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Abstract— We present and evaluate a novel constraint-
based model transformation approach that implements a
preservation-centric view. The proposed framework com-
prises formal preservation constraints that can be used
to specify the preservation of invariants that are possibly
implemented differently in the source and target model.
These invariants are enclosed in concepts, which at the
same time serve as grouping mechanism for their different
implementations. In that, our framework abstracts from
the concrete implementation languages by pre-supposing
only a basic set of modeling constructs. To this end, we
present two case studies where we apply our approach
for the preservation of non-trivial properties and provide
some performance analysis where we show that tracking
the preservation of a relevant class of complex properties
can be done in linear time.

Index Terms— model transformation, semantic preservation,
constraints

I. I NTRODUCTION

Model transformation has applications in many areas
like model-driven software development (MDD) or auto-
mated knowledge exchange [1]–[4]. When applied, model
transformations usually are designed topreservecertain
properties. In MDD, e.g., abstract models are transformed
into more specific ones while preserving the behavior
of the specified software system [5], [6]. As another
prominent example, the rapid emergence of the XML
technology and the resulting diversity of XML-related
domain-specific document formats requires for “content-
preserving” document transformations.

Whenever a high degree of reliability of these trans-
formations is desired, formal model transformation ap-
proaches, like diverse variants of graph transformation
[7]–[9] or stepwise refinement techniques [10], [11] are
used and complemented by formal proofs. When the spec-
ifications are executable, a higher degree of automation is
achieved as an important by-product by approaches like
Programmable Graph Transformation [8].

The taxonomy for model transformation introduced in
[5], however, identifies some scenarios that inherently
decrease the level of automation. Firstly, it may well turn
out that proofs are hard to carry out as system complexity
grows. Graph transformation methods, e.g., may require
termination or confluence proofs. These proofs can be
quite challenging and are known to be undecidable in
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general [7]. As an alternative, approaches dealing with
model checkingof graph transformations can be found in
the literature, but scalability remains an open problem [2].

Secondly, scalability with regard to efficiency is still
in doubt for formal transformation approaches [5], [6].
As a remedy, expressive control mechanisms have been
developed [7], [8]. They help guide transformations but
can, in general, not overcome inherent complexity issues
of model transformation problems. As a relevant example,
take DB-schema to XML mapping. This application has
gained more and more importance since the emergence
of the XML standard. There, it is, in general, undecid-
able whether database-related constraints like foreign key
conditions can be preserved in XML documents in the
presence of DTD’s or XML-schemas [12]. Under more
restrictive assumptions on the underlying constraints, the
satisfiability problem decreases to be NP-complete or – at
best – PSPACE hard. In such situations, human interac-
tion can be necessary, which in turn requires alternative
approaches that guarantee the preservation of relevant
properties.

In all these scenarios, a verification-oriented technique
can complement formal transformation approaches by
checking relevant partsof their output for correctness
on the instance level. This would exploit the fact that
property checking can often be done in linear or poly-
nomial time where automated model construction may
cause an exponential blow-up. In primarily human driven
model transformation scenarios (like in early phases of a
software development process), this even seems to be the
most promising strategy [5], [13], [14]. In [15] we have in-
troduced a declarative, constraint-based approach that can
be used to constrain permissible model transformations
from a preservation-centric perspective. In particular, we
have shown its automated model construction facilities by
non-trivial examples like automated preservation of link-
consistency in web model transformations [15], [16].

Motivated by the introductory explanations, we will
study our approach from another perspective in this
article. We will provide two case studies and examine
its constraint-checkingfacilities. In particular, these case
studies come from significantly different application do-
mains in order to underline applicability of our method.
We use our framework to 1) specify model invariants
that have to be preserved by the respective transformation
process and 2) evaluate adherence to the specified con-
straints in an automated way. It turns out that the ability
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Figure 1. Running example: Transformation of website models

to trace model changes w.r.t. relevant model entities
is decisive since model invariants can be expressed by
different languages in the source and target model. In [15]
we introduced a mechanism that requires all implemen-
tations of aconcept(semantic property) to adhere to the
concept’s interface. We will see that this mechanism –
together with our formal notion of preservation – allows
us to elegantly relate source model instances to different
versions of target model instances and, thus, facilitates
efficient constraint-checking.

This article is organized as follows: We present the
basic ideas in Sect. II on an informal level. We introduce
a running example and use it to motivate the technical
parts of this article, which are provided in Sects. III-V.
There, we recall some preliminary results published in
[15], provide a more profound explanation of our notion
of preservation and distinguish our work from other
approaches. Moreover, we will introduce a new variant
of preservation constraints, the necessity of which will be
motivated with the running example. Finally, we employ
two case studies ranging from systems specification to the
transformation of document models in order to evaluate
our approach and analyze computational complexity of
the prototypical implementation. We shall see that our
approach allows verification of complex preservation re-
quirements in linear time w.r.t. constant model size and
the number of found matches, where fully automated
model construction adhering to these properties is known
to be NP-complete. Technical issues of this article are
mostly explained in prose text. The interested reader is
referred to the appendix for the formal definitions.

II. I NFORMAL DESCRIPTION ANDKEY IDEAS

In this section we present the key ideas of our approach
and motivate the design decisions with a particular model
transformation example. For this purpose, we use the
abstract website model depicted on the upper left-hand
side of Fig. 1. We will see in the sequel that this seemingly
simple example comprises very complex properties.

An abstract website (entity typeWS) is connected
to a structuring element (entity typeSE) by means of

the associationsrcF (source folder), which at the same
time contains website elements of typeWE. Association
multiplicities are omitted for clarity since they are not
important for this introduction. Website elements are fur-
ther distinguished by non-hypertext (NHT ) and hypertext
(HT ) elements. One hypertext element is the “home”
page (or index page) of the website, which is modeled
by thehome association. A model instance of this (quite
abstract) website representation is shown on the upper
middle part of Fig. 1. It comprises one website-entity
w : WS, one entity of typeSE, two non-hypertext,
and two hypertext entities. The home page elemente4
is represented by the special icon. This abstract website
instance already indicates that we require the home page
element of a website to be contained in the correspond-
ing structure element. This semantic property, however,
cannot be expressed in the abstract model using associ-
ations. Therefore, theconceptEntryPoint is explicitly
introduced on the instance level and shown on the upper
right-hand side of Fig. 1. This concept is defined on
a triple of elements comprising a website, a structure
element and a hypertext element. We say that the concept
EntryPoint has the interfaceWS×SE×HT . In Fig. 1
we deliberately omitted all details in the area covered by
EntryPoint in order to indicate that it isimplemented
somehow using some appropriate language. In this case,
First-Order Logic (FOL) is adequate. Other models may
require domain-specificlanguages as they are used in
MDD, for example.

On its bottom left-hand part, Fig. 1 depicts arefined
website model. Model extensions are marked by dashed
lines. In particular, the refined model introduces specific
formats for non-hypertext (Text), hypertext (HTML),
and structure elements (DIR, directories). Moreover, it
allows for recursive structuring of directories. This refine-
ment is, thus, a step from abstract navigatible structures
towards a computer-based implementation and typical for
all software engineering approaches.

The lower middle part depicts two model instances.
Instance one refines the abstract instance by refining
the entity types. The “home” pagee4, e.g., is of type
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Figure 2. Stated-based semantics of basic operations.

HTML. This model instance is to be transformed, where
the second model instance depicts the desired output of
this transformation. It must adhere to substantially more
constraints than the source instance. In particular, it con-
tains two directories “resources” and “html”, respectively,
which separate non-hypertext and hypertext content. Sub-
directories are permitted. This specific constraint is also
implemented using a concept, which is, however not
shown for clarity. The specific directory structure of the
target model instance already indicates that preservation
of link-consistency is challenging. Link consistency is
a complex property that is difficult to handle solely by
formal proofs.

The bottom right-hand part of Fig. 1 shows that both
instances also implement the entry point concept, the
preservation of which we use for demonstration purposes
in the following. The specific structure of the transforma-
tion result affects the implementation of theEntryPoint
concept. In particular, we have to incorporate the “html”
directory, which is indicated on the outer right-hand part
by placing the corresponding icon inside the concept’s
area. Similar to graph transformation approaches we
speak of different implementations in differentcontexts.
In our approach, concept interfaces can be implemented
by different contexts. Hence, concepts at the same time
serve as grouping mechanism.

At this point, it is important to notice two facts in
order to understand the notion ofpreservation. Firstly all
elements in the abstract model instance have a unique
correspondence in the refined instances. This is indicated
by using equal element IDs. Moreover, and although the
implementation changes, both refining implementations
for the conceptEntryPoint still have the same interface.
In our view, preserving the abstract conceptEntryPoint
corresponds to a possible change of the concrete imple-
mentation while adhering to the abstract property itself.
The interface objects serve as tracing points that connect
the source and target model. This tracing is done using
transformation operations, sequences of which construct
partial model homomorphisms between the concrete rep-
resentations of the corresponding abstract elements and
their counterparts in the target context (dotted arrows).
In other words: If the source elements satisfy the im-
plementation of the conceptEntryPoint in the source
context, then the transformation results must satisfy the
EntryPoint, but for the implementation in the target
context.

III. B ASIC ENTITY MODEL

After the informal survey, we now introduce the basic
formal environment in which our approach is settled.
We principally review those parts of [15], [16] that are
relevant to clarify our ideas. The major notions introduced
here comprisesignature, system states, andstate changes.
Their relations are visualized in Fig. 2. Compared to [15]
we go into deep at some points with informal explanations
where this helps understanding the framework.

A. Syntactic Modeling Elements

Our approach only requires a minimal set of modeling
elements including objects (atomic model entities), types,
and concepts. That way we achieve a high degree of
implementation independence on the one hand, but still
maintain the ability to identify and trace concrete objects
on the other hand. Types and sub-typing provide us with
a structuring principle for objects, which is important
for incorporating abstraction and refinement [10]. Notice,
that application domains may require extensions, which
at the same time can introduce side-effects. In [15], [16]
we, e.g., use functions as well that can themselves cause
changes to the model.

More formally a signatureΣ := (T , O,Attr,K, C,≤)
comprises a setT of type symbols, elements of which
uniquely type objectso ∈ O (denoted bytype(o) = τ ).
Sub-typing is denoted by≤. We abbreviatetype(o) ≤ τ
by o : τ , which is especially used for quantifier scopes
later on. We further distinguishstatic typesTS ⊆ T and
class typesTC ⊆ T , which model static and dynamic
parts of the models, respectively. Collection typesTColl ⊆
TC are subsumed to the set of class types. Constants
like the integer number1 cannot have a static type. In
contrast, object symbols are place holders for objects
that can be created, transformed, and deleted. Class type
specifications provide objects with attributes. We regard
object symbols as IDs that are dynamically attached to
objects on creation. Once used, an object’s ID stays
unchanged until this object is deleted. For bettersyntactic
tracing of object life-cycles, objects are immutable. In
particular, changing the value of an object’s attribute is a
transformation and yields a new object with a new ID.

K denotes the set ofconcept symbols, the elements of
which each have a set of implementingcontext symbols
contexts(K) ⊆ C. Concepts and contexts are worth being
introduced on their own right in Sect. IV.

B. System States

As already stated in the introduction, our approach con-
strains permissible model transformations by restricting
valid combinations of the previous and subsequentstate.
Hence, we need notions for states and state change. We
recall the modeling approach of [15], which has proven
to be adequate for this purpose (see Sect. VI).

All model elements are interpreted in algebrasA, which
at the same time serve as system states. This is very
similar to algebraic graph transformation approaches [7].
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Interpretations of objects and constants are called their
values and must be an element of thetype domainof
their type. More precisely, an object’s value comprises the
values of all its attributes and the object’s ID. This leads
to the important consequence that no two objects have the
same interpretation. This property is particularly impor-
tant when carrying over changes on the interpretation level
back to the syntactic level. In our implementation, which
we will shortly introduce in Sect. VI-A, we interpret all
syntactic entities by JAVA objects. These class instances
serve as connector to real-world applications. With this
interpretation, changes on the implementation level can
always be carried over uniquely to the symbolic level
since there is a unique object symbol for each JAVA class
instance. As a by-product we get a convenient notion of
object equality. Two objects are equal if they both have
the same ID. More precisely, equality means identiy and
equality checking can solely be done on the syntactical
level. This considerably improves efficiency.

Notice that the special symbol⊥ (undef) is required
to be part of all type domains. If an object symbol has
semantics⊥, we say thato does notexist in the system.

Finally, the interpretations of concepts together with
their contexts yield semantic predicates. We will, however,
explain this in more detail in Sect. IV.

C. State Changes

In our preservation-centric environment, object histo-
ries are decisive for tracing the preservation of seman-
tic properties. Therefore, we support three basic object-
related state changes. Notice, however, that additional
state changes can be reasonable if the basic entity model
is extended (cf. [15]). In particular, we see the entity
model as an algebra that evolves over time where object
creation, object transformation, and object deletion can
change states. An object may not be deleted if it is the
attribute value of another object. This restriction avoids
“dead” references. Moreover, the value of the host object
would change, which is forbidden in our setting. More
complex transformations are modeled assequencesof
basic operations. The semantics of all basic operations
is provided in the appendix and illustrated in Fig. 2.
There, the algebraA′ is generated fromA by creating
o5, the latter havingo3 as an attribute. We consider the
effect of all operations w.r.t. a preceding and a subsequent
system state where the basic operation causes the minimal
necessary model change w.r.t. its post-condition. In this
case we say that a stateA′ is subsequent toA. Post-
conditions may constrain attributes of the created object,
only. This avoids unwanted side-effects.

Example:Using graphs as objects and derivation steps
as transformations we can model graph transformations.
Post conditions can only constrain the produced graphs,
which is typical for rule-based graph transformation [7].

This example shows the generality of our approach.
We can trace graph transformations and their results w.r.t.
the preservation of semantic properties. This very much
corresponds to the approach in [17], which has been

developed as a uniying theory for the structuring of graph
transformations. We, however, extend it in certain ways
since we allow the tracing of several transformations at
a time that may be carried out using different graph
transformation approaches. This is supported by our sim-
ple view of transformations being characterized through
their object-to-object-mapping only. In contrast, [17] pre-
supposes a notion of rule application and introduces ID-
environments as structuring principle for transformations.
In our approach, the notions of preservation and im-
mutability of objects provide an inherent structuring and
control mechanism. In [15] we have shown that these
facilities are powerful enough to guide model construction
for non-trivial examples.

At this point, we have defined the basic framework
in which to execute model transformations. The next sec-
tions provide adequate language constructs for expressing
semantic object properties (apart from attributes) and
constraining model transformations.

IV. SPECIFYING SEMANTIC PROPERTIES: CONTEXTS

AND CONCEPTS

As explained in the introduction, our approach and –
in particular – our view on preservation is to incorporate
the definition of semantic properties (concepts) as well as
support their refinement and implementation in different
contexts. These concepts then can be specified to be
preserved when models are transformed. This connection
between concepts and their preservation is sketchily de-
picted in Fig. 3. Similar to programming languages, a
conceptK defines aconcept interfaceKI that has to be
implemented by all contextsC1, ..., Cn in contexts(K).
This implementation is calledembeddingand denoted
by ιCi

. Thus, contexts can be seen as “semantic plug-
ins” for concepts. When transforming objects (in this
case from contextC1 to context Ci), the conceptK
can be specified to be preserved using apreservation
constraint. In our concrete example, we want to preserve
properties like link-consistency or the entry point relation
between a web-entity, a directory-entity, and a hypertext-
entity. We support arbitrary implementation languages for

K

C1 Ci Cn

...
...

presk(K ( o ) )

KI
K

C1 Ci Cn

Concept name: EntryPoint

Concept interface: 〈w : α1, d : α2, h : α3〉
α1 ≤ WS ∧ α2 ≤ SE ∧ α3 ≤ HT

Context name: CeP
abstr

embedding: srcF (w, d) ∧ home(w, h) ∧ con(d, h)

Context name: CeP
src

embedding: srcF (w, d) ∧ home(w, h) ∧ Kcon(d, h)

Context name: CeP
trg
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Figure 3. Concept definition and concept preservation
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the specification of concepts and only require that they
adhere to the basic entity model explained in Sect. III.
An example using graph- query languages and automata-
based techniques for the preservation of link-consistency
can be found in [16]. Typical other examples comprise
FOPL formulae (e.g., in the form of OCL constraints) or
tree languages based on tree automata. The latter can be
used to constrain tree structures in a short and elegant
way. We have used them to describe the desired directory
structure in the target model. Other applications are DTD
conformity of XML documents or constraints on class
hierarchies in UML specifications.

Theconcept interfacein Fig. 3 defines arity and typing
constraints. The interface is the starting point for concept
matching, where the typing can be seen as a pre-filter
and speeds up the matching process. If this pre-filter
is passed, an object tupleoi satisfies the conceptK,
if and only if one of the context embeddings evaluates
to true for these objects. The formal definitions for
matching and concept satisfaction can be found in the
appendix. Concept interfaces are used to trace object
histories w.r.t. satisfaction of the corresponding concept
K in possibly different contexts. This is possible only
because all contexts ofK have to implement this interface.

Example: The bottom part of Fig. 3 shows excerpts
of the specification for the conceptEntryPoint. Its
interface is given by the sequence〈w : α1, d : α2, h :
α3〉 together with a type constraint. This is very much
related to interfaces in programming languages. The three
contexts implement this interface, where we omit the
implementation for the target contextCeP

trg due to its
complexity. The implementation for contextCeP

src exhibits
the facility to structure concept definitions. This has
two advantages. Firstly, it provides us with a means to
reason over concept subsumption on the syntactic level.
Secondly, it facilitates re-use and supports composition
and decomposition of definitions. This becomes important
when complexity grows (cf. [5]).

In the following sections, the language constructK[C]
will be important. It reduces the evaluation of the concept
K to the contextC and can significantly speed up concept
satisfaction checking. More specifically, a validity check
of K for an object tupleoi in Fig. 3 would require to
test all n contexts if their embedding formula evaluates
to true for these objects. The just-mentioned language
construct avoids this by fixing one of thesen contexts.

V. PRESERVATION OFMODEL PROPERTIES

The notion of preservation can be found in different
variations throughout the relevant literature [5], [7], [18]–
[20]. Refinement, e.g., usually means a reformulation
of system properties in the same language such that
the newly specified system inherits all properties of the
former system [5]. In node replacement approaches of
graph transformation, authors usually speak of preserva-
tion w.r.t. those nodes and edges of the source graph that
are not affected by a rule application. In [20] preser-
vation of FOPL formulae under model homomorphisms

Source model Target model

Concept preservation

Source model Target model

Object preservation

Target model

Transformation constraints

Source model

Target modelSource model

Preservation

a a�

Figure 4. Preservation and effect of basic constraints

is studied with applications to database queries. In all
these cases, however, preservation can be traced back to
our explanations in Sect. II and the abstract preservation
scheme shown in the upper left-hand part of Fig. 4.
According to this scheme, preservation means to preserve
a model property under abstractionsa, a′ w.r.t. the source
and target model. Clearly, the real effect of this notion
depends on the chosen abstraction functions and≈ oper-
ator. If we replace the abstractionsa, a′ by implication⇒
and comparison by⇔, we have exactly the preservation
requirement for theEntryPoint concept of our running
example. However, the concept of identity used in some
rule-based graph transformation methods is too weak [7].

In the following we shortly recall the tripartite approach
proposed in [15], where we have used (1) transformation
constraints, (2) object preservation constraints, and (3)
concept preservation constraints to restrict permissible
model transformations. In particular constraints of type
(2) and (3) implement different variants of abstraction
and comparison. After that we introduce some extension
and variations of this basic set of constraints that truly
increase the expressive power of our approach. We will
motivate these extensions out of our running example.

A. Transformation constraints

Basic transformation constraints of the formo 7→
τ simply enforce the transformation of the objecto
to the target typeτ . Notice that the other constraint
types may well introduce transformationobligations[15].
Hence, one transformation constraint together with other
preservation constraints can enforce whole transformation
processes under suitable circumstances. The semantic
effect of transformation constraints is visualized in the
upper right-hand part of Fig. 4. The formal semantics can
be found in the appendix. Satisfaction of transformation
constraints and all other constraint types is evaluated
w.r.t. subsequent states and a transformation sequence. In
particular, this sequence must contain a transformation
sequence leading fromo to another objecto′ of type τ .

B. Object preservation constraints

Basic object preservation constraints focus on object
contents. Read constraintspreso(o 7→ τ, o[τ ′]) as fol-
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lows: “Whenever transformingo to τ (o 7→ τ ), preserve
the content ofo arising wheno is abstracted to typeτ ′

(o[τ ′])”. The first parameter in parentheses is thetransfor-
mation assumptionand relates transformation constraints
and object preservation constraints. An object preserva-
tion constraint holds, if the underlying transformation
assumption holding implies that the source and target
objects have similar contents when abstracted toτ ′.

Example:In Sect. VI we will refine the entity model
of our running example such that the typeSE (structure
element) has an attributename : SE → String. Since
DIR (directory) is a sub-type ofSE, it inherits this at-
tribute. Furthermore, we introduce an attributesubDirs :
DIR → Set〈DIR〉, which implements directory struc-
turing. When transforming a directory, we will require the
preservation of its name while possibly changing the set of
sub-directories. This is assured by an object preservation
constraintpreso(d 7→ DIR, d[SE]).

Regarding the abstract classification scheme of Fig. 4,
abstraction in the context of object preservation yields
type abstraction. Comparison≈ yields an equivalence
relation w.r.t. the values of those attributes that are defined
on the respective type. A formal definition of this notion
of undistinguishabilityis given in the appendix.

Notice that we use tracesof maximum lengthfrom
o to type τ in the constraint semantics provided in the
appendix; we permit temporary inconsistencies. Consider,
e.g., the evolution of a class specification in a UML class
diagram through the software development process. Using
our constraints, we can assure that thefinal version of
the class specification meets the requirements. The phrase
“Whenever” from above is also worth explicit notice. In
Fig. 4 it is illustrated by two different transformation
traces ofo to the target type. With the semantics here,
all traces have to satisfy the preservation requirement.
In terms of the object’s history, all future paths that
lead to a new object of the respective type satisfy this
preservation requirement. Later on, we will introduce
existential variants and show where they are necessary
in the running example.

C. Concept preservation constraints

Basic concept preservation constraints

presk({oIj 7→ τIj},K(oi), (Cs, Ct)),

incorporate the semantic preservation of objectrela-
tionships. Read this constraint as follows: “Whenever
transforming oI1 to τ1, ..., and oIm to τm, then the
transformation result must 1) match the target contextCt

and 2) satisfyK in Ct, if K(o1, ..., on) was valid in the
source contextCt”. In other words, preserving a concept
means preserving a semantic relationship but possibly in
different contexts (cf. Fig. 4).

Example: Recall that we want to preserve the
EntryPoint concept in our running example whenever
we transform website entities. In Sect. II we have in-
troduced the corresponding conceptKeP with different
source and target contextsCeP

src andCeP
trg, respectively. In

resourceshypertext

trg

f

src

f fe2:HTML

e1:Text

e2:HTMLe1:Text e2:HTMLe1:Text

Copy 1 Copy 2

Figure 5. Use case for existential preservation constraints

particular the embedding formula of the target context
imposes a restricted directory structure on the target
model. The constraint

presk({w 7→ WS},KeP (w, d, h), (CeP
src, C

eP
trg))

assures this preservation requirement.
Regarding the classification scheme of Fig. 4, abstrac-

tion is defined by upwards implication⇒, and comparison
is defined by equivalence⇔. The semantics is given in
the appendix. The strong correspondence⇔, however,
is deliberately introduced instead of the weak form⇒.
Consider the concept preservation constraint above. With
our semantics it at the same time assures that all objects
that do not satisfy the entry point concept will also not
satisfy it in the target context. A weaker implicative
variant of concept preservation can, however, still be
specified usingextendedconstraints (see Sect. V-E).

At this point, we have a basic set of constraints that
is expressive enough in cases where object properties
have to be preserved equally for all different and possibly
branching traces. In the next section, we will give an ex-
ample where variant building is important. This motivates
the introduction of an existential variant of preservation
constraints that exactly meets those requirements.

D. Existential Preservation constraints

Fig. 5 illustrates the necessity for an existential variant
of concept preservation in the running example. Directo-
ries in the source model can contain non-hypertext as well
as hypertext entities. This is forbidden in the target model,
where all non-hypertext has to reside in “resources” and
all hypertext has to reside in “html”. The right-hand part
of Fig. 5 depicts this pattern. Suppose we want to preserve
the source directory structure in both, the “resources”
and “html” directory. Our semantics provided in the last
sections, does not capture this. The main reason is that
a source directoryf has to be transformed twice – one
copy for the folder “resources” and one copy for “html”.
Now, suppose we specify the preservation of the file
containment property

presk({f 7→ DIR},Kcon(f, h), (CeP
src, C

eP
trg)).

In this case, the preservation semantics would require all
suitable transformation results off and h to satisfy this
property in the target model (cf. Fig. 4). This is, however,
not satisfiable ifh is hypertext because hypertext must not
reside in “html”. The transformed hypertext document can
never be a sub-element of the copy off in the “resource”
directory.

24 JOURNAL OF SOFTWARE, VOL. 2, NO. 3, SEPTEMBER 2007

© 2007 ACADEMY PUBLISHER



name: String
home: HTMLDoc
srcF: Directory
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name : String
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cont : Seq<String|HTMLElem>

HTMLElem

name : String
superDir: Directory
subDirs : Set<Directory>
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Directory
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superDir: Directory
name : String
content : Obj

Doc

superDir: Directory
name : String   
content : HTMLElem

HTMLDoc
superDir: Directory
name : String   
content : String

TextDoc

Figure 6. Entity types and example website model

Therefore, we introduceexistential object- and con-
cept preservation constraints. In fact, they exactly
can express our preservation intention in this situa-
tion. The formal semantics is provided in the ap-
pendix. We explicitly annotate the existential variants,
which yields the notationspres∃o(o 7→ τ, o[τ ′]) and
pres∃k({oIj 7→ τIj},K(oi), (Cs, Ct)).

Example: In our running example, we can specify
the preservation of the source directory structure in
both, the “resources” and “html” directory using the
existential concept preservation constraintpres∃k({d 7→
WE},Kcon(dir, d), (Ccon

src , Ccon
src )). SinceNHT andHT

are both sub-types ofWE, we do not need a separate
constraint for each of those types.

E. Extended Preservation constraints

Since our constraints are related to objects, large
models will imply large constraint sets. Moreover, users
usually do not want to provide a single constraint for
every simple preservation intention. They rather group
objects to equivalence classes w.r.t. a certain preservation
requirement. Therefore, we introduceextended preserva-
tion constraintsof the form∀xi : τi•φ(xi) ⇒ c(xi) where
c is a basic constraint (no matter if it is existential or not)
and φ is called theguard. In particular, the initial part
∀xi • φ(xi) selects those objects of the source state the
constraint has to be applied to. Semantically, an extended
constraint can be thought of as asetof basic constraints.
The full semantics is provided in the appendix. In the
examples provided in the next sections we will solely use
extended constraints, which shortens specifications in a
nice way.

VI. CASE STUDIES AND RESULTS

In this section, we evaluate our approach using two
case studies stemming from different application domains.
Along with these case studies, we present parts of the
respective preservation specification. As main result of
this section, we will see that our approach can be used
to check the preservation of complex recursive properties
in linear time w.r.t. to the amount of found matches and
a constant number of objects in the system. We start by
introducing the prototypical system implementation and
the test setup that have been used to run the case studies.

A. Prototypical implementation and test configuration

We have implemented an experimental system that
facilitates to specify significant object properties and
preservation requirements of the fashion described in this
paper. In particular, all entity types are interpreted as
JAVA-classes, objects of the respective types are mapped
to instances of the corresponding JAVA-class. Preservation
constraints can be specified in the system, and trans-
formations are executed using registered transformation
classes. In particular, transformations run inside an own
environment such that the system is aware of newly
created or transformed objects. During the transformation
process, users can activate the constraint checking at any
time. The system then reports constraint violations.

Tests in the case studies have been carried out on a
Windows XP - workstation with 1 GB RAM and an Intel
P4 CPU of 3.2 GHz. Although it slows down the system,
no caching of evaluated formulae etc. has been used. In
this way we receive unadulterated results.

B. Case study 1 – Transformation of website models

In this section, we present the first case study. It is
directly related to our running example, but has been
carried out using the refined entity model shown in
Fig. 6. There, the “home” page and source directory of
type Website are modeled by corresponding attributes.
Directories have a name, a super-directory and two sets
distinguishing sub-directories and sub-documents. This
implementation corresponds to a double linked list and
is a direct realization of a0..1 to n relationship. We have
added an explicit content typeHTMLElem for HTML
documents. This type is recursive and implements tree-
kinded document content. TypeDoc is a super-type of all
documents and stores a name, the corresponding super-
directory and a content-object.

The necessary concepts have already partially been
introduced. We omit the formal definitions because they
are not relevant for the understanding of this article. We
refer the interested reader to [15], [16] for examples.
Notice, however, that many of the intellectual challenges
that are induced by complex formal specifications may be
settled in the proper definition of concepts in our method.
But, this is no inherent problem of our approach. It rather
can be found in one or the other form in all formal model
transformation methods.

The conceptKcon models containment in a directory
and can easily be implemented using the attributes shown

(1) ∀d : Directory•
preso(d 7→ Directory, d[Directory{name}])

(2) ∀h : HTMLDoc, e : HTMLElem•
∀d : Doc • Kel(e, h) ⇒
presk({h 7→ HTMLDoc},Klink(h, e, d))

(3) ∀w : Website, h : HTMLElem, d : Directory •
presk({w 7→ Website},KeP (w, h, d), (CeP

src, CeP
trg))

(4) ∀d : Doc, dir : Directory •
pres∃k({d 7→ Doc},Kcon(dir, d), (Ccon

src , Ccon
src ))

Figure 7. Constraints for case study 1
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in Fig. 6. TheEntryPoint concept is denoted byKeP .
Preservation of link consistency will be specified using
the conceptKlink, which is implemented w.r.t. a source
HTML document, a link anchor of typeHTMLElem,
and a target document (cf. [16] implementation details).
Excerpts of the formal constraints for this example are
listed in Fig. 7. Constraint (1) assures all directory names
stay unchanged. Constraint (2) assures link consistency.
The guardKel(e, h) evaluates to true, if the elemente
is contained in the HTML documenth. Constraint (3)
assures the target directory structure conforms to the
target website model. Finally, we preserve the source
folder hierarchy in two variants using constraint (4).
Notice that the specification is short due to the usage
of extended constraints. This leads to concise specifica-
tion on the one hand, but on the other hand hides the
complexity and potential number of basic constraints that
have to be checked. Hence, caution has to be taken when
specifying the preservation constraints to avoid duplicates
and implications among them.

Fig. 8 shows the test results. We have measured the time
for constraint checking (y-axis) w.r.t. three system setups.
These system setups had an equal amount of objects in the
system (≈ 1700) but were generic in the three parameters
given as triples(n1, n2, n3) on the right-hand part of
Fig. 8. There,n1 is the number of directories in the
system,n2 the number ofHTML documents, andn3

contains the number of non- HTML documents. We have
tested each of these three system setups with five different
degrees of connectivity ranging from20 to 320 HTML
links (x-axis). Concerning the preservation requirements
of Fig. 7, this is the major source of inefficiency because
the resulting link graph will be highly connected. The
largest model comprises320 links while containing20
HTML documents and60 non-HTML documents, only.
In contrast, the number of object preservation constraints
grows linear with model size by definition. The same is
true for the directory hierarchy due to its tree structure.

Fig. 8 shows a linear curve for all three system setups
w.r.t. an increasing degree of connectivity. Whenever we
double the number of links in the system, the evaluation
time for constraint preservation approximately doubles as
well. This is not surprising, since we trace the found
matches in the source model and automatically know
which objects to check for concept satisfaction in the
target model. As expected, the time for checking the
preservation of the other constraints is a constant factor
in each of the setups.

On the other hand, complexity even grows linear w.r.t.
the number of objects in the system. This cannot be
expected in general, since we, e.g., need to compare
the link property between two documents, which usually
would let us assume a complexity growth ofn2 at least.
Here, the guard, which we have mentioned above, is
decisive. It avoids a lot of unnecessary link evaluations. In
absence of the guard, the system would check the linking
concept for all combinations ofHTML-documents, link
anchors, and link targets even if the link anchor is no part
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Figure 8. Results for case study 1

of the HTML document.

C. Case study 2 – Transformation of component inter-
action specifications

This case study describes the preservation of commu-
nication flows in component interaction specifications.
In particular, we suppose that these specifications are
still under development and can be changed, extended
etc. by human interaction. This situation usually occurs
in software development processes. We will first shortly
provide the underlying entity types and explain how we
model communication flows. After that we provide the
relevant constraints and measure the verification time in
differently sized models.

The upper part in Fig. 9 shows the entity types.
Component interaction specifications are modeled by type
Specification having three attributes –components (the
set of components belonging to this specification),events
(the set of specified events), andeventDels (a set of
event delegation specifications from a hosting component
to a sub-component). TypeEvent models events and
comprises anid-attribute.Components have aname, an
interfaceinInterface for incoming events (listed by the
corresponding event’sid), and an interfaceoutInterface
including all events that can be issued by the compo-
nent. Component structure is reflected by thesubcomps-
attribute, which lists all component names that aredirectly
below the corresponding component in the hierarchy.

components: Set<Component>

events : Set<Event>

eventDels : Set<Delegation>

Specification

name : String

subcomps : Set<String>

inInterface : Set<String>

outInterface : Set<String>

Component

fromCompName : String

eventID : String

toCompName : String

Delegation

Entity types

id : String

Event

TrgCompComp 1

Comp11

Comp12

SrcComp

event

delegation

direct

communication

Figure 9. Entity types and example communication flow
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(1) ∀c : Component•
preso(c 7→ Component, c[Component{name}])

(2) ∀s : Specification, cs : Component•
∀ct : Component •
presk({s 7→ Specification},Ksubc(s, cs, ct))

(3) ∀s : Specification, cs : Component•
∀ct : Component, e : Event •
presk({s 7→ Specification},Kcomm(s, cs, e, ct))

Figure 10. Constraints for case study 2

When changing the specification, the component names
must not change. Also the component hierarchy must not
change in a manner that does not preserve sub-component
relationships. Finally, we want to preserve the following:
If two components can interact using an evente, this
interaction is still possible in the target specification.

The concept Ksubc expresses the subcomponent-
relationship w.r.t. two components that are part of a given
specification. This relationship is directly reflected by
the subcomps-attribute and, thus, quite easily to express.
The conceptKcomm is considerably more complex. It
expresses that, given a specification, a component can
communicate with another component using a given
event. These communication flows can be quite complex
as is indicated for the example component hierarchy in the
lower part of Fig. 9. In particular, events can be delegated
hierarchically and event flows must adhere to the different
in- and out- interfaces that are offered by the components.
We do not go into detail with the specification of this
property but mention that we have used automata-based
techniques as described in [16].

Fig. 10 shows the preservation constraints. Constraint
(1) assures preservation of all component names for those
components that are transformed. Constraints (2) and (3)
assure the above-mentioned requirements.

We have chosen a non-trivial refactoring operation in
order to test the performance of constraint checking in this
example. In particular, we carry out a behavior-preserving
event-renaming. When renaming an event, all interfaces
accepting or offering this event have to be adapted. This is
easily expressed but causes validity of all communication
flows to be re-checked by the system. Caused by the
interface updates, the component objects themselves are
changed. Therefore, constraint (1) is re-checked as well.
Fig. 11 depicts the test results in the same fashion as was
shown in the last section.

Analogous to case study one, we have measured the
time for constraint checking (y-axis) w.r.t. three system
setups. The generic parameters(n1, n2) comprise the
number of components and events, respectively. The
y-axis again indicates the degree of connectivity and
comprises all matchings for component communication.
We have constructed the models such that constantly
10 percent of the communication paths were related to
the event that was renamed. Since the preservation of
communication is very much related to the preservation of
link consistency, one can expect a similar system behavior
to case study one. At first sight, the results of Fig. 11 only

partially confirm this assumption. In all system setups we
measured linear complexity w.r.t. a constant number of
objects in the system and a growing degree of connec-
tivity. We, however, have a considerably worse behavior
when the number of components and events grows. This
can be traced back to our “inefficient” specification. We
have used no guards in the specification, which causes
the system to checkall combinations of components and
events whether they satisfy the preservation requirements.
This shows that – up to now – specifications have to be
expressed carefully w.r.t. efficiency. This at the same time
points up an important direction for future research where
static analysis can detect inherent efficiency problems or
implications among constraints.

VII. C ONCLUSION AND OUTLOOK

In this article, we have presented the preservation-
centric model transformation approach of [15], [16] from
a verification-oriented perspective. This has been moti-
vated by two application domains, where either automated
and still formally correct model transformations are too
complex for being carried out efficiently in the large, or
model changes are induced by human interaction that does
not adhere to pre-defined rules. The latter is a typical
case in software engineering where the evolution of
UML models from analysis to design and implementation
models cannot be automated.

We have provided two case studies drawn from dif-
ferent domains and have shown that we can trace the
preservation of complex properties like link-consistency
or communication flows in component interaction spec-
ifications in linear time w.r.t. the number of matches
and constant model size. Apart from these evaluation
results, we have introduced a new existential variant of
preservation constraints and motivated this extension with
the running example. This type of constraint allows one
to specify different preservation requirements for different
branches of an object’s history. In this way, the expressive
power of the constraints introduced in [15] is increased.

We have already pointed up some research directions in
[15], [16]. Those of [15] address technical issues related
to our constraint language. We are still working on a
formal theory for static constraint analysis to support the
detection of implications among constraints. This is likely
to accelerate constraint checking and potential model
construction w.r.t. given constraint sets. As stated in
[16], integration of additional implementation languages
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Figure 11. Results for case study 2
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beyond FOPL is being done on a stepwise basis. So far,
we can handle FOPL, automata, and tree automata. All
of these languages have been applied in the case studies
presented here.

These technical research issues, however, will be com-
plemented by further practical studies. In particular, it will
be interesting to find and study more practical applications
of our existential constraints. We think of objects that
are subject to branching workflows as they, e.g., occur
in software configuration management or version control
systems. Apart from that, we have a running Master’s
project in which we test our approach with a document-
related model transformation. We have implemented a
transformation from parts of the XHTML standard to
the Open Document Format (ODF) standard. We use
Cascading Style Sheets (CSS) to support layout for both
the source and target documents. Since ODF has been
developed as a document exchange format and combines
the diverse existing XML-related and non-XML-related
document formats, this case study is particularly interest-
ing. Complex properties in this case study comprise link-
consistency, preservation of layout, schema-conformity,
and preservation of “reproducibility” of the source doc-
ument. Overall, we have identified around fifty extended
preservation concstraints that have to be met. Initial tests
have shown that our approach can directly support the
development of the transformations because we are able
to pinpoint inconsistencies and their reasons.
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APPENDIX

For the formal understanding, we owe the semantics
for concept validity, interpretations of concept symbols in
A, the semantics of basic operations, and the semantics
for the different variants of preservation constraints. They
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have in excerpts been provided in [15]. Here we re-define
them using explicit traces for clarity.

A. Concept Semantics

Given a signatureΣ. A basic algebraAb for Σ com-
prises the setsT Ab

, OA
b

, and AttrA
b

. An algebraA
for Σ comprises a basic algebra forΣ and interpretations
for the concept symbols inΣ. We will not distinguish
between interpretations in an algebra or in its basic
algebra, respectively, if this leads to no confusion. Hence,
oA

b

and oA have the same meaning. Given a concept
symbolK and a basic algebraAb for Σ, KA yields

KA =
S

C∈contexts(K)

{oAi | Ab |= ιC [oAi /xi]}

wherexi is the interface ofK.
Concept satisfaction:Given a signatureΣ, an algebraA,
a concept symbolK, a contextC, andn object symbols
o1, ..., on. Then concept satisfaction ofK in C by oi is
defined as follows:

A |= K(oi)[C], iff C ∈ contexts(K),

type(oi) ∈ bτ(xi), andoAi ∈ KA

wherexi is the interface ofK and τ̂(xi) is the set of all
types that satisfy the corresponding type condition; we
check well-typedness already on the syntax level.

B. State Change Semantics

Given a signatureΣ, two statesA, A′ for Σ, and an
object symbolo. Then subsequence ofA′ to A′ w.r.t. a
basic operationis defined as follows:

Object creation:

|= (A Ã A′, cre(o)), iff oA = ⊥ ∧ oA
′ 6= ⊥ ∧

A′ |= post(cre(o′)) and no other changes toAb

Object transformation:

|= (A Ã A′, tr(o 7→ o′)), iff oA 6= ⊥ ∧ o′A
′ 6= ⊥ ∧

A |= pre(tr(o 7→ o′)) ∧ A′ |= post(tr(o 7→ o′))
and no other changes toAb

Object Deletion:

|= (A Ã A′, del(o)), iff oA 6= ⊥ ∧ oA
′
= ⊥ ∧

A |= pre(del(o)) and no other changes toAb

Notice that the changes themselves affect thebasic
algebras. The concept interpretations than are adapted
according to the state change. Hence, basic operations
can have side-effects on the whole state and our semantics
assures basic operations yield the “least fitting” next state.

A sequence∆ := 〈op1, ..., opn〉 of basic operations is
a transformation algorithm. Subsequence of states w.r.t.
transformation algorithms is defined as follows:

|= (A Ã A′, 〈〉), iff A = A′
|= (A Ã A′, 〈op1, ..., opn〉), iff
∃A0, ...,An • ( A0 = A ∧An = A′∧

∀i ∈ {1, ..., n} • (Ai−1 Ã Ai, opi) ).

C. Constraint Semantics

Given two objectso and o′ and a typeτ . Theno and
o′ can be abstracted toτ , if type(o) ≤ τ ∧ type(o′) ≤ τ .
Let attrs(τ) denote the set of attributes defined forτ
(including inheritance w.r.t.≤). Then indistinguishability
w.r.t. τ is defined as follows:

1. type(o) ∈ TS ∧ type(o′) ∈ TS : o ≈τ o′, iff o = o′

2. type(o) ∈ TC ∧ type(o′) ∈ TC : o ≈τ o′, iff
∀a : τ → τa ∈ attrs(τ) • a(o) ≈τa a(o′)

Traces:We use traces to keep track of object histories
and define them inductively w.r.t. a sequence∆ of basic
operations:

1. traces0(∆) := {〈tr(o 7→ o′)〉|tr(o 7→ o′) ∈ ∆}
2. tracesi+1(∆) := tracesi(∆)∪

(tracesi(∆)⊗ traces0(∆)

where⊗ denotes the concatenation of all possible traces.
It is defined for tracestr1 = 〈op1

1, ..., op
1
n〉 and tr2 =

〈op2
1, ..., op

2
m〉, iff op1

n = tr(o 7→ o′) andop2
1 = tr(o′ 7→

o′′) for someo, o′, o′′. traces(∆) denotes the reflexive
transitive closure of the definition above. For tracestr =
〈tr(o1 7→ o′), ..., tr(on−1 7→ on)〉 the trace resulttr(o)
yields on, if o = o1. Otherwise,tr(o) = o.

Basic preservation constraints:The ∀-variant is given
as follows:

Transformation constraints:
(A, ∆,A′) |= o 7→ τ, iff (A Ã A′, ∆) ∧

tracem(o, ∆, {τ ′ ∈ TC |τ ′ ≤ τ}) 6= ∅
Object preservation constraints:
(A, ∆,A′) |= preso(o 7→ τ, o[τ ′]), iff

(A, ∆,A′) |= o 7→ τ ⇒
∀tr ∈ tracem(o, ∆, {τ ′′ ∈ TC |τ ′′ ≤ τ}) • (o ≈τ ′ tr(o))

Concept preservation constraints:
(A, ∆,A′) |= presk({tcIj

},K(oi), (Cs, Ct)), iff
(A, ∆,A′) |= V tcIj

⇒
∀tr ∈ tracem(oi, ∆, bτ(xi)) • A |= K(oi) ⇔ A′ |= K(tr(oi))

where I is an index set,xi is the interface ofK,
andtracem(o,∆, ts) contains allinclusionmaximaltraces
in traces(∆) that lead fromo to any of the tpyes
in ts (including sub-typing). Hence, all tracestr ∈
tracem(o, ∆, ts) must satisfy the following:

1. ∃τ ∈ ts • type(tr(o)) ≤ τ}, and
2. ¬∃tr′ 6= tr ∈ tracem(o, ∆, ts) • tr′ ⊆ tr

Transformation constraints are satisfied if thereexistsa
matching trace. If all transformation assumptions are sat-
isfied, object and concept preservation constraints assure
preservation of this property forall traces.

Existential constraints:The semantics for existential
object and concept preservation constraints is determined
from the definition above by replacing the∀-quantor for
traces by an∃-quantor.

Extended Constraints:The semantics of extended con-
straints is given by

(A, ∆,A′) |= ∀xi • φ(xi) ⇒ c(xi), iff (A, ∆,A′) |= c

holds for allc′ ∈ {c[oi/xi] | A |= φ[oi/xi]}
wherec andc′ are basic constraints.
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