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Abstract: Formal methods have become more and more widely used in safety-critical software engineering. 

A system should be specified with a formal model such as automata, Petri nets, and process algebras to be 

formally verified. We investigated the AADL combined with Object-Z modeling approach for subsequent 

formal verification work. The advantage of this is that object-oriented ideas can be used for the AADL 

modeling process. The space-saving effect is achieved by using class inheritance and polymorphism to 

extract commonalities. In this paper, we present a new formal model with a more powerful ability——OZIA 

expressed in the language Object-Z. The transformation rules from the AADL-Object-Z model to the OZIA 

model are defined to support formal verification. Finally, an example illustrates our results with the Aircraft 

Landing Process case study. 
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1. Introduction 

Complex embedded real-time systems are widely used in the fields of avionics, spacecraft, automotive 

control, etc. These systems are resource-constrained, real-time response, fault-tolerant, dedicated hardware, 

and have high requirements for real-time, reliability, and other properties. So how to properly model them 

to make them safe and reliable is a common problem faced in academia and industry [1]. In response to this 

increasingly urgent problem, the Society of Automotive Engineers (SAE) proposed the embedded real-time 

system architecture analysis and design standard—AADL(Architecture Analysis and Design Language, 

AADL) in 2004, a very powerful analysis and design language, which is increasingly used in the avionics, 

flight control, and other aerospace fields of embedded real-time system architecture design and analysis [2], 

[3].  

AADL is a model-based engineering language. Although it is good at describing the architectural features 

of the system hardware and software, it is helpless in constraining the variables of the system state and the 

constraint relations of variable changes. To solve this problem, we use Object-Z [4] to extend the BA(AADL 

Behavior Annex, BA) [5], which is an object-oriented extension of Z. The advantage of Object-Z is that it is 

first specified by a class. The benefit is that the system is regulated by first specifying the behavior of its 

constituent objects through classes, utilizing inheritance and polymorphism. Z, however, does not provide 
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such an approach. Since AADL is a semi-formal model, it cannot be directly formalized for verification. For 

this reason, we use the hybrid interface automaton (OZIA) as a formal model.  

This paper is organized as follows. Section 2 presents an overview of AADL and its formalization. Section 

3 presents BA and Object-Z respectively by providing simple examples of their use. And then the 

specification of Object-Z expansion for BA is presented. Since AADL is semi-formal, we transform it into an 

interface automaton to facilitate the subsequent formal verification work in section 4. We give the 

correctness of the transformation by using bisimulation techniques in the end. The Aircraft Landing Process 

case study is presented as a validation of the usefulness of this work in Section 5. We give a general 

overview of formal verification in Section 6. Finally, Section 7 gives the conclusions and future directions. 

The structure of this paper is shown in Fig. 1. 

 

 
Fig. 1. The structure of this article. 

 

2. Related Work 

Due to its lack of formal specification and semantics, AADL cannot be used directly for formal verification. 

It is often transformed into several formal models that are employed with existing formal analysis tools 

such as UPPAL, Tina, and Polychrony. We have studied several formal approaches to AADL, classifying past 

work according to whether they support software, hardware, support for data constraint, support for 

object-oriented, support for model transformation, and support for verification. As shown in Table 1. This 

paper supports all the above five indicators. 
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Table 1. Comparison of related AADL formal approaches 

Modeling 

Tools 

Support for 

software,hardware 

Support for data 

constraint 

Support for 

object-oriented 

Support for model 

transformation 

Support for 

verification 

HBA Yes No No Yes Yes 

AADL-DEVS Yes Yes No Yes No 

HAADL Yes Yes No Yes No 

BA and EA Yes No No Yes No 

WPBA No No No Yes Yes 

EMA No Yes No Yes Yes 

AADL No Yes No Yes Yes 

BA Yes Yes No Yes Yes 

AADL-BA Yes No No Yes Yes 

HA Yes Yes No Yes Yes 

This paper Yes Yes Yes Yes Yes 

 

3. AADL and Object-Z 

3.1.  AADL Modeling Specification 

The main modeling notion of AADL is a component. Components can represent a software application or 

an execution platform [6]. The syntax of AADL is simple and powerful. It supports the hardware and 

software of embedded real-time system architecture design, analysis, and non-functional properties to add 

the function of the system description, design, analysis, and validation. It mainly includes three categories of 

components as shown in Fig. 2. 

 

 

Fig. 2. The organization structure of AADL. 

 

The formal study of AADL semantics is an extremely huge project. It brings the capability to enrich the 

model with additional information through a set of standard properties and annexes. Big and specific 

additions are specified by separate annexes such as the BA (AADL Behavior Annex, BA) to specify the 

architectural behavior [7]. To use formal methods for better modeling and analysis, we select a subset of 

AADL as the research object——BA. It was proposed in 2006 by the Laboratory of the Institute of Computer 

and Information Studies in Toulouse, France. BA is a simple system of state transition relationships, 

consisting of three main parts: Variables, States, and Transitions[8]. BA is defined as follows: 

Definition 1 (AADL Behavior Annex, BA). BA is a four tupleBA = (𝑉𝑎𝑟, 𝑆, 𝑆0, 𝑇), where 
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(1) 𝑉𝑎𝑟 is a finite set of local variables used in the automaton. where the local variables can be either the 

AADL base type (Base_Types) datatypes defined by the attribute set, or they can be user-defined datatypes. 

Local variables can be assigned values and can be compared; 

(2) 𝑆 is a non-empty finite set of states, including three types: initial state, complete state, and final state; 

(3) 𝑆0  ⊆ 𝑆 is a finite set of initial states. In a behavioral attachment, there must be only one initial state; 

(4) 𝑇 ⊆ 𝑠 × (𝐺𝑢𝑎𝑟𝑑 × 𝐴𝑐𝑡𝑖𝑜𝑛) × 𝑠 is the transition function. A transition connects two states 𝑆 and 𝑆′. A 

transition has a condition guard or a Boolean value. BA uses  𝑆
𝑔,𝑎
→ 1 𝑆′ represents a transition. When g is 

defaulted, can be omitted. When the transition is complete, action a is executed. 

3.2.  Object-Z 

Object-Z is an object-oriented extension of the specification language Z, developed by researchers at the 

Center for Software Verification Research at the University of Queensland, Australia, which has been 

developed over several years. Object-Z offers a more powerful mechanism by splitting the specification into 

several interacting classes and objects. In Object-Z, a specification consists of a collection of classes. Within 

a class, the state and operations are written using schemas. Each class consists of a state space and an 

initialization together with a collection of operations that change the state[9].It has complete axiomatic 

and denotational semantics. In terms of expressiveness and language readability, Object-Z is stronger than 

Z language. Currently, the Object-Z specification language has been widely used in academia and industry. 

One of the most important concepts of object orientation is inheritance. The purpose of inheritance is to 

achieve incremental specification by building complex classes from simple components. Inheritance works 

as follows. All content (properties, operations, etc.) is inherited except for the visibility list. The type and 

constant definitions of the inherited class are merged with those explicitly declared in the derived class. 

The state patterns and operation schemas of inherited and derived classes are also merged. Inherited 

operations with names different from those in the new class are implicitly included in the inheritance[10]. 

The classes in a specification can be related in several ways. For example, an Object-Z class may inherit 

another class. Such inheritance allows complex classes and specifications to be built from simpler 

components iteratively in a similar way to the use of schema inclusion at an operational level.       

Instantiation is also supported because a class is viewed as a template for objects of that class, enabling 

classes to refer to objects of other classes as state variables. For example, the template of schema is as 

follows: 

 
 

An Object-Z specification of a system typically includes several class definitions related to inheritance 

and instantiation[11]. Declared in terms of a generic parameter can only be used in expressions and 

predicates which are not type-specific. For example, the template of schema class A[T] is as follows: 
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The only construct of a class that is not inherited is the visibility list. The visibility list of the inheriting 

class is, therefore, totally independent of that of the inherited class. Hence, inherited features can be 

effectively canceled. For example, the following class B[T] inherits the class A[T] and redefines the variable 

y to be a bag, rather than a set of elements of type T. 

 

 

Object-Z not only extends the syntax of Z but also the semantic universe in which specifications are given 

meaning. In particular, it allows variables to be declared which, rather than directly representing a value, 

refer to a value in much the same way as pointers in a programming language. A semantics supporting such 

variables is called reference semantics.  

3.3.   Combination of AADL and Object-Z 

This section expands the AADL modeling specification based on the Object-Z pattern. We select a subset 

of AADL as the object of study. AADL comes with a behavior annex that includes state and transition, the 

lack of ability to describe the nature of the data constraints between components. So we introduce the 

Object-Z language to expand the Behavior Annex of AADL and add formal descriptions to its variables. Since 

the formalization of the complete semantics of AADL is very large, a subset of AADL is considered, including 

Thread, connection, behavior annex, SOM, etc. We describe the real-time system with data constraints in 

the AADL-Object-Z specification as a six-tuple defined as follows: 

Definition 2 T is a six tuple 𝑇 = (𝑆𝑇
𝑍 , 𝑆𝑇

𝑖𝑛𝑖𝑡, 𝐷𝑇 , 𝑃𝑇 , 𝐴𝑇
𝑍 , 𝑇𝑅𝑇

𝑍), where 

(1)𝑆𝑇
𝑍 = {𝑠 ∶ 𝑖 ∈ N} is the set of states in the system, i.e., the state States in Behavior Annex, which is an 

expanded set of state patterns; 

(2)𝑆𝑇
𝑖𝑛𝑖𝑡 is a finite set of system states; 

(3)𝐷𝑇  is a collection of data properties described in the system. The properties include not only the 

constraint properties such as Guard in BA_Transition but also the data properties defined in threads and 

processes, etc;  

(4)𝑃𝑇  is the set of interfaces in the system; 
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(5)𝐴𝑇
𝑍  is the set of actions in a system,i.e.Computation in BA_Transition; 

(6)𝑇𝑅𝑇
𝑍 denotes the set of state transitions in the system, i.e. the collection of state transition Transition 

Behavior Annex. 

Which, to distinguish it from the previous one, we make the mark with “𝑍” in the upper right corner of 

the element. To better illustrate the specification, we give an example of the diagnosis and treatment 

process of the diabetes system (DDS), including four parts: diagnosis of diabetes, diagnosis of diabetes type 

(I and II), diagnosis of complications, and treatment plan. The system model is shown in Fig. 3. 

 

Fig. 3. The model of diagnosis and treatment process. 

 

The system is modeled as a partial function from input symptoms to diagnostic results. The pattern of the 

DDS0 system is as follows： 

 

In DDS1, five variables express the state: basic information, a body symptom, physical index, blood sugar, 

and trans. Then transitions include four patterns, where INIT represents the state of not seeking medical 

treatment, Pre-treatment represents the state of pre-diagnosis, and Rule-matching represents the matching 

of the patient’s physical examination parameters with the diagnosis rules. Cure-matching stands for 
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prescribing the right medicine. When the patient passes further diagnosis, the system transitions to DDS1. 

 

 

4. Model Transformation 

4.1. OZIA Specification 

The interface automaton with Object-Z, also known as the OZIA combined specification, is a combination 

of the Object-Z language and the interface automaton specification to form a capability that combines the 

nature of the interface model and the nature of the data constraints. 

Interface Automata (IA) is a lightweight component specification language based on automata that treat 

each activity in a component as an input, output, or internal activity[12]. The definition is as follows: 

Definition 3 (Interface Automata, IA). A interface automata is a six tuple IA = (𝑉𝑃, 𝑉𝑃
𝑖𝑛𝑖𝑡 , 𝐴𝑃

𝐼 , 𝐴𝑃
𝑂, 𝐴𝑃

𝐻, 𝒯𝑃), 

where 

(1) 𝑉𝑃 is a set of states ; 

(2)𝑉𝑃
𝑖𝑛𝑖𝑡 ⊆ 𝑉𝑃is an initial set of states, 𝑉𝑃

𝑖𝑛𝑖𝑡contains at most one state; if 𝑉𝑃
𝑖𝑛𝑖𝑡 = ∅, then 𝐼𝐴 is null ; 

(3)  𝐴𝑃
𝐼 , 𝐴𝑃

𝑂, 𝐴𝑃
𝐻 is a disjoint set of inputs,outputs and internal actions, using 𝐴𝑃 = 𝐴𝑃

𝐼 ∪ 𝐴𝑃
𝑂 ∪ 𝐴𝑃

𝐻 to 

represent the set consisting of all actions ; 

(4)𝒯P ⊆ VP × AP × VP is a set of transition actions. 

In which, if there are only certain internal actions in the interface automaton P, the symbols are denoted 

as 𝐴𝑃
𝐼 = 𝐴𝑃

𝑂 = ∅, then we consider the interface automaton P closed; otherwise open. When interface 

automata provide a specification approach for interface behavioral properties, they cannot describe the 

state specification of data structures. The Object-Z language specification, on the other hand, can specify the 

state of the system, but it is not suitable for the description of behavioral properties. Therefore, combining 

the two to form the interface automaton OZIA with Z allows us to describe both static and dynamic 

properties of the system, which we also call the interface automaton with data constraints. The definition is 

as follows: 

Definition 4(OZIA) OZIA is a eleven tuple OZIA = (𝑆𝑃 , 𝑆𝑃
𝑖𝑛𝑖𝑡, 𝐴𝑃

𝐼 , 𝐴𝑃
𝑂, 𝐴𝑃

𝐻 , 𝑉𝑃
𝐼 , 𝑉𝑃

𝑂, 𝑉𝑃
𝐻 , 𝐹𝑃

𝑉, 𝐹𝑃
𝐴, 𝒯𝑃), where 

(1)𝑆𝑃 is the set of system states. 

(2)𝑆𝑃
𝑖𝑛𝑖𝑡 ⊆ 𝑆𝑃 is a finite set of system states. if 𝑉𝑃

𝑖𝑛𝑖𝑡 = ∅, then 𝑃 is null; 

(3)𝐴𝑃
𝐼 , 𝐴𝑃

𝑂, 𝐴𝑃
𝐻 is a disjoint set of inputs, outputs and internal actions, using 𝐴𝑃 = 𝐴𝑃

𝐼 ∪ 𝐴𝑃
𝑂 ∪ 𝐴𝑃

𝐻  to 

represent the set consisting of all actions; 

(4)𝑉𝑃
𝐼 , 𝑉𝑃

𝑂, 𝑉𝑃
𝐻 is a disjoint set of inputs, outputs and internal variables, using 𝑉𝑃 = 𝑉𝑃

𝐼 ∪ 𝑉𝑃
𝑂 ∪ 𝑉𝑃

𝐻 to 
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represent the set consisting of all variables; 

(5)𝐹𝑃
𝑉 represents the mapping functions, it can map any state in 𝑆𝑃to a state pattern in some Object-Z; 

(6) 𝐹𝑃
𝐴 represents the mapping functions, it can map any state in 𝐴𝑃 to an operation pattern in some 

Object-Z, among the species can be divided into sets 𝐹𝑃
𝐼 , 𝐹𝑃

𝑂, 𝐹𝑃
𝐻, respectively mapped to input operation 

mode, output operation mode, and internal operation mode, etc., 

(7) 𝒯𝑃 ⊆ 𝑉𝑃 × 𝐴𝑃 × 𝑉𝑃 is a set of transition actions. 

4.2.  Rules of Model Transformation 

The rules for conversion from AADL-Object-Z to OZIA models are as follows: 

(1)𝑆𝑇  is the module of AADL-Object-Z corresponding to the variable set 𝑆𝑃  of OZIA. 𝑆𝑡𝑎𝑡𝑒 𝑔𝑢𝑎𝑟𝑑 

module corresponds to the class 𝐺𝑢𝑎𝑟𝑑 of OZIA; 

(2)𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑠𝑡𝑎𝑡𝑒 in the 𝑆𝑡𝑎𝑡𝑒 module of AADL-Object-Z corresponding to the initial state set  𝑆𝑃
𝑖𝑛𝑖𝑡

 of 

OZIA; 

(3 𝐷𝑇 is the module of AADL-Object-Z corresponding to the set VP  of OZIA. The Guard  in 

AADL-Object-Zmodule corresponds to  𝜑 in OZIA. 𝐹𝑃
𝑉 represents the mapping functions, it can map the 

description 𝑑𝑖 ∈ 𝐷𝑇 , 𝑖 ∈ 𝑁 in AADL-Object-Zconcerning constraints on data properties into a set of patterns 

in OZIA; 

(4)𝑃𝑇 is the module of AADL-Object-Z corresponding to the interface of OZIA;  

(5) 𝐴𝑇 is the module of AADL-Object-Z corresponding to the action set 𝐴𝑃 of OZIA. 𝐹𝑃
𝐴 represents the 

mapping functions, it can map the relevant action set 𝐴𝑃 = 𝐴𝑃
𝐼 ∪ 𝐴𝑃

𝑂 ∪ 𝐴𝑃
𝐻  in AADL-Object-Z to the 

operation mode set, and map it to the input operation mode 𝐴𝑃
𝐼 , output operation mode set 𝐴𝑃

𝑂 and the 

internal actions 𝐴𝑃
𝐻 in more detail according to the different actions; 

(6) 𝑇𝑅𝑇 is a module of AADL-Object-Z corresponding to the transition action set 𝒯𝑃  of OZIA. 

 

Table 2. Rules of model transformation 

AADL-Object-Zspecification OZIA specification 

all states in the mode 𝑆𝑃  

initial states in the mode SP
init 

inputs, outputs, and internal 

actions 
𝐴𝑃
𝐼 , 𝐴𝑃

𝑂, 𝐴𝑃
𝐻  

inputs, outputs, and internal 

variables 
𝑉𝑃
𝐼, 𝑉𝑃

𝑂, 𝑉𝑃
𝐻 

mapping of variables 𝐹𝑃
𝑉 

mapping of actions 𝐹𝑃
𝐴 

state transition relations 𝒯𝑃 

 

Bismulation [13] is commonly used in modal logic to describe the equivalence between the behavior of 

two systems. Since future formal verification work is based on formal models, in this paper we transform 

the semi-formal model of the AADL extension language into the formal automaton OZIA. Bisimulation is 

defined as follows: 

Definition 5 (Bisimulation): Let 𝑀1 = (𝑆1
𝑍, →1)  and 𝑀2 = (𝐹𝑃

𝐴(𝑆2),→2)  be two transition systems,  

𝛼𝑧 , 𝐹𝑃
𝐴(𝛽) ∈ 𝐴𝑃. Asymmetric binary relation R ∈ 𝑆1

𝑍 × 𝐹𝑃
𝐴(𝑆2) is called a strong conditional bisimulation 

relation if 𝑠1
𝑧𝑅𝑓𝑃

𝐴(𝑠2), implies: 

(1)for each 𝑠1
𝑧′ ∈ 𝑆1

𝑍, if 𝑠1
𝑧
𝛼𝑧

→ 1 𝑠1
𝑧′ then there exist 𝑠2

′ ∈ 𝐹𝑃
𝐴(𝑆2) such that 𝑓𝑃

𝐴(𝑠2)
𝐹𝑃
𝐴(𝛽)
→   2 𝑓𝑃

𝐴(𝑠2′), and 

𝑠1
𝑧′ 𝑅 𝑓𝑃

𝐴(𝑠2′), where 𝐹𝑃
𝐴(𝛽) = 𝛼𝑧 ∈ 𝐴𝑃; (backward)  

(2)for each 𝑓𝑃
𝐴(𝑠2′) ∈ 𝐹𝑃

𝐴(𝑆2) , if 𝑓𝑃
𝐴(𝑠2)

𝛼𝑧

→ 2 𝑓𝑃
𝐴(𝑠2′) , then there exists 𝑠1

𝑧′  ∈ 𝑆1
𝑍  such that  𝑠1

𝑧

𝐹𝑃
𝐴(𝛽)
→   1 𝑠1

𝑧′ and 𝑠1
𝑧′𝑅 𝑓𝑃

𝐴(𝑠2′), where 𝛼𝑧 = 𝐹𝑃
𝐴(𝛽) ∈ 𝐴𝑃. (forward) 

𝑀1 and 𝑀2 are called strong bisimilar, if there exists a symmetric binary relation R between 𝑀1 and 

Journal of Software

192 Volume 18, Number 4, November 2023



  

𝑀2 such that for all state s1
z ∈ S1

Z, there exists a state 𝑓𝑃
𝐴(s2) ∈ 𝐹𝑃

𝐴(S2) that satisfies (s1
z′, 𝑓𝑃

𝐴(s2′)) ∈ R 

and vice versa. 

s1
z denotes the state in the behavioral attachment under the Object-Z mode, 𝑓𝑃

𝐴(𝑠2) denotes the state in 

the behavioral attachment under the automaton OZIA model and they satisfy the R relationship, 

i.e.,s1
zR𝑓𝑃

𝐴(s2). s1
z′denotes the state s1

z arrived under the action αz, 𝑓𝑃
𝐴(s2′) denotes the state 𝐹𝑃

𝐴(β) 

arrived under the action 𝑓𝑃
𝐴(s2) , and they still satisfy the R relationship after the transition, 

i.e., s1
z′ R 𝑓𝑃

𝐴(s2′). 

Therefore, we can use the automaton OZIA obtained by model transformation to do further work on 

model checking. 

 

 

Fig. 3. The equivalence to the strong bisimulation. 

 

5. Aircraft Landing Control System Modeling 

In this section, an example of an airport aircraft landing control is used to illustrate the specific process of 

modeling a real-time system model with data constraints and the formalized interface automaton model 

after the transformation. 

The process of movement in which an aircraft slips from an altitude of 50 feet and lands on the ground 

until it stops skidding is called landing. Landing is divided into five stages: drop height, flare-out, flat 

floating, grounding, and taxiing.  

We define that the distance from the airport is more than 400ft to start the decline, and the distance from 

the ground is less than or equal to 50ft to level off, assuming that the speed of the aircraft is not greater 

than 700km/h during the decline, not greater than 400km/h during the level off and not greater than 

200km/h during the level off. The landing process is schematically shown in Figure 4 below. 

 

 

Fig. 4. The aircraft landing control system. 

 

5.1. The AADL-Object-Z Model of System 

The main function of the Aircraft Landing Process (ALP) is to obtain real-time altitude and velocity 

information of the aircraft and to compute the next flight state. The ALP is described by an AADL modeling 

specification with data constraints and is described by a threaded building block alp. The runway state is 

determined by the flight state whether it is idle or not: when the runway beacon receives the signal from 

the tower, the beacon is red and the aircraft flies off the runway, the beacon is in the green state. The 
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modeling process for it is shown in Table 3.  

 

Table 3. The aircraft landing process modeled by AADL-Object-Z 

package example 

public 

thread alp 

features 

height_data: in data port; 

velocity_data: in data port; 

angle_data: out data port; 

time_interval: in event port; 

light: out event port; 

properties 

Dispatch_Protocol  Periodic; 

Compute_exection_time  5 ms ... 15ms; 

Period  20 ms; 

end alp; 

thread implementation alp. impl 

annex behavior _specification {** 

𝐕𝐚𝐫𝐢𝐚𝐛𝐥𝐞: 

𝑣:Base_Types::Unsigned_32; 

ℎ:Base_Types::Unsigned_32; 

𝛼:Base_Types::Unsigned_32; 

𝑙:red or green; 

𝐒𝐭𝐚𝐭𝐞: 

inactivity: initial_state; 

dropHeight, flareOut, flatFloating, grounding, taxiing, exit: states; 

𝐒𝐭𝐚𝐭𝐞 𝐠𝐮𝐚𝐫𝐝: 

dropHeight: 𝑣<=700&&ℎ>20&&l=red; 

flareOut : 𝑣<=400&&ℎ<=20&&l=green; 

flatFloating:𝑣<=200&&ℎ=0&&l=green; 

grounding:𝑣<=200&&ℎ=0&&l=green; 

taxi:𝑣<=100&&ℎ=0&&l=green; 

exit :𝑣<=50&& ℎ=0&&l=red; 

transitions: 

inactivity -[ time_interval<=1min] → dropHeight{  𝑣<=700&&ℎ>20&&l=red} 

dropHeight -[ time_interval>1min&& time_interval<=2min] → flareOut { 𝑣<=400&& ℎ<=20&&l=green} 

flareOut -[time_interval<=1min] → flatFloating { 𝑣<=200&& ℎ=0&&l=green}; 

flatFloating -[time_interval<=1min] → grounding {𝑣<=200&& ℎ=0&&l=green}; 

grounding -[time_interval<=1min] →exit {𝑣<=100&&  ℎ=0&&l=green}; 

exit -[light=green] → inacitvity; 

**} 

end alp. impl; 

end example; 

 

The above alp thread artifacts are described formally in the Object-Z language for their variable 

constraints and variants as follows: 

state inactive: 
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The main purpose of inactive is to create the conditions for landing. The control tower sends out the 

signal and the runway signal light receive the signal from the control tower, then the signal light changes 

from the original green state (indicating the runway is in a free state) to the red state (indicating the 

runway is in a busy state). 

state dropHeight: 

 
 

When descending to the specified altitude, the pull rod increases the angle of approach, increases the lift, 

and decreases the angle of descent. 

state flareOut: 
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As the angle increases, the drag of the aircraft increases, the aircraft deceleration, and the altitude 

decrease. 

state flatFloating: 

 
 

In the flatFloating stage, the aircraft speed decreases gradually due to the larger angle of welcome and 

the larger drag. 

state grounding: 

 

In the grounding stage,the lift is slightly less than the gravity, and the aircraft sinks slowly. At this 

time,due to the increase of aircraft angle and ground effect, the nose of the aircraft automatically drops. 

 

state taxiing: 
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At this time, due to the increase of aircraft angle and ground effect, the nose of the aircraft automatically 

drops. Therefore, it is necessary to bring the rod backward appropriately with the sinking of the aircraft to 

maintain the grounding attitude and lift. 

 

state exit: 

 

The runway signal receives this exit signal and changes from red (indicating that the runway is busy) to 

green (indicating that the runway is idle). 

 

5.2.  Transformation to OZIA 

Denote by i, d, f, o, ff, t, e to describe the state of aircraft inactive, dropHeight, flareOut, flatFloating, 

grounding, taxiing, and exit. Through the rules of model transformation in section 3.1 of this paper, we can 

obtain the OZIA automaton of the entire aircraft landing airport as shown in Figure 5. 

  

 

Fig. 5. The OZIA model of the aircraft landing system. 

 

6. Formal Verification 

Formal verification methods are mainly divided into two categories: one is deductive verification based on 

logical reasoning; the other is model detection based on exhaustive state space search. The shortcoming of the 

former is that it cannot be fully automated verification, and for slightly complex systems, automated reasoning is 

difficult, so it is only applicable to smaller systems and difficult to be accepted by the industry. Model checking is 

an automatic verification technique that detects whether the system behavior has the expected properties by 
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searching the yet poor state space of the system model. It has the advantage of being able to automate validation, 

thanks in large part to the support of automated validation tools, such as SPIN, SMV, PAT, etc. These tools accept 

the LTL formula, the CTL formula, and the process algebra, respectively. In the next step, we expect to achieve 

formal verification with these tools. 

7. Conclusion 

The model is essentially a collection of variables and transfer functions, so its expressive ability is 

naturally reflected in these two aspects. Why do we take compositional modeling? The reason is that the 

description of data constraints is not sufficient in AADL, especially in the object-oriented domain. Object-Z 

is specially used to describe object-oriented data constraints and state transition, so we put forward a 

composite system modeling based on Object-Z technology to strengthen this aspect.  

To summarize, this paper proposes the formal specification language AADL-Object-Z by combining the 

Object-Z specification language and AADL Behavior Annex. The paper proposes an OZIA automaton as a 

formal model and then gives the rules of transformation between the two models. And we give a practical 

example of the Aircraft Landing Process case study to describe the whole process from modeling to Object-Z 

extension to OZIA. There are many more mature model detection tools, such as NuSMV, UPPLA, and PAT, 

which support real-time hybrid systems. The next work will be to do specific formal verification and 

analysis based on the existing formal model in this paper.  
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