
Implementing Model-Based Data Structures
using Transient Model Extensions

Michael Thonhauser1,2, Gernot Schmoelzer2 and Christian Kreiner1,2

1Institute of Technical Informatics, Graz University of Technology, Austria
2Salomon Automation Gmbh, Friesach bei Graz, Austria

Email: michael.thonhauser@tugraz.at, gernot.schmoelzer@salomon.at, kreiner@tugraz.at

Abstract— Software is often constructed using a layered
approach to encapsulate various functionality in correspond-
ing layers. Individual requirements of each layer demand
layer specific data structures. These data structures typically
provide redundant information with respect to the data
source.

Providing a Model Driven Software Development ap-
proach for creating these data structures leads to overlap-
ping data models, each containing data structures defined
by the data source. Because putting all various requirements
of the software layers in a single data model can lead
to difficulties, each software layer should only extend the
basic data source model with its specifically needed model
elements.

The approach presented in this paper applies a mech-
anism for a dynamic extension of a data model. This
extension mechanism is used in the implementational activity
of a software process, and allows the changing of a model
within a local scope. Using this mechanism, a basic data
model can be used by every layer, being extended by
additional attributes and classes for satisfying layer specific
requirements.

Index Terms— Model-driven development, Data modeling,
Data Intensive Systems, Software layers

I. INTRODUCTION

In the last years their has been a lot of research on
model driven development (MDD) [1]–[3], which has lead
to different standards like Unified Modeling Language
(UML) [4] and approaches like Model Driven Architec-
ture (MDA) [5]. The aim of an MDD approach is the
description of software in an abstract way by making use
of a model describing the designed software. This model
specifies attributes of the software, which are needed
in the corresponding activity of a software engineering
process.

There exist different software engineering process mod-
els, like the waterfall model, evolutionary development,
formal systems development or iterative approaches such
as the spiral model [6]. All of these process models define
some fundamental activities, like software specification,
software design and implementation, software validation
and software evolution. Each activity can be supported by

This paper is based on “Model-Based Data Processing with Transient
Model Extensions,” by M.Thonhauser, G.Schmoelzer and C.Kreiner,
which appeared in the Proceedings of the 14th Annual IEEE Inter-
national Conference and Workshops on the Engineering of Computer-
Based Systems, Tucson, AZ, USA, March 2007. c© 2007 IEEE.

models. Some modeling standards like UML also provide
different views of a model (e.g. class diagram, use case
diagram, sequence diagram), which are best suited for
different acitivities in a software engineering process.

While MDD aproaches often require to finish the spec-
ification of models before the modeled applications are
implemented, agile approaches like Agile Model Driven
Development (AMDD) [7] focus only on the view of
a model currently needed. In an AMDD approach for
developing a data-intensive system a data model is the
most important type of model created at the beginning of
the software development process. Because data-intensive
applications are software systems that focus on data pro-
cessing, data visualization and data storage (such as en-
terprise resource planning systems, banking applications
or logistic systems), a data model contains the description
of persistent data structures. These data structures serve
as the basis of a data-intensive system. To ease the devel-
opment of data-intensive applications a layered approach
is typically chosen for such architectures [8] consisting of
three layers, which are called presentation layer, business
function layer and data source layer.

Data structures used by a software layer are described
in a data model. Because every layer has different require-
ments on its data structures, data models of various layers
may differ, but there exists a common partial data model
of all layer specific data models. This common partial
data model can be seen as the application’s minimalistic
data model.

Supposing that this minimalistic data model contains
all data required for persistence, data models of the
different layers can be produced by adding layer specific
data structures to this model. While the minimalistic
data model needs to be defined in the first activity of a
software engineering process, layer specific additions can
be defined in later activities (e.g. during implementation
of the corresponding layer). Some requirements on layer
specific data structures are not known in the design phase
of a layer, because they follow from implementational
considerations. In order to support these requirements by
a data model a dynamical model extension mechanism has
been proposed in [9]. This mechanism is called Transient
Model Extension (TME) to point out, that extensions
made to the model are available only in the scope (e.g.
layer, class method) where they are defined.

74 JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007

© 2007 ACADEMY PUBLISHER

For demonstration purposes of the TME mechanism
a warehouse management system is introduced in Sect.
II giving an example of a layered design for a data-
intensive system. Sect. III discusses the dependencies of
layered software and data models in more detail, while
Sect. IV introduces the TME approach. Sect. V describes
an implementation scenario of the examplary WMS using
the TME approach.

II. MOTIVATING EXAMPLE

We begin by introducing a simplified warehouse man-
agement system (WMS), which is implemented in the
business domain of logistics. The example system sup-
ports the process of managing transport unit items (TU-
Item) being stored in a warehouse. Each TUItem is an
instance of a specific article and is contained in a transport
unit (TU).

Our warehouse management process uses three stages;
at the incoming goods stage TUs are received from suppli-
ers. In the second stage received TUs are stored in a high
rack. If a customer orders an article a TU containing a
corresponding TUItem is looked up in system. According
to the strategy (e.g. best-before date, fastest available
TUItem), the found TU is delivered to the third stage of
our warehouse, the goods issue. In this stage the ordered
TUItems are collected together and stored in another TU.
While the filled up TU is delivered to the customer, the
original TUs are returned to the high rack stage.

Fig. 1 depicts the modules of the described WMS. Note
that each stage of the warehouse management process is
associated with one module of the system. Each module
is constructed using a layered approach.

The chosen approach consists of three layers. A two
layered approach would also be feasible, which would
require to split up the functionality of the business layer.
This approach is often realized using fourth generation
programming languages, like SQL, to realize business
functions with stored procedures and aggregate functions.
The drawback of this approach is the complexity of the
realized queries.

Using a three layered approach queries can be trans-
fered to the business logic layer. They can be split up in
programming statements, which rely on smaller queries
being responsible for retrieving the required data from
the data-source. Often this approach is related to usage
of an object-relational mapper in the data source layer,
which maps the existing objects onto relational database
tables.

Because the majority of currently used programming
languages for constructing such systems, such as C#,
Java or C++, follows the object oriented paradigm, data
structures can be described using a class diagram view of
the data model.

III. RELATED WORK

A. Layered software

In a layered approach such as proposed in [8] each
software layer internally uses data structures, holding

<<Persistent>><<Persistent>>

− WeightLimit:WEIGHT − AMOUNT:LONG
− Weight:WEIGHT
− PackageFactor:LONG

ArticleTransportUnit
<<Persistent>>

TUItem

− ITEM_OID: OID− TU_OID: OID − ART_OID: OID
− Name:NAME

data source layer

high racks module

presentation layer

business logic layer business logic layer business logic layer

presentation layerpresentation layer

goods issue moduleincoming goods module

1 * 1*

SINGLE: 2 SINGLE: 2

SINGLE: 2

SINGLE: 2SINGLE: 2

SINGLE: 2

ID: 3, DOZEN: 1 ID: 3, DOZEN: 1

ID: 3, DOZEN: 1

ID: 3, DOZEN: 1

ID: 3, DOZEN: 1

ID: 3, DOZEN: 1

Figure 1. Software layers of warehouse management system

the needed data of this layer. Fig. 2 shows these data
structures and depicts the dependencies between them.
Every data structure can be seen as a layer specific view
on the information generally available to the software.
Data structure S1 holds the transformed persistent data,
which is compliant to the structure of the data source. S2

repesents the data structure used by the domain layer and
S3 is contained in the presentation layer.

T2’

S1

S3

T2

Domain

Presentation

DataSource
T1’

S2
T1

Figure 2. Data structures in software layers

The examplary WMS illustrates different requirements
for data structures in various application layers. Require-
ments for S1 are the reduction of redundant information,
thus providing support for data normalization [7]. This
reduction is needed for optimal storage usage, efficient
data transfer and to avoid inconistency of stored data.
Also the data structure should be easily mappable to the
persistent data source.

S2 is driven by requirements for simplifying complexity
of the application logic, adding transaction handling and
data consistency checks. This aims at avoidance of incon-
sistent data and is done through adding data redundancy.

S3 contains the data displayed at the presentation layer.
Its content meets user requirements and usability aspects,
which often requires displaying additional information.

As illustraded in Fig. 2 there exist several dependencies

JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007 75

© 2007 ACADEMY PUBLISHER

of the data structures in the different layers. Because
S1 holds all the persistent information available to the
application, additional data in S2 and S3 is normally
related to data contained in S1. This requirement can be
fulfilled by extending S1 with a transformation T 1 or T 2.

The way this transformation is performed depends on
the abstraction level used for application development.

• In a traditional software engineering approach imple-
mentation is done by using a relational database and
fourth generation programming languages like SQL.
This programming language type often includes a
database manipulation language (DML) used to de-
fine the data structures S1, S2 and S3. In this case
the transformation T 1 and T 2 of the data structures
is done by extending the DML statements.

• A higher level of abstractions is provided by object
oriented languages combined with object-relational
methods [8]. This solution enables type safety for
S1, S2 and S3 consisting of classes. The transfor-
mation is done with additional source code for the
implementation of S2 and S3.

• A further abstraction level is reached by using a
MDD approach. This leads to a corresponding data
model DM1 for S1, DM2 for S2 and DM3 for
S3. Following the dependencies of the different data
structures, the dependencies of the data models can
be seen as DM1 ⊆ DM2 and DM1 ⊆ DM3.
In this case transformation T 1 or T 2 is done by
extending DM1. This extension adds information
about additional data needed in the presentation layer
leading to DM3 and to DM2 respectivly in the
domain layer.
Note that this mechanism is called Transient Model
Extension (TME), because the extensions to DM1

are only visible at the scope where they are applied.
There exist also many small extensions for T 1 and
T 2. Since DM1 is used as the basic model for
this mechanism, DM2 and DM3 does not need
to be stored in the corresponding layers. Only the
transformation rules needed for construction of the
appropriate data model need to be saved instead.

B. Model Driven Development

Model Driven Development (MDD) [1] is an approach
to implement a software system by describing it with
a Platform Independent Model (PIM). A PIM defines
associations between data and behavior of the software
and it is used as input for generators producing a plat-
form specific model (PSM). To support MDD the Object
Management Group (OMG) has released the Model-
Driven Architecture (MDA) containing standards, which
enable specification and transformation of models. An-
other approach to MDD are Software Factories, which
are proposed by Microsoft and can be seen as a new
software development paradigm. Differences of these two
approaches are discussed in [10].

Models of software design are often specified using
Unified Modeling Language (UML) [11], another stan-

dard of the OMG. UML models are based on a metamodel
and are situated in the user model layer of the four-
level metamodel hierarchy [4]. UML describes several
diagrams, which can be used to model different aspects
of a software. Structural and behavioral diagrams are
differentiated. One example of a structural diagram is the
class diagram. It is used to model the structure of classes,
such as attributes and methods, as well as associations
between different classes in the model.

For data modeling purposes the metamodel of a class
diagram can be extended focusing only on class attributes
and associations [7].

Agile Data Modeling relies on iterative construction
of data models, where each data model satisfies the
requirements needed in the current iteration. It is best
suitable for applications that rely on relational databases
for persistent data storage. Agile Model Driven Devel-
opment (AMDD) also uses an iterative approach, instead
of extensive models being generated in the regular MDD
process.

C. Related persistent data frameworks

To realize the mapping of persistent data in dynamic
data structures several widely known technologies exist.

Microsoft’s ADO.NET framework [12] contains sev-
eral classes, which enable the usage of relational
databases or XML files as persistent data sources. Access
to the database is provided through an instance of a
DataReader or a DataAdapter. While the first one is only
used for reading data from a database, the second allows
also data manipulation independent of the database type.
The data adapter is used by a dataset component, which
is an in-memory database.

The dataset is used by other application layers, but it
does not utilize a data model. Therefore extending the
dataset is done at source code level instead of the model
abstraction level.

Hibernate [13] aims at providing an object/relational
bridge. It allows the user to work with object oriented
concepts like inheritance and composition as well as with
database relational concepts such as usage of a DML
like SQL. The mapping between the Java classes and the
database structure is done by a XML file.

Because Hibernate works at the source code abstraction
level, supporting model based extensions is not in the
scope of this technology.

The Eclipse Modeling Framework (EMF) [14] is an
implementation related to the OMG Meta Object Frame-
work (MOF). A EMF model is based on a metamodel
called ecore model. This model defines the content of
eAttributes and eReferences, which belong to the eClass
elements in the model.

EMF models can be built from Java files, XML files
or UML models stored in XMI. These models can be
used as input for Java source code generators, producing
class files with annotated source code. This code can be
edited manually to add functionality. EMF supports the

76 JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007

© 2007 ACADEMY PUBLISHER

serialization of objects in XMI files, if they are based on
an EMF model.

The ecore model defines attributes allowing to control
which elements of the model can be serialized. The
transient flag defines whether the corresponding element
can be serialized. The volatile flag is used to signal that
the value of this element depends on the value of other
model elements.

Our approach differs in the following points from the
EMF modeling concept:

1) The first aspect is the support of simultanous but in-
dependent extensions of the persistency data model
by different methods. In our understanding the
same persistent data model is used by all extending
models, while the extensions are only visible within
a particular scope. In contrast, extensions to EMF
models are globally visible.

2) The second aspect is the used concept of model
extension. While EMF supports extension of classes
with subclassing an existent class in a model, our
approach directly adds attributes and references
to existing classes. The advantage hereby is the
constant class type of the extended class, so no
modification of code expecting a particular class
type is required.

D. Partial model techniques

While many model based applications rely on large
monolithic models, there exist alternatives in the domain
of Domain Specifc Languages (DSL) [15], which rely on
the management of multiple partial models. These partial
models can be linked together to create one application
specific model or can be used for partial source code
generation, which can be linked.

Another approach based on metamodels is descriped in
[16]. This approach uses core models and fragment mod-
els, which conform to the same metamodel. These models
are then linked together following a formal definition,
which ensures that the resulting model is also conform
to the metamodel.

In our approach of transient model extension used mod-
els are also expected to be conform to their metamodels.
But instead of linking these partial models, our approach
allows the specification of model extensions for a specific
model in other forms, e.g. in a programming language.
Another distinction is the corresponding acitivity in the
software process used for creating the extension of models
or performing the linkage of partial models. Often partial
models are defined during design activities and are often
linked before starting with implementational activities in
the software development process. This can be done for
enabling generators to produce corresponding application
artifacts (like source code or database setup scripts)
[17]. In contrast the TME approach is applied during
implementational activities of a software development
process to dynamically manipulate the model, where the
manipulations have a local scope. Looking at the different
roles in a software process, model linking approaches are

applied by application and database designers, while our
approach is used for supporting the software developer in
implementing the layers.

IV. TRANSIENT MODEL EXTENSION

The structure of a data model can be based on the
four-level metamodel hierarchy of the OMG, where level
M3 (meta-metamodel) is the same for each data model.
Level M2 contains the general metamodel and additional
metamodel extensions, allowing the specification of do-
main specific data models in M1. These domain specific
data models maintain the domain specific classes and
associations being used for construction of objects which
correspond to model level M0. Generally speaking, every
model can be seen as an instance of the model in the lower
layer. Considering this fact, it is obvious that changing the
model in level M1 results in additional data contained in
level M0.

�����
�����
�����

�����
�����
�����

Meta−Metamodel (MOF)

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

���������
���������
���������

���������
���������
���������

�����
�����
�����

�����
�����
�����

DM1

Transient TransientPersistent

DM2

Metamodel

M1

M0

M2

M3

Data Data DME2DME1

DME1 DME2 TME2TME1 DM1

Data

Data DM3

DM3

DM2

Data

Figure 3. Data model structure

Fig. 3 illustrates the elements needed in the four-level
metamodel hierarchy for realization of the data structures
defined in Fig. 2. According to this figure DM1 is part of
every data model defined in level M1. DM1 defines the
data structure S1, which contains DataDM1 in M0. In
Fig. 2 mappings T 1 and T 2 are defined for creating the
corresponding data structures S2 and S3. Mapping T 1 is
represented by TME1 and T 2 is represented by TME2

respectivly. Each of these mappings defines a Data model
extension (DME) of M1.

According to the assumptions made in Sect. III-A,
DM2 is equivalent to S2 and is defined as a combination
of DM1 and DME1. In the same way the data model
DM3 results from combining DM1 with DME2. Every
model has corresponding data structures and data in M0.

As stated in Sect. III-A, DM1 is used by the data
source layer, DM2 by the business function layer, and
DM3 by the presentation layer.

Applying the AMDD approach to a layered software
architecture results in the definition of a data model con-
taining the data structures used by the data source layer.
Based on the persistent data model the corresponding
data models for the domain and the presentation layer
are defined. According to Fig. 3 a separate definition of
each data model used by the different software layers is
not feasible. Common data definitions needed by different

JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007 77

© 2007 ACADEMY PUBLISHER

layers are duplicated in the models, leading to mainte-
nance difficulties of the shared information. Also each
layer needs to store its own data model, which can lead
to increasing storage requirements by the application. To
overcome these problems a single data model is defined
in the data source layer, containing the persistent data
structures.

To get a model for a software layer other than the data
source layer, its data model normally can be extended by
a mechanism called Transient Model Extension (TME).
It is illustrated by arrows T 1 and T 2 between the data
structures in Fig. 2 and TME1 and TME2 in Fig.3
respectivly.

Note that the extensions provided to the data model
can be applied for different scopes. As stated above,
an extension of the model can be defined and used by
all classes being part of a layer. Another possibility is
illustrated in Fig. 4; the business logic layer contains two
methods, which apply a TME to the data model referenced
from the data source layer. In this case each TME is only
visible to the defining method.

Class

+ Public Method
Protected Method
− Private Method

attribute: Type
Class

+ Public Method
Protected Method
− Private Method

attribute: Type

Class

+ Public Method
Protected Method
− Private Method

attribute: Type

Class

+ Public Method
Protected Method
− Private Method

attribute: Type
Class

+ Public Method
Protected Method
− Private Method

attribute: Type

Class

+ Public Method
Protected Method
− Private Method

attribute: Type

Class

+ Public Method
Protected Method
− Private Method

attribute: Type

Class

+ Public Method
Protected Method
− Private Method

attribute: Type
Class

+ Public Method
Protected Method
− Private Method

attribute: Type

TME

MethodB

data source layer

business logic layer

reference to reference to

TME

MethodA

Figure 4. TME with method scope

A. TME types

As extensions of data structures implemented in an
object-oriented language need to follow the rules of the
language compiler, extensions of the model have to be
compliant to its metamodel. According to this fact, an
extension of the model element needs to be an instance
of an element defined in the metamodel.

The following elements of a class metamodel are used
in a TME mechanism for data-models.

1) Attributes: Extending a class with additional at-
tributes is done to model additional information, that be-
longs to this class. Often this information can be derived
from other class attributes or (attributes of) associated
classes. The type of an extended attribute has to be defined
in the model before the extended attribute is defined.

Fig. 5 demonstrates an example of a TME with an at-
tribute for the datamodel of our WMS defined in Sect. II.

For retrieving the weight of a TU the sum of the weight of
all TUItems has to be calculated. The weight of a TUItem
again depends on the weight of the corresponding article
and the amount of items located in the TU. Dynamically
adding the weight attribute to the classes TransportUnit
and TUItem allows to divide the calculation descriped
above. Also the result of this calculation has the same
metainformation as the weight attribute of the article.

− Weight:WEIGHT
− Name:NAME
− ART_OID: OID

<<Persistent>>
Article

− PackageFactor:LONG

− ITEM_OID: OID

TUItem
<<Persistent>>

− AMOUNT:LONG
− Weight:WEIGHT − Weight:WEIGHT

TransportUnit

− TU_OID: OID
− WeightLimit:WEIGHT

<<Persistent>>

1 *

TUItem.Weight = Article.Weight * TUItem.Amount

TransportUnit.Weight=SUM(TUItem.Weight)

1*

Figure 5. TME for weight attributes

2) Associations: Business functions may require addi-
tional associations between classes, that are not associated
in the data source. Usually this is done for simplifying
associations of related classes in the model. Again this
TME type is demonstrated using the datamodel of the
WMS. Consider the requirement to display information
on all articles contained in a TU. This requirement can
be fulfilled by extending the datamodel of the WMS with
a 1:n association between the class TransportUnit and the
class Article.

− Name:NAME
− ART_OID: OID

<<Persistent>>
Article

− PackageFactor:LONG

− ITEM_OID: OID

TUItem
<<Persistent>>

− AMOUNT:LONG

TransportUnit

− TU_OID: OID
− WeightLimit:WEIGHT

<<Persistent>>

− Weight:WEIGHT

1

11 *

*

*

Figure 6. TME for associating articles with TUs

3) Classes: Extension of the datamodel with new
classes requires at least an additional TME with a class
attribute. It can also require a TME with an association,
to connect the new class to an existing class in the model.

− ART_OID: OID

<<Persistent>>
Article

− ART_OID: OID
− ItemCount: LONG

TUItem
<<Persistent>> ArticleItem

− ITEM_OID: OID

2
2
1

COUNT

ART
12

3 2

GROUP BY

1*

ItemCount
ART

5

Item
1
2
3
4

1

2

Figure 7. TME for a class

Fig. 7 shows a use case, which does not require a
TME with an association. This example is driven by
the requirement to count the number of TUItems for
each article. Looking at the database tables shown in

78 JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007

© 2007 ACADEMY PUBLISHER

the upper section of the figure, it is clear, that this
requirement can be solved, by applying a query containing
a GROUP BY clause and a COUNT function on the
TUItem field. This requirement is solved by a TME with
the class ArticleItem, which is used for constructing the
entity objects containing the result from the database
query. Using an additional class satisfies the following
constraints which arise from the database query:

COUNT(x) → int
GROUP BY (x) → x
Every entity of the class ArticleItem is therefore fully

defined within the metamodel, i.e. every attribute contains
its correct metainformation. Note that this requirement
could also have been solved by adding an additional
attribute to the class Article instead of specifying a totally
new class. The reason for using a class extension are
performance considerations, which we will discuss in the
next section.

B. Clientside and serverside TME

The initial idea of the TME mechanism has been the
client side extension of the datamodel, e.g. to enable
additional columns in table widgets being shown in the
presentation layer. But in fact most data-intensive sys-
tems are build using a distributed architecture. In this
context the meaning of software layers is equivalent to
the meaning of software tiers. A tier is a layer, which
is not deployed on the same machine as the other layers
in the system. In a three tier system two configurations
are usually deployed. The first configuration, also known
as fat client, requires presentation tier and business logic
tier being installed on the same machine. The second
configuration, known as thin client, requires only the
presentation layer being deployed on the client machine,
while business logic tier and data source tier are deployed
on the server.

Both configurations think of the data source tier being
deployed on a server machine. This server contains the
datasource, which is often a relational database, or it has
a high performance network connection to the machine
containing the datasource. In the second situation perfor-
mance considerations can become important for applying
TME to the datamodel.

The example demonstrated in Fig. 7 can also be imple-
mented using a TME with an attribute for the Article class.
But by applying the TME with an attribute the software
engineer requires the infrastructure to transfer first all
TUItem objects and all Article objects from the datasource
layer to the layer containing the extended datamodel. Hav-
ing finished the transfer the sum up of the corresponding
TUItem entities for each article can be performed. This
variant requires a big amount of data to be transferred,
while the example in Fig.7 makes use of the advantages of
the RDBMS, applying the corresponding query in a DML
and then constructing new entities of the class ArticleItem
from the returning set of this query.

C. Other design considerations

Beside the descision to use client or serverside TME
another design consideration is the data gathering mech-
anism for the extended model elements. Especially in the
case of attribute TME it is always required to specify a
mechanism for retrieving the value of an attribute.

The first approach is the use of a hook function, which
is called everytime the value of the extended element is
requested. The other alternative implements the observer
pattern [18], implying changes to the extended model
element only when one of the observed model elements
changes.

For demonstration purposes consider the example
shown in Fig. 5. The example used two TMEs adding
a weight attribute to the TUItem and TransportUnit class.
Considering the requirement, that the amount stored in
TUItem and the weight of the article are fixed, usage
of two hook methods each implementing one of the
equations shown in Fig. 5 is enough. If this requirement
changes, additional observer methods need to be specified
for the corresponding variable attributes. These observer
methods need to trigger the two hook functions for
updating the additional attributes.

Another important aspect of the TME approach is the
temporary extension of a data model. Because the same
data model of the data source layer is used as basis for the
domain and presentation layers, extensions applied within
these layers should not affect the (data) models of other
layers.

D. Generic Components and TME

Generic components can be seen as software compo-
nents for which specific properties have been left variable
during components implementation [19]. For AMDD it
means that component functionality is based on a data
model as well as a metamodel and the model is used for
configuration.

In case of generic components TME can be used to con-
figure the runtime behavior of the component. Imagine a
user interface component like a table, which dynamically
displays data of a given class in the associated data model.
Extending this class with additional attributes leads to
displaying of additional table columns.

V. IMPLEMENTATIONAL CONSIDERATIONS

For demonstration purposes the uses cases presented
in Sect. IV-A are implemented using the layered WMS
introduced in Sect. II. The examples are realized using
the framework of our real world application.

Provided that the structure of the persistent data has
been modeled, an Entity Container (EC) [20] can be
used as a model-based object oriented data cache. The
architecture of the EC is shown in Fig. 8. The EC
provides distinguishable objects called entities, identified
by a unique value. It operates on two levels of the four-
level metamodel hierarchy of OMG implementing the
instance of relation between the two levels.

JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007 79

© 2007 ACADEMY PUBLISHER

Database

XMI

XMI

PDL

EntityReferences

Backingstore

File
Backingstore

DynAny
Backingstore

DBAL

CORBA Remote

Entity Container

Create

Generate

Depends on

Depends on

Persistency Model

Application

Figure 8. Entity container architecture

The UML data model is stored in a file using the XML
Metadata Interchange (XMI) format. This file contains
the UML model of the persistent data and is used by the
EC and the associated backingstore, such as an object-
relational bridge (DBAL). Data entities in the EC are
accessed using a dynamic interface.

warehouse

types

+@LENGTH=20

+@LABEL=Article

<<LONG>>

+@LENGTH=20

+@LABEL=Item

<<LONG>>

+@LENGTH=5

+@LABEL=Weight

<<DOUBLE>>

+@LENGTH=20

+@LABEL=Name

<<STRING>>

NAME

+@LENGTH=20

+@LABEL=Amount

<<LONG>>

ARTOID

AMOUNT WEIGHT

TUITEMOID

TransportUnit

+@LENGTH=20

+@LABEL=TransportUnit

<<LONG>>

OID

− PackageFactor:AMOUNT
− Weight:WEIGHT
− Name:NAME
− ART_OID: ARTOID− TU_OID: OID

− WeightLimit:WEIGHT

<<Persistent>>

− ITEM_OID: TUITEMOID

TUItem
<<Persistent>>

− Amount:AMOUNT

Article
<<Persistent>>

1 * * 1

Figure 9. Case study data model

In our MDD approach the database is created from the
persistency model, which is also used to configure the
EC and its associated backingstore. Fig. 9 shows the data
model used for our examples. It consists of two packages,
with the warehouse package containing the persistent data
classes. Attributes of these classes use the type classes
defined in the types package. This data model is applied
for creating a database containing the data shown in Table
I. There exist two TUs, with one containing two TUItems
and the other being empty. The two TUItems are instances
of different articles. These data are used for demonstrating

TABLE I.
DATA USED FOR TABLE IN FIG. 10 AND FIG. 11

TU TUItem Amount Article Article.Weight
1234 211 2 815 3.0
1234 222 1 816 4.0
1235 - - - -

the following use cases:
1) Applying TME for weight attributes (see Fig. 5)
2) Applying TME for a new class (see Fig. 7)

A. TME with the Entity Container

The EC framework is currently implemented for C++
and Java. Because both versions provide the same API,
the following examples demonstrated for Java can also
be applied in C++. While the C++ implementation is
packaged in dynamic libraries, the Java implementation
is deployed using the Eclipse plugin mechanism.

Eclipse is an open source Integrated Development Envi-
ronment (IDE) written in Java, which has been initiated by
IBM. The Eclipse IDE is based on the Open Service Gate-
way Infrastructure (OSGI) [21] framework and makes
use of different design patterns [22]. It offers support
for development of modularized applications consisting
of several plugins. Each plugin contains classes and
development fragments belonging together, and is used
for realising a well-defined use case. A plugin mani-
fest defines the plugin configuration data and contains
extension point (EP) definitions, enabling the dynamical
extension of plugin behaviour at runtime.

Listing 1. TME for weight attribute using sourcecode�
1 S t r i n g TU = ” : : wareh o u se : : T r a n s p o r t U n i t ” ;

S t r i n g TUItem = ” : : war eh o u se : : TUItem” ;
3 S t r i n g t y p eWei g h t =” : : t y p e s : : Weight ” ;

5 p u b l i c En t i t y Mo d el getModel () {
En t i t y Mo d el p e r s i s t M o d e l = d at amo d el . A c t i v a t o r . g e t D e f a u l t () . getModel () ;

7 t ry {
I A t t r i b u t e a t t r = p e r s i s t M o d e l . TME addNewAtt r ibute (TUItem ,

9 ” Weight ” ,
t y p eWei g h t) ;

11 a t t r . setHook (new TUItemWeightHook ()) ;
a t t r = p e r s i s t M o d e l . TME addNewAtt r ibute (TU, ” Weight ” , t y p eWei g h t) ;

13 a t t r . setHook (new TUWeightHook ()) ;
}

15 ca t ch (E x c e p t i o n ex) {
System . o u t . p r i n t l n (ex . g e t Messag e ()) ;

17 }
ret urn p e r s i s t M o d e l ;

19 }

�� �

TME use cases are typically realized as statements in
the code of the programming language (see Listing 1 for
an example realizing usecase (1) defined in the previous
section).

Listing 2. EntityAttributeHook for TransportUnit weight attribute�
p u b l i c c l a s s TUWeightHook ex tends E n t i t y A t t r i b u t e H o o k {

2
p u b l i c IVal u e g e t A t t r i b u t e (I E n t i t y R e f e r e n c e e n t i t y , S t r i n g name) throws

4 E n t i t y A t t r i b u t e H o o k E x c e p t i o n
{

6 double wei g h t = 0 . 0 ;
t ry {

8 f o r (I E n t i t y R e f e r e n c e r e f : e n t i t y . g e t C o n n e c t i o n s (” TUItem”)) {
wei g h t += ((DoubleValue) r e f . g e t A t t r i b u t e (” Weight ”)) . g e t Val u e () ;

10 }
}

12 ca t ch (E x c e p t i o n ex) {
System . o u t . p r i n t l n (” E r r o r c a l c u l a t i n g wei g h t f o r ’ ” + name +” ’ : ”+

14 ex . g e t Messag e ()) ;
}

16 ret urn new D o u b l e B u i l d e r (wei g h t) . newValue () ;
}

18 }

�� �

80 JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007

© 2007 ACADEMY PUBLISHER

Figure 10. Dialog displaying extended TransportUnit

Listing 3. Table configuration for Fig. 10�
/ / r e t r i e v e t a b l e from d i a l o g l a y o u t

2 t a b l e = (TableView) swt Lay o u t . g e t C o n t r o l (” ViewPanel . TableView ”) ;
/ / r e t r i e v e e x t e n d e d model

4 En t i t y Mo d el model = u s e r i n t e r f a c e . A c t i v a t o r . g e t D e f a u l t () . getModel () ;
/ / c o n s t r u c t E n t i t y c o n t a i n e r

6 I E n t i t y C o n t a i n e r ec = C o n t a i n e r F a c t o r y . c r e a t e C o n t a i n e r () ;
/ / c o n s t r u c t t a b l e c o n f i g u r a t i o n

8 T a b l e V i e w C o n f i g u r a t i o n c o n f i g = new T a b l e V i e w C o n f i g u ra t i o n (ec ,
model ,

10 ” : : wareh o u se : : T r a n s p o r t U n i t #ENTRY”) ;
/ / c o n f i g u r e t a b l e

12 t a b l e . s e t T a b l e V i e w C o n f i g u r a t i o n (c o n f i g) ;

�� �

Listing 2 presents a class, which is derived from the ab-
stract class EntityAttributeHook. The hook method getAt-
tribute() receives the extended entity of type TransportU-
nit and sums up the weight attributes of its connected
TUItems. Note that an object of this class is set as
the hook object for the extended attribute weight in
Listing 1. The second hook class TUItemWeightHook is
also derived from EntityAttribueHook and is providing the
same method getAttribute(), which calculates the weight
of a TUItem by multiplying the weight of the associated
Article with the amount attribute of TUItem.

A screenshot of a dialog displaying a table, which is
configured with the code presented in Listing 3 is shown
in Fig. 10. The dialog consists of a filter panel, containing
a combo box with all TransportUnit.TU attribute values,
and the table mentioned above, which displays the ex-
tended class TransportUnit.

The value of the weight column is calculated using the
hook function defined in Listing 2 and a corresponding
hook function for the weight attribute in TUItem. The
data displayed in the table widget are based on the data
defined in Table I.

Listing 4 illustrates the code for the data source layer.
This layer holds the data model of the application. It also
provides access to the data source.

According to Fig.8 each EC uses a data model and
a backingstore, which holds the connection to the data
source. The parameter for initialization of the EC in the
upper layers of the application are retrieved from the data

source layer.

Listing 4. Data source layer�
. .

2 / / D a t a s t r u c t u r e h o l d i n g t h e d a t a model
p r i v a t e IModel d a t aMo d el ;

4
/ / B a c k i n g s t o r e c o n n e c t i n g t o t h e d a t a b a se

6 p r i v a t e I B a c k i n g S t o r e b s ;

8 /∗∗
∗ P u b l i c c o n s t r u c t o r i n i t i a l i z i n g d a t a l a y e r

10 ∗∗/
p u b l i c Dat aLay er () {

12 / / i n i t i a l i z e t h e d a t a model
d at aM o d el = Model . create4TME (” r e s o u r c e / WMSModel . xml . z i p ”) ;

14 / / open c o n n e c t i o n t o d a t a b a se f o r b a c k i n g s t o r e
I P e r s i s t e n c y p e r s i s t = new R e m o t e D b a l P e r s i s t e n c y () ;

16 / / i n i t i a l i z e b a c k i n g s t o r e
b s = new Jav aDy n An y B ack ing Sto re(d a t aMo d el , p e r s i s t) ;

18 }

20 / / Method f o r r e t r i e v i n g t h e model o f t h e d a t a s o u r c e l a y e r
p u b l i c IModel g e t Dat aMo d el () {

22 ret urn d at aM o d el ;
}

24
/ / Method f o r g e t t i n g a c c e s s t o t h e d a t a s o u r c e

26 p u b l i c I B a c k i n g S t o r e getBS () {
ret urn b s ;

28 }
. .

�� �
Usecase (2) from the previous section is realized by

a class ArticleItemCounter in the business logic layer.
This class contains the method countItems(), which is
presented in Listing 5.

Listing 5. Counting items of an article�
p u b l i c s t a t i c A r t i c l e I t e m C o u n t e r R e s u l t c o u n t I t e m s () {

2
S t r i n g a r t i c l e = ” : : wareh o u se : : A r t i c l e ” ;

4
/ / r e t r i e v i n g model f rom d a t a s o u r c e l a y e r

6 En t i t y Mo d el model = Dat aSo u rceLay er . getModel () ;

8 / / e x t e n d i n g model w i t h c l a s s and a t t r i b u t e s
t ry {

10 I P e r s i s t e n t a r t i c l e I t e m = model . TME addNewClass (” : : wareh o u se ” , ” A r t i c l e I t e m ”) ;
I A t t r i b u t e o i d = model . f i n d P e r s i s t e n t (a r t i c l e) . l o o k u p A t t r i b u t e (” A r t i c l e ”) ;

12 a r t i c l e I t e m . a d d A t t r i b u t e (o i d) ;
I P r i m i t i v e amount = model . f i n d P r i m i t i v e T y p e (” : : t y p e s : :AMOUNT”) ;

14 I A t t r i b u t e i t emC o u n t = model . n e w A t t r i b u t e (” I t emC o u n t” , f a l s e , amount) ;
a r t i c l e I t e m . a d d A t t r i b u t e (i t emC o u n t) ;

16 }
ca t ch (WXException ex) {

18 l o g g e r . e r r o r (” E r r o r a p p l y i n g TME ”+ ex . g e t Messag e ()) ;
}

20
/ / c o n s t r u c t i n g E n t i t y C o n t a i n e r w i t h e x t e n d e d model

22 I E n t i t y C o n t a i n e r ec = C o n t a i n e r F a c t o r y . g e t I n s t a n c e () . c r e a t e C o n t a i n e r (model) ;

24 / / c o u n t i n g t h e i t e m s f o r each a r t i c l e
t ry {

26 f o r (I E n t i t y R e f e r e n c e a r t i c l e R e f : ec . g e t A l l (a r t i c l e)) {
l o ng i t emC o u n t = 0 ;

28 f o r (I E n t i t y R e f e r e n c e i t emR ef : a r t i c l e R e f . g e t C o n n e c t i o n s (” I t em ”)) {
i t emC o u n t += ((LongValue) i t emR ef . g e t A t t r i b u t e (” Amount”)) . g e t Val u e () ;

30 }
Lo n g B u i l d er i t emC o u n t Val u e = new Lo n g B u i l d er (i t emC o u n t) ;

32 ITemp l a t e t emp l = new Temp l a t e () ;
t emp l . s e t A t t r i b u t e (” A r t i c l e ” , a r t i c l e R e f . g e t A t t r i b u t e (” A r t i c l e ”)) ;

34 t emp l . s e t A t t r i b u t e (” I t emC o u n t” , i t emC o u n t Val u e . newValue ()) ;
ec . c r e a t e B y T e m p l a t e (” : : wareh o u se : : A r t i c l e I t e m ” , t emp l) ;

36 }
ret urn new A r t i c l e I t e m C o u n t e r R e s u l t (ec , model) ;

38 }
ca t ch (E x c e p t i o n ex) {

40 l o g g e r . e r r o r (” E r r o r c a l c u l a t i n g i t e m c o u n t : ”+ ex . g e t Messag e ()) ;
}

42 ret urn n u l l ;
}

�� �
This method retrieves the data model from the data

source layer and applies a TME with the class ArticleItem,
containing the attributes Article and ItemCount. After
applying TME, an EC is constructed for the extended
model and is loaded with entitities of the class Article and
associated TUItem entitites contained in the database. For
every Article in the EC the value of the amount attribute of
its associated TUItem entitities is summed up, and a new
entity of type ArticleItem is constructed for the current
Article attribute and the received sum of items.

Having counted all items, the EC is returned to the
calling class. Listing 6 contains the configuration for the

JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007 81

© 2007 ACADEMY PUBLISHER

Figure 11. Dialog displaying the number of items for each article

table widget presented in Fig. 11. The configuration is
based on the result of the method defined in Listing 5.

Listing 6. Table configuration for Fig. 11�
/ / r e t r i e v e t a b l e from d i a l o g l a y o u t

2 t a b l e = (TableView) swt Lay o u t . g e t C o n t r o l (” ViewPanel . TableView ”) ;

4 / / c a l l b u s i n e s s l o g i c
A r t i c l e I t e m C o u n t e r R e s u l t r e s u l t = A r t i c l e I t e m C o u n t e r . c o u n t I t e m s () ;

6 T a b l e V i e w C o n f i g u r a t i o n c o n f i g = new T a b l e V i e w C o n f i g u ra t i o n (
r e s u l t . getEC () , r e s u l t . getModel () ,

” : : wareh o u se : : A r t i c l e I t e m #ENTRY”) ;
8

/ / p r o v i d e c o n f i g u r a t i o n
10 t a b l e . s e t T a b l e V i e w C o n f i g u r a t i o n (c o n f i g) ;

�� �

B. Generic programming using Eclipse plugins

In case of programming with Java and using the Eclipse
plugin mechanism, the declaration of TME use cases can
be done by contributing to a specific EP, which is defined
in the plugin containing the data model.

Listing 7. EP definition for TME with attribute�
<?xml v e r s i o n= ’ 1 . 0 ’ en co d i n g = ’UTF−8’?>

2 <schema t arg e t Namesp a c e =” DataModel ”>
<a n n o t a t i o n>

4 <ap p I n f o>

<meta . schema p l u g i n =” DataModel ” i d =” TMEAt t r i b u t e” name=”TME”/>
6 </ap p I n f o>

<d o cu men t a t i o n>T r a n s i e n t model e x t e n s i o n wi t h a t t r i b u t e </d o cu men t a t i o n>

8 </ a n n o t a t i o n>

10 <e l emen t name=” e x t e n s i o n ”>
<complexType>

12 <seq u en ce minOccurs =” 1 ” maxOccurs=” unbounded ”>
<e l emen t r e f =” TME At t r i b u t e ” minOccurs =” 1 ” maxOccurs=” unbounded ”/>

14 </s eq u en ce>
<a t t r i b u t e name=” p o i n t ” t y p e=” s t r i n g ” u se=” r e q u i r e d ” >[..]</ a t t r i b u t e>

16 <a t t r i b u t e name=” i d ” t y p e=” s t r i n g ” >[..]</ a t t r i b u t e>

<a t t r i b u t e name=” name ” t y p e=” s t r i n g ” >[..]</ a t t r i b u t e>

18 </complexType>
</e l emen t>

20
<e l emen t name=” TME At t r i b u t e ”>

22 <complexType>
<a t t r i b u t e name=” c l a s s ” t y p e=” s t r i n g ” u se=” r e q u i r e d ” >[..]</ a t t r i b u t e>

24 <a t t r i b u t e name=” a t t r i b u t e ” t y p e=” s t r i n g ” u se =” r e q u i r e d ” >[..]</ a t t r i b u t e>

<a t t r i b u t e name=” t y p e ” t y p e=” s t r i n g ” u se=” r e q u i r e d ” >[..]</ a t t r i b u t e>

26 <a t t r i b u t e name=” A t t r i b u t e H o o k” t y p e=” s t r i n g ”>
<a n n o t a t i o n>

28 [. .]
<ap p I n f o>

30 <meta . a t t r i b u t e k i n d =” j a v a ”
basedOn=”wx . d a t amo d el . E n t i t y A t t r i b u t e H o o k ”/>

32 </ap p I n f o>

</a n n o t a t i o n>

34 </ a t t r i b u t e>

</complexType>
36 </e l emen t>

</schema>

�� �

An exemplary definition is shown in Listing 7. This
definition is contained in the data model plugin and is
used by the extension defined in Listing 8, which is
located in the corresponding layer plugin applying the
TME mechanism.

Listing 8. TME for weight attribute using EP from Listing 7�
1 <?xml v e r s i o n=” 1 . 0 ” en co d i n g =”UTF−8”?>

<?e c l i p s e v e r s i o n=” 3 . 2 ”?>
3 <p l u g i n>

<e x t e n s i o n
5 p o i n t=” DataModel . TMEAt t r i b u t e”>

<TME At t r i b u t e
7 A t t r i b u t e H o o k=”TUWeightHook ”

a t t r i b u t e =” Weight ”
9 c l a s s =” T r a n s p o r t U n i t ”

t y p e=” : : t y p e s : : Weight ”/>
11 </e x t e n s i o n>

13 </p l u g i n>

�� �

The extensions of the data model plugin can be pro-
cessed each time, the data model is requested. Before
returning a new instance of the data model the plugin
processes the provided EP contributions, which leads to
the data model with TME applied.

Note that both TME attribute use cases, the sourcecode
mechanism(Listing 1) as well as the EP mechanism
(Listing 8), make use of the same hook class defined in
Listing 2.

VI. CONCLUSION

This paper introduced a new method to ease the model
driven construction of layered data-intensive software.
Applying the concepts of data modeling using traditional
approaches results in one data model for each software
layer. This leads to redundant class definition in different
models with respect to the data source. Changing the data
model of the data source becomes difficult, because all
corresponding classes in the other data models need to
be changed as well. Furthermore each model is driven by
various requirements, which leads to a different number
of attributes in the equivalent class depending on data
model.

To overcome this challenge, data models of different
software layers can be received applying additional ex-
tensions on the data model from the underlying soft-
ware layer. The mechanism for applying these model
changes on the fly is called Transient Model Extension
(TME). This paper presented TME use cases including
the extension of classes, class attributes and associations.
These transient extensions are driven by layer specific
requirements and are applied with different scopes (e.g.
layer specific TME, method specific TME).

To demonstrate the advantages of this method, we
presented an example using the framework of our real
world application, considering various requirements of
the business logic layer and the presentation layer. We
also provided a comparision of our approach to related
technologies dealing with persistent data structures.

We have found this approach to be useful in construct-
ing large data-intensive systems in the business domain
of logistic, because it supports the modularization of
different methods in specified data retrieving classes.
Because changes to the model are transparent to the

82 JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007

© 2007 ACADEMY PUBLISHER

persistent data structures only small changes are needed
in the configuration of data displaying widgets. The TME
method is also an important part of our approach for
implementing a model based software product line for
data-intensive systems [23].

ACKNOWLEDGMENT

We would like to thank our company, Salomon Au-
tomation GmbH, for their grant to support our research.
We also thank Zsolt Kovacs for the interesting discus-
sions, and Carlo Jenetten and Robert Lechner for their
support in coding the mentioned tools.

REFERENCES

[1] S. J. Mellor, A. N. Clark, and T. Futagami, “Model–driven
development — guest editor’s introduction,” Software,
IEEE, vol. 20, no. 5, pp. 14–18, 2003.

[2] B. Selic, “The pragmatics of model-driven development,”
IEEE Softw., vol. 20, no. 5, pp. 19–25, 2003.

[3] D. C. Schmidt, “Guest editor’s introduction: Model-driven
engineering,” Computer, vol. 39, no. 2, p. 25, 2006.

[4] OMG, “UML Infrastructure, Version 2.0 ,” Object Man-
agement Group, Tech. Rep. 2002-09-01, 2002.

[5] D. S. Frankel, Model Driven Architecture, Applying MDA
to Enterprise Computing. John Wiley & Sons, 2003.

[6] I. Sommerville, Software engineering (6th ed.). Redwood
City, CA, USA: Addison Wesley Longman Publishing Co.,
Inc., 2001.

[7] S. W. Ambler, Agile Database Techniques. Wiley Pub-
lishing, Inc., 2003.

[8] M. Fowler, Patterns of Enterprise Application Architecture.
Addison Wesly, 2003.

[9] M. Thonhauser, G. Schmoelzer, and C. Kreiner, “Model-
based Data Processing with Transient Model Extensions,”
in ECBS, 2007, pp. 299–306.

[10] A. Demir, “Comparison of model-driven architecture and
software factories in the context of model-driven develop-
ment,” in MBD-MOMPES ’06: Proceedings of the Fourth
Workshop on Model-Based Development of Computer-
Based Systems and Third International Workshop on
Model-Based Methodologies for Pervasive and Embedded
Software (MBD-MOMPES’06). Washington, DC, USA:
IEEE Computer Society, 2006, pp. 75–83.

[11] OMG, “UML Superstructure, Version 2.0,” Object Man-
agement Group, Tech. Rep. 2002-09-02, 2002.

[12] D. Sceppa, Microsoft ADO.NET 2.0 Core Reference. Mi-
crosoft Press, 2006.

[13] ”Hibernate Reference Documentation”, ”3.2.0ga” ed.,
”Hibernate”, ”http://www.hibernate.org/5.html”, 2006.

[14] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J.
Grose, ”Eclipse Modeling Framework”. Addison-Wesley,
”August” 2003.

[15] J. B. Warmer and A. G. Kleppe, “Building a flexible
software factory using partial domain specific models,”
in Sixth OOPSLA Workshop on Domain-Specific Modeling
(DSM’06), Portland, Oregon, USA. Jyvaskyla: University
of Jyvaskyla, October 2006, pp. 15–22.

[16] M. Barbero, F. Jouault, J. Gray, and J. Bézivin, “A practical
approach to model extension.” in ECMDA-FA, ser. Lecture
Notes in Computer Science, D. H. Akehurst, R. Vogel, and
R. F. Paige, Eds., vol. 4530. Springer, 2007, pp. 32–42.

[17] S. Mitterdorfer, E. Teiniker, C. Kreiner, Z. Kovács, and
R. Weiss, “XMI based Model Linking,” in CAINE 2002,
International Conference on Computer Applications in
Industry and Engineering, Las Vegas, Nevada USA, Nov.
11-13, E. Nygard, Ed. Cary, NC: ISCA, 2003, pp. 322–
325.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns. Reading, MA: Addison Wesley, 1995.

[19] L. Baum and M. Becker, “Generic Components to Foster
Reuse,” in Proceedings of the 37th International Confer-
ence on Technology of Object-Oriented Languages and
Systems, 2000, pp. 266 – 277.

[20] G. Schmoelzer, S. Mitterdorfer, C. Kreiner, J. Fasching-
bauer, Z. Kovács, E. Teiniker, and R. Weiss, “The Entity
Container — an Object–Oriented and Model–Driven Per-
sistency Cache,” in HICSS’05, Big Island, Hawai’i, USA,
Jan. 3-6. IEEE, 2005, p. 277b.

[21] T. O. Alliance, OSGi Service Platform Core Specification,
version 4.1, release 4 ed., April 2007.

[22] E. Gamma and K. Beck, Contributing to Eclipse. Prin-
ciples, Patterns, and Plugins.: Principles, Patterns and
Plugins. Addison-Wesley Professional, 2003.

[23] G. Schmoelzer, C. Kreiner, and M. Thonhauser, “Platform
design for software product lines of data-intensive sys-
tems,” in Proceedings of the 33th EUROMICRO Confer-
ence, August 2007.

Michael Thonhauser is currently a Ph.D. student at Graz,
University of Technology, Austria and is also working at the
research and development department of the company Salomon
Automation GmbH. He received his MS degree in informatics
and eletrical engineering from Graz, University of Technology
in 2005. His research interests include software engineering
methods and distributed systems.

Gernot Schmölzer is currently working at the research depart-
ment for Salomon Automation GmbH, a large logistics software
vendor in Europe. He received his Ph.D. in informatics and
electrical engineering from Graz University of Technology in
2007. His research interests include model-driven development,
software product line engineering and software engineering
practices.

Christian Kreiner graduated and received Ph.D. degree in
Electrical Engineering from Graz University of Technology in
1991 and 1999 respectively. His research interests include soft-
ware technology, software engineering and quality management.
Christian Kreiner is currently head of the R&D department
at Salomon Automation, Austria, focusing on software devel-
opment for AS/RS (automatic storage/retrieval systems) and
researcher at the Institute for Technical Informatics of Graz
University of Technology.

JOURNAL OF SOFTWARE, VOL. 2, NO. 2, AUGUST 2007 83

© 2007 ACADEMY PUBLISHER

