduce
several additional tasks to allow a processp to update
its successorsuccp. We start with a basic algorithm that
implements3Q. Then, we transform the algorithm to
implement a failure detector of the class3P , introducing
some optimizations oriented to improve the QoS.

A. A Basic Ring-Based Algorithm for3Q

We present here a basic ring-based algorithm im-
plementing 3Q. For that, we add to the core skele-
ton of Figure 1 three new tasks. Specifically, every
processp periodically sends a heartbeat message to
the processes in the ring between itself andsuccp

(Task 4), and every processp periodically sends a
(START sending heartbeats, p) message to its current
predecessor in the ringpredp (Task 5). When a process
p receives a (START sending heartbeats, new succ)
message, it setssucc p to new succ (Task 6).

Note that Task 1 and Task 4 could be integrated into a
single task in which a processp periodically sends a heart-
beat message to all processes in{succ(p), . . . , succp}.
Having two separated tasks, allows the use of independent
periods for them, which is interesting from a performance
point of view.

We show now that the algorithm of Figure 2 im-
plements a failure detector of class3Q. The key of
the proof is to show that eventually and permanently
predp = corr predp and succp = corr succp for every
correct processp. In other words, the ring stabilizes in
terms of both thepred and succ variables of processes,
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Every processp executes the following:

( 1) predp ← pred(p) {p’s estimated correct predecessor in the ring}
( 2) succp ← succ(p) {p’s estimated correct successor in the ring}
( 3) Lp ← ∅ {Lp provides the properties of3Q}
( 4) for all q ∈ Π: {∆p(q) denotes the duration ofp’s time-out forq}
( 5) ∆p(q)← default time-out interval

( 6) cobegin

( 7) || Task 1:repeat periodically
( 8) if succp 6= p then
( 9) send (p-is-alive) tosuccp

(10) || Task 2:repeat periodically
(11) if predp 6= p and p did not receive (predp-is-alive)

during the last∆p(predp) ticks of p’s clock then
(12) Lp ← Lp ∪ {predp} {p suspectspredp has crashed}
(13) predp ← pred(predp)

(14) || Task 3:when receive (q-is-alive) for someq
(15) if q ∈ Lp then {p was erroneously suspectingq}
(16) Lp ← Lp − {succ(predp), . . . , q}
(17) ∆p(q)← ∆p(q) + 1
(18) predp ← q

(19) || Task 4:repeat periodically
(20) if succp 6= succ(p) then
(21) send (p-is-alive) tosucc(p), . . . , pred(succp)

(22) || Task 5:repeat periodically
(23) send (START sending heartbeats, p) to predp

(24) || Task 6:when receive (START sending heartbeats,
new succ)

(25) succp ← new succ

(26) coend

Figure 2. Basic algorithm for3Q.

which guarantees the correct construction of the local lists
L of suspected processes.

Lemma 2:For every correct processp, eventually and
permanentlypredp = corr predp.

Proof: The proof is by contradiction. Since by
Lemma 1 we have seen that eventually and permanently
predp stabilizes on some correct process, let us assume
that eventually and permanentlypredp 6= corr predp.
In the following, let beq = predp. Then, by Obser-
vation 1 corr predp ∈ Lp. Also, succcorr predp

∈ Lp,
i.e., corr predp does not send messages periodically to
p neither by Task 1 nor by Task 4, since otherwisep
should setpredp to corr predp (which is a contradiction).
Finally, succq must be set top or further in the ring
in order to p not suspectingq, and hence by Task 4
q sends messages periodically tocorr predp. Clearly,
eventuallypredcorr predp

= q, and by Tasks 5 and 6 of
the algorithm eventuallyq will set succq to corr predp,
and henceq will stop sending messages periodically to
p. Consequently,p will suspectq, which contradicts the
fact thatp stabilizespredp to q.

Lemma 3:For every correct processp, eventually and
permanentlysuccp = corr succp.

Proof: Follows directly from Lemma 2 and Tasks 5
and 6 of the algorithm.

Theorem 1:The algorithm of Figure 2 implements a
failure detector of class3Q.

Proof: From Lemmas 2 and 3, given a processp,
if p is a correct process, then eventuallyp will be in the
stable ring formed by correct processes. Otherwise,p is

incorrect, and by Lemma 2 eventually and permanently
predcorr succp

= corr predp. By Observation 1,p will
eventually and permanently be included inLcorr succp

.
This provides the weak completeness property of3Q.

From the algorithm,p is never included inLp. Once the
ring has stabilized, by Observation 1 no correct process is
included (in Task 2) in the listsL of any correct process.
Hence, once the ring has stabilized no correct process
will be present in any list of suspected processes. This
provides the eventual strong accuracy property of3Q.

1) On a faster stabilization of the ring:We present
here some modifications made to the basic algorithm of
Figure 2 that lead to a faster stabilization of the ring,
i.e., processes react faster to changes in the structure
of the ring due to failures or erroneous suspicions. The
modifications affect tasks 2, 3, 5 and 6 of the algorithm.
Figure 3 presents the modified tasks in detail.

Every processp executes the following:

. . .

(10) || Task 2:repeat periodically
(11) if predp 6= p and p did not receive (predp-is-alive)

during the last∆p(predp) ticks of p’s clock then
(12) Lp ← Lp ∪ {predp} {p suspectspredp has crashed}
(13) predp ← pred(predp)

(a1) if predp 6= p then
(a2) send (p, START sending heartbeats, p) to predp

(a3) else {p is suspecting the rest of processes: it setssuccp to p}
(a4) succp ← p

(14) || Task 3:when receive (q-is-alive) for someq
(15) if q ∈ Lp then {p was erroneously suspectingq}
(16) Lp ← Lp − {succ(predp), . . . , q}
(17) ∆p(q) ← ∆p(q) + 1

(a5) if predp 6= p then
(a6) send (p, START sending heartbeats, q) to predp

(a7) else
(a8) succp ← p’s closest process following the ring,

eithersuccp or q

(18) predp ← q

. . .

(22) || Task 5:repeat periodically
(a9) if predp 6= p then

(23) send (p, START sending heartbeats, p) to predp

(24) || Task 6:when receive (q, START sending heartbeats,
new succ) for someq

(25) succp ← new succ

(a10) if q 6= new succ then
(a11) send (p-is-alive) tonew succ

Figure 3. Faster stabilization of the ring.

The first modification consists in sending a
(START sending heartbeats, p) message to
pred(predp) when p suspects predp in Task 2
(Lines a1-a4), i.e., independently of the periodical
activation of p’s Task 5. However, we avoid that a
process p sends (START sending heartbeats, p)
messages to itself. This occurs whenp suspects the
rest of processes in the system. In this case we have
predp = p after executing Line 13. Instead of sending
the (START sending heartbeats, p) message, p
acts as if it instantaneously sent and received (in
Task 6) the message:p directly sets its supposed correct
successor in the ring to itself, i.e.,succp ← p. With

4 JOURNAL OF SOFTWARE, VOL. 2, NO. 4, OCTOBER 2007

© 2007 ACADEMY PUBLISHER



this modification, we can avoid that a processp sends
(START sending heartbeats, p) messages to itself in
Task 5 (Line a9).

A second modification consists in sending a
(START sending heartbeats, q) message to p’s
current predp in Task 3 when p learns that it is
erroneously suspectingq, and before settingpredp to q
(Lines a5-a6). This helps in the stabilization of the ring,
since by Task 6p’s currentpredp will set its successor to
q and thus redirect its heartbeats toq. As in the previous
modification, in the case thatp’s currentpredp was itself,
i.e., predp = p, we could directly setsuccp to q without
sending any message. However, due to the reception of
other (START sending heartbeats, -) messages it is
possible that even havingpredp = p, p hassuccp set to
a processr other thanp, in which case the best choice
is to setsuccp to p’s closest process following the ring,
eitherr (i.e., the currentsuccp) or q (Lines a7-a8).

Finally, another modification consists in sending a
heartbeat message tonew succ in Task 6 when the
(START sending heartbeats, new succ) message has
been sent by Task 3 (Lines a10-a11). To distinguish these
messages from those sent by tasks 2 and 5, we add the
sender as a first parameter. Again, this speeds up the
stabilization of the ring, sincenew succ will receive as
soon as possible a first heartbeat fromp, independently
of the periodical activation ofp’s Task 1.

B. Transforming3Q into 3P

A simple way for obtaining a3P failure detector from
3Q is to apply the transformation algorithm proposed
by Chandra and Toueg in [1], which has an all-to-
all communication pattern. We rather want to keep the
message complexity of the resulting algorithm linear, so
we have first designed a transformation algorithm on top
of the logical ring formed by processes. Consequently, this
algorithm has a linear detection latency of real failures.
Then, we present another transformation that has a lower,
constant detection latency, based on the broadcast of
suspicions.

1) Propagating Suspicions Through the Ring:Figure 4
presents a transformation of the3Q algorithm of Figure 3
into 3P . Besides its local list of suspected processes
Lp, now every processesp has a global listGp that
provides the properties of3P . In order to get3P out
of 3Q, processes propagate the global lists around the
ring. Furthermore, instead of using specific messages to
propagate the global lists, they are piggybacked in the
heartbeat messages that processes send in the algorithm
of Figure 3. This way there is no need of extra messages to
implement3P . Every time a processp sends a heartbeat
message either by Task 1, Task 4 or Task 6, it piggybacks
its global list of suspected processesGp in the heartbeat.
Also, wheneverp includes a processq in Lp (Task 2),
p also includesq in Gp (Line b2). Finally, each timep
receives a heartbeat message from its supposed correct
predecessor (predp) in the ring (Task 3),p builds a
new global list of suspected processes by merging the

Every processp executes the following:

( 1) predp ← pred(p) {p’s estimated correct predecessor in the ring}
( 2) succp ← succ(p) {p’s estimated correct successor in the ring}
( 3) Lp ← ∅ {Lp provides the properties of3Q}

(b1) Gp ← ∅ {Gp provides the properties of3P}

( 4) for all q ∈ Π: {∆p(q) denotes the duration ofp’s time-out forq}
( 5) ∆p(q)← default time-out interval

. . .

(10) || Task 2:repeat periodically
(11) if predp 6= p and p did not receive (predp-is-alive,−)

during the last∆p(predp) ticks of p’s clock then
(12) Lp ← Lp ∪ {predp} {p suspectspredp has crashed}

(b2) Gp ← Gp ∪ {predp}

(13) predp ← pred(predp)
(a1) if predp 6= p then
(a2) send (p, START sending heartbeats, p) to predp

(a3) else {p is suspecting the rest of processes: it setssuccp to p}
(a4) succp ← p

(14) || Task 3:when receive (q-is-alive, Gq) for someq
(15) if q ∈ Lp then {p was erroneously suspectingq}
(16) Lp ← Lp − {succ(predp), . . . , q}
(17) ∆p(q) ← ∆p(q) + 1
(a5) if predp 6= p then
(a6) send (p, START sending heartbeats, q) to predp

(a7) else
(a8) succp ← p’s closest process following the ring,

eithersuccp or q
(18) predp ← q

(b3) if q = predp then
(b4) Gp ← (Gq − {p}) ∪ Lp

. . .

Figure 4. Transformation of3Q into 3P with linear detection latency.

global list Gpredp
carried by the heartbeat (removingp if

p ∈ Gpredp
) with its own local listLp (Lines b3-b4).

We show now that the algorithm of Figure 4 imple-
ments a failure detector of class3P . First of all, it is
easy to see that Observation 1, Lemma 1, Lemma 2, and
Lemma 3 hold for this algorithm.

Observation 2:Lp ⊆ Gp permanently for every pro-
cessp.

Theorem 2:The algorithm of Figure 4 implements a
failure detector of class3P .

Proof: From Lemmas 2 and 3, the ring formed ex-
clusively by correct processes eventually stabilizes. Once
this happens, every incorrect processq is permanently
included in Lcorr succp

. By Observation 2,q is also
permanently included inGcorr succp

. By the algorithm,
Gcorr succp

is piggybacked into every heartbeat message
sent bycorr succp in Task 1. By the periodical heart-
beat messages sent by correct processes in Task 1 and
Lines b3-b4 of the algorithm, eventually every correct
processp will permanently includeq in Gp. This provides
the strong completeness property of3P . Finally, it is
simple to see that the algorithm of Figure 4 preserves the
strong accuracy property of3P provided by the algorithm
of Figure 2.

2) Broadcasting Suspicions to Reduce the Detection
Latency: We present here another modification that, ap-
plied to the algorithm of Figure 4, allows to reduce the
detection latency of real failures. The modification, pre-
sented in detail in Figure 5, affects Task 2 and introduces
two additional tasks to handle two new types of messages
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Every processp executes the following:

. . .

(10) || Task 2:repeat periodically
(11) if predp 6= p and p did not receive (predp-is-alive,−)

during the last∆p(predp) ticks of p’s clock then
(12) Lp ← Lp ∪ {predp} {p suspectspredp has crashed}
(b2) Gp ← Gp ∪ {predp}

(c1) send (SUSPICION , p, predp) to the rest of processes

(13) predp ← pred(predp)
(a1) if predp 6= p then
(a2) send (p, START sending heartbeats, p) to predp

(a3) else {p is suspecting the rest of processes: it setssuccp to p}
(a4) succp ← p

. . .

(c2) || Task 7:when receive (SUSPICION , q, r) for someq
(c3) if r 6= p then
(c4) Gp ← Gp ∪ {r} − {q}
(c5) else {p sends a refutation heartbeat to the rest of processes}
(c6) send (REFUTATION , p) to the rest of processes

(c7) || Task 8:when receive (REFUTATION , q) for someq
(c8) Gp ← Gp − {q}

Figure 5. Transformation of3Q into 3P with constant detection
latency.

used for the notification of failure suspicions and refuta-
tions, respectively. Every timep suspects in Task 2 that
predp has crashed,p sends a (SUSPICION , p, predp)
message to the rest of processes (Line c1), in order to let
them know as soon as possible the (potential) crash of
predp. In Task 7, whenp receives a (SUSPICION ,
q, r) message for someq, if r 6= p then p adds the
suspected processr to its global list Gp, removing the
sender of the message, i.e.,q, from Gp. On the other
hand, if r = p, i.e., p has been erroneously suspected by
q, p sends a (REFUTATION , p) message to the rest
of processes (Lines c2-c6). The reception of refutation
messages is done in Task 8, consisting in the removal of
the sender fromGp (Lines c7-c8). The modification does
not affect the correctness of the algorithm, since after the
stabilization of the ring no more (SUSPICION , -, -)
messages will be sent, and hence Lines c2-c8 will never
be executed.

V. A COMMUNICATION -EFFICIENT APPROACH

In this section, we present a second approach to the
design of algorithms implementing3Q and3P , that re-
lies on including into heartbeats global information about
suspected process. We start with a basic3P algorithm,
that is a minimal, non optimized version of the algorithm
in [8]. As done in the first family of algorithms, several
optimizations are also introduced in order to improve the
QoS.

A. A Basic Communication-Efficient3P Algorithm

Figure 6 presents the basic communication-efficient
algorithm implementing3P . With respect to the core
skeleton of Figure 1, in this algorithm every processp
periodically sends a heartbeat message to the processes
in the ring between itself andsuccp (Task 4), as done
in the algorithm of Figure 2. Also, besides its local list

of suspected processesLp, every processp has a global
list Gp that provides the properties of3P . Processes
propagate the global lists around the ring, piggybacked
in the heartbeat messages they sent in Task 1 and Task 4.
Wheneverp includes a processq in Lp (Task 2),p also
includesq in Gp. Finally, each timep receives a heartbeat
message from its supposed correct predecessor (predp) in
the ring (Task 3),p builds a new global list of suspected
processes by merging the global listGpredp

carried by
the heartbeat (removingp if p ∈ Gpredp

) with its own
local list Lp. Also, p sets its supposed correct successor
(succp) in the ring to its nearest process following the
ring not belonging toGp.

Every processp executes the following:

( 1) predp ← pred(p) {p’s estimated correct predecessor in the ring}
( 2) succp ← succ(p) {p’s estimated correct successor in the ring}
( 3) Lp ← ∅ {Lp provides the properties of3Q}
( 4) Gp ← ∅ {Gp provides the properties of3P}
( 5) for all q ∈ Π: {∆p(q) denotes the duration ofp’s time-out forq}
( 6) ∆p(q)← default time-out interval

( 7) cobegin

( 8) || Task 1:repeat periodically
( 9) if succp 6= p then
(10) send (p-is-alive, Gp) to succp

(11) || Task 2:repeat periodically
(12) if predp 6= p and p did not receive (predp-is-alive,−)

during the last∆p(predp) ticks of p’s clock then
(13) Lp ← Lp ∪ {predp} {p suspectspredp has crashed}
(14) Gp ← Gp ∪ {predp}
(15) predp ← pred(predp)

(16) || Task 3:when receive (q-is-alive, Gq) for someq
(17) if q ∈ Lp then {p was erroneously suspectingq}
(18) Lp ← Lp − {succ(predp), . . . , q}
(19) ∆p(q) ← ∆p(q) + 1
(20) predp ← q
(21) if q = predp then
(22) Gp ← (Gq − {p}) ∪ Lp

(23) succp ← p’s nearest process following the ring/∈ Gp

(24) || Task 4:repeat periodically
(25) if succp 6= succ(p) then
(26) send (p-is-alive, Gp) to succ(p), . . . , pred(succp)

(27) coend

Figure 6. Basic communication-efficient implementation of3P .

Assuming a failure-free scenario, the number of mes-
sages periodically sent in the algorithm of Figure 6 in
stability isn, since every process sends just one heartbeat
to its successor in the ring. In the general case, the
algorithm periodically sendsn messages as well, due
to the messages sent by Task 4 to crashed processes
{succ(p), . . . , pred(succp)}. As a consequence, the algo-
rithm of Figure 6 is communication-efficient. In practice,
and assuming that erroneous suspicions are not very
frequent, the period of Task 4 could be bigger than the
period of Task 1.

Some optimizations will be incrementally introduced
in the algorithm of Figure 6 in order to provide a faster
stabilization of the ring and reduce the detection latency of
real failures, as we will see in the following subsections.
It is important to note that communication efficiency is
preserved in the new versions of the algorithm.

We show now that the algorithm of Figure 6 imple-
ments a failure detector of class3P . First of all, observe
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that Observation 1 and Lemma 1 of Section III hold. We
start by making an additional observation:

Observation 3:Lp ⊆ Gp permanently for every pro-
cessp.

The following two lemmas, identical to Lemma 2 and
Lemma 3 of the previous section, require a new proof,
since we do no longer rely on Tasks 5 and 6 of the
algorithm of Figure 2.

Lemma 4:For every correct processp, eventually and
permanentlypredp = corr predp.

Proof: The proof is by contradiction. Since by
Lemma 1 we have seen that eventually and perma-
nently predp stabilizes on some correct process, let
us assume that eventually and permanentlypredp 6=
corr predp. Then, by Observation 1corr predp ∈ Lp.
Also, succcorr predp

∈ Lp, i.e., corr predp does not
send messages periodically top neither by Task 1
nor by Task 4, since otherwisep should setpredp to
corr predp (which is a contradiction). Finally,succpredp

must be set top at the closest in order top not
suspectingpredp, and hence by Task 4predp sends
messages periodically tocorr predp. By Observations 1
and 3, eventually and permanently all incorrect processes
succ(corr predp), . . . , pred(p) will be included in Lp,
and hence transmitted in all the global listsGp that p
will send.

In general, we have for every correct processp that
eventually and permanently (1)succpredp

is set to p
at the closest, and hence by Task 4predp sends mes-
sages periodically tocorr predp, and by Task 4 or by
Task 1predp sends messages periodically top, and (2)
succ(corr predp), . . . , pred(p) ∈ Gp. A consequence of
(1) is that eventually and permanently messages are prop-
agated around a unique ring formed by all correct pro-
cesses. This feature, combined with (2) and the fact that,
by the algorithm, no other process in the ring removes any
of the processessucc(corr predp), . . . , pred(p) included
by p in the messages that are propagated, makes that even-
tually a list containing those processes will be received by
corr predp. At the reception of that list,corr predp will
set succcorr predp

to p at the closest (Line 23), and will
start sending messages periodically top. Whenp receives
a message fromcorr predp ∈ Lp, by Task 3p will set
predp to corr predp, which is a contradiction.

Lemma 5:For every correct processp, eventually and
permanentlysuccp = corr succp.

Proof: By Lemma 4, we have that for every cor-
rect processp, eventually and permanentlypredp =
corr predp. Moreover, we have seen that eventually there
is a unique ring formed by all correct processes around
which the lists of suspected processes are propagated.
Observe that, by the way global lists are constructed (Line
22), the list of suspected processesGp propagated byp
around the ring will permanently contain the incorrect
processes inLp, i.e., succ(predp), . . . , pred(p), and will
never containp. Also, no other process in the ring
neither removes any of those processes nor addsp when
constructing its own list of suspected processes. As a

consequence, eventuallypredp will permanently receive
lists of suspected processes containing the processes in
succ(predp), . . . , pred(p) and not containingp. Hence,
by Line 23 of the algorithmpredp will permanently set
succpredp

to p = corr succpredp
, and the lemma holds.

Theorem 3:The algorithm of Figure 6 implements a
failure detector of class3P .

Proof: From Lemmas 4 and 5, given a process
p, if p is a correct process, then eventuallyp will be
in the stable ring formed by correct processes, and will
propagate by Task 1 its global listGp, which is built based
on the global list received from its correct predecessor in
the ring corr predp. Otherwise,p is incorrect, and by
Lemma 4 eventually and permanentlypredcorr succp

=
corr predp. By Observations 1 and 3,p will eventu-
ally and permanently be included inLcorr succp

and in
Gcorr succp

, which will be propagated around the ring.
As a consequence, eventually and permanentlyp will be
included in the global list of suspected processes of every
correct process. This provides the strong completeness
property of3P .

From the algorithm, every time a processp builds
its global list of suspected processesGp (in Task 3),p
removes itself fromGp.1 Once the ring has stabilized, by
Observation 1 no correct process is included (in Task 2)
in the listsL andG of any correct process. Hence, once
the ring has stabilized and every correct process has built
its global list of suspected processes in Task 3 (Line 22),
no correct process will be present in any global list of
suspected processes. This provides the eventual strong
accuracy property of3P .

B. On a Faster Stabilization of the Ring

Figure 7 presents some modifications made to the basic
algorithm of Figure 6 that lead to a faster stabilization of
the ring, and a more accurate listGp. The modifications
affect tasks 2 and 3 of the algorithm, and introduce a new
task.

A first modification consists in sending a
(START sending heartbeats, p) message to
pred(predp) when p suspectspredp in Task 2 (Lines
a1-a4). This new type of message will help processes
to correct as soon as possible theirsucc variables.
Upon reception of a (START sending heartbeats,
new succ) message in the new Task 5, a processp sets
succp to new succ (Lines a10-a11). However, we avoid
that a processp sends a (START sending heartbeats,
p) message to itself. This occurs whenp suspects the
rest of processes in the system. In this case we have
predp = p after executing Line 15 of the algorithm.
Instead of sending the (START sending heartbeats,
p) message,p directly setssuccp ← p.

A second modification consists in sending a
(START sending heartbeats, q) message to p’s
current predp in Task 3 when p learns that it is

1Note that, from the algorithm,p is never included inLp.
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Every processp executes the following:

. . .

(11) || Task 2:repeat periodically
(12) if predp 6= p and p did not receive (predp-is-alive,−)

during the last∆p(predp) ticks of p’s clock then
(13) Lp ← Lp ∪ {predp} {p suspectspredp has crashed}
(14) Gp ← Gp ∪ {predp}
(15) predp ← pred(predp)

(a1) if predp 6= p then
(a2) send (START sending heartbeats, p) to predp

(a3) else {p is suspecting the rest of processes: it setssuccp to p}
(a4) succp ← p

(16) || Task 3:when receive (q-is-alive, Gq) for someq
(17) if q ∈ Lp then {p was erroneously suspectingq}
(18) Lp ← Lp − {succ(predp), . . . , q}
(19) ∆p(q)← ∆p(q) + 1

(a5) if predp 6= p then
(a6) send (START sending heartbeats, q) to predp

(20) predp ← q
(21) if q = predp then
(22) Gp ← (Gq − {p}) ∪ Lp

(23) succp ← p’s nearest process following the ring/∈ Gp

(a7) else {p receives a heartbeat fromq /∈ Lp and q 6= predp}
(a8) Gp ← Gp − {q}
(a9) send (START sending heartbeats, predp) to q

. . .

(a10) || Task 5:when receive (START sending heartbeats, new succ)
(a11) succp ← new succ
(a12) Gp ← Gp − {new succ}
(a13) send (p-is-alive, Gp) to new succ

Figure 7. Faster stabilization of the ring. New code for tasks 2, 3, and
new Task 5.

erroneously suspectingq, and before settingpredp to q
(Lines a5-a6). This helps in the stabilization of the ring,
since by Task 5p’s currentpredp will set its successor
to q and thus redirect its heartbeats toq.

A third modification consists in removingq from Gp

and sending a message (START sending heartbeats,
predp) to q in Task 3 whenp receives a heartbeat
message fromq /∈ Lp and q 6= predp (Lines a7-a9).
Besides improving the accuracy ofGp, this helps in the
stabilization of the ring as in the previous modification.

Finally, another modification consists in removing
new succ from Gp (to improve the accuracy ofGp)
and sending a heartbeat message tonew succ in Task 5
(Lines a12-a13). This speeds up the stabilization of the
ring, sincenew succ will receive as soon as possible
a new heartbeat fromp, independently of the periodical
activation ofp’s Task 1.

It should be pointed out that the
START sending heartbeats messages do not need to
be reliably sent, i.e., they can be lost.

It is easy to see that the proposed modifications do not
affect the correctness of the algorithm. Indeed, observe
that the modifications do not affect the management of
the pred variables, which is the basis of the correctness
proof of the basic algorithm of Figure 7. Also, note
that the modified algorithm preserves that, eventually
and permanently, thesucc variables are set to a correct
process.2

2Actually, this is sufficient to implement3P . Nevertheless, to achieve
communication efficiency thesucc variables must be set to the closest
correct process following the ring.

The fact that eventually no
(START sending heartbeats, −) message is sent
indirectly shows that the algorithm of Figure 7 is
communication-efficient as well.

C. Broadcasting Suspicions to Reduce the Detection La-
tency

Finally, the modification presented in Section IV-B.2
can also be applied to either the basic algorithm of
Figure 6 or the improved one of Figure 7, reducing
the detection latency of real failures. As previously, the
modification does not affect neither the correctness of the
algorithm nor its communication efficiency, since after
the stabilization of the ring no moreSUSPICION
messages will be sent.

VI. PERFORMANCEEVALUATION

In this section, we compare the performance of the3P
algorithms implemented over3Q (described in Subsec-
tions IV-B.1 and IV-B.2, and henceforth referred to as
LLWQP1 and LLWQP2 respectively), and the optimized
versions of the communication-efficient3P algorithms
(described in Subsections V-B and V-C, and henceforth
referred to as LLW1 and LLW2 respectively).

Besides results directly obtained from the analysis of
the algorithms, we provide some QoS measures, obtained
by simulation. Chandra-Toueg’s all-to-all algorithm (CT)
has been also evaluated as a reference.

A. Communication Efficiency

Assuming a failure-free scenario, the number of mes-
sages periodically sent in the algorithms LLWQP1 and
LLWQP2 in stability is 2n, since every processp sends
one (p-is-alive) message to its successor in the ring
(Task 1), and one (START sending heartbeats, p)
message to its predecessor in the ring (Task 5). In the
CT algorithm, this number isn(n − 1). Finally, the
cost of the basic communication-efficient algorithm of
Figure 6 (denoted LLW0), as well as the LLW1 and
LLW2 algorithms isn, since every process sends just one
message to its successor in the ring.

TABLE II.
PERFORMANCE ANALYSIS.

# messages # messages
Algorithm (failure-free case) (general case)

CT [1] n(n− 1) C(n− 1)
LLWQP1 and LLWQP2 2n n + C
LLW0, LLW1 and LLW2 n n

Table II summarizes the performance analysis of the
different algorithms, including the general case with faulty
processes (assuming thatC ≥ 2 out of then processes of
the system are correct). In the general case, the algorithms
LLWQP1 and LLWQP2 periodically sendn+C messages,
due to the messages sent by Task 1 (C), Task 4 (n−C) and
Task 5 (C). However, note that once all incorrect processes
have crashed and the ring has stabilized, by Task 4
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every correct processp sends heartbeat messages only
to crashed processes{succ(p), . . . , pred(succp)}. As a
consequence, in practice, and assuming that erroneous
suspicions are not very frequent, the period of Task 4
could be bigger than the period of Task 1. An adaptive al-
ternative consists in setting initially the periods of Task1
and Task 4 to similar values (to facilitate a fast reaction
to erroneous suspicions during initial stabilization), and
increasing the period of Task 4 every time it executes.
This way eventually the number of messages sent by
Task 4 will become negligible, and hence the number
of messages periodically sent by this algorithm will tend
to 2C. Furthermore, if the period of Task 5 is bigger
than the period of Task 1, the number of messages
periodically sent by this algorithm will tend toC, which
is optimal for C correct processes. Note that the same
reasoning concerning the periodicity of Task 4 applies to
the communication-efficient algorithms too.

Actually, the values of the general case of Table II
correspond to the number of links that carry messages for-
ever. Observe that the algorithms LLWQP1 and LLWQP2

are not communication-efficient, since they use more than
n links. On the other hand, the algorithms LLW0, LLW1

and LLW2 are communication-efficient.

B. Evaluating the Quality of Service

We present here performance results obtained by sim-
ulation. We have analyzed the following QoS measures:

• Query accuracy probability. It is the probability
that a failure detection module that is queried by
its associated process gives the right answer. This
measure is based on [10], but has been enhanced in
this work to apply to scenarios with more than just
two processes,

• Crash detection latency. It is the time interval be-
tween the crash of a process and the time in which
the rest of the processes suspect it in a permanent
way. This measure quantifies how fast the failure
detector reacts.

We have used the ns-2 simulator
(http://www.isi.edu/nsnam/ns/) to compare the
performance of the algorithms. In Table III we show
the simulation settings for a typical local area network
scenario. The simulation generates message delays
at random with a uniform distribution. However, we
have set minimum and maximum message bounds.
Apparently, this contradicts our partially synchronous
system model. Nevertheless, the algorithms do not exploit
the knowledge of the maximal message delay when
initializing the time-outs. This allows us to generate
erroneous suspicions under the same conditions for
different algorithms. Moreover, from a practical point of
view the setting of a maximum message delay allows to
determine the duration of the simulations.

The tests have been carried out for a number of nodes
going from 3 to 24, using the settings of Table III. The
query accuracy probability has been measured executing

TABLE III.
SIMULATION SETTINGS (IN SECONDS).

Parameter Value

Minimum message delay 0.001
Maximum message delay 0.005
Periodicity ofALIV E messages 0.5
Initial time-outs 0.5
Time-out increment 0.001

the algorithm during 2000 seconds, that has been empiri-
cally proved to be sufficient for comparative purposes. In
fact, after this time the simulations have either stabilized
or are near stabilization. We assume that no process
crashes during the 2000 seconds. The crash detection time
has been measured in a longer execution, introducing a
crash at a time instant (2500 seconds) in which the system
has stabilized. In both cases, every simulation has been
repeated a sufficiently large number of times. In fact, the
averages become stable after few executions.

Figures 8 and 9 summarize the average results obtained
for each QoS measure. For clarity, instead of the prob-
ability of getting a right answer, we have used its com-
plement, the bad answer probability, i.e., the probability
that a failure detection module gives a wrong answer.
Figure 8 shows that the bad answer probability is very
similar and quite low for the algorithms of both families.
For Chandra and Toueg’s algorithm, the bad answer
probability is negligible, at the price of using an all-to-all
communication pattern periodically and forever. We can
observe too that algorithms using a broadcast mechanism
to notify suspicions have a higher bad answer probability.
This is due to the fact that erroneous suspicions are
notified to all the processes in the system, provoking
that all the processes make a mistake for each erroneous
suspicion.
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Figure 8. Bad answer probability.

This same strategy, i.e., the broadcast of suspicions,
is very useful to reduce the crash detection time in the
case of a real failure, as can be seen in Figure 9. For
algorithms LLWQP1 and LLW1, the crash detection time
increases linearly with the number of processes; hence,
these algorithms do not scale well for a large number of
processes. On the other hand, for algorithms LLWQP2

and LLW2, the crash detection time is constant and
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Figure 9. Crash detection time.

similar to Chandra and Toueg’s algorithm, thanks to the
broadcast of suspicions. It could be interesting to use this
mechanism only once the system has stabilized and no
more erroneous suspicions occur. We can consider that
the systems is stabilizing when the number of failure
suspicions drops below a given threshold. This strategy
could help to provide a near optimal performance.

Finally, Figure 10 corroborates that, for the algorithms
LLWQP1 and LLWQP2, setting the period of Task 5
higher than the period of Task 1 (4 and 16 times re-
spectively), does not affect the query accuracy probability
while reduces considerably the communication cost. For
example, it passes fromO(2n) to O(n) when the period
of Task 5 is 16 times that of Task 1.
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Figure 10. Incidence of task periodicity on bad answer probability.

VII. C ONCLUSION

In this paper, we have explored the design of efficient
failure detectors of the Eventually Perfect class (3P).
We have identified core definitions and tasks shared by
some heartbeat, ring-based algorithms we had developed
previously. We have formally proved some basic prop-
erties of this core, and used it to derive two families
of algorithms that follow two different approaches. The
first family includes a set of algorithms that are nearly
communication-efficient, and usen + C links forever.

The second approach includes a minimal version of
the communication-efficient algorithm of [8], and two
variants that improve QoS parameters while preserving
communication efficiency.

We have compared the algorithms in terms of two
QoS parameters: query accuracy probability and crash
detection time. From the simulation results, we have
observed that both families exhibit similar QoS perfor-
mance. Hence, we can conclude that the communication-
efficient algorithms are a better choice, since they use
a lower number of links. Also, we have observed that
some variants perform better in the presence of real
failures, while others do when erroneous suspicions occur.
Interestingly, this fact can be exploited following a hybrid
approach, in which the broadcast mechanism is disabled
during stabilization, and later activated when the number
of suspicions decreases, which indicates that the system
is close to stabilization.
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