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Abstract—We present and evaluate a novel constraint- general [7]. As an alternative, approaches dealing with
based model transformation approach that implements a  model checkingf graph transformations can be found in
preservation-centric view. The proposed framework com- e Jiterature, but scalability remains an open problem [2].

prises formal preservation constraints that can be used S dl labilit ith d to effici is still
to specify the preservation of invariants that are possibly econdly, scalability with regard 1o eifciency 1s st

implemented differently in the source and target model. in doubt for formal transformation approaches [5], [6].
These invariants are enclosed in concepts, which at the As a remedy, expressive control mechanisms have been
same time serve as grouping mechanism for their different developed [7], [8]. They help guide transformations but
implementations. In that, our framework abstracts from can, in general, not overcome inherent complexity issues

the concrete implementation languages by pre-supposing .
only a basic set of modeling constructs. To this end, we of model transformation problems. As a relevant example,

present two case studies where we apply our approach take DB-schema to XML mapping. This application has
for the preservation of non-trivial properties and provide  gained more and more importance since the emergence
some performance analysis where we show that tracking of the XML standard. There, it is, in general, undecid-
the preservation of a relevant class of complex properties  gpja whether database-related constraints like foreign key
can be done in linear time. . . .
conditions can be preserved in XML documents in the
Index Terms— model transformation, semantic preservation, presence of DTD’s or XML-schemas [12]. Under more
constraints restrictive assumptions on the underlying constraints, the
satisfiability problem decreases to be NP-complete or — at
. INTRODUCTION best — PSPACE hard. In such situations, human interac-

. o . tion can be necessary, which in turn requires alternative
Model transformation has applications in many areas

like model-driven software development (MDD) or auto- approaches that guarantee the preservation of relevant

4 roperties.
mated knowledge exchange [1] .[4]' When applied, r_node? In all these scenarios, a verification-oriented technique
transformations usually are designedp@servecertain

. an complement formal transformation approaches b
properties. In MDD, e.g., abstract models are transformea omp . PP y
Checking relevant part®f their output for correctness

nto_ more spgcnﬁc ones while preserving the behaworon the instance level. This would exploit the fact that
of the specified software system (3], [6]. As another roperty checking can often be done in linear or poly-
prominent example, the rapid emergence of the xmLProPerty 9 poly

. . . nomial time where automated model construction may
technology and the resulting diversity of XML-related . L :
) o : B cause an exponential blow-up. In primarily human driven
domain-specific document formats requires for “content- : : o
S : model transformation scenarios (like in early phases of a
preserving” document transformations.

software development process), this even seems to be the

forvmvg(taigﬁ\s/eirs adzlsgi]rhec(ij efgorren(:atljfrglcliaetl)lItlgnc;]:‘otrhrﬁxotrzags:m%t promising strategy [S], [13], [14]. In [15] we have in-
. ; ' . 'Produced a declarative, constraint-based approach that can
proaches, like diverse variants of graph transformation

. . . nstrain permissible model transformation
[71-[9] or stepwise refinement techniques [10], [11] are?e used to co S.t ain per ssible _ode tra Sto ations
rom a preservation-centric perspective. In particular, we

o . SP€¢ave shown its automated model construction facilities by
ifications are executable, a higher degree of automation i

) . ! Ron-trivial examples like automated preservation of link-
achieved as an important by-product by approaches III(gonsistency in web model transformations [15], [16]
Programmable Graph Transformation [8]. ' :

The taxonomy for model transformation introduced in Motivated by the introductory explanations, we will
51 h dy tif A tr|1 ti l;] ItI study our approach from another perspective in this
[5], however, identifies Some scenarios that INNErently, yoje we will provide two case studies and examine
decrease the level of automation. Firstly, it may well turn

t that proofs are hard t i t tem comol Xitits constrainteheckingfacilities. In particular, these case
out that prools are hard fo carry out as system Compiexityy jias come from significantly different application do-

?er;)r\T’]vi?{a:i;orﬁpgr t:;)':ﬁ{ﬁg:?;'onrorgfesth?rdhsési'g"ron;%y é:ﬂu'brﬁwains in order to underline applicability of our method.
b : P e use our framework to 1) specify model invariants

quite challenging and are known to be undecidable "Mhat have to be preserved by the respective transformation
This work has been partially funded by the Univeisiter Bun- procj‘ess.and 2) evaluate adherence to the spemﬂed_gon—
deswehr Minchen. straints in an automated way. It turns out that the ability
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Figure 1. Running example: Transformation of website models

to trace model changes w.r.t. relevant model entitiesthe associatiorsrcF (source folder), which at the same
is decisive since model invariants can be expressed hyme contains website elements of tydéE. Association
different languages in the source and target model. In [15inultiplicities are omitted for clarity since they are not
we introduced a mechanism that requires all implemenimportant for this introduction. Website elements are fur-
tations of aconcept(semantic property) to adhere to the ther distinguished by non-hypertex¥ @ T") and hypertext
concept’s interface. We will see that this mechanism {HT) elements. One hypertext element is the “home”
together with our formal notion of preservation — allows page (or index page) of the website, which is modeled
us to elegantly relate source model instances to differertiy the home association. A model instance of this (quite
versions of target model instances and, thus, facilitateabstract) website representation is shown on the upper
efficient constraint-checking. middle part of Fig. 1. It comprises one website-entity
This article is organized as follows: We present thew : WS, one entity of typeSE, two non-hypertext,
basic ideas in Sect. Il on an informal level. We introduceand two hypertext entities. The home page element
a running example and use it to motivate the technicails represented by the special icon. This abstract website
parts of this article, which are provided in Sects. IlI-V. instance already indicates that we require the home page
There, we recall some preliminary results published irelement of a website to be contained in the correspond-
[15], provide a more profound explanation of our notioning structure element. This semantic property, however,
of preservation and distinguish our work from othercannot be expressed in the abstract model using associ-
approaches. Moreover, we will introduce a new variantations. Therefore, theonceptEntryPoint is explicitly
of preservation constraints, the necessity of which will beintroduced on the instance level and shown on the upper
motivated with the running example. Finally, we employright-hand side of Fig. 1. This concept is defined on
two case studies ranging from systems specification to the triple of elements comprising a website, a structure
transformation of document models in order to evaluateelement and a hypertext element. We say that the concept
our approach and analyze computational complexity ofEntryPoint has the interfac&/’ S x SE x HT'. In Fig. 1
the prototypical implementation. We shall see that oumwe deliberately omitted all details in the area covered by
approach allows verification of complex preservation re-EntryPoint in order to indicate that it ismplemented
guirements in linear time w.r.t. constant model size andomehow using some appropriate language. In this case,
the number of found matches, where fully automated-irst-Order Logic (FOL) is adequate. Other models may
model construction adhering to these properties is knowrnequire domain-specificlanguages as they are used in
to be NP-complete. Technical issues of this article areMDD, for example.
mostly explained in prose text. The interested reader is On its bottom left-hand part, Fig. 1 depictsrefined

referred to the appendix for the formal definitions. website model. Model extensions are marked by dashed
lines. In particular, the refined model introduces specific
Il. INFORMAL DESCRIPTION ANDKEY IDEAS formats for non-hypertextT{ext), hypertext T ML),

In this section we present the key ideas of our approachnd structure elementD( R, directories). Moreover, it
and motivate the design decisions with a particular modedllows for recursive structuring of directories. This refine-
transformation example. For this purpose, we use th&entis, thus, a step from abstract navigatible structures
abstract website model depicted on the upper left-hantbwards a computer-based implementation and typical for
side of Fig. 1. We will see in the sequel that this seeminglyall software engineering approaches.
simple example comprises very complex properties. The lower middle part depicts two model instances.

An abstract website (entity typ&l/’S) is connected Instance one refines the abstract instance by refining
to a structuring element (entity typ€F) by means of the entity types. The “home” paget, e.g., is of type
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[ Signature (T, O, Attr, K, C, <) ] I11. BAsIC ENTITY MODEL

v v After the informal survey, we now introduce the basic

Algebra A4 Algebra A’ formal environment in which our approach is settled.

(02) — (02) We principally review those parts of [15], [16] that are
(04) ©) basiic (o8) ©) relevant to clarify our ideas. The major notions introduced

operations here comprissignature system state@andstate changes

Their relations are visualized in Fig. 2. Compared to [15]
LR El ek e e U TS ORI el ) we go into deep at some points with informal explanations

where this helps understanding the framework.

HTM L. This model instance is to be transformed, where

the second model instance depicts the desired output @f'
this transformation. It must adhere to substantially more Our approach only requires a minimal set of modeling
constraints than the source instance. In particular, it corelements including objects (atomic model entities), types,
tains two directories “resources” and “html”, respectively,and concepts. That way we achieve a high degree of
which separate non-hypertext and hypertext content. Submplementation independence on the one hand, but still
directories are permitted. This specific constraint is alsénaintain the ability to identify and trace concrete objects
implemented using a concept, which is, however nofn the other hand. Types and sub-typing provide us with
shown for clarity. The specific directory structure of the@ structuring principle for objects, which is important

target model instance already indicates that preservatiol’ incorporating abstraction and refinement [10]. Notice,
of link-consistency is challenging. Link consistency isthat application domains may require extensions, which

a complex property that is difficult to handle solely by at the same time can introduce side-effects. In [15], [16]
formal proofs. we, e.g., use functions as well that can themselves cause

changes to the model.

The bottom right-hand part of Fig. 1 shows that both More formally a signature := (7, O, Attr, K, C, <)
instances also implement the entry point concept, theomprises a sef of type symbols, elements of which
preservation of which we use for demonstration purposegniquely type object® € O (denoted bytype(o) = 7).
in the following. The specific structure of the transforma-Sub-typing is denoted by. We abbreviatéype(o) < 7
tion result affects the implementation of th&:try Point by o : 7, which is especially used for quantifier scopes
concept. In particular, we have to incorporate the “html”|ater on. We further distinguishtatic types7s € 7 and
directory, which is indicated on the outer right-hand partclass types7c C 7, which model static and dynamic
by placing the corresponding icon inside the concept'arts of the models, respectively. Collection tyfles;; C
area. Similar to graph transformation approaches wg. are subsumed to the set of class types. Constants
speak of different implementations in differecdntexts  like the integer numbei cannot have a static type. In
In our approach, concept interfaces can be implementecbontrast, object symbols are place holders for objects
by different contexts. Hence, concepts at the same timghat can be created, transformed, and deleted. Class type
serve as grouping mechanism. specifications provide objects with attributes. We regard

. L . . Object symbols as IDs that are dynamically attached to

At this point, it is important to notice two facts in objects on creation. Once used, an objects ID stays
order to understand the notion pfeservation Firstly all unchanged until this object is deleted. For besiemtactic
elements in the abstract model instance have a UNIqYeacing of object life-cycles, objects are immutable. In
correspondence in the refined instances. This is indicat rticular, changing the value of an object's attribute is a
by using equal element IDs. Moreover, and although thg;anstormation and yields a new object with a new ID.
implementation changes, both refining implementations K denotes the set afoncept symbojghe elements of
for the conceptntry Point still have the same interface. which each have a set of implementingntext symbols

In our view, preserving the abstract concéptlryPoint ,n10.45(K) C €. Concepts and contexts are worth being
corresponds to a possible change of the concrete 'mpl?ﬁtroduced on their own right in Sect. IV

mentation while adhering to the abstract property itself.

The interface objects serve as tracing points that connect

the source and target model. This tracing is done usin§- System States

transformation operations, sequences of which construct As already stated in the introduction, our approach con-
partial model homomorphisms between the concrete regstrains permissible model transformations by restricting
resentations of the corresponding abstract elements amdlid combinations of the previous and subsequsate

their counterparts in the target context (dotted arrows)Hence, we need notions for states and state change. We
In other words: If the source elements satisfy the im-ecall the modeling approach of [15], which has proven
plementation of the concepintryPoint in the source to be adequate for this purpose (see Sect. VI).

context, then the transformation results must satisfy the All model elements are interpreted in algebrfsvhich
EntryPoint, but for the implementation in the target at the same time serve as system states. This is very
context. similar to algebraic graph transformation approaches [7].

Syntactic Modeling Elements
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Interpretations of objects and constants are called theiteveloped as a uniying theory for the structuring of graph
valuesand must be an element of thgpe domainof transformations. We, however, extend it in certain ways
their type. More precisely, an object’s value comprises theaince we allow the tracing of several transformations at
values of all its attributes and the object’s ID. This leadsa time that may be carried out using different graph
to the important consequence that no two objects have thteansformation approaches. This is supported by our sim-
same interpretation. This property is particularly impor-ple view of transformations being characterized through
tant when carrying over changes on the interpretation leveheir object-to-object-mapping only. In contrast, [17] pre-
back to the syntactic level. In our implementation, whichsupposes a notion of rule application and introduces ID-
we will shortly introduce in Sect. VI-A, we interpret all environments as structuring principle for transformations.
syntactic entities by JAVA objects. These class instanceB1 our approach, the notions of preservation and im-
serve as connector to real-world applications. With thismutability of objects provide an inherent structuring and
interpretation, changes on the implementation level cagontrol mechanism. In [15] we have shown that these
always be carried over uniquely to the symbolic levelfacilities are powerful enough to guide model construction
since there is a unique object symbol for each JAVA clas$or non-trivial examples.
instance. As a by-product we get a convenient notion of At this point, we have defined the basic framework
object equality. Two objects are equal if they both haven which to execute model transformations. The next sec-
the same ID. More precisely, equality means identiy andions provide adequate language constructs for expressing
equality checking can solely be done on the syntacticabemantic object properties (apart from attributes) and
level. This considerably improves efficiency. constraining model transformations.

Notice that the special symbal (undej is required
to be part of all type domains. If an object symbol hasIV. SPECIFYING SEMANTIC PROPERTIES CONTEXTS
semanticsL, we say thab does notexistin the system. AND CONCEPTS

F_inally, the i_nterpretatio_ns of f:oncepts together with  aAg explained in the introduction, our approach and —
their contexts yield semantic predicates. We will, however;, particular — our view on preservation is to incorporate

explain this in more detail in Sect. IV. the definition of semantic properties (concepts) as well as
support their refinement and implementation in different
C. State Changes contexts. These concepts then can be specified to be

In our preservation-centric environment, object histo-Preserved when models aré transformgd. This connection
ries are decisive for tracing the preservation of semanP€tween concepts and their preservation is sketchily de-
tic properties. Therefore, we support three basic objectictéd in Fig. 3. Similar to programming languages, a
related state changes. Notice, however, that additionONceptt defines aconcept interfacei’ that has to be
state changes can be reasonable if the basic entity modgiPlemented by all context€’, ..., €, in contexts(K).
is extended (cf. [15]). In particular, we see the entityTh'S implementation is calle@mbeddingand denpted
model as an algebra that evolves over time where objed tc;- Thus, contexts can be seen as “semantic plug-
creation, object transformation, and object deletion caf?S” for concepts. When transforming objects (in this
change states. An object may not be deleted if it is th&aseé from contexiC; to context ), the conceptk
attribute value of another object. This restriction avoidscan be specified to be preserved usingraservation
“dead” references. Moreover, the value of the host objecgonstraint In our concrete example, we want to preserve
would change, which is forbidden in our setting. More Properties like Imk-c;onsstgncy or the.entry point relation
complex transformations are modeled ssquencesof ~ Detween a web-entity, a directory-entity, and a hypertext-
basic operations. The semantics of all basic operation@ntity. We support arbitrary implementation languages for

is provided in the appendix and illustrated in Fig. 2. K
There, the algebrad’ is generated from4 by creating
05, the latter having3 as an attribute. We consider the t Kl J

effect of all operations w.r.t. a preceding and a subsequent

. . S 1 o)) Aei len
system state where the basic operation causes the minimal A Fresx(e)
necessary model change w.r.t. its post-condition. In this M
case we say that a staid’ is subsequent tod. Post-
conditions may constrain attributes of the created object, Concept name: | EntryPoint
only. This avoids unwanted side-effects. Concept interface: | (w: ai,d: as,h: as)
Example:Using graphs as objects and derivation steps a1 <WSAay <SEAag < HT
as transformations we can model graph transformations. Context name:| Cp,,
Post conditions can only constrain the produced graphs, embedding: | srcF(w,d) A home(w, h) A con(d, h)
which is typical for rule-based graph transformation [7]. Context name: | C[.
This example shows the generality of our approach. embedding: | srcF(w, d) A home(w, h) A K*°"(d, k)
We can trace graph transformations and their results w.r.t. Context name:| G’y
the preservation of semantic properties. This very much embedding:| ¢
Corresponds to the approach in [17], which has been Figure 3. Concept definition and concept preservation
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the specification of concepts and only require that they Preservation Transformation constraints
adhere to the basic entity model explained in Sect. Ill. =

An example using graph- query languages and automata- , @/_@
based techniques for the preservation of link-consistency 5 i&

can be found in [16]. Typical other examples comprise Source model - Target model
FOPL formulae (e.g., in the form of OCL constraints) or  Source model Target model

tree languages based on tree automata. The latter can be
used to constrain tree structures in a short and elegant Object preservation
way. We have used them to describe the desired directory
structure in the target model. Other applications are DTD
conformity of XML documents or constraints on class
hierarchies in UML specifications.

The concept interfacén Fig. 3 defines arity and typing Source model Target model | Source model Target model
constraints. The interface is the starting point for concept
matching, where the typing can be seen as a pre-filter
and speeds up the matching process. If this pre_f“te.}s studied with applications to database queries. In all
is passed, an object tuple; satisfies the concept, these cases, however, preservation can be traced back to
if and only if one of the context embeddings evaluatesPur explanations in Sect. Il and the abstract preservation
to true for these objects. The formal definitions for scheme shown in the upper left-hand part of Fig. 4.
matching and concept satisfaction can be found in théccording to this scheme, preservation means to preserve
appendix. Concept interfaces are used to trace objeé model property under abstractions:’ w.r.t. the source
histories w.r.t. satisfaction of the corresponding concep@nd target model. Clearly, the real effect of this notion
K in possibly different contexts. This is possible only depends on the chosen abstraction functions~araper-
because all contexts &f have to implement this interface. ator. If we replace the abstractioasa’ by implication=-

Example: The bottom part of Fig. 3 shows excerpts and comparison by, we have exactly the preservation
of the specification for the concepntryPoint. Its  requirement for the&niry Point concept of our running
interface is given by the sequende : ai,d : ay,h :  €xample. However, the concept of identity used in some
043> together with a type constraint. This is very much rule-based graph transformation methods is too weak [7]
related to interfaces in programming languages. The three In the following we shortly recall the tripartite approach
contexts implement this interface, where we omit theProposed in [15], where we have used (1) transformation
implementation for the target context;/, due to its constraints, (2) object preservation constraints, and (3)
Comp'exity_ The implementa‘[ion for Contezﬁi exhibits Concept presel’vatlon constraints to restrict permISSIble
the facility to structure concept definitions. This hasmodel transformations. In particular constraints of type
two advantages. Firstly, it provides us with a means td2) and (3) implement different variants of abstraction
reason over concept subsumption on the syntactic leveind comparison. After that we introduce some extension
Second|y’ it facilitates re-use and Supports Compositioﬁnd variations of this basic set of constraints that truly
and decomposition of definitions. This becomes importantcrease the expressive power of our approach. We will
when complexity grows (cf. [5]). motivate these extensions out of our running example.

In the following sections, the language constriigc|
will be important. It reduces the evaluation of the concep®?. Transformation constraints
K to the contextC' and can significantly speed up concept Basic transformation constraints of the form —
satisfaction checking. More specifically, a validity checks simply enforce the transformation of the objeat
of K for an object tupleo; in Fig. 3 would require to to the target typer. Notice that the other constraint
test alln contexts if their embedding formula evaluatestypes may well introduce transformatiobligations[15].
to true for these objects. The just-mentioned language{ence, one transformation constraint together with other

Concept preservation

Figure 4. Preservation and effect of basic constraints

construct avoids this by fixing one of thesecontexts.  preservation constraints can enforce whole transformation
processes under suitable circumstances. The semantic
V. PRESERVATION OFMODEL PROPERTIES effect of transformation constraints is visualized in the

The notion of preservation can be found in differentUPPEr right-hand part of Fig. 4. The formal semantics can
variations throughout the relevant literature [5], [7], [18]- be fouqd in the appendix. Sansfaguon of traﬂsformatlon
[20]. Refinement, e.g., usually means a reformulatiorfonstraints and all other constraint type_s is evaluated
of system properties in the same language such théﬁ"r't; subseqyent states and atransformatlon sequence. In
the newly specified system inherits all properties of theParticular, this sequence must contain a transformation
former system [5]. In node replacement approaches ofeduence leading fromto another object’ of type 7.
graph transformation, authors usually speak of preserva- ) ) .
tion w.r.t. those nodes and edges of the source graph thB Object preservation constraints
are not affected by a rule application. In [20] preser- Basic object preservation constraints focus on object
vation of FOPL formulae under model homomorphismscontents. Read constraintges (o — 7,0[7']) as fol-
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lows: “Whenever transforming to = (o — ), preserve
the content ofo arising wheno is abstracted to type’ -
(o[T'])". The first parameter in parentheses is tramsfor- ,
mation assumptioand relates transformation constraints /
and object preservation constraints. An object preserva- !

!
/
S~ [T
7/
-
j
)
)

tion constraint holds, if the underlying transformation  ~-____ -~ = o] [@] o] [ erTen] [®] S
assumption holding implies that the source and target
objects have similar contents when abstracted’to Figure 5. Use case for existential preservation constraints

Example:In Sect. VI we will refine the entity model
of our running example such that the tySé’ (structure
element) has an attributeame : SE — String. Since
DIR (directory) is a sub-type of E, it inherits this at-
tribute. Furthermore, we introduce an attributé Dirs pres,({w — WS}, K (w,d, h), (CSF, CilY)

DIR — Set(DIR), which implements directory struc- . ) )

turing. When transforming a directory, we will require the SSures this preservation requirement. _

preservation of its name while possibly changing the set of Regarding the classification scheme of Fig. 4, abstrac-
sub-directories. This is assured by an object preservatiofPn is defined by upwards implicatios, and comparison
constraintpres, (d — DIR, d[SE]). is defined by equivalence>. The semantics is given in

Regarding the abstract classification scheme of Fig. 41 appendix. The strong corresponderee however,

abstraction in the context of object preservation yielddS deliberately introduced instead of the weak form
type abstraction. Comparisor yields an equivalence Consider the concept preservation constraint above. With

relation w.r.t. the values of those attributes that are define§Ur Semantics it at the same time assures that all objects
on the respective type. A formal definition of this notion that do not satisfy the entry point concept will also not
of undistinguishabilityis given in the appendix. satisfy it in the target context. A weaker implicative
Notice that we use tracesf maximum lengtifrom  variant of concept preservation can, however, still be
o to type 7 in the constraint semantics provided in the SPecified usingxtendectonstraints (see Sect. V-E).
appendix; we permit temporary inconsistencies. Consider, At this point, we have a basic set of constraints that
e.g., the evolution of a class specification in a UML clasdS €xpressive enough in cases where object properties
diagram through the software development process. Usingdve to be preserved equally for all different and possibly
our constraints, we can assure that firal version of Pranching traces. In the next section, we will give an ex-
the class specification meets the requirements. The phra8g'Ple where variant building is important. This motivates
“Whenever” from above is also worth explicit notice. In the introduction of an existential variant of preservation
Fig. 4 it is illustrated by two different transformation Constraints that exactly meets those requirements.
traces ofo to the target type. With the semantics here,
all traces have to satisfy the preservation requiremen. Existential Preservation constraints

In terms of the object's history, all future paths that gy g jystrates the necessity for an existential variant
lead to a new ob!ect of the respective typg sgtlsfy th'%f concept preservation in the running example. Directo-
preservation requirement. Later on, we will introduce joq iy the source model can contain non-hypertext as well
§X|stentlal yanants and show where they are necessagg hypertext entities. This is forbidden in the target model,
in the running example. where all non-hypertext has to reside in “resources” and
all hypertext has to reside in “html”. The right-hand part

particular the embedding formula of the target context
imposes a restricted directory structure on the target
model. The constraint

C. Concept preservation constraints of Fig. 5 depicts this pattern. Suppose we want to preserve
Basic concept preservation constraints the source directory structure in both, the “resources”
. and “html” directory. Our semantics provided in the last

pres,.({or, = 71,1, K(2:), (Cs, Ct)), sections, does not capture this. The main reason is that

incorporate the semantic preservation of objeeta- @ source directory’ has to be transformed twice — one
tionships Read this constraint as follows: “Whenever copy for the folder “resources” and one copy for “html”.

transforming oy, t0 7, ..., andos,, 10 7,, then the NOw, suppose we specify the preservation of the file
transformation result must 1) match the target confgxt containment property
and 2) satisfyC in Cy, if K(o04,...,0,) was valid in the con e e

) satishic In Ce, 1f Klor, .., 0n) pres, ({1 DIR}, K" (f,h), (C3h, Cilh).

source contexC;”. In other words, preserving a concept
means preserving a semantic relationship but possibly im this case, the preservation semantics would require all
different contexts (cf. Fig. 4). suitable transformation results gf and i to satisfy this
Example: Recall that we want to preserve the property in the target model (cf. Fig. 4). This is, however,
EntryPoint concept in our running example whenever not satisfiable if: is hypertext because hypertext must not
we transform website entities. In Sect. 1l we have in-reside in “html”. The transformed hypertext document can
troduced the corresponding concept” with different  never be a sub-element of the copyfoin the “resource”

source and target context§” and C’f,f], respectively. In  directory.
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[ Entity types ]H A. Prototypical implementation and test configuration

5 erP— ~N — ~ We have implemented an experimental system that
S —— e facilitates to specify significant object properties and
_sver: pirectory Gt} siString immsion ) preservation requirements of the fashion described in this
e Directory N (] Doc N paper. In particular, all entity types are interpreted as
R superbir: Directory JAVA-classes, objects of the respective types are mapped

X : : name : Strin . . .
| Soppirs : sergpirectory | content s ) to instances of the corresponding JAVA-class. Preservation
[ o 1 constraints can be specified in the system, and trans-
e TextDoc N (] HTMLDoc N formations are _executed using re_gistered _tra!”nsformation
superbi: Directory e classes. In particular, transformations run inside an own
\_content : String P eonc=aclif sz e J environment such that the system is aware of newly

created or transformed objects. During the transformation
process, users can activate the constraint checking at any

Therefore, we introducexistential object- and con- time. The system then reports constraint violations.
cept preservation constraints. In fact, they exactly Tests in the case studies have been carried out on a
can express our preservation intention in this situa¥Vindows XP - workstation with 1 GB RAM and an Intel
tion. The formal semantics is provided in the ap- P4 CPU of 3.2 GHz. Although it slows down the system,
pendix. We explicitly annotate the existential variants,n0 caching of evaluated formulae etc. has been used. In
which yields the notationgpres?(o — T,0[']) and this way we receive unadulterated results.
pres;({o7, = 77, }, K(07), (Cs, Ct)).

Example: In our running example, we can specify B. Case study 1 — Transformation of website models
the preservation of the source directory structure in |In this section, we present the first case study. It is
both, the “resources” and “html” directory using the directly related to our running example, but has been
existential concept preservation constrapatesi({d —  carried out using the refined entity model shown in
WE}, Ko (dir,d), (Cgr, Cer)). SinceNHT andHT  Fig. 6. There, the “home” page and source directory of
are both sub-types of’ £, we do not need a separate type Website are modeled by corresponding attributes.

Figure 6. Entity types and example website model

constraint for each of those types. Directories have a name, a super-directory and two sets
distinguishing sub-directories and sub-documents. This
E. Extended Preservation constraints implementation corresponds to a double linked list and

. . . is a direct realization of &..1 to n relationship. We have
SIS our CALE I Ye'ated to objects, Iarg%dded an explicit content typT' M L Elem for HTML
models will imply large constraint sets. Moreover, USersy cuments. This type is recursive and implements tree-

usually .do e T to' prqvide a Sl (oI forkinded document content. Tydeoc is a super-type of all
every simple preservation intention. They rather groupy o -iments and stores a name. the corresponding super-

objects to equivalence classes w.r.t. a certain preservatiod?rectory and a content-object
r.equiremenp Therefore, we introduegtended preserva- The necessary concepts have already partially been
tion constraintsof the formvz; = 7ie¢(w;) = c(xi) Where  j,q04,ced. We omit the formal definitions because they

cisa pasic (Y matter'if e existgqtial or not)are not relevant for the understanding of this article. We
and ¢ is called theguard In_partlcular, the initial part refer the interested reader to [15], [16] for examples.
VT o ¢(.xi) Sl those_ objects of the_ source state th otice, however, that many of the intellectual challenges
constra!nt WS TS S Semantm?ally, an e>.<tend at are induced by complex formal specifications may be
_cr?]nstfra};nt can tl? thpught ql(‘jad$e_1totfhba5|c cm:js_,trallnts;.h settled in the proper definition of concepts in our method.

€ Tull semantics IS provided In the appendix. In Mg, 11iq is no inherent problem of our approach. It rather
examples provided in the next sections we will solely US&an be found in one or the other form in all formal model
extended constraints, which shortens specifications in T e

nice way. The conceptCe®” models containment in a directory

and can easily be implemented using the attributes shown
VI. CASE STUDIES AND RESULTS .
(1) Vd: Directorye
In this section, we evaluate our approach using two pres,(d — Directory, d[Directory{name}])

case studies stemming from different application domains. 5y vy, . HTMLDoc, e : HTMLEleme
Along with these case studies, we present parts of the Vd : Doc e K¢l(e, h) =
respective preservation specification. As main result of
this section, we will see that our approach can be used
to check the preservation of complex recursive properties
in linear time w.r.t. to the amount of found matches and
a constant number of objects in the system. We start by
introducing the prototypical system implementation and
the test setup that have been used to run the case studies. Figure 7. Constraints for case study 1

pres; ({h — HTMLDoc}, K" (h, e, d))
(3) Vw:Website,h : HTMLElem,d : Directory e
pres, ({w — Website}, K (w, h, d), (CL,, C’fﬁ]))
(4) Vd: Doc,dir : Directory e
pres; ({d — Doc}, Ko (dir, d), (C2n, C2n))

src o ~src
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45,00

in Fig. 6. The EntryPoint concept is denoted bice’. 40,00

Preservation of link consistency will be specified using el

the conceptC’"*, which is implemented w.r.t. a source 25,00

HTML document, a link anchor of typ@l T M LElem, ]

and a target document (cf. [16] implementation details) 10,00

Excerpts of the formal constraints for this example are s _,JJ]_FJ] . r{ |

listed in Fig. 7. Constraint (1) assures all directory name: P e S S S P S S

stay unchanged. Constraint (2) assures link consistenc links in the system

The guardK® (e, h) evaluates to true, if the element

is contained in the HTML documeni. Constraint (3) Figure 8. Results for case study 1

assures the target directory structure conforms to the

target website model. Finally, we preserve the sourc®f the HT'M L document.

folder hierarchy in two variants using constraint (4).

Notice that the specification is short due to the usag€&. Case study 2 — Transformation of component inter-

of extended constraints. This leads to concise specificaction specifications

tion on the one hand, but on the other hand hides the This case study describes the preservation of commu-

complexity and potential number of basic constraints thahication flows in component interaction specifications.

have to be checked. Hence, caution has to be taken when particular, we suppose that these specifications are

specifying the preservation constraints to avoid duplicatestill under development and can be changed, extended

and implications among them. etc. by human interaction. This situation usually occurs
Fig. 8 shows the test results. We have measured the tinig software development processes. We will first shortly

for constraint checking (y-axis) w.r.t. three system setupsprovide the underlying entity types and explain how we

These system setups had an equal amount of objects in thgodel communication flows. After that we provide the

system £ 1700) but were generic in the three parametersrelevant constraints and measure the verification time in

given as triples(ny,n2,n3) on the right-hand part of differently sized models.

Fig. 8. There,n, is the number of directories in the The upper part in Fig. 9 shows the entity types.

system,n, the number ofHTM L documents, anch;  Component interaction specifications are modeled by type

contains the number of non- HTML documents. We haveSpeci fication having three attributeseomponents (the

tested each of these three system setups with five differeset of components belonging to this specificatien}nts

degrees of connectivity ranging frogo to 320 HTML  (the set of specified events), amadentDels (a set of

links (x-axis). Concerning the preservation requirementgvent delegation specifications from a hosting component

of Fig. 7, this is the major source of inefficiency becausgo a sub-component). Typ&vent models events and

the resulting link graph will be highly connected. The comprises arid-attribute.Components have aname an

largest model comprise320 links while containing20  interfaceininter face for incoming events (listed by the

HTML documents ands0 non-HTML documents, only. corresponding event’gl), and an interfaceutInter face

In contrast, the number of object preservation constraintiicluding all events that can be issued by the compo-

grows linear with model size by definition. The same isnent. Component structure is reflected by $ladcomps-

true for the directory hierarchy due to its tree structure. attribute, which lists all component names thatdirectly

Fig. 8 shows a linear curve for all three system setup&€low the corresponding component in the hierarchy.
w.r.t. an increasing degree of connectivity. Whenever we

O (20, 20, 0)
B (20, 20, 20)
020, 20, 60)

timeins

double the number of links in the system, the evaluation [ Entity types ]
time for constraint preservation approximately doubles as

.. . . . Specification Component
well. This is not surprising, since we trace the found componento: Set<components | | mame ys—
matches in the source model and automatically know Sreatials | scteoaleations)|| intncavtaca ' Gat<steings

outInterface : Set<String>

Delegation
9 Event
fromCompName : String
eventID : String id : string

toCompName : String

target model. As expected, the time for checking the
preservation of the other constraints is a constant factor
in each of the setups.

On the other hand, complexity even grows linear w.r.t. Eﬂ—@

the number of objects in the system. This cannot be

expected in general, since we, e.g., need to compare —
rcComp

direct

the link property between two documents, which usually
communication

which objects to check for concept satisfaction in the [

would let us assume a complexity growth ot at least.
Here, the guard, which we have mentioned above, is
decisive. It avoids a lot of unnecessary link evaluations. In
absence of the guard, the system would check the linking
concept for all combinations off 7'M L-documents, link
anchors, and link targets even if the link anchor is no part Figure 9. Entity types and example communication flow

event

. J delegation
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(1) Ve: Componente partially confirm this assumption. In all system setups we
pres, (c — Component, c[Component{name}]) measured linear complexity w.r.t. a constant number of

(2) Vs: Specification,cs : Componente objects in the system and a growing degree of connec-
Vei : Component e tivity. We, however, have a considerably worse behavior
pres; ({s — Specification}, K5 (s, cs, ct)) when the number of components and events grows. This

(3) Vs : Specification, cs : Componente can be traced back to our “inefficient” specification. We
Vei : Component, e : Event e have used no guards in the specification, which causes
pres,, ({s — Specification}, K°™™ (s, ¢, e, ct)) the system to chechll combinations of components and

events whether they satisfy the preservation requirements.
This shows that — up to now — specifications have to be

. e fully w.r.t. efficiency. Thi h me tim
When changing the specification, the component nameesxpressed carefully w.r.t. efficiency. s atthe same time

must not chanae. Also the component hierarchy must ncROims up an important direction for future research where
. ge. P y st?tic analysis can detect inherent efficiency problems or
change in a manner that does not preserve sub-componen

relationships. Finally, we want to preserve the following:'mphc"Jltlons among constraints.
If two components can interact using an eventthis
interaction is still possible in the target specification. VII. CONCLUSION AND OUTLOOK
The concept £*“*¢ expresses the subcomponent- In this article, we have presented the preservation-
relationship w.r.t. two components that are part of a givercentric model transformation approach of [15], [16] from
specification. This relationship is directly reflected bya verification-oriented perspective. This has been moti-
the subcomps-attribute and, thus, quite easily to express.vated by two application domains, where either automated
The conceptCee™™ is considerably more complex. It and still formally correct model transformations are too
expresses that, given a specification, a component catomplex for being carried out efficiently in the large, or
communicate with another component using a givermodel changes are induced by human interaction that does
event. These communication flows can be quite complexot adhere to pre-defined rules. The latter is a typical
as is indicated for the example component hierarchy in thease in software engineering where the evolution of
lower part of Fig. 9. In particular, events can be delegatedJML models from analysis to design and implementation
hierarchically and event flows must adhere to the differentnodels cannot be automated.
in- and out- interfaces that are offered by the components. We have provided two case studies drawn from dif-
We do not go into detail with the specification of this ferent domains and have shown that we can trace the
property but mention that we have used automata-basgsteservation of complex properties like link-consistency
techniques as described in [16]. or communication flows in component interaction spec-
Fig. 10 shows the preservation constraints. Constrairifications in linear time w.r.t. the number of matches
(1) assures preservation of all component names for thosend constant model size. Apart from these evaluation
components that are transformed. Constraints (2) and (3gsults, we have introduced a new existential variant of
assure the above-mentioned requirements. preservation constraints and motivated this extension with
We have chosen a non-trivial refactoring operation inthe running example. This type of constraint allows one
order to test the performance of constraint checking in thiso specify different preservation requirements for different
example. In particular, we carry out a behavior-preservingranches of an object’s history. In this way, the expressive
event-renaming. When renaming an event, all interfacepower of the constraints introduced in [15] is increased.
accepting or offering this event have to be adapted. This is We have already pointed up some research directions in
easily expressed but causes validity of all communicatioril5], [16]. Those of [15] address technical issues related
flows to be re-checked by the system. Caused by th& our constraint language. We are still working on a
interface updates, the component objects themselves af@mal theory for static constraint analysis to support the
changed. Therefore, constraint (1) is re-checked as weltietection of implications among constraints. This is likely
Fig. 11 depicts the test results in the same fashion as was accelerate constraint checking and potential model
shown in the last section. construction w.r.t. given constraint sets. As stated in
Analogous to case study one, we have measured tH&6], integration of additional implementation languages
time for constraint checking (y-axis) w.r.t. three system

Figure 10. Constraints for case study 2

40,00

setups. The generic parametgrs;,ny) comprise the 25,00 |
number of components and events, respectively. The 3000 []
y-axis again indicates the degree of connectivity and ¢ 2500 (40, 20)
comprises all matchings for component communication. g 2% (80, 40)
= 15,00 - 01(160, 80)
We have constructed the models such that constantly 10,00 ]
10 percent of the communication paths were related to 5,00
the event that was renamed. Since the preservation of 0.00
50 80 110 140 170 200

communication is very much related to the preservation of
link consistency, one can expect a similar system behavior
to case study one. At first sight, the results of Fig. 11 only Figure 11. Results for case study 2

communication paths in the system
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beyond FOPL is being done on a stepwise basis. So far[9] K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Leven-
we can handle FOPL, automata, and tree automata. All  dovszky, U. Prange, G. Taentzer, D. \@rand S. Varg-

ind i ; Gyapay, “Model transformation by graph transformation:
g:ggsrs‘feéaﬂg?:ges have been applied in the case studies A comparative study,” inMTiP 2005, Int. Workshop on

i ) ) Model Transformations in Practice (Satellite Event of
These technical research issues, however, will be com-  MoDELS 2005) 2005.
plemented by further practical studies. In particular, it will [10] J. Woodcock and J. Daviedsing Z: Specification, Refine-

be interesting to find and study more practical applications _ ment, and Proof. New Jersey: Prentice Hall, 1996.
of our existential constraints. We think of objects that 11] E. Borger and R. Sirk, Abstract State Machines. A Method

. . for High-Level System Design and Analysisieidelberg:
are subject to branching workflows as they, e.g., occur Springer Verlag y2003. g y g

in software configuration management or version controf12] M. Arenas, W. Fan, and L. Libkin, “What's hard about
systems. Apart from that, we have a running Master's  xml schema constraints?” IDEXA '02: Proc. of the 13th
project in which we test our approach with a document- :_m- gonf-u?(“ gatabasevarrd Eé%%g Systezrgg é?gllcatlons
; ; ondon, . Springer-Verlag, , Pp- —278.
:elatid mo;jel tfransformtatlor;.tr\]/VeXh:_\r/:Mim;ilergen;e(ti ?13] J. Scheffczyk, U. M. Borghoff, P. &lig, and L. Schmitz,
ransiormation irom parts o € Standard 1o “Managing inconsistent repositories via prioritized repair
the Open Document Format (ODF) standard. We use  actions,” inProc. of the ACM Symp. on Doc. Eng. (DocEng
Cascading Style Sheets (CSS) to support layout for both  2004) 2004, pp. 137-146.
the source and target documents. Since ODF has beékt] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein,
developed as a document exchange format and combines  Xlinkit: a consistency checking and smart link generation
. . service,”ACM Trans. Inter. Tech.vol. 2, no. 2, pp. 151
the diverse existing XML-related and non-XML-related 185. 2002.
document formats, this case study is particularly interests) T, Triebsees and U. M. Borghoff, “A theory for
ing. Complex properties in this case study comprise link- model-based transformation applied to computer-supported
consistency, preservation of layout, schema-conformity, Fresgrv?tion iQ dlizgital afrghives,”éﬁrog. Sl4th Anﬂ(-Elggg o)
and preservation of “reproducibility” of the source doc- nt. Cont. on the Eng. of Comp. Based Systems '
P P . o Y . Tucson, AZ, USA: IEEE Computer Society Press, March
ument. Overall, we have identified around fifty extended 2007.
preservation concstraints that have to be met. Initial testgg] T, Triebsees and U. M. Borghoff, “Towards automatic
have shown that our approach can directly support the  document migration: Semantic preservation of embedded
development of the transformations because we are able queries,” inProc. of the Int. ACM Symp. on Doc. Eng.

to pinpoint inconsistencies and their reasons. (DocEng07) NY: ACM Press, 2007, to appear.
[17] H.-J. Kreowski and S. Kuske, “On the Interleaving Se-

mantics of Transformation Units—A Step into GRACE,”
in Proc. 5th Int. Workshop on Graph Grammars and their
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have in excerpts been provided in [15]. Here we re-defin€. Constraint Semantics

them using explicit traces for clarity. Given two object and o’ and a typer. Theno and
o’ can be abstracted to, if type(o) < 7 Atype(o’) < 7.
A. Concept Semantics Let attrs(r) denote the set of attributes defined for

(including inheritance w.r.t<). Thenindistinguishability

Given a signaturé. A basic algebrad® for © com-  \,rt - is defined as follows:

prises the setg4’, 04, and AttrA". An algebra.A
for ¥ comprises a basic algebra farand interpretations
for the concept symbols if. We will not distinguish
between interpretations in an algebra or in its basic
algebra, respectively, if this leads to no confusion. Hence, Traces:We use traces to keep track of object histories
oA” and oA have the same meaning. Given a Concepand define them inductively w.r.t. a sequenteof basic

1. type(o) € Ts A type(o') € Ts : o=, o, iff 0o =10
2. type(o) € Tc A type(d') € Te : o =, o, iff
Va: 1 — 7, € attrs(r) e a(o) ~, a(o’)

symbol K and a basic algebra® for &, K4 yields operations:
A _ S =1 Ab = 1. traceso(A) := {{tr(o+— 0'))|tr(o — o) € A}
= CGcontezts(K){Oi | A ': LC[Oi /xL]} 2. tracesi+1(A) = tracesi(A)u

(traces;(A) ® tracesg(A)

where7z; is the interface ofc. ) -
Concept satisfactionGiven a signatur&, an algebrad where® denotes the concatenation of all possible traces.
! ’ i ; _ 1 1 _
a concept symbok,, a contextC, andn object symbols 't S defm%d for tracesr; = <0p/17 "'v"pn% and tra =
01, ...,0n. Then concept satisfaction df in C by o; is  (OP1;-+ 0Pi), iff op, = tx(0— o) andopt = tr(o’

defined as follows: o) fqr someo, o', 0. trace.s'(.A) denotes the reflexive
transitive closure of the definition above. For tra¢es-
A= K(0)[C], iff C € contexts(K), (tr(o; — 0'),...,tr(0n—1 — 0,)) the trace resultir(o)
type(07) € b(zi), ando € K4 yields o,,, if 0 = 0;. Otherwise tr(0) = o.
Basic preservation constraint§he V-variant is given

whereZ; is the interface ofC and7(z;) is the set of all as follows:
types that satisfy the corresponding type condition; we )

check well-typedness already on the syntax level. Transformation constraints:
(A, A A) Eo T, iff (A~ ALA) A
trace®™(o, A, {7 € To|T' < 7}) #0

B. State Change Semantics Object preservation constraints:
(A, A, A") |= pres, (o — T,0[7"]),iff
Given a signatures, two statesA, A’ for X, and an (AAA)Eo—T =
object symbolo. Thensubsequence ofl’ to A’ w.r.t. a Vir € trace™(o, A, {7 € To|r" < 7}) @ (0 =,/ tr(0))
basic operationis defined as follows: Concept preservation constraints:
(A A, A) = reesy ({ter; 1, K(07), (Cs, C)), iff
Object creation: AN A) E ey =
(A A cre(0)), iff o = Lno® % L A Vir € brace’(0i. A, b(TD)) « A = K(o) & A' £ K(tr(a0)
A’ |= post(cre(o’)) and no other changes td” where I is an index setz; is the interface ofiC,
Object transformation: andtrace™(o, A, ts) contains alinclusionmaximatraces
E (A~ A tr(o—0)), iff o* # 1L A oA £ 1A in traces(A) that lead fromo to any of the tpyes
A pre(tr(o— o)) A A" | post(tr(o — o)) in ts (including sub-typing). Hence, all traces ¢
and no other changes td4° trace™(o, A, ts) must satisfy the following:

Object Deletion: 1. 37 etsetype(tr(o)) <7}, and

(A~ A del(0)), iff o # L A ot =1 2. —3tr' #tr € trace™(o, A, ts) etr’ Ctr
A = pre(del(o)) and no other changes td”

Transformation constraints are satisfied if thesestsa
Notice that the changes themselves affect tasic  matching trace. If all transformation assumptions are sat-
algebras. The concept interpretations than are adaptésfied, object and concept preservation constraints assure

according to the state change. Hence, basic operatiopgeservation of this property fall traces.

can have side-effects on the whole state and our semanticsExistential constraintsThe semantics for existential

assures basic operations yield the “least fitting” next statesbject and concept preservation constraints is determined
A sequenceA := (opy, ..., 0p,) Of basic operations is from the definition above by replacing thequantor for

a transformation algorithm Subsequence of states w.r.t. traces by ard-quantor.

transformation algorithms is defined as follows: Extended Constraintsthe semantics of extended con-
straints is given by
(A~ A (), iff A=A (AN A) | VTi 0 §(T0) = (@), iff (4,4, A") e
E (A~ A, (op1,...,0pn)), iff holds for allc’ € {c[o;/7:] | A E ¢[0:/T:]}
Ao, ..., Ane (Ao =ANA, = AA , . .
Vi€ {1, .on}e (At~ Ai,op) ). wherec and ¢’ are basic constraints.
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