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Abstract: In this paper, we present a risk-prioritized testing strategy aimed at accelerating defect discovery 

and reliability improvement for Web applications. This strategy is based on analyzing defect rate or density 

using Web logs and defect data from development activities to produce a prioritized list for testing. We 

empirically compare it against simulated coverage-based testing for five websites from diverse Web 

application domains, including academic, open source project, small business catalog showroom, large 

e-Commerce application, and social networking websites. The results from comparing their respective 

defect discovery profiles demonstrate the superiority of risk-prioritized testing in accelerating defect 

discovery and reliability improvement.  
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1. Introduction 

High quality software and Web applications are usually characterized by the absence of failures, or 

observable external problems, and satisfaction of user expectations [1]. Quality defined this way can be 

quantified by reliability, which is the probability of failure-free operations for a specific time period or input 

set under a specific environment [2, 3]. In addition to reliability, user expectations for high quality for Web 

applications may also include usability, security, performance, etc. [4]. 

Testing plays a critical role in assuring software reliability by detecting and removing defects through the 

process of executing software, observing its behavior and behavioral deviations (failures), and analyzing its 

artifacts to locate and fix underlying faults [5]. Most traditional testing techniques attempt to cover major 

external functions or product components, with the implicit assumption that higher coverage means higher 

quality [6, 7]. Alternately, product reliability goals can be used as an objective and quantitative criterion to 

stop testing and to evaluate testing techniques by their delivered reliability [3−8]. Usage-based statistical 

testing techniques under an environment that resembles actual usage by target customers are typically 

used for this latter purpose [3, 9, 10]. For Web applications, there are various existing data sources, which 

can be exploited to derive effective and efficient testing approaches to address quality needs of end users. 

Under tight time and resource constraints for modern software systems characterized by their increased 

size and complexity, compounded by the diversity in their usage and associated rare conditions that trigger 

system failures, the above testing techniques may be pushed to the limit of their effectiveness and 

practicality [11−13]. In addition, most Web applications are multi-layered, with many diverse components 
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scattered over different locations and layers, and with the components themselves as well as the 

infrastructure evolving continually. Therefore, other novel approaches need to be explored, including 

test-case prioritization schemes based on product features and characteristics [14, 15] and risk-based or 

risk-prioritized testing technique in this paper. In our approach, we first identify high-risk areas – areas 

where faults are more likely to be exposed and/or area more likely to hide more defects. Armed with such 

knowledge, prioritized testing can then be performed, focusing on the high-risk areas for more effective 

fault removal and reliability improvement. 

One primary goal for testing is to detect as many defects as possible, and as early as possible, to enable 

their removal in timely follow-up activities that can be initiated for defect fixing and reliability improvement 

[16, 17]. Therefore, testing effectiveness and efficiency can be evaluated by the extent that this goal can be 

achieved by examining the number of defects discovered against the amount of time or resources used to 

detect these defects. In this paper, we use the defect discovery profiles, or the number of defects discovered 

plotted against time spent or resource used, to compare the effectiveness and efficiency of risk-prioritized 

testing against other commonly used testing strategies. 

2. Background 

This work builds upon and extends our previous work on usage-based and risk-prioritized Web testing [1, 

18−21], as well as automated Web defect information extraction and problem analysis for focused reliability 

and usability improvement [22, 23]. We started our initial research in this direction with an academic 

website, the Engineering School website at Southern Methodist University (SMU/SEAS, 

http://www.seas.smu.edu). An important reason for this is our ability to have full access to the Web server 

logs and statistics produced by existing tools, as well as access to most of the source contents. To validate 

and generalize our initial results, we gradually expanded our case studies to include four other websites, 

while striving to include diverse websites of different characteristics. Therefore, our risk-prioritized testing 

described in this paper has been applied in five websites from diverse Web application domains, including: 

• the Engineering School website at Southern Methodist University mentioned above, hereafter 

labeled as SMU/SEAS, 

• the open source project KDE website, hereafter labeled as KDE, 

• an online catalog showroom website for a small company, hereafter labeled as SCC, 

• an e-Commerce website for a large company in the telecommunications industry, hereafter labeled 

LTC, 

• a social networking website, hereafter labeled as SNH. 

Web access logs were used by all these five websites to keep track of local website activities, which also 

contain related access failure information as captured in the response code [1]. Except for SNH, where we 

do not have access to its Web logs, we extracted defect information from these Web access logs. However, 

for SNH, we do have access to the reported defects from the defect tracking tool used by the host. For LTC, 

we also have access to the defect database where functional defects from development activities were 

recorded. Both these data and the Web access log data are used in an analysis to produce our consolidated 

risk profile for LTC, as described later. 

The SMU/SEAS website can be a representative sample of an academic website, sharing many common 

characteristics of websites for such institutions. It utilizes the Apache Web Server that is commonly used in 

similar websites. The server log data covering 26 consecutive days in 1999 were used here.  

The KDE website is our representative sample of the large number of open source projects who rely on 

their websites to provide project information, to support online download of released documentation and 

software, and to facilitate communication and cooperation among the members of large open groups 
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consisting of software engineers from all over the world. KDE functions as a network transparent 

contemporary desktop environment for UNIX workstations. Unlike academic websites, such websites are 

more volatile, with numerous changes continuously committed to provide the developers and users with 

the most up-to-date version of the produce and related information. With the help of KDE project personnel, 

we obtained Web access logs from the KDE project for our research on defect analysis for open source 

projects [24]. Web access log data covering 22 days in 2003 were used here, with significantly larger 

amount of data than that for SMU/SEAS.  

The SCC website is our representative sample of small e-Commerce websites with limited functionality, 

typically used for small companies as an online catalog showroom to provide information about their 

products. It uses HP Proliant as the Web server running Redhat ES. In addition to the static pages, the 

contents of most requested pages are dynamically generated on-the-fly using PHP, Javascript and Perl 

scripts based on the open source software package “Gallery” with modifications. We used the access log 

data covering 31 days in 2006 in this study. Because of its small size and combination of both static and 

dynamic elements, we started our exploratory investigation of risk-prioritized testing with this website as a 

follow-up to our Web defect classification and analysis [21]. 

The LTC website is our representative sample of advanced e-Commerce websites often deployed by large 

companies with a strong Web presence. It is an online ordering application for a large telecommunications 

company, providing a wide range of services, including: browse available telecom services, manage 

customer account information, submit inquiries, support for online orders, and request repair for current 

services. The traffic volume is by far the largest among the websites we included in this study, handling 

several million requests a day. IIS 6.0 (Microsoft Internet Information Server) was used, supported by 

various software modules consisting of hundreds of thousands of lines of code developed using Microsoft 

technologies such as ASP, VB scripts, and C++. In addition to the Web access logs from 2007 used in this 

study, we also used data from the repository for development defects to produce our consolidated risk 

profile [20]. Data were also collected in early 2014 that covers the last 4 releases in 2013, with a refined 

risk prioritization method [18]. 

The SNH website is our representative sample of the now popular social networking websites. It provides 

many of the functions similar to the more popular Facebook. We previously used this website and the 

unstructured data from its defect tracking tool to automatically generate defect classification information 

based on natural language understanding and learning algorithms [23]. It was also used in our study of 

usability problem identification and improvement [22]. While without the access to its Web logs, we still 

consider it an important type of websites to include here. Data from its defect tracking tool collected over 7 

months in 2009-2010 were used here. 

We have also applied similar ideas to Cloud computing hosted as Web services, including proactive 

termination of executions predicted to fail based on the Google cluster dataset collected in May 2011 [25], 

and reliability and usability studies for Google Maps APIs and YouTube APIs based on analyzing selected 

data sets about usage, defect, and online discussions from 2015 to 2022 [26], [27]. However, we did not 

perform defect discovery profile comparison due to the huge data size for Google Clusters, and due to the 

lack of exact execution log data for Google Maps APIs and YouTube APIs. On the positive side, these 

extensions of the work reported in this study showed the general applicability of similar ideas beyond 

traditional Web applications to Cloud computing and APIs. 

3. Risk-Prioritized Testing 

Based on defect analysis we performed on the Web log data or other development defect repositories, 

risk-prioritized testing can be performed, as described below.  
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3.1.  Web Log Analysis for Risk-Prioritized Testing 

To keep a website operational, various Web logs are commonly used to monitor Web accesses and usage 

and to track the status of related problems. These logs can be analyzed to support our risk-prioritized Web 

testing without incurring too much additional cost. The commonly used Web logs by Web servers are: Web 

access logs, which record information about individual Web accesses, and Web error logs, which record 

related problems. Some basic problem information can also be obtained from Web access logs directly by 

examining the response code recorded for each access.  

In our approach, we use defect density to rank different areas for test prioritization. An specific area is 

defined by a specific set of conditions or some common characteristics. For example, all files of a common 

type or with a common extension (which also accounts for slight variations such as “.html”, “.HTM”, etc.) 

can be defined as an area. The defect density for a given area is defined to be the ratio of number of unique 

defects over the number of unique files. With the Web server access logs, the (access) failures can be easily 

mapped to internal faults by identifying unique causes to these failures, or the individual missing or 

malfunctioning files. So, for a given area or a subset of files our defect density is the ratio of the number of 

problematic files over the total number of files in the same subset. 

To select among the massive number of different ways to define an area or a group of files, a systematic 

scheme is needed. This study is based on our previous work on Web defect classification [21] by adapting 

the Orthogonal Defect Classification (ODC) framework for traditional software systems [28]. Among the 

Web defect attributes, many are based on the “failure” view, i.e., the type of problems observed and 

recorded in Web access logs. However, the defect density metric we defined and used for our test 

prioritization is the “fault” view, i.e., the number of unique internal defects, or faults, over the number of 

files. For this study, we used the “file type”, “directory level”, and “owner” type that can be uniquely 

associated with both individual files and individual faults. We exclude the other defect attributes, such as 

“access time”, “referrer type”, and “agent type” that are more closely linked to individual accesses instead of 

individual files. 

With the use of this systematic defect classification and analysis scheme, areas or file subsets can be 

defined by files of a specific type, at a specific directory level, or owned by a specific type of owners. Among 

these areas, the ones associated with high defect density values are identified as high risk areas. The 

ranking order is in accordance to the defect density values, to give us our risk profile, or the prioritized list 

of testing areas. Then testing would proceed by following this ranking order, as will be the related defect 

fixing order as well. Table 1 is such an example where the high risk areas are identified and ranked by their 

defect density for the SCC website. 

 

Table 1. Prioritized Risk Areas for SCC 

Risk area Defect density 

Level 4 100% 

Icon files 100% 

Txt files 100% 

Other files 84% 

Style files 25% 

Static page files 5% 

Graph files 2% 

Dynamic page files 1% 

 

3.2.  Consolidated Defect Prioritization for Risk-Prioritized Testing 

For e-Commerce and other business applications deployed over the Web, more disciplined development 

Journal of Software

162 Volume 18, Number 3, August 2023



  

methodologies are used. All the defects from the development and maintenance processes, discovered 

through testing, inspection, other quality assurance activities, and normal customer usage, need to be 

formally tracked, logged, and resolved. Data from such defect tracking tools or defect repositories provide 

us with additional valuable input for problem analysis and focused quality improvement. The recorded 

defect information for the development of software used to support the operations of the LTC website 

include the following fields: project name, defect summary, detail description, date detected, assigned to, 

expected date of closure, detected by, severity, defect ID, software build version, and any supplemental 

notes. 

In our study, defects recorded in such product development defect repositories are classified as 

functional defects, which represent incorrect or missing implementations of required functions expected by 

target customers and users. Such defects may only be detected in the development or system maintenance 

processes but not through analyzing Web server logs, because a missing function will not be accessed, and a 

incorrect function can still be accessed with or without an access problem but with wrong results. Table 2 

gives the distribution of such functional faults for the LTC website. The corresponding HTTP categories for 

these defect are also given based on the hypothetical situation of a website with such defects left untouched. 

The top three categories, covering defects that would not be detectable through Web access log analysis 

because they would result in normal response code, represent 76.50% of the total defects. Only 10.63% of 

the problems from the defect repository can also be found in the server Web logs as missing files with 

response code 404. This insignificant overlap between the two data sources indicates that we need to study 

both for risk-prioritized testing of such Web applications. 

 

Table 2. Functional Faults Discovered for LTC 

Fault class HTTP categories % of total 

Service/system interfaces 200/300 33.13% 

Graphical user interfaces 200/300 22.89% 

Code logic, computation and algorithm 200/300 20.48% 

Missing files 404 10.63% 

Missing links 200/300 9.04% 

Cache 200/300 1.20% 

All other fault classes 200/300/400/500 2.63% 

All 200/300/400/500 100.00% 

 

To build a consolidated risk ranking, we need to merge the functional defect data from development 

defect repository and data from Web access logs. The defect repository data can be ranked by their share 

among the total number of defect, give us a partial risk profile. Notice here that we used defect share, a 

slight variation of defect density we defined earlier, because defect density per file would be less 

meaningful for files associated with source code. Source code files are not access each as a unit as is the 

case for Web files. In fact, defect density for source code is typically defined as the number of defect over 

the number of lines of code (LOC), which would be incompatible with defect density per Web file we 

defined earlier. 

As described earlier in this section, access failures from Web access logs can be easily mapped to missing 

file faults by identifying unique causes to such failures. Then, these missing file faults can be directly 

merged with the functional faults derived above to build the collective risk profile. Again, fault share is used 

in this ranking. We need to re-normalize the fault share, considering all the fault classes after removing 

duplicate entries. Table 3 shows the comprehensive risk profile for the LTC website, which gives the 

consolidated fault ranking by category. 
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Table 3. Top Classes of Faults (Collective Risk Profile) for LTC 

Fault class % of total 

Missing files – HTTP 404 failures 33.64% 

Service/system interfaces 25.34% 

Graphical user interfaces 17.50% 

Code logic, computation and algorithm 15.67% 

 

3.3.   Implementation 

Risk-prioritized testing can be performed in two stages: 

• Stage 1: Risk identification, which will produce a prioritized list of risk areas based on analyzing 

some existing data. This data set is typically called the training data, which is used to provide 

training for the risk-prioritized testing technique. 

• Stage 2: Performing testing based on the prioritized list of risk areas above, typically in descending 

order according to the list. The data used for this comparison will be called testing data. Not to be 

confused with software testing, the term testing used here is for hypothesis testing. 

Stage 1 gets started once some data are accumulated and deemed to be adequate based on some 

threshold defined on the chronological sequence of the data. A given threshold on the amount of data or 

external logical event will get Stage 1 started, with its results used in Stage 2 to actually perform 

risk-prioritized testing. 

With the training data, a risk-based prioritization list, or our risk profile, will be produced using our 

technique described above. In the actual implementation of the risk-prioritized testing strategy, this risk 

profile will be used to determine the execution sequence of different areas of testing, i.e., the test cases are 

selected and executed in strict order determined by the risk profile. 

4. Empirical Evaluation 

In this section, we empirically evaluate the effectiveness of different testing techniques by comparing 

their corresponding defect discovery profiles. 

4.1.  From Reliability Growth to Defect Discovery Profiles 

In software reliability engineering (SRE), failure observations from testing are typically plotted against 

time and fitted to various software reliability growth models (SRGMs) [2, 3]. The reliability growth due to 

defect removal by software developers as follow-up actions to testing can be visualized in such plots. The 

horizontal axis represents the elapse time or effort expended. Because software or Web application failures 

are triggered by active usage in either the normal operational or the testing environment, usage time 

measured by the execution time, number of test runs, or workload handled are typically preferred over raw 

calendar time or wall-clock time [3, 29]. The vertical axis represents the failure observations, using either 

the raw failure counts for each period or the cumulative failure data. 

When cumulative failure data over time are used, the reliability growth is seen as the gradual flattening of 

the failure curve as we move forward with time from left to right in the horizontal axis. Fig. 1 presents an 

illustrative example of such a plot. A curve with a sharper upward bend toward the upper-left corner would 

indicate more reliability growth, because it represents more failure observations near the beginning, 

typically accompanied by more fault removal because every effort is made to address the issues from 

testing in mature software development organizations. This initial quickened pace of defect discoveries will 

be followed by more pronounced reduction of failure rate (the flatter slope of the curve) towards the end 

because of the significantly reduced number of defects in the software due to defect fixing activities taking 
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place immediately after their initial detection through testing earlier. 

 

 
 

Fig. 1. Accelerated reliability growth or defect discovery over time.  

 

Because of the internal testing and defect fixing will be applied to source components (modules, files, 

units, or individual lines of code) where such faults are observed, we will use the accumulation of such 

components tested as the horizontal axis. For Web applications, the natural unit is the individual files. This 

choice is also in agreement with the defect density metric, number of defects per file, we used for our 

risk-prioritized testing described earlier. 

Therefore, we can plot defect (fault) discovery profiles over accessed Web files to examine the accelerated 

defect discovery. The shape of the defect discovery profile has important implications to resource allocation, 

scheduling, and testing efficiency. Similar to plots such as in Fig. 1, we would prefer curves that bend toward 

the upper-left corner. There are several characteristics to such desirable profiles: 

•  Discovering more defects earlier will give development teams more time and adequate resources 

to fix the problems and testing teams more time to retest to verify that the problems have indeed 

been resolved before product release. 

•  In the competitive software market, time-to-market pressure often dictates the product release 

time. Under such compressed schedule, a defect discovery profile that bends towards upper-left 

corner would allow the maximal number of defect to be discovered, worked on, and resolved 

before (sometimes premature) product release.  

When risk identification results and risk-prioritized testing are used, we expect that the curve would 

bend more towards the upper-left corner, with faster problem detection and correction in the early part and 

a flatter tail. In fact, this would be the hypothesis that we attempt to test in this section: a favorable defect 

profile of risk-prioritized testing as compared to other testing strategies. 

4.2.  Experimental Design 

Based on the above discussion, we need to produce the defect discovery profile for risk-prioritized testing 

and compare it with that for other types of testing. Similar to the implementation of our risk-prioritized 

testing strategy discussed in the previous section, for post-mortem comparison, we can divide the data into 

a training set and a testing set at approximately the halfway point. Other cutoff points in accordance to 

other external reasons, such as significant change occurring around a certain point, can also be used. 

The results of our risk-prioritized testing can be simulated using the testing data by sorting the data 

according to the risk profile we produced from the training data above, accompanied by the corresponding 
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defect discoveries. Consequently, the resulting defect discovery profile will resemble the one in which 

risk-prioritized testing is actually implemented for Web application testing. 

Similar to the simulated implementation results for risk-prioritized testing, other testing strategies can be 

simulated or hypothetically performed on the testing data by sorting the data according to the components 

or files accessed and the corresponding problem observations. In this case, for various coverage-based 

testing strategies, only the testing data set will be used to produce the corresponding defect discovery 

profiles. Based on different coverage criteria, the testing data are sorted in the following orders meaningful 

to the Web domain: 

• dictionary (or alphabetical) order, 

• reverse dictionary order, 

• ascending directory levels, 

• descending directory levels, 

• random directory levels. 

These coverage orders correspond to some of the most commonly used coverage testing methodologies 

used in the Web environment. Dictionary order is to test or cover all the files in a website by the 

alphabetical order of their full file names. Because the full file names include the file path information, some 

structural information is used to cover different areas in a systematic manner: all the Web files in the same 

sub-directory will be tested before testing for other sub-directories start. Therefore, dictionary order 

testing simulates the test scenario where the website is tested one sub-site or sub-directory at a time, in 

alphabetical order, until complete directory coverage is achieved. Reverse dictionary order test the website 

in the exact opposite order, but also achieve complete directory coverage. 

In general, Web design guidelines for contents organization recommend that important files be placed at 

as close to the access point as possible, which usually means that they should not be buried deep in the 

directory structure [30]. Files close to the top levels of the directory structure are generally more important 

to and frequently accessed by a large pool of users. Therefore, it makes sense to conduct coverage-based 

testing in the order of ascending directory levels. For comparison and contrast, we also include testing in 

descending directory order, and random directory order. In the case a given list is maintained regarding the 

directory level order to test, we could simulate that as well. 

4.3.  Results for Websites Using only Web Log Data 

We first experimented with the SCC website, because of its relatively smaller size that allowed us to 

explore the various issues and to fine tune the related software tools we developed to support our 

risk-prioritized testing and comparative analysis. Then, we replicated the experiment in the two other 

websites, SMU/SEAS and KDE in an attempt to scale-up the evaluation study using significantly larger 

websites with much more users and user hits. Fig. 2 shows the defect discovery profile of our 

risk-prioritized testing for SMU/SEAS and compares it to that for other common coverage schemes: random 

order, usage order, dictionary order, reverse dictionary order, sorted directory level order, and random level 

order. 
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Fig. 2. Defect discovery profiles for SMU/SEAS over the number of files tested/accessed. 

 

As seen in Fig. 2, the risk-prioritized testing compares favorably to other coverage-based testing, leading 

to discovering more defect upfront. Similar patterns were also observed for SCC and KDE. There is a 

particularly significant difference early in the testing sequence: Our risk-prioritized testing can lead to the 

discovery of 80-90% of all the defects (faults or unique failures) in the first 1/3 files tested or accessed in 

Fig. 2. This effect is even more pronounced in SCC, where more than 600 out of about 800 defects can be 

detected by testing (or attempting to access) and examining a few hundred files out of nearly 9000 ones. 

This is because of the high concentration of defects in a small number of files as predicted from the training 

set in Table 1. 

4.4.  Results for Websites Using Consolidated Defect Data 

As described in the previous section, we have different data sources for e-Commerce websites, which can 

be consolidated to produce our comprehensive risk prioritization based on both Web log data and 

development defect repository data. We performed the same defect discovery profile comparison for LTC 

and presents our results in Fig. 3. 

 
Fig. 3. Defect discovery profiles for LTC over the number of files tested/accessed. 
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Unlike the informational websites in the previous group, the LTC website is more tightly integrated into 

the lower level business logic, associated software component, and the underlying database. The 

comprehensive risk profile or the consolidated defect prioritization is used. In addition, some of the 

coverage schemes we used before would be less meaningful for this particular setting. For example, order of 

names (dictionary order or its reverse) for different types of files (e.g., comparing program files for 

underlying components and for the dynamic Web with HTML and other web documents) would not be very 

meaningful, and thus omitted from our comparison. 

Fig. 3 offers a strong evidence about the scalability and general validity of our hypothesis that 

risk-prioritized testing can accelerate defect discovery. The defect discovery profile for risk-prioritized 

testing consistently outperformed all other testing by a wide margin. In particular, it can lead to the 

discovery of more than 70% of the defects with less than a third of the files tested or examined. At the same 

cutoff for the files examined, all other strategies can only reveal a third of the defects or less. 

For the SNH website, we only have access to the defects from its defect tracking tool but not the Web logs. 

This data availability issue prevented us from using the defect density defined in Section 3, because of the 

missing count of files in different groups. However, we could produce a rough profile, ordered by the defect 

prioritization areas but not with exact scale for the horizontal axis. Table 4 gives the risk-based 

prioritization for SNH based on the training set as well as the actual defect distribution for the testing set. 

Notice that we used defect share instead of defect density in this table, giving only the share (or percentage) 

of total defects by each defect group. The order is roughly the same over different areas in the two sets. If 

risk-prioritized testing is used, those identified risk areas will be targeted first, leading to the discovery of 

similar shares of defects in the testing set. This would compare favorably to most other orders because in 

the testing set, a reshuffled order will lead to less fault discoveries upfront unless the first few “high-risk” 

areas, which contain more actual defects in the testing set too, were targeted first. 

 

Table 4. Prioritized Risk Areas for SNH 

Risk area Defect share (% of total) 

 Training Testing 

Function failure 81.4% 70.5% 

Function workaround 11.0% 4.8% 

User interface 6.1% 7.6% 

Crash 1.5% 2.9% 

Minor requirement 0% 3.81% 

None 0% 10.5% 

 

5. Conclusions and Perspectives 

As demonstrated through the replicated experiments over five websites from diverse Web application 

domains described in this paper, risk-prioritized testing is an effective and efficient way to help website 

owners and maintenance teams to accelerate their defect discovery and reliability improvement. We used 

the training data from Web logs and development defect repositories to produce our risk profiles or our 

prioritized testing areas. For the empirical evaluation, we did have tight experimental control in simulating 

expected behavior when different testing strategies are used in the testing data. The diversity of the 

websites used, covering academic, open-source project, small business catalog showroom, large 

e-Commerce application, and social networking Web application domains, gives us high confidence to the 

general validity of our conclusions. Extensions of this work to Cloud computing and APIs showed the 

general applicability of similar ideas to a wider variety of application domains [25−27]. 
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We also noticed some limitations to our study due to its limited scope and other constraints. For volatile 

websites, prediction accuracy of the risk areas may decrease because of the significant difference expected 

between the training and the testing sets, leading to inappropriate risk prioritization. We need to fine-tune 

our method to use only the most recent and most relevant data for test prioritization. In addition, different 

prioritization schemes will yield different, not always consistent, results: A strategy aimed at maximizing 

reliability growth may not produce the same effect on maximized defect discovery for a given time period. 

As a follow-up to this study, we will explore other innovative use of defect, usage, and product internal 

information in risk profiling in an attempt to achieve even more accelerated defect discovery and reliability 

improvement. For example, the testing order by risk profile areas in this study can be refined using finer 

granularity defect density metrics, such as normalized over the number of hyperlinks, and dynamically 

adjusted to always focus on the area with the highest current defect density in a fine-grain, adaptive 

risk-prioritized testing strategy.  

In addition, risk-prioritized testing can be compared to other variations of testing not covered in this 

study, including many existing coverage orders and coverage hierarchies, such as equivalent class partition 

testing, control flow and data flow testing, boundary testing, etc., [5]. To make the comparison meaningful, 

our risk prioritization scheme might need to be adjusted to produce a risk ranking that utilize the specific 

coverage related definitions as well. For example, for comparison to partition coverage testing, our risk 

ranking would be based on the defect density for the same set of partitions. In fact, the comparison in this 

paper can be interpreted as comparing our risk-prioritized testing to a specialized partition testing where 

the partitions are defined by file names or file location in the directory system. 

The empirical evaluation can be expanded to include entities other than defect discovery profiles. 

Reliability profiles from the operational view can be directly used to compare different testing strategies, as 

we did in [1, 29], plotting cumulative failures against cumulative usage time. In doing this, the prioritization 

scheme will be based on failure intensity for different subclasses of usage scenarios instead of the defect (or 

fault) density per file used in this paper. To do this for e-Commerce websites, we need to evaluate the 

potential impact of functional faults based on defect severity and likely usage scenarios. When combined 

with defect data from web server logs, it gives us a collective failure view [18, 20], and provides data input 

for our focused testing and reliability improvement. 

We also plan to work on practical implementation and tool support to deploy our approach in “live” 

environments to reap the benefit of accelerated defect discovery for many website owners, operators, and 

service providers to better serve their customers and users. Effort comparison can also be carried out, 

comparing the overhead involved in implementing our risk-prioritized testing against that for traditional 

coverage-based testing or usage-based testing. The overhead of our approach should be justified by the 

accelerated defect discovery against coverage- or usage-based testing. 
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