JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007 1

Formalizing mobillity In
Service Oriented Computing

Claudio Guidi
Department of Computer Science, Univexsitegli Studi di Bologna,
Mura Anteo Zamboni 7, 1-40127 Bologna, Italy.
Email: cguidi@cs.unibo.it

Roberto Lucchi
European Commission, DG Joint Research Centre, Institut&rfivironment and Sustainability,
Spatial Data Infrastructures Unit,
T.P. 262, 1-21020 Ispra (VA), Italy.
Email: roberto.lucchi@ijrc.it

Abstract— The usual scenario of service oriented systems is ~ The usual context for service oriented computing is
characterized by several services offering the same function- characterized by the fact that new services can appear as
alities, by new services that are continuosly deployed and well as other ones can disappear during the evolution of
by other ones that are removed. In this context it can be .

useful to dynamically discover and compose services at run- the system, an_d by _the fact that a num_ber of services offer
time. Orchestration |anguages provide a mean to deal with the same functionalities. In this scenario it can be useful t
service composition, while the problem of fulfiling at run- select at run-time the specific service to be invoked among
time the information about the involved services is usually the available ones. Moreover, there are other cases where
referred to as open-endedness. When designing service-based j; i ot possible to statically know the exact location of a

applications both composition and open endedness play a
central role. Such issues are strongly related to mobility SETViCe which is to be invoked. For instance, consider the

mechanisms which make it possible to design applications Case of a system where an administrative application up-
that acquire, during the execution, the information which dates the software product versions of clients; it could be
are necessary to invoke services. In this paper we discuss organized as it follows. Each client is equipped aliant
the forms of mobility for the service oriented computing — geryice which provides the software update functionality,
paradigm. ‘To this end we model a service by means of the the administrative application is composed bgoétware
notions of interface, location, internal process and internal ’ .
state, then we formalize a calculus supporting the mobility ~Manager service and arupdate service. Thesoftware
of each element listed above. We conclude by tracing a manager service invokes theipdate one by passing the
comparison between the proposed calculus and the mobility |ist of clients which have to be updated, then tipelate
mechanisms supported by the Web Services technology. gepyice invokes the software update functionality of all
Index Terms— Service oriented computing, mobility mecha- the listedclient services. Since it is realistic to suppose
nisms, formal methods, Web services. that the set of all clients changes during the evolution
of the whole system, thepdate service does not know
at design time the locations of the clients, thus it needs
to acquire them at run-time and in particular when it is
Service Oriented Computing is an emerging paradigninvoked by thesoftware manager service. The problem
where services are platform independent autonomou@f COMPposing services that are not completely known at
computational entities that, by means of standard prod€sign time is usually referred to apen endedness. _
tocols, support interoperability thus allowing to design N order to deal with open endedness the paper lists
new and more complex services out of simpler ones. Or@”_d discusses the several_ forms of mpb|I|ty for the service
chestration languages [1]-[3] provide a mean to progran_quented cpmputlng paradlgm.lln part|cu_lar we proqegd as
new services whose functionalities are implemented byt follows: i) we define the service by logically classifying
exploiting existing services. In particular, the workflosy | e aspects that compose it, i) we reason on the meaning
programmed from the perspective of a single endpoinPf SupPorting the mobility of such aspects, and iii) we
which orchestrates the invocations of all the involvedPresent a service-based calculus equipped with mobility
services and collects/elaborates all the corresponding r@€chanisms. In particular, we characterize a service by
sults. Althought the activity is distributed over the syste Means of four components: thecation, the internal

the orchestrating process holds the execution state in R[0CeSS, theinterface and theinternal state. The location
centralized way. expresses where the service is deployed and then avail-

able, the internal process represents the program which

Research partially funded by EU Integrated Project Seasoantract ?r‘_nplemer_]ts and permits to supply the SerVi?e funCtional_'
n. 016004. ities, the interface represents the access points theceervi

I. INTRODUCTION

© 2007 ACADEMY PUBLISHER

2 JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

can use to interact with other ones and, finally, the internabther data types (e.g. integer, float, string). As far as the

state represents the information the service internallynessage structure is concerned, for the sake of generality,

holds. The definition we propose is not pertaining tohere we consider a flat structure where messages are

a particular technology thus it permits to reason abouseen as arrays of typed data. In the following message

mobility without referring to a specific technology. We structures will be described by introducing the notion

discuss four kinds of mobility: the location mobility, the of messagdemplate. A template describes the expected

internal process mobility, the interface mobility and thesequence of data types contained within a message.

internal state mobility. Once having discussed each of Let inf be the type denoting the generic information,

them we proceed by presenting a service-based calculds, ranged over by, be the set of templates defined as

equipped with mobility mechanisms supporting all thearrays of type elements. For example= (inf, inf,inf)

forms of mobility listed above. represents the structure of a message with three elements
Such a calculus, equipped of an operational semanticsyhose type isinf. Let Val, ranged over by, be the

is an extension of a previous work [4], [5] obtained by set of values on which is defined a total order relation,

introducing the notions of service location and of tem-Inf C Val be the set of generic information afithe the

plate. Templates define typed message structures whidbnction that, giverv € Val, returns the type of. Since

are used to define the expected message types of eaclhirrently we are considering only the generic information

access point of the service interface. Finally, we tracegype we definel’(v) = inf if v € Inf; the remaining

a comparison between the mobility forms we proposecases wherer ¢ Inf will be defined in the following

and the ones supported by the Web service technologyhere additional types are introduced. We denote with

which is the most credited proposal for service orientedy = (vg, vy, ...,v,) a tuple of values.

computing. It emerges that the technology supports only Let# = (¢,,...,t,) be a template and = (vy, ..., v;)

internal state mobility and location mobility. Moreover, be a tuple, we say that satisfiesi, denoted as '+ v, if

a section is dedicated to investigate the request-respongge following conditions hold:

inter_action pattern mechanism supported by the Web 1) n=s,

service technology which seems to be weaker than the 2) Voi, T(v;) = .

common interpretation of the request-response intetactio]
pattern behavior. Every message that needs to be communicated between

The paper is structured as it follows. Section Il definedWO Services has to be exchanged by means of interaction
a service and reasons about the meaning of the varRoints. Each service indeed exhibits a set of interaction
ous forms of mobility that could be supported betweenP0iNts, ce_lll_edoperations, that are exploited for .sending
services. Section Il presents the service-based calcul@d receiving requests to or from other services. Each
supporting mobility mechanisms and its operational sePPeration is described by a name and iaferaction
mantics. Section IV compares the mobility mechanismdnedality. According to [6], [7], there are four kinds of
we propose with the Web services technology. Section \peer-to-peer interaction modality divided into two groups

concludes the paper with some final remarks. « Operations which supply a service functionalitwy;
put operations:
Il. SERVICES FORMALIZATION AND MOBILITY — One-Way it is devoted to receive a request
MECHANISMS message.

— Request-Responsaét is devoted to receive a
request message which implies a response mes-
sage to the invoker.

« Operations which request a service functionality,
Output operations:

— Notification: it is devoted to send a request

This section is devoted for deducing the basic concepts
of services and introducing the mobility mechanisms they
deal with.

A. Communication mechanisms

Service oriented computing is a message based para- message.
digm where messages must be seen as struc_ture_d con- _ Solicit-Responseit is devoted to send a request
tainers of typed data. Here we start by considering a message which requires a response message.

single data type we nami@formation which represents
a general information exploited by a SOC application
In the following we will introduce additional data types
which will be exploited to support mobility; in particular
the location, oper_auon, template a_nd Process data types.. operation names and leDp be the set of operations
Informally, locations univocally identify the services in . ; i

.) . defined as it follows:
the system, operations and templates define the interface
of services and_, finally, processes represent the intern = {(o,ow,{) locO, e T}
behavior of services. For the sake of this paper we abstract U B O ieT
away from a detailed classification of types even if it {(O’n’ q'f €, te 4i
is possible to refine types classification by considering U { (0.7, t,t") [0 € O, L, 1 € T}

We call single message operations the One-Way and
‘the Notification operations and we calbuble message
operations the Request-Response and the Solicit-
Response ones. Formally, 162 C Val be a set of

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

u{(o,sr,{,ﬁ) o€ O, E,Ffef}

the specific formalismf and the representation of the

internal state; in the next section such notions will be

an operation is identified by a name),(an interaction
modality (w, n, rr and sr represent One-Way,
Notification,
interaction modalities respectively) and one or two

templatesif’) depending on the fact that the operation;

represented by a specific model.

Request-Response and Solicit-Respons€. Mobility mechanisms

In this section we describe the mobility mechanisms. To
s end we exploit the service notion of Section 2.1 and

deals with a single message (One-Way and Notificatiogye reason about the meaning of supporting the mobility
operations) or two messages (Request-Response gf each element of the service tuple, that is: internal

Solicit-Response operations). In the former case,

represents the template of the exchanged messa
whereas in the latter oné represents the template of
the request message amd represents the template of
the reply one. In the following we use;, oy, 07 7 and
o0y to range overOp where oy

state mobility, location mobility, interface mobility and
#ternal process mobility. To the best of our knowledge,
Service Oriented Computing paradigm does not support
an implicit form of mobility* but, since the interaction
mechanism is based on message passing, mobility can
represents a One-Way pe achieved by exchanging service elements by means

operation whose name is and the joint template is o seryice interfaces. This fact significantly affects the

t, op represents a Notification operation whose nam
is o and the joint template ist, op; represents a
Request-Response operation whose name &nd the
joint templates aret for the receiving message and
¢ for the sending one and, finallyy- ; represents a
Solicit-Response operation whose name &nd the joint
templates are for the sending message amidfor the
receiving one. We say that two operatiorggandﬁ;, are
dual if o = o/ and# = ¢/. Analogously, we say that two
operations; ;; ando’y, 7, aredual if o = o', £ = " and
' = ¢"”. Formally we define duality in the following way:

B. A model for representing services

A service is a computational entity located at a specific
uniquelocation (e.g. a URI) which has amternal state
and is able to perform one or mofanctionalities. A
functionality can be a computational process which exe-
cutes an algorithm, a coordinating process which needs to *
interact with other services or both. A service can receive
a message by means of an input operation and it can send
a message by means of an output one and expliciting the
location of the receiver. In other words, the operation
expresseshow to interact with a service whereas the
location specifiesvhere the service can be accessed. The
set of all the operations exhibited by a service represents
theinterface of the service. LefLoc, ranged over by, be
the set of locations wherboc C Val. Formally a service
is defined by the following tuple:

Service := (I, M, Py,l)

where I C Op is the interface containing all the oper-
ations it can useM is the internal state of the service
we use to represent all the information it manages (e.g.
variables, databases]; is the internal process which
expresses the service functionality encoded by exploiting

@esigning issues because mobility must be explicitly
programmed by system designers.

Internal state mobility: The mobility of the internal
state is strongly related to the message passing
communication mechanism. Indeed, the content of
a sent message is part of the information contained
in the internal state of the sender that the receiver
acquires and stores in its internal state. In other
words, a message exchange between two services can
be seen as an information mobility from the sender
internal state to the receiver one.

Location mobility: Location mobility deals with the
possibility to receive a location by means of a mes-
sage exchange and to exploit it to access the service
deployed at that location. In this way for instance a
service can acquire, at run-time, the exact location
of a service whose functionalities are known. This
is the case of thaipdate service discussed in the
Introduction section which knows the functionality
of the clients but not their locations.

Interface mobility: Interface mobility means that a
service can acquire at run-time all the infomation
about an operation and then to exhibit it in its
interface. Namely, from a designing poit of view,
interface mobility allows for the separation of the
operation programming from the information nec-
essary to perform it (i.e. message templates and
operation names). Interface mobility, indeed, allows
for the communication of the templates and the
operation names as usual information which are
exploited for characterizing an input or an output
primitive within a service at run-time. Thus, a human
designer can program an input or an output operation
without specifying its name and/or its templates
by considering the fact that they can be acquired
dynamically during the execution of the service. On
the contrary, if the interface mobility is not supported
the input/output operation templates and operation
names must be known at the design time.

the formalismf and! € Loc is the location where the

1The Web Services Request-Response pattern raises ansiimgre

service Is deplo.yed._We_remar-k that, in order to be 8%sue about an hidden location mobility which will be dis@gsn
general as possible, in this section we abstract away frorection IV-C

© 2007 ACADEMY PUBLISHER

4 JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

« Internal process mobility: Service functionalities are ranged over byw®. S(x) represents the value of variable
expressed by the internal processes of a service. The in the stateS (S(z) = L means thatr is not yet
mobility of this component implies that a process caninitialized), while S[w/x] denotes the stat§ where x
be communicated within a message exchange andolds valuew (we useS[w/Z] when dealing with tuples
executed by the service which receives it. In this casef variables), formally:
the receiver can enrich its internal functionalities
by executing the received process. It is important S[w/z] =8 S'(2) :{
to highlight the fact that the receiver must be able
to execute the received process by exploiting theéAll the services are executed at different locations, thus
specific formalism used for encoding it (the issuesthey can be composed by using only the parallel operator
related to this aspect are out of the scope of thid[|). Within a location, processes can be composed in

w if v’ ==z
S(x') otherwise

paper). parallel (), sequence;(and with two different alternative
composition operators. The operathjjeW €i; P; ex-
I1l. A SERVICE-BASED LANGUAGE WITH MOBILITY presses a non-deterministic choice restricted to be gdarde
MECHANISMS on inputs. Such a restriction is due to the fact that we

This section is devoted to model the mobility mecha-2"¢ not interested to model internal non-determinism in

nisms discussed above. In particular, we proceed as it fof€rvice processes. The operafdtP> : Q is the if-then-

lows: i) we introduce a calculus for representing service$Se Process where; expresses a logic condition on the

accordingly with the model discussed in the previousvariables (the syntax and the the satisfaction relation for

section, ii) we formalize all the mobility mechanisms by X IS réported in the Appendix)y = P is the construct

extending step by step the service-based calculus and v(l%r modelling guarded iterations) represer_wts the_ null
describe how services are affected by them. process whereas the processes- e deals with variable

assignment. Processasand 5 represent processes syn-
. chronizations on signals which are exploited to coordinate
A. The service-based language the activities of processes running in parallel. As far &s th

Here, we present a service-based calculus whiclperations are concerned, the procegs:) represents a
extendsOL, defined in our previous works, by means One-Way operation whereis the name of the operation,
of locations and operation templates. Such a languaggis the template of the received message aisithe tuple
allows us to describe systems where each participant igf variables where the received information will be stored.
a servicé and Supplies a means for describing serviceOm (j;7g7p) represents the Request-Response operation
functionalities. For the sake of clarity, we do not take into\here o is the name of the operation,is the template
account asynchronous communication which has beegf the received message amdis the template of the
modeled in our previous vyork. On the other hand, this is;gnt message. The Request-Response receives a message,
an orthogonal aspect which can be separately analyzedores the received information if) executes the process
w.r.t. mobility mechanisms. Formally, letignal be a set p and, at the end, sends the information contained in
of §ignal names ranged over By let Var be the set of 55 5 response message to the involighi () represents
variables ranged over by, y, z, u, k, j, we denote a tuple the Notification operation where is the name of the
of variables by means of the symbok= (o, z1,...2n). operation,? is the template of the sent messageis
Let W be a finite ordered non-empty set of index€d, the |ocation of the invoked service aridis the tuple
is defined by the following grammar: of variables which contain the sent message. Finally,
655,@1(%75) represents the Solicit-Response operation,
whereo is the name of the operation,is the template
of the sent message’ is the template of the received
. L message] is the location of the invoked service. The
€n=s ‘_Ot’(xz | _OF.,F’(T/’}J?F) Solicit-Response sends the message contained within the
€= 5| 0/Ql(z) | 07 Ql(T,) Z tuple, waits for the response and stores the received
information in the tupley.

The semantics 0O L is defined in terms of a labelled
transition system which describes the evolution of a
. . service-based system. We defineC OL x Act x OL
where a service-based systdinconsists of the parallel as the least relation which satisfies the axioms
composition of services. A servid®s]; is a couple of a and rules of Tables I. Il and Il wheredct —

rocessP and a stateS identified by a locatiori € Loc. - s ~ N o
'FIJ'he variables state of a service is B(Ijescribed by a functiorﬂs’ 0, 0,070U(0), 05(0), 07 (0), 07 (9), 05, AL, §) (),

) 0r7Ql(0,7)(n), 7} is the set of actions ranged over
§:Var — ValU{L1} from variables to the sélalU{L} W 'y.(Tezlezl(e)l }dea|s with the rules which models

2| our previous work we referred to this language as an otitin ~~ COMmMunNication and synchronization mechanisms where
language. Usually the term orchestrator means a specidtseshich,
in order to supply its functionalities, coordinates othenvices. Here, we SWe extend the order relation on the $étl to the setVal U {1}
use the term service for denoting both orchestrators andeisgpvices. by consideringl. < v, Vv € Val

P,Q:=0| z:=¢ |e|€|x?P:Q
| PP | PIP | Sewes P | x=P

PS = (P,S)
E = [PS]Z | E H E

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007 5

(IN) (ou) CHoICE and ITERATION 1/2 describe the behavior of
(5,8) > (0,8) (5,8) > (0,8) the non-deterministic choice and the guarded iteration
respectively. The former one non-deterministically seslec
o an input guarded process among the ones listed in the
tES(@)
choice operator, while the latter ones model iteration
o 57@I(S(2)) . ;
(6;Q1(%),S) " — " (0,S) behaviour. Finally, # THEN and B SE rules express the

if-the-else semantics. In Table Il the rules at the level

(NOTIFICATION)

(ONE-WaY) P of service-based systems are considered. Rule-O
= WAY SYNC deals with the synchronization on a One-Way
(07(2),S) = °r) (0, S[5/%]) operation between two services whereas rulesQR
(SoLici) SyNCc and ReEsp-SYNC deal with the request. a}nd the
7+ 8(3) response message exchanges between a Solicit-Response
o @IS () D)) operation and a Request-Response one. Ralg-8NC
(orpQl(@.5),5) " — (0% (), S) exploits a fresh labeh which is generated in order to
’ univocally link the response synchronization defined in
(REQUEST o rule RESP-SYNC. ParR-EXT deals with external parallel
t_v composition and ONGRE is for external structural
(07.(2,3, P), S) orz (DM (P52, (5), S[9/3]) congruence denoted by. INT-EXT expresses the fact
that a service behaves in accordance with its internal
(RESPONSEOUT) processes.
i+ S(z)
o 4 (8(8))
(07 5 (2), — (0,S) (AssiGN)
’ e “—s v
(RESPONSEIN) (z:=¢,8) 5 (0,S[v/z])
T
o () (INT- SYNC)
(0} (2),5) L (0, S[5/4) (P,S) 5 (PLS), (@8> (Q.9)
/ !
TABLE . (P1Q,S) = (P'|Q,S)
COMMUNICATION RULES (CONGRP)
P=p P, (P85> (Q.S) Q=rQ
(P.S) = (Q,8")
we have introduced the processﬁ&() and ow(”) (PAR-INT) (SEQ)
in order to deal with Request- Response and Solicit- (P,S) = (P, 8") (P,S) = (P!, 8")
Response operations. Each rule requires that a received (r|Q,s) 2 (P'|Q,S") (P;Q,8) > (P;Q,8")
or a sent message must satisfy the current operation
template in order to be performed by means of the (Cuorce) Yt e (ITErATION 1)
satisfaction relation described in Section Il-A. The most (& F:8) = (P8 icW 5Fx
interesting axiom is the BQUEST one which describes O € P S) 5 (P, S) (x = P,8) > (Pix = P,S)
that a Request-Response operation, when invoked,
P . (ITERATION 2) (IF THEN)
behaves as the specified proceBsand, once having S ix SFx
completed such a process, p_erform_s an outpu_t that is (x=P.8) 5 (0,5) (X?P:Q.5) = (P.S)
consumed by the invoking service. It is worth noting that
a fresh labeln allows us to couple the sender process (ELsE)
with the receiver one which are explicitly joint within S 1x
rules of Table Ill. Rules 8LICIT and RESPONSEIN (X?P:Q,8) = (Q,5)

deal with Solicit-Response behaviour where, initially, a

. i (STRUCTURAL CONGRUENGE OVERP)
message is sent and then the service, by means of the

prOCGSSOa{(:f?), waits for the response. Table Il deals Pl0=pP GP=pP

with the rules overPs where the behaviour of a process (P1Q)=p(Q|P) (P|Q)|R=pP|Q]|R)
coupled with a state is expressed. RulssAGN deals

with variable assignment within the services; —s w TABLE IL.

means that the evaluation process of the expression RULES OVER Pg

within stateS reduces tow. Rule INT-SYNC deals with

internal synchronization over signals an@XsRP with

internal structural congruence denoted hy. PAR-INT Now, we remind the service formalization presented
and FQ describe the behaviour of processes composeih Section Il where a service is represented by the tuple
in parallel and sequentially respectively, whereas(l, M, Py,[) and we show how a®L service[P,S]; is

© 2007 ACADEMY PUBLISHER

6 JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

1. 9(0) = ¢
(ONE-WAY SYNC)
sral' () hH® / 2.0(x:=¢)=2¢
[Psli " — " [Psli, [Qsly — [Qglir, 050, 3.0(s)=¢
T / / 4. @(5) = QZS
[Psli |l [@s]y — [Pl |l [Qsli g
° Sf) 5. 0(0:01(2)) = {(o,n. 1)}
-S n fres P 5)) —
(REQ YcNTC) / oo o= oy @l (5,5)(n) 6. @(otytl@l(z,y)) = {(o, sr,t,t")}
[Psli — [Psli , [Qsly — [Qlr o' = o, 1, (5,5)(n) 7. 0(0x(7)) = {(0, 0w,)}
- i //} T ’ Ll s _ Y]
(Psly || [Qsly —= (P4l || (@l 077 540, 1 8. ©(0z7(2,79, P)) = {(o,rr,t,t)} UO(P)
0. 001, () =
(RESP?;{C()w o, (%) 10. ©(0¢ (7)) = ¢
I A T o e (1 11. O(P; P') = ©(P)UO(P')
(Psl || (@sle = [Pl || 1@ 12.6(P | P') = ©(P) US(F)
13. @(Ziew €i; Pi) = UieW @(eﬁ P')
14. ©(x?P: Q) =6(P)UB(Q)
(CONGRE) 15. ©(x = P) = 0O6(P)
Ei1=E,, E, L E}, E,=FE» It is worth noting that the interfac®(P), during the
2B evolution of a servicdP, S];, is monotonically reduced
e dependently on the consumption &f. Indeed, let us
(PAR-EXT) (INT-EXT) consider the following example:
E LB, Ps 5 P}
By || B2 2 B} || Ba Ps], > [Pg], [ap(x), S[4/x]]i || lag(y), STy —

[0, S[4/])u || [0, S"[4/y]]:»
(STRUCTURAL CONGRUENCE OVERE)
P=pQ Before the synchronization the interfaces of the two
e — i services arel; = {(a,n,t)} and Iy = {(a,ow,t)}
[va]l — [st]l . . .
respectively, whereas after the synchronization they are
Ei||EB2=Ez | Ex Eu|| (B2l E3) = (E1 || B2) || B3 I, = ¢ and [—¢.

TABLE 1.
RULES OVERE B. Internal state mobility

As we have noticed in Section Il the internal state
mobility is strongly related to the message passing com-
munication mechanism. Considering Table | and Table
lll, such a kind of mobility is expressed by the rules
which deal with operation processes. In particular, let us
consider rules MTIFICATION and ONE-WAY of Table |
in order to clarify how it works. In the former the internal
state informations contained within the variableg are
sent by exploiting a message whereas in the latter the
received informationv are stored into the variables
contained within the internal state of the receiver. Rule
ONE-WAY SYNC of Table Ill couples the two rules by
correlating the receiver location to that explicited withi
the notification process. In this case the message content
is represented by the tuple of valueés Summarizing,
internal state mobility is modeled as an information
exchange between the internal state of the sender and the
internal state of the receiver. Such a mobility mechanism
is the cornerstone of service-based systems and supplies
the basic layer on which the other mobility mechanisms
can be implemented.

related to it:

e M is modeled bysS.

« | represents the location within both the service
model and theD L language.

» Py is represented by a processin OL where the
formalism f corresponds t@ L.

« I represents the interface of a service and it is not) .
explicitly modeled inOL but it can be extracted C. Location mobility
from the processP. Indeed, by considering a So far, OL does not deal with location mobility.
service [P, S];, its interface I is defined by the Locations, indeed, are statically explicited within the
function ©(P) where © is inductively defined by Notification and the Solicit-Response primitives. In order
the following rules: to deal with location mobility we modify the syntax of

OL by introducing the possibility to express the location

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007 7

as the content of a variable. To this end we add two new
primitives for the Notification and the Solicit-Response
wherez is a variable:

CUSTOMER
SERVICE
@uril

Pu=...10/Q2(7) | 0y pQ2(Z,9) | ...

These new primitives allow us to dynamically bind the
receiver location when performing the Notification and
Solicit-Response operations by evaluating the content of
variable z. Since locations will be acquired by means of
an input operation we introduce a new data type, we call
loc, representing the type used for locations. The function
used to test the conformance between tuples of values
and templates will be enriched by considering that, given Figure 1. Business scenario example
v € Val, T(v) = loc if v € Loc (we assume that the set

of values of each type is disjunct with each other).

BANK
SERVICE

@uri3

SHOPPING
SERVICE
@uri2

The semantics follows: ; BUY A fwadd); PAY Quri3(fwadd), Ssuriz
B ::= [z3 := L;invoice := msg
(NOTIFICATION WITH LOCATION MOBILITY) : PAY{(Zg); RECy@zg(mvoice), Sb]uriS

tHS(&), T(S(z)) = loc

System = C || SH || B

(6:02(@),5) " (0.8
The shopping servic§ H located aturi2 receives on the
(SOLICIT WITH LOCATION MOBILITY) One-Way operation BUY the location of the custongér
tH S(@), T(S(z)) = loc (uril) and stores it within the variablfwadd. Moreover,
_ L. 077 @S()(S@).HH(n) it forwards it to the bank servicB (aturi3) by exploiting
(077 @2(2,9), S) — (0F7(5).S) the Notification operatioAY. The bank service receives

Variable = is evaluated when the processes are execute@n PAY the customer location and then exploits it for
In that phase we exploit types in order to prevent thdnvoking the REC operation of the customer sending
execution of bad processes: in the casdoes not hold the invoice here represented by the vatusg. Finally,

a location value, the primitive is not performed. This the customer receives the invoice omdand stores the
mechanism allows us to design a service which doe§'essage content within the varialiev.

not know a priori the locations of the services to be Location mobility introduces a powerful mechanism
invoked that can be acquired during the execution. Irfor designing services in a flexible way. If we consider
order to clarify such a behaviour let us consider thethe Bank service of the example indeed, it exploits the
business scenario example depicted in Fig. 1 where a cugPerationREC; Qz;(invoice) in order to be independent
tomer purchases a good invoking a shopping service, thféom the customer address. The Bank service can send
shopping service invokes a bank service for performingnvoices to all the customers which exhibit a One-Way
the payment and the bank service invokes the custom&¥hose name is Bcand has a templaté. On the contrary,

for sending the invoice. In Fig. 1 we have exploitedif we do not exploit location mobility the Bank service
an informal graphical representation where services arghould know the customer address before its execution
represented by circles, the symboluri expresses the binding the service to interact to a specific customer. This
fact that the service is available at the locatiori, the IS the case of the shopping service that, by exploiting the
input operations exhibited by a service are represented ByPerationPAY ;Quri3(fwadd), is designed for sending

a black line whose name is shown within a rectangle anghe payment request always to the same Bank service.
the arrows represent a message exchange_ The shoppiﬁgrthermore, the example shows that location mOblllty
service exhibits the One-Way W, the Bank service is built on top of the internal state mOblllty because the
exhibits the One-Way & and the Customer service acquired locations are stored within the internal state.
exhibits the One-Way Rc.

In the following we formalize such a scenario by

supposing that the bank service does not know thg' Interface mobility

location of the customer: Interface mobility deals with the mobility of all the
information related to an operation that is the name of
t=(loc) t = (inf) the operation and the templates joint to it. In general,
all these information can be acquired dynamically. We
C = [add := uril;inv .= L model interface mobility inOL by introducing the
; BUY fQuri2(add); REC; (inv), Selurin following primitives wherez, u, k andj are variables:

SH ::=[fwadd := L

© 2007 ACADEMY PUBLISHER

8 JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

P:u=... | uz@z(2) | u

.. ﬂE 2(x z
| uy 7Q2(%,9) | vy (2

(2) variable is an operation name or a template respectively.

9, P) | ... We exploit the symbol? for expressing the fact that
an information related to an operation is unknown. The

The name of the operations and the templates ardefinition of the functions follows:

evaluated at run-time by reading them from the state. To)

this end we introduce two new data typgsandt which ¢ (y) = { vifveO .

are used to represent the type of operation names and of 7 otherwise

templates, respectively. Lete Value, the functionT is 1T (v) = { vifveT

extended by defining the following casesTijv) = op if 7 otherwise

v € Op, ii) T(v) =t if v € T. We will exploit this data

types to test that the values stored in the variables are

accordance with the expected data types. The semanti

follows:

&y
<

For the sake of brevity we report below only the rules
fhat change w.r.t. the original definition 6f that are the

%? 6, 7 and 8 ones. It is worth noting that here we extend
the domain of® by considering also the internal state.
This is due to the fact that now the interface depends on

the contents of the variables.
(NOTIFICATION WITH INTERFACEMOBILITY)

—

T(S(k)) = t, T(S(u)) = op, S(k)F S(z), T(S(2)) = loc 5 OU;Qz(),S) = {tN(S(u)), n, tT(S(k))}

S 8sE)E@) 6. O(iy -Q2(7,§),S) =
(a;Q2(7),8) (0,8) S lfs(u)), sr tT(S(k), tT(S())}
7.9(up(2),S) = {tN(S(u)), ow, tT(S(k))}
(ONE-WAY WITH INTERFACEMOBILITY) . 8. @(UEJ(@!@’)’5) =
T(S(k)) =t,T(S(u)) = op, S(k)- S(Z) {tN(S(w)), rr, tT(S(k),tT(S(j))} U ©(P)

S(u) — (8(2))

(ug(3), S) SEN 0,8) Example 3.1: Let us consider the example of Fig. 1

where we suppose that the Bank service does not know
a priori both the location and the One-Way operation of

(SOLICIT WITH INTERFACEMOBILITY) the customer:

T(S(k)) =T(S(5)) = t. T(S(u)) = op,

Sk S8(2), T(S(z)) = loc t = (loc,op,t) t = (inf)
(ﬁE’j@z(i,g),S) — (S(u);l(;%g(;)), 5) C ::= [add := uril;opN := REC; opT := tyinv = L
. o ; BUY jQuri2(add, opN, opT); RECy (inv), Sclurit
o= S(u)s—(;)ﬁ—(—j»)@S(z)(S(x),y)(n) SH ::=[fwadd := L; fwopN := L; fwopT := L;

; BUY o fwadd, fwopN, fwopT)

s PAY AQuri3(fwadd, fwopN, fwopT), Ss)uriz
. B = [z3:= L;0p:= L;tp:= L;invoice = msg
T(S(k)) =T(8()) =t,T(S(u) = op,S(k)- S(@) s PAY {23, op, tp); 0P Qz3 (invoice), Spluris

— "N

=8 o - (SE)9)0) |
The customer sends, by means of the variatpeV

It is worth noting that the introduction of the interface and opT’, the operation name (REC) and the operation
mobility allows us to distinguish the concept of oper-template {) on which it will wait for receiving the
ation programming from that of the information which invoice. The bank service receives from the shopping
characterize it. The former expresses the service capaervice the location, the name of the operation and the
bility to perform a One-Way, a Notification, a Request-template of the operation of the customer and stores
Response or a Solicit-Response operations representdtem inzs, op andtp respectively.
by the processesu; (), u;Qz(%) ug;(Z,y,P) and
up Qz(Z,7) respectively, whereas the latter deals only The example shows how is possible to design a service
wit’lz1 the information that are necessary for performing an(in this case the bank one) with a functionality which
operation represented by the content of the variabléds deals with an output operation without statically knowing
andj. its interface. In general, it is possible to have scenarios
In this case the interface can change during thevhere a service partially knows the interface information
evolution of the service, thus we need to modify somehat is, for example, it knows the name of the operation
rules of the inductive definition 0®. To this end we but it does not know the template or, viceversa, it knows
first introduce the functionsN : Val — Val U {?} and the template but it does not know the name of the opera-
tT : Val — Val U {?} for testing if the content of a tion. In particular, the mobility of the information relate

(REQUEST WITHINTERFACEMOBILITY)

System = C' || SH || B

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007 9

only to the templates raise some interesting designing 13. ©(r un(x),) _{ O(S(@)) if S(a) # L
issues. A designer that does not know the template of ¢ otherwise

an operation is able to program an input or an outpuleryice functionality mobility directly deals with code
operation but he is not able to predict the structure of th‘?nobility. In particular it allows us to design services
received (or sent) data and, as a consequence, he caniMere a specific part of its functionalities are unknown at
exactly specify the variables related to the received Ise”Hesign time and they are acquired during the execution of
data. Let us consider, for example, the output operatioghe service. In order to clarify this aspect let us consider

of the bank service: the example of the shopping service again where we
suppose that the customer, that wants to interact with the
0pQ@z3(invoice) shopping service, does not kn@apriori the conversation

rules to follow. In other words, the customer does not

in this case, even if the content of the variableis ynow that it has to exhibit the REC operation in order
unkwon, there is an implicit knowledge of the template, raceive the invoice from the bank service.

because it can be indirectly extracted by considering the
variable invoice which is programmed as the variable > _ D o
that contain the data to send. In general, a full interfacé = (loc,proc) £ =(inf) "= (loc)
mobility cannot be supported without considering a mech-,
anism which allows a designer to formulate some kinds o?
predictions about the received (sent) data. We can imagin§H i [fwadd := L; codes i—*inv = 1;RECy (inv)"
indeed, that the designer could be able to program some BUY A fwadd Cod’e2) ’ t
kinds of specifications about the variables from which it fwf @uriB(}wadd) S.Juri
should be possible to build a sort of dynansdaptor B7~-f g = A RS OsJuri2

o . . . n= [z3 := L;invoice = msg
for binding the variables with the received template. . PAY 1, (23); REC, @25 (invoice), SyJurs
The discussion and the formalization of such a kind of ’ AN 7S »Sbluris
machinery is out oflth_e scope of thls paper an(_j, at the be?ystem = C | SH| B
of our knowledge, it is an open issue. As a first attemp

towards this direction, works on component adaptio . .
can be taken into consideration. For example, in [8r]1Here, the customer invokes the operation BUY of the

Brogi et al. discuss the problem of the adaption betweelsfhololoIng service which is modeled as a Request-Response

: . e tion. The customer receives as a response a piece
Web Services interfaces where adator specifications afd’c'® L . .
b of code and stores it within the variabtede;, then it

;jnlztsecrLfl;:g for composing different services with dlﬁerentexecutes it_ by exploiting the primiti_/egn(codel). After
the execution of the code stored withinde; the system
behaves as the example presented in the location mobility

E. Internal process mobility section. It is worth noting that the customer receives

the input operation REC which enriches at run-time its

interface similarly to the case of the interface mobility.

Even if the two kind of mobility could appear similar

w.r.t. the effects on the interface, they are different from

a system design point of view. In the case of interface

mobility the designer must specify that an input or an

output operation has to be performed without knowing
its name and its templates on the contrary, in the case of

the variablex. As previosly done for the other kinds . - :
- . . internal process mobility, the designer does not know the
of mobility we introduce a new data type representing) .
process which will be executed at all.

rocesses. L be the data type denoting processes, . . e
P Groc yP gp Some considerations about code mobility issues are

v € Val: T(v) = proc if proc is defined by the term necessary. On the one hand when a service executes a
P presented in Section llI-A. The semantics of such a Y- w Vi xecu

primitive is expressed by a new rule that must be adde§OcesS which has been acquired at run-time, it does
o those presented in Table II: not know how it behaves. On the other hand, when

programming a process which will be executed by another
(RuN) service the internal behavior of such a service is not
T(S(x)) = proc known. This fact implies a number of issues. First of
™ all, internal processes share the variables state thus the
(run(z),8) = (5(2),S) acquired process could interfere with the behavior of the
Since the received code can be formed by operationther ones. Moreover, an acquired process could exploit
processes, we add a new rule for inductively defininga certain name to perform internal synchronizations but
the function® which allows us to extract the interface the same name could be already used by other internal
of the service: processes, thus alterating also in this case the behavior
of the other processes. A formal analysis of these issues

== [add := uril; code; := L

; BUY ;Quri2(add, code); r un(coder), Sclurit

In order to deal with internal process mobility we
extend theOL language by introducing the following
process:

P:=...]run(x)

run(z) allows us to execute the code contained within

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

is out of the scope of this paper but we consider that[12]. Such a kind of language allows for the designing of
to avoid at least the issues listed above, a mechanisniBe interactions between system participants, the sodcalle
which syntactically renames all the variables and nameroles, by means of compositional operators as sequence,

of the acquired process which interferes with the ones oparallel and choice.

the internal processes is necessary before executing it.

IV. WEB SERVICE TECHNOLOGY

In this section we briefly present the Web Service e
technology and we discuss the mobility mechanisms
presented in the previous sections w.r.t. it. Furthermore,
we discuss a an hidden form of mobility related to the
Request-Response pattern.

A. WEb Service technology .

Web Service technology is a service oriented architec-
ture which achieves interoperability by exploiting XML
dialects. It is born from the simple concept of the remote
procedure call wrapped by a standardized interface and
it is defined up to three basic specifications: WSDL [9],
SOAP [10] and UDDI [11]. WSDL is an XML-based lan-
guage which allows for the specification of the operations
(One-Way, Request-Response, Notification and Solicit-
Response) exhibited by a service, SOAP defines the mes-
sage exchange protocol between two services and UDDI
is a specification that deals with discovery Web Service
registers. Stalelessness, loosely coupling, open endsdne
and compositionality are the most important features Web
Service technology is characterized by. Statelessness dea
with the fact that Web services do not mantain the state of

a conversation. Each message exchange is a new message

exchange completely separated from the previous one. *
Loosely coupling is intrinsically linked to the concept of
business activity which can be intended as a distribuited
software application where multiple entities interactreac
other in order to achieve a specific goal. In this context,
since applications can run for a long period of time
and resources cannot be blocked because of the risk of
deadlock, long running transactions and compensation
mechanisms play a fundamental role. In Web Service
technology open endedness is achieved by exploiting
particular web services which work as service registers
mantaining service descriptions and locations. On the
contrary, compositionality is addressed by different kind
of languages: choreography languages and orchestration
languages. The former supply a local description of the
web services and deal with the design of the so called
orchestrator engines which are web services with the
peculiarity to be able to invoke other ones. On the other
hand, the latter aims at describing a web service system
by supplying a global system view where it is possible
to design the interaction among the involved participants.
The most credited orchestration language is WS-BPEL
[1] which supports compositional operators as parallel,

B. Web Service mobility mechanisms

Internal state mobility: Since Web Services are a
message passing technology, they fully support the
internal state mobility as we have formalized it in
Section 3. In particular, an information exchange
between two services is an XML document whose
schema is defined within the SOAP specification.
Location mobility: As we have shown in Section
3 location mobility is strictly related to the com-
munication mechanisms of the internal process that
we have formalized by exploitingD L. Although
that Web Services are platform independent and
there is not a standard formalism for describing
the internal process, here we consider orchestration
languages as a class of languages which can be
used for expressing it. Indeed, they deal with service
coordination aspects which are fundamental to the
end of location mobility. In particular, WS-BPEL
supports location mobility by managing endpoints
within its internal variables. An endpoint, which is
defined within WS-Addressing [13] specification, is
a data structure which contains all the information
required for invoking a service, that is the operation
and the location.

Interface mobility: The interface mobility that we
have formalized in Section 3 is strictly related to the
communication mechanisms of the internal process.
Following the same approach of location mobility we
consider WS-BPEL. As previously mentioned, WS-
BPEL is able to manage endpoints which contain
the information related to the operations. However
it does not support interface mobility because the
operations it exploits for invoking and receiving
messages are defined statically at design time and
they cannot be bound at run-time. To the best of
our knowledge interface mobility is not supported
by the Web Services technology even if it is possible
to consider other solutions that indirectly allows us
to partially achieve it. Several programming lan-
guages, at a low-level w.r.t. the orchestration ones,
are equipped of libraries which permit to simplify
the service composition. In particular, there exist
libraries in Java [14]-[16] that, given a WSDL
documertt, automatically produce the corresponding
classes which allow for the invocation of all the
operations supplied by the Web service described in
that document. Such a kind of libraries allows us to

.Sequence. and choice and_ it has' SpeCIfIC prlmltlvgs to 4A WSDL interface could be modeled by exploiting the service
interact with other web services which resemble the inpuinterface I defined in section 2 but there are some relevant issues to

and output operation processes of & calculus. As take into account: a WSDL document is statically defined ancha@an
change dynamically during the evolution of the service byiraglcr

far ajs choreography Ianguaggs are Concemed the mQg oving some of the exhibited operations and, generallyifidation
credited proposal in Web Service technology is WS-CDLand Solicit-Response operations are unused

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007 11

partially achieve interface mobility. The interfaces has been intended as a powerful mechanism which is
indeed are not communicated as information butable to relate the two message exchanges involved within
extracted from a WSDL document. Furthermore,a Request-Response as modeled in our calculus and in
they cannot be joint automatically with the service[17], [18]. In particular, these proposals formalize the
internal variables but, at the state of the art, theyRequest-Response behaviour by joining the output oper-
require to be joint by considering the presence of aation process with the input one. As far as our proposal
human designer. is concerned, in Table 3 we have exploited a fresh label
« Internal process mobility: To the best of our knowl- n in order to couple the sender operation processes and
edge Web Services technology does not explicitlythe receiver one.
support such a kind of mobility. Nevertheless we In the Web Services technology the Request-Response
trace a comparison between service functionalityinteraction is not supported at the service application
mobility and some languages for describing converdevel but, as specified by the WSDL recommendation, it
sational behaviours of service-based systems as, féras to be supplied by the communication infrastructure
instance, choreography languages. As we have saige.g. HTTP) which exploits the service locations and
such a kind of languages are exploited for describinghe operation names to bind the two message exchanges
the communication protocols services have to followinstead of a reference of the service processes involved
in order to participate to a given service-based sysin the interactions as in our calculus. Table IV reports
tem. We can imagine that a service which is willing the semantics rules governing the Request-Response

to access that system could download the relatethteraction patterra la Web Services. Such a semantics,
choreography document and extracts a piece of codghat we consider faithful w.r.t. the Web Services

which allows it to follows the protocol.

(SoiiciT)
'F S(%)
_ o 65’{/@“5(@2):@) _
(07,7 QU(Z,), — o7 7 Ql(7), S)
(REQUEST)

(RESPONSEOUT)
)
of 1 @QUS(2))
(07 pQl(Z), S R ,S)
(RESPONSEIN)
A
offj,@l(v)
(07 p@U(7),S) " — (0,S[v/])
(RS : o = o p @l (5.7)
[Ps]i = [PL], [Qs]y = [Qs]r o' = 0%, 7, OUD, G)
T 6ﬂﬂ’ > O’"// £
[Ps]i I [@Qs]iy — [Pgl | (@] BE TP
(RESP-SYNC)
o5 7 QU (D) oz 77 @L(9)
[Psli "= PGl [Qsly M= (@l

[Ps]i || [@sle = [Pl || [Q)w

TABLE V.
REQUESFRESPONSE PATTERN RULE$ LA WEB SERVICE

C. The hidden mobility of the Request-Response

technology, represents a meaningful contribute towards
the formal reasoning of the current technology features
and lacks. As it emerges by rulessBUEST and ReQ-
SYNC, there exists a hidden form of location mobility
that is used by the infrastructure to support the response
phase. Indeed, the infrastrure keeps the location of
the invoker and exploits it for sending the response. It
is worth noting that, in this case, the only references
for coupling the sender and the receiver during the
response phase are the service location and the operation
name. This means that if a service invokes two times a
Request-Response operation at the same service location
the two responses could be swapped each other. Example
4.1, which follows, reveals that the Request-Response
pattern supported by the Web Service technology is
weaker than the one previously proposed.

Example 4.1: Let us consider the following example
where a service, sayl, provides a functionality which
computes, given two numbers and b, |a| — |b].
Such a service exploits another service, located, at
which supplies the absolute value and the subtraction
functionality supplied by means of the Request-Response
operations ABS and SUB, respectively. LetOP be
the Request-Response operatidnuses to supply its
functionality, the service could be programmed as it
follows (we do not describe the variables state since its
initial configuration does not alterate the behaviour):

t=(inf inf) # = (inf)

A= OP;p((a,b),res, P)

In this section we discuss the Request-Response inter- P ::= (ABSy 7Ql(a, absA) | ABSy ;Ql(b, absB));
action pattern and in particular we compare the one we SUB;;Qi({absA, absB),res)
propose with the one supported by the Web Service tech-
nology. Usually the Request-Response interaction patterim the case the Request-Response mechanisms is the one

© 2007 ACADEMY PUBLISHER

12 JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

modeled by rules of Table 1V, there exists an executiorthe issues raised by mobility mechanisms and, on the
path where the responses of the twd.S invocations other hand, we intend to enrich our formal framework
can be swapped and then, in this case,@i response by introducing other fundamental aspects like sessions.
is [b| — |a| instead of the expected vallg — |b]. On the

contrary, in the case the Request-Response mechanism is REFERENCES

modeled as in section 3 such a behavior is not allowed.
[1] Web Services Business Process Execution Language
Version 2.0, Working Draft, OASIS, [http://www.0asis-
V. CONCLUSION open.org/committees/download.php/10347/wsbpel-

In this work we have discussed the mobility aspects of __ SPecification-draft-120204.htm].

service-o.riented computing. We have caught thel essencéz] si}:es Tr}iite’ Busi)r?(;sAsNG. Proc\e/\;ib Dessﬁgn‘,,
of a service by modeling it as a tuple of four basic com- [http://www.gotdotnet.com/team/xowsspecs/xlang-
ponents (state, location, interface, process) and we have c/default.ntm], Microsoft Corporation, 2001.

discussed a specific form of mobility for each of them. [3] F. Leymann, “Web Services Flow
Namely, we have modeled such a tuple by extending a Language (WSFL 1.0)” [http://www-

. . . 4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf],
formal language defined in our previous works that has o000 gy Academy of Technology, IBM Software

been exploited as a formal workbench for highlighting Group, 2001.

the peculiarities of each kind of mobility. Finally, we [4] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro,
have analyzed the Web Service technology in order to “Choreography and orchestration: A synergic approach for
show which kinds of mobility are actually supported. System design.”inCSOC, ser. LNCS, vol. 3826, 2005, pp.

. . . 228-240.
The discussion about Web Service shows that only the[5] . “Choreography and orchestration conformance for

inFernaI state and the location mobility'are supporteq 'by system design.” irProc. of 8th International Conference
this technology. On the other hand, interface mobility on Coordination Models and Languages (COORDINA-
and internal process mobility raise some interesting ssue TION'06), ser. LNCS, vol. 4038, 2006, pp. 63-81.
from the system design point of view. In this sense our [6] A. Barros, M. Dumas, and A. H. ter Hofstede, “Service

. interaction patterns: Towards a reference framework for
formal framework could help on the one hand designers .20 &1 siness process interconnectiantl. Re-

to investigate about the issues related with these kinds ort FIT-TR-2005-02,Faculty of information Technology,
of mobility that, as shown by the examples we discuss, Queensland University of technology, Brisbane, Australia,
provide a mean to design real business applications and, March 2005. 3

on the other hand, to enrich current tecnologies with new!”] éér%ﬁ;réﬁtngcﬁér?oggﬁ;? ;ﬁmﬁ?::gggg:]fa%vmvsegﬁt for
mOb”'Fy mechanisms. Moreover, W? have-modeled the of International confgrenceon formal engineering méthods
behavior of the Request-Response interactions supported (ICFM 2005), ser. LNCS. Springer Verlag, 2005, pp. 5—
by the Web Service by discussing how it seems to be 35,

weaker than the common acceptation, supported also by8] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo,

ORC [19], that is the one we propose in our model. ‘Formalizing web services choreographies,” lnoc. of
The contribute of this paper is twofold, on the one St International Worksnop on Web Sarvices and Formal

. - . Methods (WS-FM 2004), ser. ENTCS, M. Bravetti and
hand we have formalized the mobility aspects of service g zavattaro, Eds., vol. 105. Elsevier, 2004.

oriented computing and on the other hand we have[9] web Services Description Language (WSDL) 1.1, World
discussed them by analyzing the current technology state Wide Web Consortium, [http://www.w3.0rg/TR/wsdl].

of the art. To the best of our knowledge this is the[10] SOAP Version 1.2 Part 1. Messaging Framework, World
first attempt to strictly formalize mobility aspects of the V\Qﬂ‘i/]WEb Consortium, - [http://www.w3.0rg/TR/soap12-
service or_iented co_mputing parad@gm. T_here are severrt\il] BDDI " . Universal Description, Discovery
works which exploit other formalisms like pi-calculus and Integration of Wb Services, Oasis,
[17], [20] and Petri-nets [21] for dealing with service- [http://iwww.uddi.org/specification.html].

based composition but a comprehensive investigation oH2] Web Services Choreography Description Language Version
mobility does not exist 1.0. Working draft 17 December 2004, World Wide Web

. . Consortium, [http://www.w3.0rg/TR/2004/WD-ws-cdl-10-
In our previous work we have defined a formal frame- 20041217]].

work devoted to represent the peculiarities of chore{13] web Services Addressing, W3C member submission
ography and orchestration languages and their interde- 10 august, 2004, [http://www.w3.org/submission/ws-
pendencies. It emerges that orchestration is a further addressing/].

developement step w.r.t. the choreography which defined® AXIs (WSDL2Java), Apache,

. . [http://ws.apache.org/axis/index.html].
the.conversanon rules among part!mpants. A cgnformaqcaS] AXiS (Java2WsDL),
notion captures such a relationship and permits to verify ~ [nttp:/iws.apache.org/axis/index.html].
whether an orchestrated system behaves accordingly wifti6] Java Web Services Developer Pack, Sun
a given choreography. In this paper we have enriched microsystems, [http://java.sun.com/webservices/

the orchestration language (here called service-based laﬂ7] gc.)vl_lmzocarﬁZ/r\?ijeﬁ/ls.el\;lvziz(;?r):c'!f&h;ﬂ]adcu|us based semantics

guage) with mobility aspects and, as a future work, for WS-BPEL,” Journal of Logic and Algebraic Program-
we plan on the one hand to rephrase the choreography ming, vol. 70 issue 1 Web services and formal methods,
language and the conformance notion by considering pp. 96-118, January 2007.

Apache,

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007

[18] J. Misra and W. Cook, “Computation orchestration, a basis
for wide-area computing,Journal of Software and Systems
modeling, to appear.

[19] J. Misra and W. R. Cook, “Computation orchestration: A
basis for wide-area computingJournal of Software and
Systems Modeling, 2006, to appear. A preliminary version
of this paper appeared in the Lecture Notes for NATO
summer school, held at Marktoberdorf in August 2004.

[20] L. Bocchi, C. Laneve, and G. Zavattaro, “A Calculus for
Long-Running Transactions,” iffMOODS, ser. LNCS,
vol. 2884. Springer Verlag, 2003, pp. 124-138.

[21] R. Dijkman and M. Dumas, “Service-oriented Design: a
Multi-viewpoint Approach,’Int. J. Cooperative Inf. Syst.,
vol. 13, no. 4, pp. 337-368, 2004.

Claudio Guidi is currently a Ph.D student at the Department
of Computer Science of the University of Bologna. His Ph.D.
thesis title is “Formalizing languages for Service Oriented
Computing”.

Roberto Lucchi received his Ph.D. degree in Computer Science
in 2004 at the University of Bologna with a thesis on “Security,
Probability and Priority in the tuple-space Coordination Model”.
Currently he is working at the European Commission, DG Joint
Research Centre, Institute for Environment and Sustainability,
Spatial Data Infrastructures Unit. Before joining JRC he was
employed in the SENSORIA (Software Engineering for Service-
Oriented Overlays Computers) EU Integrated Project. His re-
search interests include formal methods, security, coordination
models and languages for the service oriented computing para-
digm.

APPENDIX
The syntax ofy is

xi=z<ele<z|-x]|xAX

where e denotes an expression which can contain
variables references and which can be evaluated into a
value v or, when some variables within the expression
are not instantiated, into the symhal

The satisfaction relation fdr is defined by the follow-
ing rules:

1) S(z) =L =Sk (x<LAL<z)

2) e—su,S(x)<v=>Skz<e

) e—sv,v<Sx)=8Ste<z

D SEXNANSEX"=SEX AX

5 -(SFx)=SF—x

We highlight the fact that rule 1 states that when a
variable z is defined with valuel the only condition
which can be satisfied on such a stateris L.

© 2007 ACADEMY PUBLISHER

