
Abstract Interpretation-based Static Safety
for Actors

Pierre-Loïc Garoche, Marc Pantel, and Xavier Thirioux
Institut de Recherche en Informatique de Toulouse, France

Email: tgaroche,pantel,thiriouxu@enseeiht.fr

Abstract— The actor model eases the definition of concurrent
programs with non uniform behaviors. We present here
an encoding of a higher-order actor calculus, CAP, into
an abstract interpretation-based framework for the static
analysis of mobile systems. Then, we prove that a CAP term
and its encoding are bisimilar. Non-trivial properties are
captured using existing abstract domains, as well as new ones
such as our linearity abstract domain. As far as we know,
it is one of the first analyzes that deals with behavioral and
occurrence counting properties on a higher-order calculus.

Index Terms— abstract interpretation, concurrent calculus,
actor model, safety analyzes

I. INTRODUCTION

A. Context – Motivation

It is now common folklore to say that programming
in the context of distributed and concurrent applications,
as can be found for instance in the telecommunication
industry is an error-prone task. To alleviate this task, the
paradigm of concurrent objects is currently employed,
in particular for the development of distributed and con-
current applications for the Open Distributed Computing
framework (ITU X901-X904) and the Object Description
Language (TINA-C extension of OMG IDL with multiple
interfaces).

To obtain widely usable tools, we have chosen to use
an extended model known as non-uniform concurrent ob-
jects, which has been adopted by the telecommunication
industry. This model, originally called the actor model,
has been proposed by HEWITT [22] and developed by
AGHA [2]. It is based on a network of autonomous and
cooperative agents (called actors), which encapsulate data
and programs, communicating using an asynchronous
point to point protocol. An actor stores each received
message in a mailbox and when idle, processes one it
can handle. Besides, an actor can dynamically change
its interface, i.e. the set of messages it may handle,
accounting for the non uniform flavor.

Since non-determinism resulting from network com-
munications makes it difficult to validate any distributed
functionality using informal approaches, our work is
focused on applying formal methods to improve actor
based programming.

Until now, we have designed several type based ana-
lyzes for an actor model. Our main objective was, and
still is, to detect in a most accurate way typical flaws of

This article is an extended version of [20]

distributed applications, like for instance communication
deadlock or non linearity (i.e. the fact that several dis-
tributed actors have the same address). Due to limitations
in our previous attempts, we decided to move to the
framework of abstract interpretation, whose tools and
ideas have now significantly grown in maturity and are
being used in industrial contexts [1,4]. We now investigate
these techniques in order to capture our long standing
properties of interest as well as new ones, especially
dedicated to control of resources’ usage.

In the first section, we define our actor calculus.
Then, in the second part, we introduce our non standard
semantics upon which we define, in the third part, an
abstraction. Finally, in the last part, we explain how to use
the abstraction to observe properties about an analyzed
term.

B. Related Works

Concerning concurrent objects and actors with uniform
or non-uniform behaviors, and more generally process
calculi, typing systems (usually related to data-flow like
analyzes) have been the subject of active research. Two
opposite approaches have been followed: type checking
and type inference. Explicit typing may provide precise
information but types are sometimes very hard to write for
the programmer (they might be much more complex than
the program itself). Independently, properties are split in
two categories depending whether a resource usage is
considered constant during the resource lifetime or not,
this last case also being called behavioral.

In the paradigm of type systems, many works focus
on behavioral properties and use processes of a simple
algebra as types, for instance CCS (Calculus of Communi-
cating Systems) processes. This sometimes allows a form
of subtyping through simulation relations or language
containment. The works by KOBAYASHI et al. [23,25]
aim at ensuring deadlock-freedom and race-freedom for
the π-calculus and result in type inference systems. But
still, the proposed static analyses don’t cope well with
recursive programs obtained through replication or other
similar operators. Yet, the most recent results [26] lower
the number of false alarms at the price of requiring that
parameters of a recursive program denote different chan-
nels at each call. So, for instance, the authors can conclude
that a classical encoding in π-calculus of the factorial
function is well typed, whereas a simpler tail recursive

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 87

© 2007 ACADEMY PUBLISHER

version, without any intermediate channel, remains ill
typed. Our own analyzes can conclude that both version
are deadlock-free.

In the realm of type checking systems, RAVARA et
al. [32] want to check a weak form of stuck-freedom
in an asynchronous calculus resembling our. RAJA-
MANI et al. [31] also follow this line of thought, bringing
model-checking issues for those processes-as-types in
the scope, yet their system may be not terminating in
some cases. Also the works by NAJM et al. [6,27] and
PUNTIGAM [30] make use of more exotic types (interface
types and trace types respectively) to model behavioral
patterns and ensure similar properties. We can also han-
dle such properties, while sticking to an annotation-free
framework.

Alternatively, we have flow based algorithms, related
to behavior and communication patterns reconstruction,
advocated by the works of NIELSON et al. [3] and
PANTEL et al. [7,9,10]. These approaches don’t require
any user-supplied information but may lead to less precise
results. Most of them address simple data-flow properties
and the possibility of smoothly extending these works to
include more properties is questionable. We are interested
here in similar behavioral properties, but our generic
framework more easily lends itself to extension.

As for uniform non-behavioral analyzes, most works
rely upon unification based typing algorithms focusing
on resources’ uniform usage control witnessed by the
type systems of FOURNET et al. [17] and BOUDOL et
al. [5]. HENNESSY et al. [21] introduce sophisticated
type features such as dependent and existential types for a
higher-order π-calculus, devoted to a fine grained analysis
of channel usage. This system, while dealing with higher-
order features, requires strong annotations from the user
and disallows type inference.

Finally, one drawback of type-based analyzes is that
they are mainly concerned with data-flow analyzes (as
types basically represent sets of possible values for vari-
ables). In this context, control flow analyzes can be
mimicked with sophisticated encodings [28] but abstract
interpretation seems to be more adequate in this respect. It
has been recently applied with success to concurrent and
distributed programming by the work of VENET [33] and
later FERET [15,16]. Furthermore, analyzing higher-order
features using type systems is much more difficult if ever
possible, whereas our abstract interpretation framework
handles these features quite uniformly with respect to
other ordinary process calculi constructs and doesn’t incur
unbearable extra complexity.

II. CAP: A PRIMITIVE ACTOR CALCULUS

In order to ease the definition of static analysis for
actor based programming, we proposed, in 96, the CAP
primitive actor calculus [8], which merges asynchronous
π-calculus and CARDELLI’s Primitive Object Calculus.
The following example illustrates both replication and
behavior passing mechanisms in CAP. To facilitate the

reading and describe the evolution of the term, we au-
tomatically annotate the term with program points. We
will then describe transitions among threads using these
program points. The ν operator defines two addresses,
a and b, then two actors denoted by program points 1
and 7 are defined on those addresses with their behavior
sets respectively denoted by 2 and 4 for a and 8 for b.
In each of such behaviors, the ζ operator is a reflexivity
operator. It allows to bind in the continuation both the
actor’s name and its set of behaviors. For example, e and
s defined at point 5 are respectively associated with values
α and t2,4u, denoted here by 1, after the first transition
between actor 1 and message 6.

At this point the actor 1 can handle messages called m
or send when b can only handle beh messages.

νaα,bβ, a�1 rm2pq � ζpe,sqpa�3 sq,
send4pxq � ζpe,sqpx�5 behpsqqs

|| a�6 sendpbq
|| b�7 rbeh8pxq � ζpe,sqpe�9 xqs
|| b�10 mpq

There are also two messages in the initial configuration.
One is labeled send and is sent to a, the other one is
labeled m and is sent to b. In the initial configuration,
there is only one possible interaction; the actor a handles
the message send. The message m is an orphan one: it is in
the configuration but cannot be handled at the moment.
After one interaction between a and the message send,
the message beh whose argument is the behavior set of
a is sent to b. Thus b can handle that message. In its
continuation, the actor b assumes the behavior set of a.
Thus b can now handle the message m. This example
shows how to send a behavior to another actor. Such a
mechanism increases the difficulty of statically inferring
properties. An source of difficulty in the analysis is the
non-determinism of our term. If multiple messages are
present in a configuration for the same actor, it can take
any one of them when computing a transition. For exam-
ple, let us add another message b �11 mpq in the initial
configuration1. The last reduction can either consume
the message labeled 10 or the message labeled 11. The
other message will then stay in the configuration. Another
source of non-determinism is when multiple behavior
description in an actor are able to handle message with
the same label are arguments arity.

Stuck-freeness analysis, i.e. the detection of the set of
permanent orphan messages, or linearity analysis, i.e. ver-
ifying that at most one actor is associated to a particular
address at the same time, are harder to statically infer
when we allow behavior passing. This point was one of
the constraints which led us to switch from type based
analysis to abstract interpretation.

A. Syntax and Semantics

Let N be an infinite set of actor names, V be an
infinite set of variables. Let Lm be a finite set of message

1Program points allow to disambiguate parts of the term in the latter
formalization but are not used in the current use of CAP.

88 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

T � rmli
i prxiq � ζpei,siqCi

i�1,...,n
s

$&%
k P r1, . . . ,ns,
m� mk,

| rTl |�| rxk |

a� T || a�l mprTlq
pl,lkqÝÝÝÑCkrek Ð a,sk Ð T, rxk Ð rTls

In order to distinguish transitions, we label the interacting
parts of terms. Here the message has label l and the
matching behavior label lk.

Figure 1. Transition rule of CAP standard semantics

labels, Lp be the finite set of program point labels and Ln
be the finite set of name labels. In the following, behaviors
will be described by their thread program point. Values of
variables will then denote either names or behaviors. Let
L �LpYLn be the set of variable values. The syntax
of configurations is described as follows: Let a PN , x,k,
s.t. k P�Var,P V , m,mi PLm, α PLn and l, li PLp.

C ::� 0 | νaα C | C || C | a�l P | a�l mprPq
P ::� x | rmli

i p
�Varq � ζpe,sqCi

i�1...n
s

Configurations can be: an empty process, a creation of an
actor address, parallel execution, installation of an actor
on address a with behavior defined by P and, finally, a
message sent to an address a with arguments rP. Program
points define messages, behavior installations or external
choices between some actor behaviors. They will be used
to build traces of the execution control flow.

Name binders are defined the ν and ζ operators as well
as message label in behavior branches. In the configura-
tion pνaαqC, the name a is bound in C. In a behavior
branch mli

i p
�Varq � ζpe,sqC, the operator ζpe,sqC binds

variables e and s in C and the message label mi binds
all �Var variables in C. The ζ operator is our reflexivity
operator, it catches both address and behavior of its actor
and allows to re-use them in the behavior. We denote
by F N pCq the set of free names in C and by F V pCq
the set of free variables. We consider only closed term.
The standard semantics of CAP was defined using, as
usual, a transition rule (cf. Fig. 1), a congruence relation
(cf. Fig. 2) and a set of context rules (cf. Fig. 3). Our
presentation differs from the standard Milner’s semantics
for process calculi using LTS. We have a single unlabeled
reduction rule. We annotate it with a tuple of program
point in order to ease the later formalization.

III. NON STANDARD SEMANTICS

In order to ease the definition of abstract interpretations,
we need to define, in this section, another semantics for
CAP and prove it bisimilar to standard CAP semantics.
The non standard semantics allows us to label each
process with the history of transitions which led to both
its creation and the creation of its values. Our work is
based on a generic non standard semantics which has
been defined by FERET [15,16] to model first order
process calculi as π-calculus, spi-calculus, Ambients, Bio-
ambients calculus. We also describe in this section how

C � D C α-convertible to D
C||0 � C
C||D � D||C

pC||Dq||E � C||pD||Eq
pνaαq∅ � ∅
a� T1 � a� T2 if T1 � T2

pνaαqpνbβqC � pνbβqpνaαqC if a� b
pνaαqC||D � pνaαqpC||Dq if a R F N pDq
pνaαqC||D � pνaαqpC||Dq if a R F N pDq
rmiprxiq � ζpei,siqCi

i�1,...,ns � ρ a permutation
rmρpiqp�xρpiqq � ζpeρpiq,sρpiqqCρpiq

i�1,...,ns

Figure 2. Congruence relation of CAP standard semantics
D�C C ÝÑC1 C1 � D1

DÝÑ D1 ST RUCT

C ÝÑC1

C || DÝÑC1 || D
PAR C ÝÑC1

νxC ÝÑ νxC1 RES

Figure 3. Context rules

we adapt this general framework to express the CAP
language which has a notion of higher order due to its
behavior passing and reflexivity mechanism (ζ operator).
We then briefly describe the operational semantics of the
generic non standard semantics.

A configuration of a system, in this semantics, is a
set of threads. Each thread t is a triple defined as t �
pp, id,Eq P Lp�M �pV ÞÑ pL �M qq where p is the
program point representing the thread in the CAP term,
id is its history marker, also called its identity, and E its
environment. This environment is a partial map from a
variable to a pair pvalue,markerq. Each marker is a word
on program points representing the history of transitions
which led to the creation of values or threads. It is
required in order to differentiate recursive instances of a
value or thread. All threads with the same program point
have an environment defined on the same domain, called
the program point interface.

We will describe some primitives that allow us to define
the non standard semantics, then, briefly, we show how
to compute transitions in this semantics. We associate to
each program point a set of partial interactions which
define how threads related to this program point can
interact with others. We also define the set of variables
associated to each thread, constituting its environment,
according to its program point. An extraction function will
then compute for each CAP subterm the appropriate set
of partial interaction and of interface variables depending
on it syntax.

A. Partial Interactions

Here, in CAP, partial interactions can represent a syn-
tactically defined actor, one of its particular behavior, a
dynamic actor (an actor whose behavior is defined by a
variable) or a sent message. This encoding, differentiating
syntactic actors from dynamic ones, allows us to deal with

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 89

© 2007 ACADEMY PUBLISHER

behavior passing. Once a behavior has been declared, it is
present in the configuration as a behavior thread, while a
reference to it is used in messages. Dynamic actors could
then use such a behavior if they are associated with their
corresponding reference.

We thus define the set of partial interaction names
A � tstatic_actorn,behaviorn,messagen | n P Nu Y
tdynamic_actoru and their arities as follows:

Ari�

$''&''%
static_actorn ÞÑ p2,n�2q,

behaviorn ÞÑ p1,n�2q,
dynamic_actor ÞÑ p2,0q,

messagen ÞÑ pn�2,0q

,//.//-
Partial interaction arities define the number of parameters
and the number of bound variables.

Both partial interaction static_actorn and behaviorn
denote a particular behavior of an actor. The first one is
associated to an address when the second one is alone and
can be used with a dynamic actor. The second one acts
as a definition and stays in the configuration when used,
whereas the first one is deleted. They are parametrized by
their message labels and bind n�2 variables, the variables
under the ζ operator expressing reflexivity as well as the
parameters of the message it can handle. The first one is
also parametrized by its actor name.

The partial interaction dynamic_actor denotes a thread
representing an actor. It is consumed when interacting. It
has only two parameters: its name and set of behaviors.
It binds no variables.

Finally the partial interaction messagen represents the
message that is sent to a particular address (actor). So
it has n�2 parameters: one for the address, one for the
message name and n for the variables of this message. It
is consumed when interacting.

We associate to each partial interaction a type denoting
whether such a partial interaction is consumed or not
when interacting.

B. Abstract Syntax Extraction

We now define the syntax extraction function that takes
a CAP term describing the initial state of a system of
agents in the standard syntax and extracts its abstract
syntax.

We map each program point labeled l PLp to a set of
partial interaction and to an interface.

A partial interaction pi is given by a tuple
ps,pparameteriq,pboundiq,constraints,continuationq
where s PA is a partial interaction name, pm,nq � Aripsq
its arity, pparameteriq P V m its finite sequence of
variables (Xi), pboundiq P V n its finite sequence of
distinct variables (Yi), constraints � tv � v1 | pv,v1q P
V 2,� P t�,�uu its synchronization constraints and
finally continuation P℘pLp � pV Ñ L qq its syntactic
continuation. Such a continuation is called syntactic
because it has to be updated with value passing to be a
valid term of the process calculus. We check constraints
about thread environment defined in the set constrains
with the use of the sequence pparameteriq, then we use

both sequences pparameteriq and pboundiq to compute
value passing, finally we deal with the set continuation
to determine which threads have to be inserted in the
system.

 the label of a program point a �l

rmli
i prxiq � ζpei,siqCi

1¤i¤m
s is associated to the

interface tau and to the following set of partial
interactions:$'''''&'''''%

!
pstatic_actorn, ra,m1s, re1,s1, rx1s,βpC1,Hqq

)!
pstatic_actorn, ra,m2s, re2,s2, rx2s,βpC2,Hqq

)
. . .!
pstatic_actorn, ra,mms, rem,sm,�xms,βpCm,Hqq

)

,/////./////-
 the label of a program point a �l x is associated to

the interface ta,xu and to the following set of partial
interactions:

!
pdynamic_actor, ra,xs,H,Hq

)
 the label of a program point a�l mprPq is associated

to the interface tauYF V prPq and to the following set
of partial interactions:

!
pmessagen, ra;m; rPs,H,Hq

)
 the label of a program point li corresponding to a

particular behavior of an actor i.e. mli
i prxq � ζpei,siqCi

is associated to the interface F V pCiqztei,siu
and to the following set of partial interactions:!
pbehaviorn, rmis, rei,si,rxs, βpCi,Hqq

)
Finally, the syntax extraction function β is defined induc-
tively over the standard syntax of the syntactic continua-
tion, as follows:

βppνaαqC,Esq � βpC,Esra ÞÑ αsq
βpH,Esq � tHu

βpC1||C2,Esq � βpC1,EsqYβpC2,Esq

βpa�l rmli
i prxiq �

ζpei,siqCi
i�1,...,ns,Esq

� tpl,EsquY
�

i�1,...,n tpli,Esqu

βpa�l B,Esq � ttpl,Esquu

βpa�l mprPq,Esq � ttpl,Esquu

One could notice that the syntax extraction of a syn-
tactically defined actor generates not only the thread
associated with the actor but also all behavior threads
defining all behavior branches of the actor. The extraction
of a message in which at least one of the variables is a
syntactically defined behavior would generate a similar
set of behavior threads.

The initial state for a term S is described by inits, a
set of potential continuations in ℘p℘pLp�pV Ñ L qqq
defined as βpS ,Hq.

C. Formal Rules

We now define the formal rules that drive the interac-
tion between threads. In the case of CAP, we have two
rules that describe an actor handling a message, depending
on the kind of actor we have, a static or a dynamic one.

In the following, the i-th parameter, the j-th bound
variable, and the identity of the k-th partial interaction are

90 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

respectively denoted by Xk
i , Y k

j and Ik. We define the en-
domorphism behavior_set on the set Lp�M as follows:
pp,mq ÞÑ pp1,mq where p is a behavior program point and
p1 is the program point where p has been syntactically
defined. As an example, in the term ναa,a�1 r f oo2pq �
ζpe,sqCs, we have behavior_setp2,markerq � p1,markerq.

a) Communication with a static actor: The first rule
needs two threads, the first one must denote a partial
interaction static_actor when the second one must denote
a partial interaction messagen. We both check that the
actor’s address (X1

1) is equal to the message’s receiver
(X2

1) and that the actor behavior name (X1
2) is equal to

the message name (X2
2).

We then define v_passing that describe the value pass-
ing due to both the ζ operator and message handling.

static_transn � p2,components,compatibility,v_passingq

where

1) components�
"

1 ÞÑ static_actorn,
2 ÞÑ messagen

2) compatibility�
"

X1
1 � X2

1 ;
X1

2 � X2
2 ;

3) v_passing�

$&%
Y 1

1 Ð X1
1 ;

Y 1
2 Ð I1;

Y 1
i�2 Ð X2

i�2,@i P J1;nK;
b) Communication with a dynamic actor: The sec-

ond rule needs three threads: the first one must denote
a partial interaction behaviorn, the second one a partial
interaction dynamic_actor and the third one a message
messagen. We check the equality between actor’s address
(X2

1) and receiver (X3
1), behavior name (X1

1) and message
name (X3

2). With the behavior_set function we check the
link between the behavior and the actor. The value passing
is defined in the same way as in the first rule.

dyn_transn � p3,components,compatibility,v_passingq

where

1) components�

$&% 1 ÞÑ behaviorn,
2 ÞÑ dynamic_actor,
3 ÞÑ messagen

2) compatibility�

$&%
X2

1 � X3
1 ;

behavior_setpI1q � X2
2 ;

X1
1 � X3

2 ;

3) v_passing�

$&%
Y 1

1 Ð X2
1 ;

Y 1
2 Ð X2

2 ;
Y 1

i�2 Ð X3
i�2,@i P J1;nK;

D. Operational Semantics

We now briefly describe how to use the preceding
definitions to express in the non standard syntax both an
initial term and the computation of a transition according
to one of the aforementioned rules. We recall that our
calculus is embedded into the generic framework of
FERET [16], which provides a single syntax and a single
parametrized semantics and can encode various calculi. It
allows to explicate the control flow of the system while
representing a configuration as a set of threads. Therefore
the current operational semantics is not based on a labeled

transition relation and a congruence relation but rather on
a set of reduction rules, guided by our formal rules that
can be applied on any tuple of threads.

Initial configurations are obtained by launching a con-
tinuation in inits with an empty marker and an empty
environment. That means inserting in an empty configu-
ration one thread for each pair pp,Esq in βpinitsq where
each value in Es is associated with an empty marker. We
focus now on the interaction computation according to
one of the two rules. First of all, we have to find some
correct interaction. It means that we have to find some
threads in the current configuration that can be associated
to the right partial interaction according to the matching
formal rule. Then, we check that their interfaces satisfy
the synchronization constraints. Thus we can compute
the interaction. All these steps are performed using the
primitives which are mentioned in parentheses:

 we remove interacting threads according to the type
of their exhibited partial interactions (exhibits, com-
ponents);

 we choose a syntactic continuation for each thread;
 we compute dynamic data for each of these contin-

uations (sync):
– we compute the marker (marker);
– we take into account name passing (vpassing);
– we create fresh variables and associate them

with the correct values (launch);
– we restrict the environment according to the

interface associated with the program point
(launch);

 we remove interacting threads depending on their
types (remove).

An explicit definition is given in Fig. 4.

E. Example

To illustrate the use of the non standard semantics,
we compute the first transition of the example given in
section II.

The initial configuration2 is:

p1,ε,
�

a ÞÑ α,ε
�
q p2,ε,

�
a ÞÑ α,ε

�
q p4,ε, rsq

p6,ε,

�
a ÞÑ α,ε
b ÞÑ β,ε

�
q p7,ε,

�
b ÞÑ β,ε

�
q p8,ε, rsq

p10,ε,
�

b ÞÑ β,ε
�
q

At this point, the only possible transition
is labeled by 1,6 and corresponds to the
static_transn rule. Program point 1 is able to
exhibit the two following partial interactions:$&%

!
pstatic_actorn, ra,ms, re,ss,βpa�3 s,Hqq

)
,!

pstatic_actorn, ra,sends, re,s,xs,βpx�5 behpsq,Hqq
) ,.-

when the program point 6 exhibits the only partial
interaction: !

pmessagen, ra,send,bs,H,Hq
)

2We can notice the absence of threads at program points 3, 5 and
9 which correspond to sub-terms. There are not present in the initial
configuration.

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 91

© 2007 ACADEMY PUBLISHER

Let C be a configuration. Let R � pn,
components,compatibility,v_passingq be a formal
rule. Let us be given a tuple ptkq1¤k¤n �
ppk, idk,Ekq1¤k¤n P Cn of distinct threads and
a tuple ppikq1¤k¤n � psk,pparameterlq

k,pbdlq
k,

constraintsk,continuationkq1¤k¤n of partial interactions,
such that:

1) @k P J1;nK,exhibitsptk, pikq;
2) @k P J1;nK,componentspkq � sk;
3) syncpptkqk,ppparameterlq

kqk,compatibilityq � K.
Then

C
pαiqn

ÝÝÝÑ pC z removed_threadsqYnews_threads
with:

 removed_threads� remove
�
ptkq1¤k¤n

	
;

 new_threads�
�

1¤k¤n launch
�

Ctk, id,Ek
	

,
where @k P J1;3K:

– Ctk P continuationk;
– id � marker

�
ppk1

, idk1

,Ek1

q1¤k1¤n

	
;

– Ek
� vpassing

�
k,ptk1

q1¤k1¤n,ppbdlq
kqk, pppara-

meterlq
kqk,communications

	
.

 @k P J1;nK,αk � ptk, pik,Ekq.

Figure 4. Non standard operational semantics

We choose the second partial interaction for 1. We first
check synchronization constraints. We need that X1

1 � X2
1

and X1
2 � X2

2 . So pα,εq � pα,εq and both threads share
the same label send. We can now compute value passing,
thread launching and removing. We have to remove in-
teracting threads and to add threads in βpx�5 behpsq,Hq
with their environments updated by value passing. Value
passing gives the value of e, s and x, we have respectively
pα,εq, p1,εq and pβ,εq. Thus the launched thread is

p5,ε,

�
x ÞÑ β,ε
s ÞÑ 1,ε

�
q.

We obtain the new configuration:

p2,ε,
�

a ÞÑ α,ε
�
q p4,ε, rsq p5,ε,

�
x ÞÑ β,ε
s ÞÑ 1,ε

�
q

p7,ε,
�

b ÞÑ β,ε
�
q p8,ε, rsq p10,ε,

�
b ÞÑ β,ε

�
q

We recall that when computing a transition using the
dynamic_transn rule, new launched threads are associated
to a new marker.

F. Correspondence

1) Translation: We need to prove the correspondence
between CAP semantics and its expression in the meta
language. In the following, pi denotes a partial interaction.

Lemma 1 (non standard term well-formedness): Let C
be a non standard term. C is a set of triples tpp, id,Equ
where p P Lp denotes a program point, id P M a
marker and E P℘pV Ñ pL �M qq its environment. Let
interaction be the partial map from program points to
partial interactions. Let behavior_set be the partial map
defined upon the term defined as in III-C which maps a
value denoting a syntactically defined actor program point
to its set of behavior program points.

Every term C is well formed, that is
1) @pp, id,Eq P C, interactionppq � H and

@pname,var, param,contq P interactionppq,
@v P var,Epvq is defined;

2) @pp, id,Eq PC, such that @pi P interactionppq, pi is
a static_actor partial interaction, then |varpi| � 2
and there is, in the system, exactly one thread
ppi, id,Eiq for each associated behavior program
point pi. Each of those threads must exhibit a
behaviorn pi.

3) @pp, id,Eq PC, such that D!pi P interactionppq and
pi is a dynamic_actor partial interaction, then
|varpi| � 2 and let s be the 2nd variable of
varpi. There is, in the system, exactly one thread
ppi,sndpEpsqq,Eiq for each pi P behavior_setpEpsqq.
Each of those partial interactions must exhibit a
behaviorn pi.

4) @pp, id,Eq, such that interactionppq is a behaviorn
pi, then |varpi| � 1.

5) For each variable denoting a behavior, threads
associated to this value must be present in the
system and share the same marker as the one of
the variable.

Proof: The proof can be made by induction on
created terms issued from the initial state βpS ,Hq. We
give here only proof sketches of the different cases:

1) Initial threads as well as every created threads are
computed using the β function and correspond to
either static actors, dynamic ones, or messages.
Therefore they are able to exhibits partial interac-
tion as defined in III-B. We recall that we only
consider closed term. Then, the initial threads are
defined after a sequence of ν operators that bind
their variables. By induction on the number of com-
puted transition, one can show that each transition
using one of our two formal rules preserve the
property: each variable used in one thread partial
interaction is defined and bound either by an inter-
nal ν operator, a ζ operator, a message argument or
previously in the matching actor.

2) By definition of the abstract syntax extraction in III-
B. Each actor on program point l associated with
a syntactic behavior (tliu) is mapped, by the β

function, to one thread pl,Eq and a set of threads
pli,Eq. Each of those static threads will then be
launched by the launch primitive. By definition,
all the behavior branches will be associated with
threads that exhibit behavior partial interaction.

3) Similar to the previous case. Using the result of 1,
the variable s is defined and denotes the program
point of the static actor defining the behavior.

4) By definition of the syntax extraction.
5) All threads representing the different branches of a

behavior are launched together. Therefore they are
all presents and share the same marker.

To simplify the translation and allow us to differen-
tiate between recursive instances of the same variable

92 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

declaration (i.e. name binder), we define an auxiliary
function f which maps each pair pp,mq P L �M to
the name pm iff p is the label corresponding to a term
νap and the term rmli

i prxiq � ζpei,siqCi
i�1,...,n

s iff p is a
term a �p rmli

i prxiq � ζpei,siqCi
i�1,...,n

s. Such a function
also allows us to replace dynamically defined actors by
their static equivalent ones. The α-conversion rule of the
CAP congruence relation allows us to rearrange the term.

Let tci | i P J1;kKu defined as t f pEpxqq|pp, id,Eq PC,
Epxq defined,and f stpEpxqq a nameu be the set of actors’
names used in the term.

We define a translation function Π which maps a set
of thread denoting a well formed non standard configu-
ration C to the corresponding CAP configuration. The Π

function is defined by:

ΠpCq � pνc1q . . .pνckqpM1 || . . . || Mp || A1 || . . . || Aqq

We define C as the disjoint union of M, A and B:

C �MYAsYAd YB

where M is the set of threads associated to messagen
partial interactions, As the set of threads associated to
static_actorn partial interactions, Ad the set of threads
associated to dynamic_actor partial interactions, and,
finally, B the set of threads associated to behaviorn partial
interactions.

The Π function can be recursively applied on the set
of threads in C, each iteration computing a message or an
actor of the resulting CAP term. We construct tMiu and
tA ju as follows:

 i P J1;CardpMqK
 Mi is the message a �l prxq corresponding to the

translation of the thread pl, id,Eq PM.
 j P J1;Card pAsYAdqK
 A j is the actor a �l rmli

i prxiq � ζpei,siqCi
i�1,...,n

s as-
sociated to the thread pl, id,Eq P AsYAd .

– when pl, id,Eq P As, the actor is obtained from
the sub-term associated to the program point l;

– when pl, id,Eq P Ad , the actor is composed
of all behaviors represented by its associated
threads pli, id,Eq PB; i.e. behavior threads which
program points are associated by behavior_set
function to the second variable value of the actor
thread and which markers are equal to the one
of this same variable. More formally, the actor’s
thread second variable is associated to the pair
pl1, id1q, id � id1 and all li are associated to l1 by
the behavior_set function.

As the C term is well formed, when a dynamic actor
is in the system, all the behaviors of its behavior set
must be in the system too.

Finally, in both Mi and A j, we update E. We replace
a and each free variable of rx, respectively a and each
free variable in all Ci, with their images by function f :
x ÞÑ f pEpxqq.

The translation system is well defined thanks to the
congruence rules: associativity, commutativity and swap-
ping.

2) Correspondence: The following theorem states that
CAP standard semantics and its non standard semantics
are in strong bisimulation. They share equivalent initial
states and each possible set of transitions from the initial
state in the non standard semantics (respectively in the
standard one) is computable in the standard one (respec-
tively in the non standard one).

Theorem 2: We have S � ΠpC0q, and for each non
standard configuration C and for each word u P pL 2 Y

L 3q� such that C0
u
ÝÑ

�
C:

1) @λ P pL 2YL 3q,C λ
ÝÑC1 ùñΠpCq λ

ÝÑΠpC1q;

2) @λ P pL 2YL 3q,ΠpCq λ
ÝÑPùñ DD,

#
C λ
ÝÑD

ΠpDq � P
Proof: Let C be a non standard configuration and

let u be a word in pL 2YL 3q� such that C0
u
ÝÑ

�
C,

1) Let C1 be a non standard configuration such that
C λ
ÝÑC1. Suppose that C contains only interacting

threads. Our coding contains two transition rules,
we check the property for each. In order to simplify
the proof, we denote by E and S the address and
behavior set of the interacting actor and by M the
environment of the interacting message.

a) Static-trans rule. Such a rule defines the
interaction between two threads. Necessarily,
C must contain:

pp1, id1,E1q pp2, id2,E2q

where partial interactions associated to pro-
gram points are:
 p1: pstatic_actorn, rego, labels, rei,si, ryks,

βpCi,Hqq
 p2: pmessagen, rdest, label, rxls,Hq

with |ryk| � |rxl | � n. Then, we have the
following relations E1pegoq � E2pdestq and
E1plabelq � E2plabelq. The C1 term obtained
after transition λ� pp1, p2q is:$''''&''''%
pp j, id1,E jq s.t. pp j,Es jq P βpCi,Hq and

E j � Es j

����
ei ÞÑ E2pegoq
si ÞÑ I1 � pp1, id1q
@k P J1;nK,
yk ÞÑ E2pxkq

����
,////.////-

Standard configuration ΠpC1q is the closed
term composed of the set of messages and
actors with their appropriate behaviors, as
defined by the C1 term. Let us study each Ci
case by induction on CAP syntax. We have
here E � E1pegoq, S � I1 and M � E2.

 when Ci � a �pa rm
pml
l przlq � ζpel ,slqCls,

then, by definition of β, βpCi,Hq �
ppa, rsel f ÞÑ pasqY

�
ppml , r sq.

The exhibits function maps each program
point pml to a partial interaction:

pbehaviorn, rmls, rel ,sl , rzls,βpCl ,Hqq

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 93

© 2007 ACADEMY PUBLISHER

After value passing, we obtain for C1:
$'''&
'''%

�
����pa,new_id,Ea

�
����

ei ÞÑ E
si ÞÑ S
@k P J1;nK,
yk ÞÑ M pxkq
x ÞÑ E1pxq

such that Eapxq
is defined iff
x P inter f aceppaq

�
����

�
���

,///.
///-

Y
�

l

$'''&
'''%

�
����pl ,new_id,El

�
����

ei ÞÑ E
si ÞÑ S
@k P J1;nK,
yk ÞÑ M pxkq
x ÞÑ E1pxq

such that Elpxq
is defined iff
x P inter f acepplq

�
����

�
���

l

,///.
///-

The term translation by Π function gives

νrc,a�pa rmpl
l przlq � ζpel ,slqCls

where rc� tx | Eapxq where Elpxq is defined
and denotes a ν program point u.

 when Ci � a �pa b, then necessarily, the
set of behaviors denoted by the b vari-
ables has already been defined and is in
the current configuration. We recall that
we only consider closed terms. Therefore
b is defined and denotes a set of behaviors
of the past. The resulting term is similar
to the preceding case without introducing
behavior threads on program points pi.

 when Ci � a�pa mprzq, then by definition of
β, βpCi,Hq � ppa,Hq. The exhibits func-
tion gives:

pmessagen, ra,m,rzs, r s,Hq
The pa interface is tauYF N przqu. The only
thread we obtain, in the resulting term C1,
once the value passing is computed, is:$''&''%

����pa,new_id,E

����
ei ÞÑ E
si ÞÑ S
@k P J1;nK,
yk ÞÑM pxkq

such that Epxq
is defined iff
x P inter f aceppaq

����
���
,//.//-

Its translation by Π is:

νrc,a�pa mprzq
where rc� tx | Epxq is defined and denotes
a ν program point u.

b) Dynamic-trans rule. Such a rule defines the
interaction between three threads. Necessarily
C must contain:

pp1, id1,E1q pp2, id2,E2q pp3, id3,E3q

where partial interactions associated to pro-
gram points are:
 p1: pbehaviorn, rlabels, rei,si, ryks,βpCi,Hqq
 p2: pactor, rego,sel f s, r s,Hq
 p3: pmessagen, rdest, label, rxls,Hq

with |ryk| � |rxl | � n. Then, we have
the following relations E2pegoq �
E3pdestq, E1plabelq � E3plabelq and
behavior_setppp1, id1qq � E2psel f q. The C1

term obtained after transition λ � pp1, p2, p3q
is:

tpp1, id1,E1quY$''''&''''% pp j,new_id,E jq

pp j,Es jq P βpCi,Hq

E j � Es j

����
ei ÞÑ E2pegoq
si ÞÑ E2psel f q
@k P J1;nK,
yk ÞÑ E3pxkq

����
,////.////-

where new_id � id2.p2.
Standard configuration ΠpC1q is, as preced-
ing, the closed term composed of the set of
messages and actors with their appropriate
behaviors, as defined by the C1 term. We have
now to study each Ci case by induction on
CAP syntax. We obtain the same results as in
the static_rule case with E � E2pegoq, S �
E2psel f q and M � E3.

c) Finally, the last cases are managed by an
induction over the shape of Ci terms, indepen-
dently of the matching rule.
 when Ci � νaα,Ca, then βpCi,Hq �

βpCa, ra ÞÑ αsq. By induction hypothesis,
the resulting term of the update of the static
environment of program points βpCa,Hq is
Ca. The variable a may be free in the Ca
term.
The resulting term of the environment up-
date with the relation a ÞÑ α,new_id, is
translated by Π to νaαCa;

 when Ci � C1 || C2 then βpCi,Hq �
βpC1,HqYβpC2,Hq. By induction, we have
βpC1,Hq which is translated in C1 by Π

and βpC2,Hq which is translated in C2.
The term βpCi,Hq translation with updated
environment by value passing is the closed
term of CAP composed of both actors and
messages of C1 and C2;

 when Ci � H then βpCi,Hq � H. It’s a
trivial implication.

We have shown that the implication is valid if term
C contains only matching threads. Compatibility
rules as well as congruence relations allow us to
compute a transition step when the actor can handle
more behaviors and when interacting threads are
under a variable restriction or in parallel with other
threads. So, the implication is true in the general
case for well formed configurations.
We have the implication @λ P pL 2 Y

L 3q,C λ
ÝÑC1 ùñΠpCq λ

ÝÑΠpC1q;
2) Let P be a standard configuration such that

ΠpCq λ
ÝÑP. Let ppiqi � λ the transition label. Con-

figuration ΠpCq contains at least the interacting
threads tpiu. By definition of translation function
Π, non standard term C must contain at least some
threads pp1, id1,E1q,pp2, id2,E2q and pp3, id3,E3q
or pp1, id1,E1q and pp2, id2,E2q, depending on the
matching rule, with the appropriate constraints on

94 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

markers and environments to allow transition λ.
Therefore, there exists a non standard configuration
D image of C by transition λ. Let ΠpDq be its
image in the CAP standard syntax by the translation
function Π. By reusing preceding property, and
the fact that term C1 is well formed, we obtain
ΠpDq � P by α-conversion and extrusion.
Therefore we have ΠpCq λ

ÝÑP ùñ DD,C λ
ÝÑD and

ΠpDq � P.
3) Let us show that S � ΠpC0q. By induction, we

show that @Ci closed, βpCi,Hq is closed. Further-
more, ΠpβpCi,Hqq � Ci is closed. Let C0 � C0
be the initial configuration. As C0 � βpS ,Hq by
definition, we have ΠpC0q �S .

IV. ABSTRACT SEMANTICS

In order to ensure properties on all the possible ex-
ecutions of the non standard semantics, we rely on the
abstract interpretation approach which combines in a
single one all the possible executions.

A. Abstract Interpretation
Abstract interpretation [11] is a theory of discrete

approximation of semantics. A fundamental aspect of
this theory is that every semantics can be expressed as
fixed points of monotonic operators on complete partial
orders. A concrete semantics is defined by a tuple pS,�
,K,Y,J,Xq. Following [12], an abstract semantics is
defined by a pre-ordered set pS#,�q, an abstract iteration
basis K#, a concretization function γ : S# Ñ S and an
abstract semantics function F#.

Abstract Interpretation of Mobile Systems: We approx-
imate here the mobile systems’ semantics as described
in [16,33]. The collecting semantics of a configuration
C0 is defined as the least fixed point of the complete join
morphism F:

FpXq � ptεu�C0qY!
pu.λ,C1q DC PS ,pu,Cq P X and C λ

ÝÑC1

)
An abstraction

�
C #,�#,\#,K#, γ#,C#

0 ,ù,∇
�

in this
framework must define as usual a pre-order, a join opera-
tor, a bottom element, a widening operator (when abstract
domains are infinite) as well as:

 the initial abstract configuration C#
0 P C # with tεu�

C0 � γpC#
0q

 the abstract transition relationù P℘pC #�Σ�C #q
such that:
@C# P C #,@pu,Cq P γpC#q,@λ P Σ,@C1 P C ,

C λ
ÝÑC1 ùñ DC1# P C #,pC# λ

ùC1#q
and pu.λ,C1q P γpC1#q

Such an abstract transition computes all the concrete
transitions labeled λ from all possible C represented
by C#.

The abstract counterpart of the F function is the abstract
function F# defined as:

F#pC#q �
�# � C1# | Dλ P Σ,C#

ù
λ C1#

(
\tC#

0 ;C#u
�

B. Abstract Domains

An element of an abstract domain expresses the set of
invariant properties of a set of terms. We project the initial
term into an abstract element to describe its properties.
Then, we use an abstract counterpart of the transition
rules to obtain the set of valid properties when applying
the transition rules to all elements of the initial set. Then,
we compute the union of both abstract elements, to only
keep the set of properties which are valid before and after
the transition. We repeat these steps until a fixed point is
reached. The use of the union and the widening functions
guarantees the monotony of the transition and thus the
existence of the fixed point. Finally, we obtain an abstract
element describing the set of valid properties in all
possible evolutions of the initial term. It is the abstraction
of a post fixed point of the collecting semantics’ least
fixed point. Our abstractions are sound counterparts of
the non standard semantics.

In order to avoid a too coarse approximation of the
collecting semantics, we need, at least, to use a good
abstraction of the control flow. We associate to each pro-
gram point an abstract element describing its set of values
and markers. Then, a second abstract domain relates the
information of another set of properties satisfied by the
collecting semantics of the analyzed term. Therefore, we
use, as a main abstract domain, the cartesian product of
an abstract domain to approximate non uniform control
flow information in conjunction with one or more domains
to approximate specific properties. Such properties can
often be expressed in terms of occurrence counting of
threads in configurations. These domains can describe or
approximate a configuration globally by giving a property
verified by all configurations or more locally like in the
control flow abstraction, providing an approximation for
each program point.

Generic Abstractions: In this section, we will briefly
describe two abstract domains defined by FERET respec-
tively in [14] and [13], that are used to approximate
the non standard semantics of CAP. Their operational
semantics is then given in Figs. 5(a) and 5(b).

a) Control Flow Abstract Domain: This abstract do-
main approximates variable values of thread environments
as well as their markers for a given configuration. It
is parametrized by an abstract domain called an Atom
Domain. We associate to each program point an atom
which describes the values of both variables and markers
of the threads that can be associated with this program
point. When computing an interaction, we merge the
interacting atoms associated to the interacting threads
(primitive reagents#) and add synchronization constraints
(primitive sync#). If they are satisfiable, the interaction
is possible. We then compute the value passing and the
marker computation (function marker_value). Finally, we
launch new threads (primitive launch#) and update the
atom of each program point by computing its union with
the appropriate resulting atom.

In this domain, we only focus on values, so we com-
pletely abstract away occurrences of threads and thus

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 95

© 2007 ACADEMY PUBLISHER

deletion of interacting threads.
The Atom Domain we use is a reduced product of four

domains. The first two represent equality and disequality
among values and markers using graphs, the third one
approximates the shape of markers and values with an au-
tomaton and the fourth one approximates the relationship
between occurrences of letters in Parikh’s vectors [29]
associated to each value and marker.

b) Occurrence Counting Abstract Domain: In this
domain, we count both threads associated to a particular
program point and transition label, the set of which is
denoted by Vc. We first approximate the non standard
semantics by the domain NVc , associating to each program
point its thread occurrence in the configuration and to
each transition label its occurrence in the trace that
leads to the configuration. At the level of the collecting
semantics, we obtain an element in ℘pNVcq. We then
abstract such a domain by a domain NVc which is a
reduced product between the domain of intervals indexed
by Vc and the domain of affine equalities [24] built
over Vc. When computing a transition, we check that the
occurrences of interacting threads are sufficient to allow
it (primitive SY NCNVc

). If we do not obtain the bottom
element of our abstract domain, i.e. the synchronization
constraint is satisfiable, we add (primitive �#) the new
transition label, the launched threads (primitives β# and
Σ#) and remove (primitive �#) consumed threads.

A Forward and Backward Control Flow Abstract Do-
main: We present here an abstract domain defined in [19].
It allows to compute a future usage mode associated to
each variable in threads’ environments. Such usage mode
in tK,�,,Ju counts whether this variable will be used
to bind zero, one or more actors. If different usage modes
are inferred during the analysis for the same variable,
computing their union yields the value J � �Y which
represents here a failure in determining such usage modes.
The value J is also associated to the meaning “binds more
than one actor”, for example when two actors are installed
to a name bound by the same ν. This abstract domain
and its associated semantics is similar to the control
flow abstract domain but also presents major differences.
Instead of computing only a forward flow and updating
the original abstract element with the value obtained for
the new launched threads, i.e. the one in the continuation,
the current abstract semantics considers both a forward
and a backward flow. A first flow builds these new abstract
representation of the new launched threads with their
associated usage modes. Then, the knowledge of such
continuations and their future uses allows to constraint
the interacting thread that computes this transition. For
example, a variable associated to K (uninitialized value)
in the received message, can be used in the continuation
to install exactly one actor and is not used with the value
 in any other part of such a continuation. Therefore
the variable x must have the value in the interacting
message. The resulting element of a transition in this
domain is therefore the union of the initial element with
the resulting updated threads as well as the interacting

Let C# be an abstract configuration, let ppkq1¤k¤n PLp
be a tuple of program points label and ppikq1¤k¤n �
psk,pparkq,pbdkq,consk,contkq be a tuple of partial inter-
actions.

We define mol by
reagents#pppkq,ppark,lq,pconskq,C#q.

When
@k P J1;nK, pik P interactionppkq ; and mol �KpIppkqqk

Then

C
ppkqkÝÝÝÑ#

�
tC;mol;new_threadsu

Where
1. mol1 � marker_valuepppkqk,mol,pbdkqk,pparkqk,

v_passingq
2. new_threads� launch#pppk,contkqk,mol1q.

(a) Abstract semantics for control flow approximation.

We define the tuple t P NVc so that tv be the occurrence
of v in ppkq1¤k¤n.
When
@k P J1;nK, pik P interactionppkq ;
SY NCNVc

pt,C#q � KNVc
Then

C
ppkqkÝÝÝÑ#SY NCNVc

pt,C#q�# Transition�# Launched
�#Consumed

Where
1. Transition� 1NVc

pp1q;
2. Launched � Σ#

�
pβ#pcontkqqk

�
;

3. Consumed � Σ#p1NVc
ppkqqkPJ1;nK^typepsk1 q�replicationu

(b) Abstract semantics for occurrence counting.

Let localk be the pair ppparkq,pbdkqq.

C
ppkqkÝÝÝÑ#

�
tC;new_threads; interacting_threadsu

Where
1. modes� count_modeLinpppkq,plocalkq,v_passing,

pcontkq,C#q;
2. new_threads� launchLinpppkq,pcontkq,modesq;
3. interacting_threads� updateLinpppkq,new_threads,

plocalkq,v_passingq
(c) Abstract semantics for linearity.

Figure 5. Abstract operational semantics

updated threads. The semantics of such a domain is given
in Fig. 5(c).

V. PROPERTIES

The abstract semantics computes an approximation of
all the executions in the non standard one. Its result can
then be used in order to check many different properties.
In this section, we describe interesting properties and how
to observe them in the post fixed point of the analysis.

A. Linearity

Linearity is a property that expresses the fact that each
actor in each possible configuration is bound to a different
address. It can be expressed as in π-calculus when each
process listens to at most one channel. It is a useful
property to map addresses to resources.

96 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

We here use the forward and backward control flow
abstract domain to verify this linearity property over CAP
terms. If each variable at each program point has been
associated to a unique usage mode when computing an
over-approximation of all the possible transitions, then the
term is linear. In contrary, if at least one of the variable
at one program point is associated to the value J then we
cannot say that the analyzed term is linear.

We give here two examples. The first one is linear and
the second one is non linear. We decorate the term with
the usage mode automatically inferred by the analysis.

νaα,bβ, a �1 rmpq2 � ζpe,sqpe �3 sq,
send4px�q � ζpe,sqpx� �5 behpsqqs

|| b �6 rbeh7pxq � ζpe,sqpe �8 xqs
|| a� �9 sendpb�q || b� �10 mpq

νaα,bβ,cγ, a �1 rm2pxJq � ζpe,sqpxJ �3 s || e �4 sqs
|| b�5 rp6pxJq � ζpe,sqpa� �7 mpxJq || e �8 sqs
|| b� �9 ppcJq || b� �10 ppcJq

In this last non linear example, the analysis detects
that the variable c which is transitively transferred to the
program point 3 will be used to install an actor twice.
Therefore it gives the value J to all variable that could
receive this value c.

B. Bounded Resources

As CAP is an asynchronous calculus, when a message
is sent we cannot ensure that it will be handled. With
this property, we want to determine if the system grows
infinitely; if the system creates more messages than it
can handle. Our analysis is able to infer such a property.
We first check which message can have an unbounded
number of occurrences. Then we check in the global nu-
merical invariants of the system a constraint between the
number of occurrences of this message and the number of
occurrences of a transition labeled with the same message
label. When such a constraint can be found, we can say
that this message will be in the system an unbounded
number of times, but it will be handled the same number
of times. The system size is constant, it does not diverge.

In the following example, our analysis is able to find
that at most one message is present in the system: program
points 3, 7 and 9 associated with interval J0;1K. The
system described by this term is bounded. Furthermore,
we have the constraint p1� p4� p8 � 1.

νaα,νbβ,a�1:J0;1K pingpq || a�2:J0;1K rping3:J1;1Kpq �
ζpe,sqpb�4:J0;1K pongpq || e�5:J0;1K sqs || b�6:J0;1K r
pong7:J1;1Kpq � ζpe,sqpa�8:J0;1K pingpq || e�9:J0;1K sqs

In addition, we can also detect whether a system does
not generate an unbounded number of actors present at
the same time in a given configuration.

νaαa�1:J0;1K rm2:J1;1Kpq � ζpe,sqpνbβb�3:J0;1K

s || b�4:J0;1K mpqqs || a�5:J0;1K mpq

In the preceding example, we automatically detect that
the number of threads associated to program point 3 lies
in J0;1K.

C. Unreachable Behaviors

We are interested in determining the subset of behaviors
that are really used for each set of behaviors. Due to
its higher-order capability, CAP allows to send the set
of behaviors syntactically associated to an actor to other
actors. Therefore the use of the behavior set highly
depends on the exchanged messages.

In the following example, all the branches of the
behavior syntactically defined at program point 1 are used.
We check such a property by checking that each label of
transition is present at least once or its continuation has
been launched. I.e. @t P Vc, Interptq � J0;0K where Inter
is the function that maps each element of Vc to its image
in interval part of the analysis post fixed point.

νaα,bβ,cγ, a�1 rm2
0pq � ζpe,sqpb�3 n1psq ||

b�4 m1pcqq, m5
1pdestq � ζpe,sqpdest �6 m2pqq,

m7
2pq � ζpe,sqpHqs

|| b�8 rn9
1psel f q � ζpe,sqpe�10 sel f || c�11 n2psel f qqs

|| c�12 rn13
2 psel f q � ζpe,sqpe�14 sel f qs

|| a�15 m0pq

We can use such an analysis to clean the term with
garbage collecting-like mechanisms.

VI. CONCLUSION

Our previous type-based analyzes were unable to deal
efficiently with higher-order features, such as commu-
nication of behaviors within messages. To enable these
features, we have adapted the framework of FERET [16]
to deal with full CAP terms. Moreover, in contrary to
our aforementioned analyzes about actor calculus, we
are now able to count occurrences of both actors and
messages. Therefore, we can easily cope with properties
related to occurrence counting. We can detect whether
the number of actors and messages is finite, whether
there is dead code and whether the message queues are
bounded. Interestingly, we can also check the linearity
property, provided we compute a more involved forward
and backward information flow.

Nevertheless, one of the most interesting property with
an asynchronous process calculus with non uniform be-
havior, is the absence of orphan messages, i.e. stuck-
freeness. An orphan is a message which may not be
handled by its target in some execution path. We are
currently devising a new abstract domain that can detect
such orphan messages. More generally, we also want to
define a generic abstract domain dedicated to the data-
flow like analyzes provided by type systems. Such an
abstract domain can be useful to automatically build
domains to observe properties for which we already have
a type system. As a matter of fact, there seems to be
a general correspondence between covariance and con-
travariance in type systems on the one side, and forward
and backward information flows in the abstract domains
on the other side.

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 97

© 2007 ACADEMY PUBLISHER

ACKNOWLEDGMENT

We deeply thank Jérome Feret for fruitful discussions
and careful proof reading of the first author’s Master’s
thesis [18].

REFERENCES

[1] Polyspace technologies, www.polyspace.org.
[2] G. Agha. Actors: A model of concurrent computation in

distributed systems. MIT Press, Cambridge, Mass., 1986.
[3] T. Amtoft, F. Nielson, and H. R. Nielson. Type and

behaviour reconstruction for higher-order concurrent pro-
grams. Journal of Functional Programming, 7(3):321–347,
1997.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. Design and im-
plementation of a special-purpose static program analyzer
for safety-critical real-time embedded software, invited
chapter. In The Essence of Computation: Complexity,
Analysis, Transformation. Essays Dedicated to Neil D.
Jones, LNCS 2566, pages 85–108. Springer, October 2002.

[5] G. Boudol. Typing the use of resources in a concurrent
calculus. In Proc. of ASIAN’97, volume 1345 of LNCS,
1997.

[6] C. Carrez, A. Fantechi, and E. Najm. Behavioural contracts
for a sound composition of components. In Proc. of
FORTE 2003, volume 2767 of LNCS. Springer, 2003.

[7] J.-L. Cola co, M. Pantel, F. Dagnat, and P. Sallé. Static
safety analysis for non-uniform service availability in
Actors . In Proc. of FMOODS’99, volume 139, pages
371–386. Kluwer, B.V., 1999.

[8] J.-L. Cola co, M. Pantel, and P. Sallé. An actor dedicated
process calculus. In Proc. of the ECOOP’96 Workshop
on Proof Theory of Concurrent Object-Oriented Program-
ming, 1996.

[9] J.-L. Cola co, M. Pantel, and P. Sallé. Static analysis
of behavior changes in Actor languages. In Object-
Oriented Parallel and Distributed Programming, pages
53–72. Hermès Science, 8, quai du Marché-Neuf, 75004
Paris, France, 2000.

[10] M. Colin, X. Thirioux, and M. Pantel. Temporal logic
based static analysis for non uniform behaviors. In Proc.
of FMOODS’03. Springer, 2003.

[11] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proc. of
POPL’77, pages 238–252. ACM Press, 1977.

[12] P. Cousot and R. Cousot. Abstract interpretation frame-
works. Journal of Logic and Computation, 2(4):511–547,
1992.

[13] J. Feret. Occurrence counting analysis for the pi-calculus.
In Proc. of the 1st Workshop on GEometry and Topology
in COncurrency Theory, volume 39.2 of ENTCS. Elsevier,
2001.

[14] J. Feret. Dependency analysis of mobile systems. In Proc.
of ESOP’02, number 2305 in LNCS. Springer, 2002.

[15] J. Feret. Abstract interpretation of mobile systems. Journal
of Logic and Algebraic Programming, 63.1, 2005. special
issue on pi-calculus, 2005.

[16] J. Feret. Analysis of Mobile Systems by Abstract Inter-
pretation. PhD thesis, École polytechnique, Paris, France,
february 2005.

[17] C. Fournet, C. Lavene, L. Maranget, and D. Rémy. Im-
plicit typing à la ml for the join-calculus. In Proc. of
CONCUR’97, volume 1283 of LNCS. Springer, 1997.

[18] P.-L. Garoche. Static analysis of actors by abstract inter-
pretation. Master’s thesis, École Normale Supérieure de
Cachan, 2005.

[19] P.-L. Garoche, M. Pantel, and X. Thirioux. Static Analysis
of Actors: From Type Systems to Abstract Interpretation.
In Proc. of EAAI’06, 2006.

[20] P.-L. Garoche, M. Pantel, and X. Thirioux. Static Safety
for an Actor Dedicated Process Calculus by Abstract
Interpretation. In Proc. of FMOODS’06, pages 78–92.
Springer Verlag LNCS, 2006.

[21] M. Hennessy, J. Rathke, and N. Yoshida. Safedpi: a
language for controlling mobile code. In Proc. of FoS-
SaCS’04, LNCS, pages 241–256. Springer, 2004.

[22] C. Hewitt, P. Bishop, and R. Steiger. A universal modular
actor formalism for artificial intelligence. In Proc. of
IJCAI’73, 1973.

[23] A. Igarashi and N. Kobayashi. A generic type system
for the pi-calculus. Theoretical Computer Science, 311(1-
3):121–163, January 2004.

[24] M. Karr. Affine relationships among variables of a pro-
gram. Acta Informatica, 6:133 – 151, 1976.

[25] N. Kobayashi. A type system for lock-free processes.
Information and Computation, 177(2):122–159, 2002.

[26] Naoki Kobayashi. A new type system for deadlock-free
processes. In Proc. of CONCUR’06, volume 4137 of
LNCS, pages 233–247. Springer, 2006.

[27] E. Najm, A. Nimour, and J.-B. Stefani. Infinite types for
distributed object interfaces. In Proc. of FMOODS’99,
volume 139. Kluwer, B.V., 1999.

[28] J. Palsberg and P. O’Keefe. A type system equivalent to
flow analysis. In Proc. of POPL’95, pages 367–378, 1995.

[29] R. Parikh. On context-free languages. Journal of the ACM,
13(4):570–581, 1966.

[30] F. Puntigam. Types for Active Objects based on Trace Se-
mantics. In Elie Najm et al., editor, Proc. of FMOODS’96,
Paris, France, 1996. Chapman & Hall.

[31] S. Rajamani and J. Rehof. A behavioral module system
for the pi-calculus. In Proc. of SAS’01, volume 2126 of
LNCS, pages 375–394. Springer, 2001.

[32] A. Ravara and V. Vasconcelos. Typing non-uniform con-
current objects. In Proc. of CONCUR’00, volume 1877 of
LNCS. Springer, 2000.

[33] A. Venet. Static Analysis of Dynamic Graph Strutures
in Untyped Languages. PhD thesis, École polytechnique,
Paris, France, december 1998.

98 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

