
Extended Influence Diagrams for System Quality
Analysis

Pontus Johnson, Robert Lagerström, Per Närman, Mårten Simonsson
Department of Industrial Information and Control Systems, Royal Institute of Technology, Stockholm, Sweden

Email: {pj101, robertl, pern, martens}@ics.kth.se

Abstract— Making major changes in enterprise informa-
tion systems, such as large IT-investments, often have a
significant impact on business operations. Moreover, when
deliberating which IT-changes to make, the consequences
of choosing a certain scenario may be difficult to grasp.
One way to ascertain the quality of IT investment decisions
is through the use of methods from decision theory. This
paper proposes the use of one such method to facilitate
IT-investment decision making, viz. extended influence di-
agrams. An extended influence diagram is a tool able to
completely describe and analyse a decision situation. The
applicability of extended influence diagrams is demonstrated
at the end of the paper by using an extended influence
diagram in combination with the ISO/IEC 9126 software
quality characteristics and metrics as means to assist a
decision maker in a decision regarding an IT-investment.

Index Terms— extended influence diagrams, system quality
analysis, IT-investment decision making, ISO/IEC 9126

I. INTRODUCTION

Contemporary companies rely on the use of IT to
conduct business operations. Every once in a while all
companies are forced to make decisions regarding large
IT-investments. The reason for this could for instance be
the need for replacing legacy systems. In addition to this,
what used to be stand-alone, stovepipe IT-systems are
increasingly becoming integrated into an enterprise-wide
system of systems. Thus, a decision made concerning
local a change in the enterprise architecture may have
an adverse impact on a whole range of other systems.
The importance and complexity of IT-systems call for a
structured approach to the making of decisions concerning
IT-investments.

The discipline of decision theory [1] is concerned with
the formal specification of decision problems, and pro-
vides tools facilitating stringent decision analyses. Using
decision theory can, if employed correctly, improve the
quality of decisions. In [2], [3], and [4] an attempt is
made to apply theoretical decision methods on IT-related
decision analysis. So called extended influence diagrams
are introduced and applied for architectural analysis.
Extended influence diagrams are extensions of an existing

This paper is based on “System Quality Analysis with Extended
Influence Diagrams,” by P. Johnson, R. Lagerström, P. Närman and M.
Simonsson, which appeared in the Proceedings of the 11th IEEE Con-
ference on Software Maintenance and Reenginering (CSMR) - Special
Session on System Quality and Maintainability (SQM), Amsterdam, the
Netherlands, March 2007. c© 2007 IEEE.

decision tool, influence diagrams [5] [6] [7] [8] [9], which
are commonly employed in decision analysis.

IT-investment situations frequently involve the choice
of one of several candidate system scenarios. Apart from
analyzing the cost of the scenarios, an important factor to
consider is the software quality of the respective system
scenario. To facilitate such evaluations ISO/IEC has de-
veloped and presented software quality characteristics and
metrics in the ISO/IEC 9126 International Standard [10]
and Technical Reports [11] [12] [13]. Using ISO 9126
is a way to define the term ”software quality”, and to
specify how it may be measured. This paper proposes
the use of extended influence diagrams together with
ISO 9126 characteristics, subcharacteristics and metrics to
assess system scenarios before making an IT-investment
decision.

The remainder of this paper is outlined as follows. In
section 2 we elaborate on decision problems in general,
and IT-investment decisions in particular. In section 3
and 4 we aim at giving a rich description of extended
influence diagrams and how they differ from normal
influence diagrams. Section 5 briefly summarizes how
an extended influence diagram may be constructed in a
decision situation, and section 6 and 7 demonstrate how
an extended influence diagram can be used to assist a
decision maker by using the ISO 9126 framework for
assesing the software quality of different IT investment
candidates. In section 8 we conclude the article. Sections
2 through 5 are similar to our material presented in [2],
[3], and [4].

II. SYSTEM QUALITY ANALYSIS

A rational decision maker is an agent facing an alter-
native after a process of deliberation in which he or she
answers three questions: “What is feasible?”, “What is
desirable?” and “What is the best alternative according to
the notion of desirability, given the feasibility constraint?”
[1] [14]. Translating these questions into the context
of system quality analysis, change scenarios answer the
first question of what is feasible. Answers to the second
question regarding desirables, are often expressed in terms
of the change of various information system qualities
such as increased information security, increased inter-
operability, increased availability, etc. The answer to the
third question, providing the link between the feasible to
the desirable, i.e. the link between the scenarios and the
properties of interest, is given by system quality analysis.

30 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

Decision making, whether the decisions apply to IT
or not, is rarely performed under conditions of complete
certainty. One fundamental uncertainty is regarding the
definition of various concepts. This is called definitional
uncertainty. For instance, some authors define the term
information security in terms of confidentiality, integrity
and availability, [15] whereas others add the concepts of
non-repudiation and accounting to the definition [16].

Related to definitional uncertainty is theoretical het-
erogeneity. Existing knowledge regarding the nature of
enterprise information systems is not consolidated within
a single commonly accepted framework, as may be the
case for more mature disciplines. A consequence of this is
that there is a need to relate similar concepts to each other,
and to relate concepts at varying levels of abstraction to
each other.

In addition to definitional uncertainty, there may also be
uncertainty with regard to how the world actually behaves.
Knowledge of exactly how various phenomena affect one
another is seldom certain. There is a level of causal
uncertainty. An example of this would be uncertainty
with respect to the causal effect the percentage of systems
with updated virus protection may have on the level of
information security.

When analyzing systems of an enterprise, the infor-
mation represented in the analysis is normally associated
with a degree of uncertainty. Perhaps the information was
collected a while ago and has now become obsolete, or
perhaps the information was gathered from a source that
might have been incorrect. In these situations, the decision
maker suffers from empirical uncertainty.

From this description of the context of system quality
analysis, requirements may be extracted on the languages
used for analysis specification. As is demonstrated in
[2] and [3] extended influence diagrams, which are an
augmented version of influence diagrams [7] fulfill all
such requirements. This paper proceeds to explain what
influence diagrams are, and the nature of the extension
that makes influence diagrams into extended influence
diagrams. An example on the use of extented influence
diagrams for IT decision-making is also presented.

III. INFLUENCE DIAGRAMS

This section briefly describes conventional influence
diagrams. For a more comprehensive treatment, the reader
is referred to [5], [6], [7], [8], and [9].

An influence diagram is an extension of Bayesian net-
works. A Bayesian network graphically represents causal
relations between nodes, where each node represents a
variable with a number of states. Moreover, Bayesian
networks are able to represent the uncertainty of the
causal relations using probabilistic reasoning. Using the
terminology from section II, a Bayesian network is able
to answer the question ”what is feasible?”, through the
modelling of the real world. An example of a Bayesian
network is shown in Figure 1. The example shows that
there is a causal dependence between the variable ”time

spent studying mathematics”, and the variable ”under-
standing of mathematics” and the direction the arrow
points suggests that the former affects the latter, rather
than vice versa.

Figure 1. A very simple Bayesian network showing the causal depen-
dence between time spent studying mathematics and understanding of
mathematics.

To capture that most relations are probabilistic rather
than deterministic in nature - in some cases a student
could spend a considerable time studying and still not
get a better understanding of the subject - Bayesian
networks use so called conditional probability matrices.
A conditional probability matrix captures the likelihood
of a variable being in a state X, under the condition that
it’s ”predecessor” is in a state Y. See Figure 2.

Figure 2. A conditional probability matrix showing the probability of a
student’s understanding of mathematics given the time spent studying.
In this case it is very probable (80%) that a student will have a good
understanding if he or she spends 5 hours studying, but it is not certain.

In addition to representing causal relations, influence
diagrams support a more complete and intuitive descrip-
tion of decision problems, stating both what is desired,
and what alternatives are available. This is accomplished
by the introduction of two new nodes. The first is the
decision node, which represents the decision alternatives
at hand. The second is the utility node where the outcome
of a decision is quantitatively assessed as an expected
utility. To illustrate, we expand the example in Figure
1 to include also the decision node ”Decision to study”
wherein the student decides whether to study mathematics
or not. Also included is the utility node ”Mathematics
grade” which in this particular case is the variable that
the student wishes to maximize. In this simple example,
the decision analysis is straightforward and suggests that
the student ought to decide to study. See Figure 3.

Figure 3. A very simple influence diagram showing not only the causal
dependence between time spent studying mathematics and understanding
mathematics, but also detailing the student’s goals and alternatives.

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 31

© 2007 ACADEMY PUBLISHER

More rigorously, an influence diagram is a network
used for modelling uncertain variables and decisions,
consisting of a directed graph G = (N,A). There are
three types of nodes in the set N, partitioned into the sets
V, C and D. There are one or more utility nodes v ∈ V ,
these are depicted as rhombuses. There are zero or more
chance nodes c ∈ C, these are depicted as ovals. There
are one or more decision nodes d ∈ D, and these are
depicted as squares. See Figure 4.

Figure 4. Utility, chance, and decision nodes in influence diagrams.

There are two types of arcs in the set A, partitioned
into the sets K and I . Arcs into utility and chance nodes
are causal, κ ∈ K, representing probabilistic dependence.
Arcs into decision nodes are informational, ι ∈ I , and
imply time precedence. Both the causal relation arcs and
the informational relation arcs are depicted as arrows. See
Figure 4.

The set of causal predecessors are represented by
CP (i) = {j ∈ N : (j, i) ∈ K}, where i ∈ {V,C}. The
set of informational predecessors are represented by
IP (i) = {j ∈ N : (j, i) ∈ I} , where i ∈ D.

Associated with each node i is a variable Xi and a
set Ωi of possible values it may assume. If i is the
utility node, then Xi represents the expected utility and
its domain Ωi is a subset of the real line. If i is a
chance node, then Ωi is the sample space for the random
variable Xi. Finally, decision node i has alternative Xi

chosen from the set Ωi. The utility node v ∈ V has
an associated utility function U : ΩCP (v) → Ωv , which
represents the expected utility as a function of the values
of the conditioning predecessors of the utility node. There
is a conditional probability distribution, Pr, for every
chance node i, given the values of its causal predecessors,
Pr{xi|xCP (i)}. The notation Pr{xi|xCP (i)} means that
Pr{Xi = xi|XCP (i) = xCP (i)}.

The probability distributions for the utility and each
chance node are represented in conditional probability
matrices. Figure 5 shows the conditional probability ma-
trix for a chance node y dependent on a node z.

Figure 5. A conditional probability matrix.

IV. EXTENDED INFLUENCE DIAGRAMS

Although influence diagrams may be used for system
quality analysis in their conventional form, there are some

requirements that are not sufficiently addressed. This
section therefore presents a set of extensions to influence
diagrams for the purposes of system analysis.

Figure 6. The syntax of extended influence diagrams.

A. Lexically defined nodes

Causality means that one phenomenon in the real world
somehow affects another. Because causality is a concept
of the real world, it is important that there is a mapping
between the real world and the influence diagrams, i.e.
that the concepts presented in the influence diagrams
are well-defined. If they are not well-defined, it will be
impossible to determine whether there is in fact any truth
to the causal relation between the phenomena.

The definitions of some nodes in influence diagrams are
deemed uncontroversial. For instance, in the IT commu-
nity, we might assume that there is common agreement
on the definition of the concept of memory size; it is
typically measured in terms of bytes. Nodes that we
consider uncontroversially defined are called lexically
defined nodes, L ⊂ N [17]. Figure 6 details the syntax
of extended influence diagrams.

B. Stipulatively defined and undefined nodes

In the considered decision-making context, we have
assumed that there is considerable confusion as to the
meaning of many concepts, such as information security.
There are thus many potential nodes that are not lexically
defined. In order to manage these, we introduce the
possibility to define nodes within the influence diagram.
This is done by relating a node, directly or indirectly, to
lexically defined nodes with a new kind of arc, called
a definitional relation, δ ∈ ∆, where ∆ ⊂ A, see
Figure 6. Nodes that are defined in the diagram using the
definitional relation are called stipulatively defined nodes
S ⊂ N [17]. Those nodes that are neither lexically nor
stipulatively defined are simply undefined, U ⊂ N .

C. Definitional relations

This subsection details the semantics of definitional re-
lations, ∆. The set of defining nodes is given by DF (i) =
{j ∈ N : (j, i) ∈ ∆} where i ∈ {V,C}. The definitional
relation implies simple aggregation; the defined node is
comprised of its constituent parts. The definitional relation
is represented mathematically by the same conditional
probability distributions as are used for causal relations,
Pr{xi|xDF (i)}. Since definitional relations are simple

32 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

aggregations, a node that has defining nodes cannot also
in the same graph feature causal predecessors.

The concept of definitional relations is similar to
the aggregation mechanism provided by object-oriented
influence diagrams [18]. However, aggregated objects
in object-oriented influence diagrams are to be viewed
more as placeholders for diagrams than as nodes. They
are therefore not associated with any variable Xi. As
is considered below, the association of a variable with
the aggregated node is of significant importance for our
purposes.

D. Controllability of nodes

A utility node may be affected by many chance nodes,
and it may be the case that only some of these chance
nodes are affected (directly or indirectly) by the decision
node. Those nodes that lie in a causal path from decision
node to utility node or are stipulatively defined by such
nodes are relevant for decision making. Other nodes are
not. Nodes that are completely dependent on the decision
node are denoted controllable nodes, F ⊂ N . Nodes
that are completely independent of the decision nodes are
denoted uncontrollable nodes, W ⊂ N . Finally, nodes
that are partially dependent on the decision node are
denoted semi-controllable nodes, SC ⊂ N . The graphical
rendering of these node types is given in Figure 6.

Furthermore, it may sometimes be useful to
distinguish between directly controllable nodes,
DC ⊂ F and indirectly controllable nodes,
IDC ⊂ F . Directly controllable nodes are targets
of a causal relation originating in a decision node,
DC(i) = {j ∈ D : (j, i) ∈ K}. Indirectly controllable
nodes are targets of a causal relation originating in a
directly controllable node or an indirectly controllable
node, IDC(i) = {j ∈ {DC, IDC} : (j, i) ∈ {K, ∆}}.

V. EXTENDED INFLUENCE DIAGRAMS FOR SYSTEM
QUALITY ANALYSIS

Recalling the decision making approach described in
section II, the question “What is desirable?” may be spec-
ified by an extended influence diagram utility node, v ∈ V
(see Figure 7). An example of an utility node concept for
system quality analysis is Information Security.

Figure 7. The relation between scenario selection, content of the
scenarios, intermediary chance nodes, and the utility node.

The answer to “What is feasible?” is in the case of
system quality based decision making answered by a set
of change scenarios,Θ = {θ1, ...θn}. The characteristics
of such scenarios may then be used to determine the

conditional probability distributions of chance nodes in
the extended influence diagram, Pr{xi} = f(θi). The
decision maker’s choice between scenarios is represented
by a decision node, θ ∈ Θ, which is connected by
causal relations to all those chance nodes that the scenario
selection might affect.

The chance nodes that are directly affected by the
decision node also need to be related to the utility node so
that the utility of the different scenarios can be calculated.
Typically, it is performed by the use of intermediary
chance nodes. The resulting influence diagram is a repre-
sentation of how we believe that the real world functions;
it is the representation of a theory of, for instance,
information security. The diagram thereby provides the
answer to the decision maker’s third question, “What is
the best alternative according to the notion of desirability,
given the feasibility constraint?”

The rest of this chapter describes a generic process
for construction of extended influence diagrams and the
use of them for system quality analysis. The construction
process is described in section V-A while the process of
system quality analysis is described in section V-B.

A. Development of extended influence diagrams

Figure 8 depicts a process for the construction of
extended influence diagrams. This subsection describes
that process step by step. The focus of this article is on the
conceptual rather than practical aspects of the generation
process. For practical techniques for the elicitation of
extended influence diagrams, the reader is referred to [19].

Figure 8. The process of developing extended influence diagrams.

1) Step one: Introduce decision node: At the very start,
the decision node should be identified. As mentioned
above decision nodes represent the choice between dif-
ferent change scenarios, such as the choice between inte-
grating a set of systems, replacing them, or maintaining
the status quo.

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 33

© 2007 ACADEMY PUBLISHER

2) Step two: Introduce utility node: The second step is
to define the utility node. The utility node is the target of
the system quality analysis. Examples of utility nodes are
information security, modifiability, performance and reli-
ability. When defining the utility node, its variable type
should also be decided on, e.g. {Low,Medium,High},
{Present,Absent}, {True, False}, or {0, 1, 2, 3, 4}.

3) Step three: Is the node defined?: The third step
is to determine whether the node is lexically defined,
stipulatively defined or undefined. Recall that a node
is lexically defined if we can assume that there is
common agreement on its definition. Although almost
all definitions can be challenged, concepts that would
normally qualify as lexically defined include weight in
kilograms, number of processors or number of users. For
many concepts, however, such as information security,
architecture quality and competence there is no universal
definition even by very pragmatic standards.

If the node is not lexically defined, it needs to be
stipulatively defined. This is accomplished with the defi-
nitional relationship presented in the previous chapter. As
an example, the node Availability might be defined by
the two nodes Mean Time To Failure and Mean Time To
Repair. The stipulative definition of a node results in the
introduction of new nodes into the diagram. When new
nodes are introduced, this affects the conditional probabil-
ity matrices of the child nodes. These must therefore also
be specified, thereby detailing the dependencies between
the parents and the child. When an undefined node
has been stipulatively defined, the diagram construction
process refocuses on one of the new nodes and returns to
the third step.

4) Step four: Is the node uncontrollable?: For each
defined node, the fourth step considers whether the node
is uncontrollable. Recall that uncontrollable nodes are
unaffected by variable changes in the decision node;
this means that potential variations in the value of the
uncontrollable node are unrelated to the choices of the
decision maker. If the node is uncontrollable, it will not
provide decision supporting information, so there is no
need to continue exploring this branch of the diagram.
The node is therefore deleted, the process refocuses on
the next unexamined node and returns to the third step.

5) Step five: Is the node semi-controllable?: Step five
queries whether the node under consideration is semi-
controllable. Semi-controllable nodes are affected both
by the decision makers choices and other, uncontrollable,
phenomena. If a node is semi-controllable, it is important
to separate those aspects which are controllable from
those which are not. Therefore, new nodes are intro-
duced into the diagram with causal relations to the semi-
controllable node under consideration. As an example, we
might believe that the semi-controllable node Mean Time
To Repair is causally affected by both the Maintainability
of the system and Flexibility of Working Hour Regula-
tions. Of these, the maintainability might be controllable,
while the working hour regulations might be beyond the
decision makers domain of control. In the same manner

as in the second step, the involved conditional probability
matrices need to be specified. The diagram construction
process once again refocuses on one of the new nodes
and returns to the third step.

6) Step six: Is the node directly controllable?: In the
sixth step, the process considers whether the nodes are
directly or indirectly controllable. A directly controllable
phenomenon is an immediate consequence of the decision
makers choice. For instance, if a scenario is chosen where
one system is replaced by another, this may directly entail
that the CPU speed is increased. Directly controllable
nodes are causally connected to the decision node. For
nodes that do not seem to be directly controllable, one
or several new nodes are introduced into the diagram, the
focus shifts to the first of these, and the process returns
to the third step.

When the whole process is finished, the result is an
extended influence diagram where the nodes are causally
affected by the decision node and in turn either causally
affect the utility node, or do so by definition. No nodes
are undefined, and uncontrollable nodes have no parents.

B. Analyzing with extended influence diagrams

When an extended influence diagram has been con-
structed, it may be used to compare and assess the quality
of different system scenarios.

1) Linking scenarios to extended influence diagrams:
In extended influence diagrams, decision nodes represent
a choice between alternatives. In system quality analysis,
these alternatives are concretized by different change
scenarios. We will now consider how the information rep-
resented in the scenarios is introduced into the extended
influence diagrams.

A change scenario, say Scenario X, can contain a set of
entities. Considering one of these entities, say the System
A entity, we find that it features a set of attributes, Memory
Size, Lines Of Code, etc. The value of each of these at-
tributes is represented in a conditional probability matrix,
Pr{MemorySizeEA = msi}. This approach retains the
possibility to present attribute values deterministically by
allowing only zero or unity probabilities in the matrix.

The directly controllable nodes in a extended influ-
ence diagram, i.e. the chance nodes that are directly
linked to the decision node, consitute the coupling to
the scenario. Examining one of these nodes in detail,
we find that it might be named Memory Size. The
link between the scenario and the extended influence
diagram is concretely specified by the following re-
quirement: the Memory Size node’s probability given
that Scenario X is selected is equal to the conditional
probability of the Memory Size attribute of the System A
entity, i.e. Pr{MemorySizeEID = msi|dScenarioX} =
Pr{MemorySizeEA = msi}.

2) Calculating the results: The conditional probability
distributions of the directly controllable nodes are thus
retrieved from the change scenarios. The higher-level con-
ditional probability matrices were determined already dur-
ing the extended influence diagram construction process.

34 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

The value of the utility node can therefore be calculated
employing standard methods [8] [9]. There are several
tools available on the market for these calculations, such
as Hugin [18] and Genie [20].

VI. THE ISO/IEC 9126 EXTENDED INFLUENCE
DIAGRAM

A. Background to ISO/IEC 9126

Much has been written on the topic of software quality
measurement [21] [22]. During the seventies a few models
for software quality assessment were proposed by McCall
[23], Boehm [24] and Grady [25]. All of these models
are so called factor-criteria models, referring to the hi-
erarchical structure of the models. McCalls model was
developed by the US Air Force and General Electrics,
and has since been used for software quality assessments
predominantly in the space and avionics field. Drawing
heavily on Boehm’s and McCall’s work, the ISO/IEC’s
JTC1 initiated a project to consolidate software quality
assessment frameworks into one coherent body of knowl-
edge.

The resulting documents ISO 9126-1 [10], 9126-2 [11],
9126-3 [12], and 9126-4 [13], of which only the first is a
standard, divide software quality measurements into three
parts. Firstly, internal quality measurements, detailed in
ISO 9126-3, refer to assessments of the internal behaviour
of the software quality product. The software is viewed
as a white-box entity, and the metrics are consequently
on a low level of abstraction. The primary use of such a
model is to simplify software quality assessment during
the software development process. Secondly, ISO 9126-
2 elaborates on the external quality part of ISO 9126. It
focuses on software products post development by taking
the viewpoint of a system end-user. External metrics are
suitable whenever a software product has been developed
and should be assessed for the purpose of for instance
testing. The third and last part of the standard, primarily
dwelt upon in ISO 9126-4 measures the software’s quality
in use, thereby referring to the software’s effect on the
business environment it is implemented in rather than
the software product per se. The categorization does not
imply that the metrics are disconnected from one another.
On the contrary, the idea is that there is the quality in use
metrics are causally dependant on the external metrics,
which in turn are supervenient on the internal metrics
and the internal behaviour of the software.

The internal and external metrics are convenient for use
in this paper since what is to be evaluated is the difference
in quality between a number of scenarios involving chang-
ing an existing software product installation with respect
to a number of parameters. What is desired are some kind
of pre-implementation indications of the quality in use
metrics. The best way of doing so is through the use of
internal and external metrics as described in ISO 9126-2
and ISO 9126-3.

B. External and internal quality of software products

In this section, an extended influence diagram over the
ISO/IEC 9126 is presented. As mentioned, this standard
is particularly suitable for these purposes since it proposes
a quality model for software products. The presented
influence diagram focuses on the external and internal
quality, since the third part, quality in use, is affected by
many system-external factors.

Following the extended influence diagram development
process presented in section V-A, the first node to intro-
duce is the decision node (cf. Figure 9). As mentioned
previously, the relevant decision situation in this case
is between a set of different IT investment scenarios,
for instance between Software Product X and Software
Product Y. The next step in the development process is to
define the utility node. It is clear from the standard that
the utility node in this case should be named External and
Internal Quality. Since the ISO/IEC 9126 does not specify
the domain of this variable, we assign to it the set high,
medium, low.

Figure 9. Figure over decision and utility nodes.

1) Defining top node by six software quality charac-
teristics: According to the influence diagram generation
process, this node needs to be defined. ISO/IEC 9126
informs us that there are six software quality characteris-
tics, namely functionality, reliability, usability, efficiency,
maintainability, and portability (figure 10). The function-
ality is described as the capability of the software product
to provide functions which meet both stated and implied
needs. The reliability is described as the capability of
the software product to maintain a specified level of
performance. Usability is the capability of the software
product to be understood, learned, used and also attractive
to the user. Efficiency is the capability of the software
product to provide appropriate performance, relative to the
amount of resources used. Maintainability is the capability
of the software to be modified. Modifications may include
corrections, improvements or adaptation of the software to
changes in the environment, and in requirements and func-
tional specifications. Finally, portability is the capability
of the software to be transferred from one environment
to another. These six nodes are assigned the same high,
medium, low domain as the top-level node, external and
internal quality.

The relation between the top-level node and the six
defining nodes must be specified in a conditional proba-
bility matrix. Since the ISO/IEC 9126 does not detail this
relation, we assume it to be an unweighted average. When
all defining nodes assume the value high, the top-level
node also assumes this value. When three defining nodes

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 35

© 2007 ACADEMY PUBLISHER

Figure 10. Extended influence diagram over top-level nodes of ISO/IEC
9126.

are high and three are low, the top-level node assumes the
value medium.

2) Defining quality characteristics by subcharacteris-
tics: The six software quality characteristics are still very
abstract and difficult to measure directly. It is therefore
necessary to define them stipulatively in terms of less
abstract concepts. Functionality is therefore defined in
terms of suitability, accuracy, interoperability and security
(cf. Figure 11). Suitability describes the capability of the
software product to provide an appropriate set of functions
for specified tasks and user objectives. Accuracy is the
capability to provide the right or agreed results or effects
with the needed degree of precision. Interoperability is
described as the ability to interact with one or more
specified systems. Security is the capability to protect
information and data so that unauthorized persons or
systems cannot read or modify them and authorized
persons or systems are not denied access to them. All the
six software quality characteristics are also measured in
terms of their compliance, i.e. their capability to adhere
to standards, conventions or regulations relating to the
various characteristics. This node will therefore reappear
for all of the characteristics below.

Figure 11. Extended influence diagram over functionality.

Reliability is defined in terms of the product’s maturity,
fault tolerance and recoverability (cf. Figure 12). Maturity
is the capability to avoid failure as a result if faults in the
software. Fault tolerance is the capability to maintain a
specified level of performance in cases of software faults
or of infringements of its specified interfaces. Recover-
ability is the capability to re-establish a specified level of
performance and recover the data directly affected in the
case of failure.

Usability is defined in terms of the products under-
standability, learnability, operability and attractiveness (cf.
Figure 13). Understandability relates to the capability to
enable the user to understand whether the software is
suitable, and how it can be used for particular tasks and

Figure 12. Extended influence diagram over reliability.

conditions of use. Learnability enables the user to learn
the software’s application. Operability enables the user to
operate and control the software. Attractiveness concerns
the user’s perception of the software.

Figure 13. Extended influence diagram over usability.

Considering efficiency, this characteristic is defined in
terms of time behavior and resource utilization (cf. Figure
14). Time behavior is the capability to provide appropri-
ate response and processing times and throughput rates
when performing a function while resource utilisation is
the capability to use appropriate amounts and types of
resources when performing the functions.

Figure 14. Extended influence diagram over efficiency.

A software product’s maintainability is defined by its
analyzability, changeability, stability and testability (cf.
Figure 15). Analysability is the capability of the software
product to be diagnosed for deficiencies or causes of
failures in the software, or for the parts to be modified to
be identified. Changeability is the capability to enable a
specified modification to be implemented. Stability is the
capability to avoid unexpected effects from modifications
of the software. The testability of a modified software
product is its capability to be validated.

Figure 15. Extended influence diagram over maintainability.

Finally, portability is defined in terms of the adapt-

36 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

ability, installability, co-existence and replaceability of
the software (cf. Figure 16). Adaptability is the capabil-
ity of the software to be adapted for different specific
environments without applying actions or means other
than those provided for this purpose for the software
considered. Installability is the capability of the product
to be installed in a specified environment. Co-existence
is the capability of the software to co-exist with other
independent software in a common environment sharing
common resources. Replaceability is the capability of the
product to be used in place of another specified software
product for the same purpose in the same environment.

Figure 16. Extended influence diagram over portability.

Each of these software quality characteristics is related
to its defining nodes with a conditional probability matrix
of the same kind as for the case of the top-level node.

3) Measuring the software quality subcharacteristics:
The definition of the quality characteristics in terms
of subcharacteristics have increased the degree of con-
creteness, but the subcharacteristics are still undefined.
ISO/IEC 9126-1 does not provide further stipulative def-
initions, so it is not possible to continue the breakdown.
However, in two technical reports related to the standard,
ISO/IEC 9126-2 and ISO/IEC 9126-3 a set of metrics are
suggested for each subcharacteristic. The reports empha-
size that the proposed set of metrics is incomplete. In this
article, we will use the metrics for the subcharacteristics
interoperability and security to demonstrate how these
metrics are represented in the extended influence diagram.

Three metrics are proposed for interoperability (figure
17). The first is data exchangeability (data format based),
which measures the percentage of correct interface data
formats exchanged with other systems. The second metric
is data exchangeability (user’s success attempt based),
which measures the percentage of users’ attempts to
exchange data that were successful. The third metric is
interface consistency (protocol), measuring the share of
correctly implemented interface protocols as compared to
the total required number of protocols.

Figure 17. Extended influence diagram over interoperability.

Four security metrics are proposed (figure 18). The first
of these is the access auditability, specifying the number

of logged access types as compared to the logging require-
ments. The second security metric is access controllabil-
ity, measuring the percentage of illegal operations that are
detected. The third metric is data corruption prevention,
measuring the share of data corruption attempts that were
successful in a given test situation. The fourth metric
is data encryption, counting the percentage of sensitive
data items that are encrypted. The conditional probability
matrices for the metrics are of the same kind as for the
quality characteristics.

Figure 18. Extended influence diagram over security.

The metrics are not only well-defined but they also
depend directly on the choice of scenarios. Therefore, the
decision node introduced earlier is linked to the metrics
as a causal parent.

VII. APPLYING THE ISO/IEC 9126 EXTENDED
INFLUENCE DIAGRAM FOR QUALITY

ANALYSIS OF A COLLABORATION SYSTEM

In order to show the applicability of the proposed
extended influence diagram, this section provides an
example on the use of extended influence diagrams for
analysis of the quality of a collaboration system employed
at a university.

A. The collaboration system

The collaboration system was originally created to
allow teachers to communicate with their students, by
for instance displaying assignment results and inform
students in case a lecture was rescheduled. The col-
laboration system initially had limited functionality, but
due to new user requirements, the system has grown
considerably over the past few years. Today, the system
aids in communication between employees and students
by chat functionality, file sharing for peer collaboration,
assignment management, and support for scheduling of
lectures and workshops. Overall the collaboration system
works well. However, the system is a result of a small
group of people’s programming effort distributed over
many years. The system was developed in an ad hoc
manner and the development process did not follow any
standardized approach. This has not only reduced the
system’s maintainability, but also made it less interop-
erable with other systems. Some questions regarding the
safeguarding of information had also been raised recently
and an encrypted data storage would be highly desireable.

Due to an ongoing IT system cleanup project, the
IT department of the university considered whether the
collaboration system should be further expanded or not.

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 37

© 2007 ACADEMY PUBLISHER

Develops

<<Software Operation
and Maintenance.

Process>>

Maintains

Has

Uses

<<Data Entity>>
User Access Data

Stores

<<Software
Development

Process>>

Consists of

Consists of

Provides

Provides

Provides

Provides

<<Data Entity>>
Assignment

<<Data Entity>>
User Account Data

Has

Uses

<<Data Entity>>
Grade

<<Data Entity>>
User Document

Stores

Stores Stores

Stores

<<Software
Platform>>
Windows

<<System Component>>
Communication

<<System Component>>
Collaborative Management

<<Information System>>
Collaboration System

<<Business Function>>
Chat

<<Business Function>>
Peer Collaboration

Support

<<Business Function>>
Assignment Management

<<Business Function>>
Scheduling

Executes on

<<User Interface>>
Student Web

<<User Interface>>
Teacher Web

<<User>>
Student

<<User>>
Teacher

<<Staff>>
Inhouse

Is resource of

Is resource of

Figure 19. Scenario 1 for the collaboration system, keep old system.

The question at hand was if the quality of the system
was good enough to keep it, or if it should be modified
or replaced by an ERP-based solution. In order to make
a well informed decision, it was decided to analyse the
quality of the system by using the extended influence
diagram based upon the ISO/IEC 9126 standard.

All subcharacteristics were analysed in order to ensure
a correct decision. However, this paper only describes the
evaluation of the Security and Interoperability subcharac-
teristics according to section VI. The evaluation of the
remaining subcharacteristics was performed analogously.

B. Scenario 1: Keep old system

This first scenario requires no changes, but rather
states that the system should be kept the way it is. It
is depicted in Figure 19. The windows-based solution is
the result of several years of continuous development by a
small, highly experienced staff. Inhouse personnel is also
responsible for the system’s operation and maintenance.
There are two main system components, denoted ”com-
munication” and ”collaborative management”, and they
both offer data storage and business functionality. Two
separate graphical user interfaces, one for teachers and
one for students, are provided.

C. Scenario 2: Modify system

The second scenario entails a modification of the ex-
isting collaboration system, cf. Figure 20. The scenario
includes replacing the old system components with a
more modern three-tier architecture featuring separate
components for Graphical User Interface (GUI), Data,
and Functions. This greatly promotes maintainability and
increases the overall quality of the architecture making it
more interoperable.

Additionally, a mobile user interface is created. This
forces the collaboration system to interoperate with an
external telecommunication system to be able to send text
messages regarding for instance rescheduling of lectures
or notification on assignment grades. Another new feature
is that all traffic is encrypted, the platform introduces an
encryption service. Also the operating system changed
from Windows to Linux. Apart from the abovementioned,
this scenario adds no new functions to the existing so-
lution presented in the as-is scenario. All development,
operation and management of the collaboration system is
still performed inhouse by the same staff.

D. Scenario 3: Replace system

In the third scenario, the collaboration functionality is
implemented in an extension of the Enterprise Resource
Planning (ERP) system currently used by the university,
cf. Figure 21. The ERP vendor offers virtually the same
functions as the first scenario, but execution runs on a
windows-based platform with some more security func-
tions, specifically through the use of a firewall. An added
benefit with this scenario is the ability to automatically
exchange user data between the collaboration system
and the human resources department, leading to less
duplicate data and thereby a higher overall data quality.
A major difference from the other two scenarios lies in
the supporting IT organization. The maintenance process
uses the same inhouse personnel as in the other scenarios,
but the system development was carried out by staff from
the ERP vendor. This is a mixed blessing. On the one
hand the development team of the ERP-vendor is highly
skilled and follows a meticulously documented develop-
ment process producing structured and high quality source
code. This benefits code maintenance as well as system
interoperability. On the other hand, the separation of the

38 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

Develops

<<Software Operation
and Maintenance.

Process>>

Maintains

Communicates with

Uses

<<Software
Development

Process>>

Consists of

Consists of

<<Data Entity>>
User Account DataHas

Uses

<<Data Entity>>
User Document

Stores
Stores

<<Software
Platform>>

Linux

<<System Component>>
Data

<<Information System>>
Collaboration System

Executes on

<<User Interface>>
Student Web

<<User Interface>>
Teacher Web

<<User>>
Student

<<User>>
Teacher

<<Staff>>
Inhouse

Is resource of

Is resource of

<<Data Entity>>
User Access Data

<<Data Entity>>
Assignment

<<Data Entity>>
Grade

Stores StoresStores

<<Business Function>>
Chat

<<Business Function>>
Peer Collaboration

Support

<<Business Function>>
Assignment Management

<<Business Function>>
Scheduling

Provides
Provides

Provides
Provides

<<Supporting Security Service>>
Encryption

<<System Component>>
GUI

Consists of

Is a part of

<<System Component>>
Function

<<Information System>>
Telecommunications

System

<<User Interface>>
Mobile

Has

<<System Component>>
Mobile Service Provider

Consists ofHas

Uses

Uses

Figure 20. Scenario 2 for the collaboration system, modify system.

development and the maintenance staff means that the
maintenance staff has less first-hand knowledge about the
inner workings of the system, making it harder for them
to localize bugs and correct system errors.

E. The analysis using ISO/IEC 9126

In this subsection, the ISO 9126 based extended influ-
ence diagram from section VI is applied on the respective
change scenarios from the previous subsection. The result
of this will show which scenario has the highest system
quality.

All nodes connected to the decision node in the diagram
are defined and directly controllable for the decision
maker, thus the next step is to collect the values for these
nodes.

The values for all the directly controllable nodes are
collected as described in ISO/IEC 9126 part 2 and 3.
For instance, the metric access auditability is measured
by specifying the number of logged access types as
compared to the logging requirements and the node data
exchangeability (data format based) is measured as the
percentage of correct interface data formats exchanged
with other systems.

As presented in section VI there is a conditional
probability distribution associated with each node in the
extended influence diagram. For the directly controllable
nodes these distributions contains the values of the col-
lected data. In Figure 22 and Figure 23 the conditional
probability distributions for the directly controllable nodes
affecting security and interoperability in the three scenar-
ios are presented.

In this example case, as in many others, the collected
measurements are not completely certain, e.g. during
the data collection process there is an uncertainty when
specifying the number of logged access types for the

Figure 22. Conditional probability distributions of the directly control-
lable chance nodes affecting security in the three scenarios.

access auditability. As is shown in Figure 22, the choice
of scenario 2 (i.e. implementing new components for
GUI, Data, and Function) will probably lead to a high
level of access auditability. This means that there is some
uncertainty regarding what the outcome will be, in this
case, 20% uncertainty is divided between the medium
and low states. The same reasoning goes for the other
variables and the other scenarios.

As presented in section VI and in Figure 24, all the
indirectly controllable nodes in the extended influence
diagram have conditional probability distributions based
on an unweighted average function.

Given the extended influence diagram and the condi-
tional probability distributions, the expected value and
standard deviation of the system quality node is calculated
for all three decision alternatives. There are several tools
available for such calculations, e.g. Hugin [18] and GeNIe

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 39

© 2007 ACADEMY PUBLISHER

Develops

<<Software Operation
and Maintenance.

Process>>
Maintains

Has
Uses

<<Software
Development
Process>>

Consists of

Consists of

Provides

Provides

<<Data Entity>>
User Account Data

Has

Uses

<<Data Entity>>
User Document

Stores
Stores

<<Software
Platform>>
Windows

<<System Component>>
Human Resources Database

<<System Component>>
Collaborative Management

<<Information System>>
ERP-based Collaboration

System <<Business Function>>
Assignment Management

<<Business Function>>
Scheduling

Executes on

<<User Interface>>
Student Web

<<User Interface>>
Teacher Web

<<User>>
Student

<<User>>
Teacher

<<Staff>>
ERP-vendor

Is resource of

<<Staff>>
Inhouse

Is resource of

Is resource of

<<Data Entity>>
User Access Data

<<Data Entity>>
Assignment

<<Data Entity>>
Grade

Stores StoresStores

<<Business Function>>
Chat

<<Business Function>>
Peer Collaboration

Support

<<Business Function>>
Assignment Management

<<Business Function>>
Scheduling

Provides

ProvidesProvidesProvides

<<Supporting Security Service>>
Encryption

<<System Component>>
Web-interface

Consists of

<<Supporting Security Service>>
Firewall

Is a part of

Is a part of

Figure 21. Scenario 3 for the collaboration system, replace system.

Low
Low

High Medium Low High Medium Low High Medium Low High Medium … Low
High 1 1 0 1 0 0 0 0 0 1 0 … 0
Medium 0 0 1 0 1 1 1 1 1 0 1 … 0
Low 0 0 0 0 0 0 0 0 0 0 0 … 1

Interface Consistency (Protocol)
Interoperability

…Data Exchangeability (Data format based) High
Data Exchangeability (User's success attempt based) High Medium Low …

Figure 24. The conditional probability distribution for the node interoperability is based on the unweighted average function.

Scenario 1 Scenario 2 Scenario 3
High 0,1 0,1 0,8

Medium 0,8 0,8 0,1
Low 0,1 0,1 0,1

Scenario 1 Scenario 2 Scenario 3
High 0,1 0,1 0,8

Medium 0,1 0,8 0,1
Low 0,8 0,1 0,1

Scenario 1 Scenario 2 Scenario 3
High 0,1 0,8 0,1

Medium 0,8 0,1 0,8
Low 0,1 0,1 0,1

Scenario Selection
Interface Consistency

(Protocol)

Scenario Selection
Data Exchangeability

(User's success
attempt based)

Scenario Selection
Data Exchangeability
(Data format based)

Figure 23. Conditional probability distributions of the directly control-
lable chance nodes affecting interoperability in the three scenarios.

[20]. In this example the GeNIe software developed by the
Decision Systems Laboratory at University of Pittsburgh
was used. The influence diagrams can be represented
graphically, and conditional probability distributions can
be assigned to the nodes. The software also helps calcu-
lating and presenting the results.

The results from the calculations are presented in
Figure 25 and Figure 26. The GeNIe screenshot, Figure
25, shows the values of all security and interoperability
nodes for Scenario 1. The diagram, Figure 26, shows the
aggregated level of system quality for all three scenarios,
as well as the uncertainty associated with the analysis.

The analysis results provides support for the decision
maker in the choice between the two alternatives: a)

choose a scenario based on the analysis result or b)
increase the certainty of result in order to provide better
decision support in the selection between the scenarios.

In order to increase the precision of the analysis, it
would be necessary to put more effort into data collection.

Figure 26. The grey bars show the utility expressed in terms of level
of system quality. The narrow black bars indicate degree of uncertainty
of the result.

VIII. CONCLUSIONS

This article has proposed the use of extended influence
diagrams to support the analysis of system quality. The
syntax and semantics of extended influence diagrams were

40 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

Figure 25. GeNIe screen shot of the results for the security and interoperability part of the system quality extended influence diagram for scenario
1.

presented and a method for their construction and use
was described. An extended influence diagram based on
the ISO/IEC 9126 was presented. To demonstrate the
applicability of extended influence diagrams for software
quality analysis a ficticious example demonstrated how
an IT decision maker faced with an investment decision
used extended influence diagrams for decision analysis.

REFERENCES

[1] R. A. Howard, “Decision analysis: Practice and promise,”
Management Science, vol. 34, no. 6, 1988.

[2] P. Johnson, R. Lagerstrom, P. Narman, and M. Simonsson,
“Extended influence diagrams for enterprise architecture
analysis,” in Proceedings of the Tenth IEEE International
EDOC Conference (EDOC), 2006.

[3] ——, “Enterprise architecture analysis with extended in-
fluence diagrams,” Information System Frontiers, 2007.

[4] ——, “System quality analysis with extended influence
diagrams,” Proceedings of the 11th IEEE Conference on
Software Maintenance and Reenginering (CSMR) - Special
Session on System Quality and Maintainability (SQM),
2007.

[5] R. Shachter, “Evaluating influence diagrams,” Operations
Research, vol. 34, no. 6, 1986.

[6] ——, “Probabilistic inference and influence diagrams,”
Operations Research, vol. 36, no. 4, 1988.

[7] R. A. Howard and J. E. Matheson, “Influence diagrams,”
Decision Analysis, vol. 2, no. 3, 1983.

[8] F. V. Jensen, Bayesian Networks and Decision Graphs.
Springer, 2001.

[9] R. Neapolitan, Learning Bayesian Networks. Pearson
Education, 2004.

[10] ISO/IEC TR 9126-1 International Standard - Software
Engineering - Product Quality - Part 1: Quality model,
International Organization for Standardization, 2001.

[11] ISO/IEC TR 9126-1 Technical Report - Software Engineer-
ing - Product Quality - Part 1: Quality model, International
Organization for Standardization, 2001.

[12] ISO/IEC TR 9126-2 Technical Report - Software Engi-
neering - Product Quality - Part 2: External Metrics,
International Organization for Standardization, 2003.

[13] ISO/IEC TR 9126-4 Technical Report - Software Engineer-
ing - Product Quality - Part 4: Quality in use metrics,
International Organization for Standardization, 2004.

[14] A. Rubenstein, Modeling Bounded Rationality. The MIT
Press, 1998.

[15] P. Liu, P. Ammann, and S. Jajodia, “Rewriting histories:
Recovering from malicious transactions,” Distributed and
Paralell Databases, vol. 8, 2000.

[16] S. Poslad and M. Calisti, “Towards improved trust and
security in fipa agent platforms,” in Autonomous Agents
2000 Workshop on Deception, Fraud and Trust in Agent
Societies, 2000.

[17] M. Scriven, “Definitions in analytical philosophy,” Philo-
sophical Studies, vol. 5, no. 3, 1954.

[18] HUGIN API Reference Manual, Version 6.3, Hugin Expert
A/S, 2004.

[19] R. Lagerstrom, P. Johnson, and P. Narman, “Extended
influence diagram generation for interoperability analysis,”
Proceedings of the Interoperability for Enterprise Software
and Applications Conference (I-ESA), 2007.

[20] D. S. Laboratory, Genie On-Line Help, 2006.
[21] N. Fenton and S. L. Pfleeger, Software metrics: a rigorous

and practical approach. PWS Publishing Co., 1997.
[22] R. A. Khan, K. Mustafa, and S. I. Ahson, Software Quality:

Concepts and Practices. Alpha Science, 2006.
[23] J. A. McCall, P. K. Richards, and G. F. Walters, Factors

in Software Quality. General Electric Co., 1977.
[24] B. Boehm, Characteristics of Software Quality. American

Elsevier, 1978.
[25] D. C. RB Grady, Software metrics: establishing a

company-wide program. Prentice-Hall, 1987.

Pontus Johnson is Associate Professor at the Department of
Industrial Information and Control Systems at the Royal Institute
of Technology (KTH) in Stockholm, Sweden. He is the research
leader of a group of fifteen researchers and PhD students

JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007 41

© 2007 ACADEMY PUBLISHER

focusing particularly on the analysis of enterprise architectures.
In the frame of the department, Pontus also supervises a number
of PhD students. He is the author of a number of journal articles,
international conference articles and books. He is also active as a
consultant in the area of enterprise architecture. Pontus received
his MSc from the Lund Institute of Technology in 1997 and his
PhD from the Royal Institute of Technology in 2002.

Robert Lagerström holds a MSc in Computer Science from
the Royal Institute of Technology (KTH). Robert is currently
a PhD Student at the Department of Industrial Information and
Control Systems at KTH in Stockholm, Sweden. His research
focus is on enterprise architectures (EA) and decision analysis
of maintainability using EA-models. Robert is also a member
of the Swedish Chapter committee of INCOSE (International
Council on Systems Engineering).

Per Närman holds a MSc E.E. from the Royal Institute of
Technology (KTH). He is currently a PhD Student at the
Department of Industrial Information and Control Systems at
KTH in Stockholm, Sweden. Per conducts research within the
field of enterprise architecture analysis and his research will
result in a system quality analysis framework, an enterprise
architecture metamodel connected with said analysis framework
and a methodology that supports resource-efficient modeling.

Marten Simonsson holds a MSc E.E. from the Royal Institute
of Technology (KTH). He is currently a PhD Student at the
Department of Industrial Information and Control Systems at
KTH in Stockholm, Sweden. He focuses his research on the area
of IT governance with the overall goal to improve the COBIT
framework for maturity assessments of IT organizations. Mrten
is also active as a consultant in the area of enterprise architecture
and IT governance.

42 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER

