

Combined Formal Modeling and Model Transformation
Based on AADL and Object-Z

Zhengling Guo1, Zining Cao1, 2, 3, 4*

1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing,
China.
2 Science and Technology on Electro-optic Control Laboratory, Luoyang, China.
3 Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210023, China.
4 MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China.

* Corresponding author. Email: caozn@nuaa.edu.cn (Z.C.)
Manuscript submitted February 13, 2023; revised May 20, 2023; accepted July 20, 2023.
doi: 10.17706/jsw.18.4.185-199

Abstract: Formal methods have become more and more widely used in safety-critical software engineering.

A system should be specified with a formal model such as automata, Petri nets, and process algebras to be

formally verified. We investigated the AADL combined with Object-Z modeling approach for subsequent

formal verification work. The advantage of this is that object-oriented ideas can be used for the AADL

modeling process. The space-saving effect is achieved by using class inheritance and polymorphism to

extract commonalities. In this paper, we present a new formal model with a more powerful ability——OZIA

expressed in the language Object-Z. The transformation rules from the AADL-Object-Z model to the OZIA

model are defined to support formal verification. Finally, an example illustrates our results with the Aircraft

Landing Process case study.

Key words: Object-Z, AADL behavior annex, OZIA, model transformation

1. Introduction

Complex embedded real-time systems are widely used in the fields of avionics, spacecraft, automotive

control, etc. These systems are resource-constrained, real-time response, fault-tolerant, dedicated hardware,

and have high requirements for real-time, reliability, and other properties. So how to properly model them

to make them safe and reliable is a common problem faced in academia and industry [1]. In response to this

increasingly urgent problem, the Society of Automotive Engineers (SAE) proposed the embedded real-time

system architecture analysis and design standard—AADL(Architecture Analysis and Design Language,

AADL) in 2004, a very powerful analysis and design language, which is increasingly used in the avionics,

flight control, and other aerospace fields of embedded real-time system architecture design and analysis [2],

[3].

AADL is a model-based engineering language. Although it is good at describing the architectural features

of the system hardware and software, it is helpless in constraining the variables of the system state and the

constraint relations of variable changes. To solve this problem, we use Object-Z [4] to extend the BA(AADL

Behavior Annex, BA) [5], which is an object-oriented extension of Z. The advantage of Object-Z is that it is

first specified by a class. The benefit is that the system is regulated by first specifying the behavior of its

constituent objects through classes, utilizing inheritance and polymorphism. Z, however, does not provide

Journal of Software

185 Volume 18, Number 4, November 2023

mailto:caozn@nuaa.edu.cn

such an approach. Since AADL is a semi-formal model, it cannot be directly formalized for verification. For

this reason, we use the hybrid interface automaton (OZIA) as a formal model.

This paper is organized as follows. Section 2 presents an overview of AADL and its formalization. Section

3 presents BA and Object-Z respectively by providing simple examples of their use. And then the

specification of Object-Z expansion for BA is presented. Since AADL is semi-formal, we transform it into an

interface automaton to facilitate the subsequent formal verification work in section 4. We give the

correctness of the transformation by using bisimulation techniques in the end. The Aircraft Landing Process

case study is presented as a validation of the usefulness of this work in Section 5. We give a general

overview of formal verification in Section 6. Finally, Section 7 gives the conclusions and future directions.

The structure of this paper is shown in Fig. 1.

Fig. 1. The structure of this article.

2. Related Work

Due to its lack of formal specification and semantics, AADL cannot be used directly for formal verification.

It is often transformed into several formal models that are employed with existing formal analysis tools

such as UPPAL, Tina, and Polychrony. We have studied several formal approaches to AADL, classifying past

work according to whether they support software, hardware, support for data constraint, support for

object-oriented, support for model transformation, and support for verification. As shown in Table 1. This

paper supports all the above five indicators.

Journal of Software

186 Volume 18, Number 4, November 2023

Table 1. Comparison of related AADL formal approaches

Modeling

Tools

Support for

software,hardware

Support for data

constraint

Support for

object-oriented

Support for model

transformation

Support for

verification

HBA Yes No No Yes Yes

AADL-DEVS Yes Yes No Yes No

HAADL Yes Yes No Yes No

BA and EA Yes No No Yes No

WPBA No No No Yes Yes

EMA No Yes No Yes Yes

AADL No Yes No Yes Yes

BA Yes Yes No Yes Yes

AADL-BA Yes No No Yes Yes

HA Yes Yes No Yes Yes

This paper Yes Yes Yes Yes Yes

3. AADL and Object-Z

3.1. AADL Modeling Specification

The main modeling notion of AADL is a component. Components can represent a software application or

an execution platform [6]. The syntax of AADL is simple and powerful. It supports the hardware and

software of embedded real-time system architecture design, analysis, and non-functional properties to add

the function of the system description, design, analysis, and validation. It mainly includes three categories of

components as shown in Fig. 2.

Fig. 2. The organization structure of AADL.

The formal study of AADL semantics is an extremely huge project. It brings the capability to enrich the

model with additional information through a set of standard properties and annexes. Big and specific

additions are specified by separate annexes such as the BA (AADL Behavior Annex, BA) to specify the

architectural behavior [7]. To use formal methods for better modeling and analysis, we select a subset of

AADL as the research object——BA. It was proposed in 2006 by the Laboratory of the Institute of Computer

and Information Studies in Toulouse, France. BA is a simple system of state transition relationships,

consisting of three main parts: Variables, States, and Transitions[8]. BA is defined as follows:

Definition 1 (AADL Behavior Annex, BA). BA is a four tupleBA = (𝑉𝑎𝑟, 𝑆, 𝑆0, 𝑇), where

Journal of Software

187 Volume 18, Number 4, November 2023

(1) 𝑉𝑎𝑟 is a finite set of local variables used in the automaton. where the local variables can be either the

AADL base type (Base_Types) datatypes defined by the attribute set, or they can be user-defined datatypes.

Local variables can be assigned values and can be compared;

(2) 𝑆 is a non-empty finite set of states, including three types: initial state, complete state, and final state;

(3) 𝑆0 ⊆ 𝑆 is a finite set of initial states. In a behavioral attachment, there must be only one initial state;

(4) 𝑇 ⊆ 𝑠 × (𝐺𝑢𝑎𝑟𝑑 × 𝐴𝑐𝑡𝑖𝑜𝑛) × 𝑠 is the transition function. A transition connects two states 𝑆 and 𝑆′. A

transition has a condition guard or a Boolean value. BA uses 𝑆
𝑔,𝑎
→ 1 𝑆′ represents a transition. When g is

defaulted, can be omitted. When the transition is complete, action a is executed.

3.2. Object-Z

Object-Z is an object-oriented extension of the specification language Z, developed by researchers at the

Center for Software Verification Research at the University of Queensland, Australia, which has been

developed over several years. Object-Z offers a more powerful mechanism by splitting the specification into

several interacting classes and objects. In Object-Z, a specification consists of a collection of classes. Within

a class, the state and operations are written using schemas. Each class consists of a state space and an

initialization together with a collection of operations that change the state[9].It has complete axiomatic

and denotational semantics. In terms of expressiveness and language readability, Object-Z is stronger than

Z language. Currently, the Object-Z specification language has been widely used in academia and industry.

One of the most important concepts of object orientation is inheritance. The purpose of inheritance is to

achieve incremental specification by building complex classes from simple components. Inheritance works

as follows. All content (properties, operations, etc.) is inherited except for the visibility list. The type and

constant definitions of the inherited class are merged with those explicitly declared in the derived class.

The state patterns and operation schemas of inherited and derived classes are also merged. Inherited

operations with names different from those in the new class are implicitly included in the inheritance[10].

The classes in a specification can be related in several ways. For example, an Object-Z class may inherit

another class. Such inheritance allows complex classes and specifications to be built from simpler

components iteratively in a similar way to the use of schema inclusion at an operational level.

Instantiation is also supported because a class is viewed as a template for objects of that class, enabling

classes to refer to objects of other classes as state variables. For example, the template of schema is as

follows:

An Object-Z specification of a system typically includes several class definitions related to inheritance

and instantiation[11]. Declared in terms of a generic parameter can only be used in expressions and

predicates which are not type-specific. For example, the template of schema class A[T] is as follows:

Journal of Software

188 Volume 18, Number 4, November 2023

The only construct of a class that is not inherited is the visibility list. The visibility list of the inheriting

class is, therefore, totally independent of that of the inherited class. Hence, inherited features can be

effectively canceled. For example, the following class B[T] inherits the class A[T] and redefines the variable

y to be a bag, rather than a set of elements of type T.

Object-Z not only extends the syntax of Z but also the semantic universe in which specifications are given

meaning. In particular, it allows variables to be declared which, rather than directly representing a value,

refer to a value in much the same way as pointers in a programming language. A semantics supporting such

variables is called reference semantics.

3.3. Combination of AADL and Object-Z

This section expands the AADL modeling specification based on the Object-Z pattern. We select a subset

of AADL as the object of study. AADL comes with a behavior annex that includes state and transition, the

lack of ability to describe the nature of the data constraints between components. So we introduce the

Object-Z language to expand the Behavior Annex of AADL and add formal descriptions to its variables. Since

the formalization of the complete semantics of AADL is very large, a subset of AADL is considered, including

Thread, connection, behavior annex, SOM, etc. We describe the real-time system with data constraints in

the AADL-Object-Z specification as a six-tuple defined as follows:

Definition 2 T is a six tuple 𝑇 = (𝑆𝑇
𝑍 , 𝑆𝑇

𝑖𝑛𝑖𝑡, 𝐷𝑇 , 𝑃𝑇 , 𝐴𝑇
𝑍 , 𝑇𝑅𝑇

𝑍), where

(1)𝑆𝑇
𝑍 = {𝑠 ∶ 𝑖 ∈ N} is the set of states in the system, i.e., the state States in Behavior Annex, which is an

expanded set of state patterns;

(2)𝑆𝑇
𝑖𝑛𝑖𝑡 is a finite set of system states;

(3)𝐷𝑇 is a collection of data properties described in the system. The properties include not only the

constraint properties such as Guard in BA_Transition but also the data properties defined in threads and

processes, etc;

(4)𝑃𝑇 is the set of interfaces in the system;

Journal of Software

189 Volume 18, Number 4, November 2023

(5)𝐴𝑇
𝑍 is the set of actions in a system,i.e.Computation in BA_Transition;

(6)𝑇𝑅𝑇
𝑍 denotes the set of state transitions in the system, i.e. the collection of state transition Transition

Behavior Annex.

Which, to distinguish it from the previous one, we make the mark with “𝑍” in the upper right corner of

the element. To better illustrate the specification, we give an example of the diagnosis and treatment

process of the diabetes system (DDS), including four parts: diagnosis of diabetes, diagnosis of diabetes type

(I and II), diagnosis of complications, and treatment plan. The system model is shown in Fig. 3.

Fig. 3. The model of diagnosis and treatment process.

The system is modeled as a partial function from input symptoms to diagnostic results. The pattern of the

DDS0 system is as follows：

In DDS1, five variables express the state: basic information, a body symptom, physical index, blood sugar,

and trans. Then transitions include four patterns, where INIT represents the state of not seeking medical

treatment, Pre-treatment represents the state of pre-diagnosis, and Rule-matching represents the matching

of the patient’s physical examination parameters with the diagnosis rules. Cure-matching stands for

Journal of Software

190 Volume 18, Number 4, November 2023

prescribing the right medicine. When the patient passes further diagnosis, the system transitions to DDS1.

4. Model Transformation

4.1. OZIA Specification

The interface automaton with Object-Z, also known as the OZIA combined specification, is a combination

of the Object-Z language and the interface automaton specification to form a capability that combines the

nature of the interface model and the nature of the data constraints.

Interface Automata (IA) is a lightweight component specification language based on automata that treat

each activity in a component as an input, output, or internal activity[12]. The definition is as follows:

Definition 3 (Interface Automata, IA). A interface automata is a six tuple IA = (𝑉𝑃, 𝑉𝑃
𝑖𝑛𝑖𝑡 , 𝐴𝑃

𝐼 , 𝐴𝑃
𝑂, 𝐴𝑃

𝐻, 𝒯𝑃),

where

(1) 𝑉𝑃 is a set of states ;

(2)𝑉𝑃
𝑖𝑛𝑖𝑡 ⊆ 𝑉𝑃is an initial set of states, 𝑉𝑃

𝑖𝑛𝑖𝑡contains at most one state; if 𝑉𝑃
𝑖𝑛𝑖𝑡 = ∅, then 𝐼𝐴 is null ;

(3) 𝐴𝑃
𝐼 , 𝐴𝑃

𝑂, 𝐴𝑃
𝐻 is a disjoint set of inputs,outputs and internal actions, using 𝐴𝑃 = 𝐴𝑃

𝐼 ∪ 𝐴𝑃
𝑂 ∪ 𝐴𝑃

𝐻 to

represent the set consisting of all actions ;

(4)𝒯P ⊆ VP × AP × VP is a set of transition actions.

In which, if there are only certain internal actions in the interface automaton P, the symbols are denoted

as 𝐴𝑃
𝐼 = 𝐴𝑃

𝑂 = ∅, then we consider the interface automaton P closed; otherwise open. When interface

automata provide a specification approach for interface behavioral properties, they cannot describe the

state specification of data structures. The Object-Z language specification, on the other hand, can specify the

state of the system, but it is not suitable for the description of behavioral properties. Therefore, combining

the two to form the interface automaton OZIA with Z allows us to describe both static and dynamic

properties of the system, which we also call the interface automaton with data constraints. The definition is

as follows:

Definition 4(OZIA) OZIA is a eleven tuple OZIA = (𝑆𝑃 , 𝑆𝑃
𝑖𝑛𝑖𝑡, 𝐴𝑃

𝐼 , 𝐴𝑃
𝑂, 𝐴𝑃

𝐻 , 𝑉𝑃
𝐼 , 𝑉𝑃

𝑂, 𝑉𝑃
𝐻 , 𝐹𝑃

𝑉, 𝐹𝑃
𝐴, 𝒯𝑃), where

(1)𝑆𝑃 is the set of system states.

(2)𝑆𝑃
𝑖𝑛𝑖𝑡 ⊆ 𝑆𝑃 is a finite set of system states. if 𝑉𝑃

𝑖𝑛𝑖𝑡 = ∅, then 𝑃 is null;

(3)𝐴𝑃
𝐼 , 𝐴𝑃

𝑂, 𝐴𝑃
𝐻 is a disjoint set of inputs, outputs and internal actions, using 𝐴𝑃 = 𝐴𝑃

𝐼 ∪ 𝐴𝑃
𝑂 ∪ 𝐴𝑃

𝐻 to

represent the set consisting of all actions;

(4)𝑉𝑃
𝐼 , 𝑉𝑃

𝑂, 𝑉𝑃
𝐻 is a disjoint set of inputs, outputs and internal variables, using 𝑉𝑃 = 𝑉𝑃

𝐼 ∪ 𝑉𝑃
𝑂 ∪ 𝑉𝑃

𝐻 to

Journal of Software

191 Volume 18, Number 4, November 2023

represent the set consisting of all variables;

(5)𝐹𝑃
𝑉 represents the mapping functions, it can map any state in 𝑆𝑃to a state pattern in some Object-Z;

(6) 𝐹𝑃
𝐴 represents the mapping functions, it can map any state in 𝐴𝑃 to an operation pattern in some

Object-Z, among the species can be divided into sets 𝐹𝑃
𝐼 , 𝐹𝑃

𝑂, 𝐹𝑃
𝐻, respectively mapped to input operation

mode, output operation mode, and internal operation mode, etc.,

(7) 𝒯𝑃 ⊆ 𝑉𝑃 × 𝐴𝑃 × 𝑉𝑃 is a set of transition actions.

4.2. Rules of Model Transformation

The rules for conversion from AADL-Object-Z to OZIA models are as follows:

(1)𝑆𝑇 is the module of AADL-Object-Z corresponding to the variable set 𝑆𝑃 of OZIA. 𝑆𝑡𝑎𝑡𝑒 𝑔𝑢𝑎𝑟𝑑

module corresponds to the class 𝐺𝑢𝑎𝑟𝑑 of OZIA;

(2)𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑡𝑎𝑡𝑒 in the 𝑆𝑡𝑎𝑡𝑒 module of AADL-Object-Z corresponding to the initial state set 𝑆𝑃
𝑖𝑛𝑖𝑡

 of

OZIA;

(3 𝐷𝑇 is the module of AADL-Object-Z corresponding to the set VP of OZIA. The Guard in

AADL-Object-Zmodule corresponds to 𝜑 in OZIA. 𝐹𝑃
𝑉 represents the mapping functions, it can map the

description 𝑑𝑖 ∈ 𝐷𝑇 , 𝑖 ∈ 𝑁 in AADL-Object-Zconcerning constraints on data properties into a set of patterns

in OZIA;

(4)𝑃𝑇 is the module of AADL-Object-Z corresponding to the interface of OZIA;

(5) 𝐴𝑇 is the module of AADL-Object-Z corresponding to the action set 𝐴𝑃 of OZIA. 𝐹𝑃
𝐴 represents the

mapping functions, it can map the relevant action set 𝐴𝑃 = 𝐴𝑃
𝐼 ∪ 𝐴𝑃

𝑂 ∪ 𝐴𝑃
𝐻 in AADL-Object-Z to the

operation mode set, and map it to the input operation mode 𝐴𝑃
𝐼 , output operation mode set 𝐴𝑃

𝑂 and the

internal actions 𝐴𝑃
𝐻 in more detail according to the different actions;

(6) 𝑇𝑅𝑇 is a module of AADL-Object-Z corresponding to the transition action set 𝒯𝑃 of OZIA.

Table 2. Rules of model transformation

AADL-Object-Zspecification OZIA specification

all states in the mode 𝑆𝑃

initial states in the mode SP
init

inputs, outputs, and internal

actions
𝐴𝑃
𝐼 , 𝐴𝑃

𝑂, 𝐴𝑃
𝐻

inputs, outputs, and internal

variables
𝑉𝑃
𝐼, 𝑉𝑃

𝑂, 𝑉𝑃
𝐻

mapping of variables 𝐹𝑃
𝑉

mapping of actions 𝐹𝑃
𝐴

state transition relations 𝒯𝑃

Bismulation [13] is commonly used in modal logic to describe the equivalence between the behavior of

two systems. Since future formal verification work is based on formal models, in this paper we transform

the semi-formal model of the AADL extension language into the formal automaton OZIA. Bisimulation is

defined as follows:

Definition 5 (Bisimulation): Let 𝑀1 = (𝑆1
𝑍, →1) and 𝑀2 = (𝐹𝑃

𝐴(𝑆2),→2) be two transition systems,

𝛼𝑧 , 𝐹𝑃
𝐴(𝛽) ∈ 𝐴𝑃. Asymmetric binary relation R ∈ 𝑆1

𝑍 × 𝐹𝑃
𝐴(𝑆2) is called a strong conditional bisimulation

relation if 𝑠1
𝑧𝑅𝑓𝑃

𝐴(𝑠2), implies:

(1)for each 𝑠1
𝑧′ ∈ 𝑆1

𝑍, if 𝑠1
𝑧
𝛼𝑧

→ 1 𝑠1
𝑧′ then there exist 𝑠2

′ ∈ 𝐹𝑃
𝐴(𝑆2) such that 𝑓𝑃

𝐴(𝑠2)
𝐹𝑃
𝐴(𝛽)
→ 2 𝑓𝑃

𝐴(𝑠2′), and

𝑠1
𝑧′ 𝑅 𝑓𝑃

𝐴(𝑠2′), where 𝐹𝑃
𝐴(𝛽) = 𝛼𝑧 ∈ 𝐴𝑃; (backward)

(2)for each 𝑓𝑃
𝐴(𝑠2′) ∈ 𝐹𝑃

𝐴(𝑆2) , if 𝑓𝑃
𝐴(𝑠2)

𝛼𝑧

→ 2 𝑓𝑃
𝐴(𝑠2′) , then there exists 𝑠1

𝑧′ ∈ 𝑆1
𝑍 such that 𝑠1

𝑧

𝐹𝑃
𝐴(𝛽)
→ 1 𝑠1

𝑧′ and 𝑠1
𝑧′𝑅 𝑓𝑃

𝐴(𝑠2′), where 𝛼𝑧 = 𝐹𝑃
𝐴(𝛽) ∈ 𝐴𝑃. (forward)

𝑀1 and 𝑀2 are called strong bisimilar, if there exists a symmetric binary relation R between 𝑀1 and

Journal of Software

192 Volume 18, Number 4, November 2023

𝑀2 such that for all state s1
z ∈ S1

Z, there exists a state 𝑓𝑃
𝐴(s2) ∈ 𝐹𝑃

𝐴(S2) that satisfies (s1
z′, 𝑓𝑃

𝐴(s2′)) ∈ R

and vice versa.

s1
z denotes the state in the behavioral attachment under the Object-Z mode, 𝑓𝑃

𝐴(𝑠2) denotes the state in

the behavioral attachment under the automaton OZIA model and they satisfy the R relationship,

i.e.,s1
zR𝑓𝑃

𝐴(s2). s1
z′denotes the state s1

z arrived under the action αz, 𝑓𝑃
𝐴(s2′) denotes the state 𝐹𝑃

𝐴(β)

arrived under the action 𝑓𝑃
𝐴(s2) , and they still satisfy the R relationship after the transition,

i.e., s1
z′ R 𝑓𝑃

𝐴(s2′).

Therefore, we can use the automaton OZIA obtained by model transformation to do further work on

model checking.

Fig. 3. The equivalence to the strong bisimulation.

5. Aircraft Landing Control System Modeling

In this section, an example of an airport aircraft landing control is used to illustrate the specific process of

modeling a real-time system model with data constraints and the formalized interface automaton model

after the transformation.

The process of movement in which an aircraft slips from an altitude of 50 feet and lands on the ground

until it stops skidding is called landing. Landing is divided into five stages: drop height, flare-out, flat

floating, grounding, and taxiing.

We define that the distance from the airport is more than 400ft to start the decline, and the distance from

the ground is less than or equal to 50ft to level off, assuming that the speed of the aircraft is not greater

than 700km/h during the decline, not greater than 400km/h during the level off and not greater than

200km/h during the level off. The landing process is schematically shown in Figure 4 below.

Fig. 4. The aircraft landing control system.

5.1. The AADL-Object-Z Model of System

The main function of the Aircraft Landing Process (ALP) is to obtain real-time altitude and velocity

information of the aircraft and to compute the next flight state. The ALP is described by an AADL modeling

specification with data constraints and is described by a threaded building block alp. The runway state is

determined by the flight state whether it is idle or not: when the runway beacon receives the signal from

the tower, the beacon is red and the aircraft flies off the runway, the beacon is in the green state. The

Journal of Software

193 Volume 18, Number 4, November 2023

modeling process for it is shown in Table 3.

Table 3. The aircraft landing process modeled by AADL-Object-Z

package example

public

thread alp

features

height_data: in data port;

velocity_data: in data port;

angle_data: out data port;

time_interval: in event port;

light: out event port;

properties

Dispatch_Protocol Periodic;

Compute_exection_time 5 ms ... 15ms;

Period 20 ms;

end alp;

thread implementation alp. impl

annex behavior _specification {**

𝐕𝐚𝐫𝐢𝐚𝐛𝐥𝐞:

𝑣:Base_Types::Unsigned_32;

ℎ:Base_Types::Unsigned_32;

𝛼:Base_Types::Unsigned_32;

𝑙:red or green;

𝐒𝐭𝐚𝐭𝐞:

inactivity: initial_state;

dropHeight, flareOut, flatFloating, grounding, taxiing, exit: states;

𝐒𝐭𝐚𝐭𝐞 𝐠𝐮𝐚𝐫𝐝:

dropHeight: 𝑣<=700&&ℎ>20&&l=red;

flareOut : 𝑣<=400&&ℎ<=20&&l=green;

flatFloating:𝑣<=200&&ℎ=0&&l=green;

grounding:𝑣<=200&&ℎ=0&&l=green;

taxi:𝑣<=100&&ℎ=0&&l=green;

exit :𝑣<=50&& ℎ=0&&l=red;

transitions:

inactivity -[time_interval<=1min] → dropHeight{ 𝑣<=700&&ℎ>20&&l=red}

dropHeight -[time_interval>1min&& time_interval<=2min] → flareOut { 𝑣<=400&& ℎ<=20&&l=green}

flareOut -[time_interval<=1min] → flatFloating { 𝑣<=200&& ℎ=0&&l=green};

flatFloating -[time_interval<=1min] → grounding {𝑣<=200&& ℎ=0&&l=green};

grounding -[time_interval<=1min] →exit {𝑣<=100&& ℎ=0&&l=green};

exit -[light=green] → inacitvity;

**}

end alp. impl;

end example;

The above alp thread artifacts are described formally in the Object-Z language for their variable

constraints and variants as follows:

state inactive:

Journal of Software

194 Volume 18, Number 4, November 2023

The main purpose of inactive is to create the conditions for landing. The control tower sends out the

signal and the runway signal light receive the signal from the control tower, then the signal light changes

from the original green state (indicating the runway is in a free state) to the red state (indicating the

runway is in a busy state).

state dropHeight:

When descending to the specified altitude, the pull rod increases the angle of approach, increases the lift,

and decreases the angle of descent.

state flareOut:

Journal of Software

195 Volume 18, Number 4, November 2023

As the angle increases, the drag of the aircraft increases, the aircraft deceleration, and the altitude

decrease.

state flatFloating:

In the flatFloating stage, the aircraft speed decreases gradually due to the larger angle of welcome and

the larger drag.

state grounding:

In the grounding stage,the lift is slightly less than the gravity, and the aircraft sinks slowly. At this

time,due to the increase of aircraft angle and ground effect, the nose of the aircraft automatically drops.

state taxiing:

Journal of Software

196 Volume 18, Number 4, November 2023

At this time, due to the increase of aircraft angle and ground effect, the nose of the aircraft automatically

drops. Therefore, it is necessary to bring the rod backward appropriately with the sinking of the aircraft to

maintain the grounding attitude and lift.

state exit:

The runway signal receives this exit signal and changes from red (indicating that the runway is busy) to

green (indicating that the runway is idle).

5.2. Transformation to OZIA

Denote by i, d, f, o, ff, t, e to describe the state of aircraft inactive, dropHeight, flareOut, flatFloating,

grounding, taxiing, and exit. Through the rules of model transformation in section 3.1 of this paper, we can

obtain the OZIA automaton of the entire aircraft landing airport as shown in Figure 5.

Fig. 5. The OZIA model of the aircraft landing system.

6. Formal Verification

Formal verification methods are mainly divided into two categories: one is deductive verification based on

logical reasoning; the other is model detection based on exhaustive state space search. The shortcoming of the

former is that it cannot be fully automated verification, and for slightly complex systems, automated reasoning is

difficult, so it is only applicable to smaller systems and difficult to be accepted by the industry. Model checking is

an automatic verification technique that detects whether the system behavior has the expected properties by

Journal of Software

197 Volume 18, Number 4, November 2023

searching the yet poor state space of the system model. It has the advantage of being able to automate validation,

thanks in large part to the support of automated validation tools, such as SPIN, SMV, PAT, etc. These tools accept

the LTL formula, the CTL formula, and the process algebra, respectively. In the next step, we expect to achieve

formal verification with these tools.

7. Conclusion

The model is essentially a collection of variables and transfer functions, so its expressive ability is

naturally reflected in these two aspects. Why do we take compositional modeling? The reason is that the

description of data constraints is not sufficient in AADL, especially in the object-oriented domain. Object-Z

is specially used to describe object-oriented data constraints and state transition, so we put forward a

composite system modeling based on Object-Z technology to strengthen this aspect.

To summarize, this paper proposes the formal specification language AADL-Object-Z by combining the

Object-Z specification language and AADL Behavior Annex. The paper proposes an OZIA automaton as a

formal model and then gives the rules of transformation between the two models. And we give a practical

example of the Aircraft Landing Process case study to describe the whole process from modeling to Object-Z

extension to OZIA. There are many more mature model detection tools, such as NuSMV, UPPLA, and PAT,

which support real-time hybrid systems. The next work will be to do specific formal verification and

analysis based on the existing formal model in this paper.

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

Zining Cao conducted the research; Zhengling Guo proposed the method and wrote the paper; all authors

approved the final version.

Funding

This work was supported in part by the Aviation Science Foundation of China under Grant 20185152035.

References

[1] Chen, X., Zhu, Y., Zhao, Y., Wang, J., & Altynbek, A. (2021). Hybrid modeling and model transformation of

AADL for verifying the properties of CPS space-time compositions. IEEE Access, 9, 99539–99551.

[2] Xu, J., Yang, Z., Huang, Z., Zhou, Y., Liu, C., Xue, L., & Filali, M. (2018, October). Hierarchical behavior

annex: Towards an AADL functional specification extension. Proceedings of the 2018 16th ACM/IEEE

International Conference on Formal Methods and Models for System Design (pp. 1–11). IEEE.

[3] Lee, J., Bae, K., Ölveczky, P. C., Kim, S., & Kang, M. (2022). Modeling and formal analysis of virtually

synchronous cyber-physical systems in AADL. International Journal on Software Tools for Technology

Transfer, 1–38.

[4] Smith, G. (2012). The Object-Z Specification Language (Vol. 1). Springer Science and Business Media.

[5] Zhu, Y., Cao, Z., Wang, F., & Lu, W. (2020, November). AADL and modelica model combination and model

conversion based on CPS. Proceedings of the 2020 4th International Conference on Electronic

Information Technology and Computer Engineering (pp. 1136–1140).

[6] Sokolsky, O., Lee, I., & Clarke, D. (2009). Process-algebraic interpretation of AADL models. In 2009:

Proceedings of the 14th Ada-Europe International Conference Reliable Software

Technologies–Ada-Europe (pp. 222–236). Springer Berlin Heidelberg.

[7] Mkaouar, H., Zalila, B., Hugues, J., & Jmaiel, M. (2020). A formal approach to AADL model-based

Journal of Software

198 Volume 18, Number 4, November 2023

software engineering. International Journal on Software Tools for Technology Transfer, 22, 219–247.

[8] Aerospace, S A E. (2011). SAE architecture analysis and design language (AADL) annex volume 2. Annex

B: Data Modeling Annex Annex D: Behavior Model Annex Annex F: ARINC653 Annex.

[9] Stepney, S., Barden, R., & Cooper, D. (2013). Object orientation in Z. Springer Science and Business

Media.

[10] Derrick, J., Boiten, E. A., Derrick, J., & Boiten, E. A. (2014). Combining CSP and object-Z. refinement in z

and object-Z. Foundations and Advanced Applications, 431–455.

[11] Smith, G., & Duke, D. J. (2020). Specification with class: A brief history of object-Z. In formal methods.

Proceedings of the 2019 International Workshops.

[12] Zhang, Y., Shi, J., Zhang, T., Liu, X., & Qian, Z. (2015). Modeling and checking for cyber–physical system

based on hybrid interface automata. Pervasive and Mobile Computing, 24, 179–193.

[13] Milner, R., & Sangiorgi, D. (1992). Barbed bisimulation. In Automata, Languages and Programming:

Proceedings of the 19th International Colloquium Wien.

Copyright © 2023 by the authors. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited (CC BY 4.0)

Journal of Software

199 Volume 18, Number 4, November 2023

https://creativecommons.org/licenses/by/4.0/

