

Idle Strategy of Smart Monkey to Enhance Testing
Operable GUI Regions

Bingyi Cui1, 2, *, Long Zhang1, 2, *, Chenglong Sun3, Zhenyu Zhang1

1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing,
China.
2 University of Chinese Academy of Sciences, Beijing, China.
3 Shopee Pte. Ltd., Singapore.

Corresponding author. Email: zhangzy@ios.ac.cn
Manuscript submitted August 20, 2022; accepted November 14, 2022.
doi: 10.17706/jsw.18.3.143-158

Abstract: Graphical User Interface (GUI) testing is an important approach to ensuring software applications’

quality. The rendered GUI screen contains operable regions that can be triggered when certain events are

applied to these areas. The previous traditional testing methods cannot efficiently identify the GUI area of

this operation and generate the sequence of events. Smart Monkey is based on computer vision techniques,

which can utilize several basic visual features to confirm the real operable GUI regions. In this paper, we

propose an idle strategy of Smart Monkey for enhancing GUI testing. It can use a combination of Monkey and

Smart Monkey to achieve high accuracy and efficiency. We implemented the improved technique as an

Android testing tool. Then we conduct experiments on 14 real-world applications, comparing with Monkey

and Smart Monkey methods, respectively. The results show that it can more efficiently identify operable

regions to generate event sequences.

Keywords: Android UI testing, rendered GUI, monkey test

1. Introduction

Mobile Applications are widely used in our digital lives. The criteria for the quality and stability of Android

apps are becoming increasingly necessary as the development and iteration of Android applications progress

at a rapid pace. The application's Graphical User Interface (GUI) is an important part of ensuring a great user

experience, so efficient and high-quality GUI testing is important to ensure the quality of Android apps before

being delivered to users.

There are various frameworks for automating GUI testing on the market, including Monkey [1],

MonkeyRunner [2], UIAutomator [3], Robotium [4], and Appium [5]. They're great open-source frameworks

for ease of use, support for numerous platforms, ensuring a higher quality minimal baseline, lowering

expenses, and simplifying the overall testing process.

Monkey test [1] is the most widely used toolkit from Google, due to its excellent compatibility and ease of

use on different Android platforms. It sends a completely random sequence of UI events to the test application,

with no predetermined rules. However, the current monkey testing technologies have significant drawbacks.

There are a lot of modules (or possibly involving complex logic) deep within the structure of the UI interface.

The id and class name of some modules may change during application development. Another scenario is

when the structural relationship between certain modules changes, such as when a module is transferred to

a different parent node. If the above changes occur in the application, the software’s interface will remain the

Journal of Software

143 Volume 18, Number 3, August 2023

same, but it will have a higher impact on the efficiency and success rate of monkey tests. Due to the completely

random exploration of the Monkey test, there is no guarantee that traversal explores all GUI elements.

Previous work [6] has shown that monkey performs poorly in tests on WeChat, a very popular software in

China. Most of the events generated by Monkey are redundant, such as repetitive execution of no-code

behavior, and its code coverage and operational efficiency are also low, resulting in a large testing overhead.

The user's attention will be drawn to the rendered GUI interface, which will then prompt them as to which

regions can be manipulated. Human perception systems and psychological activities are very sensitive,

especially to obvious visual cues and application interface modifications. Therefore, our main idea is to try to

capture the region that may be changed in the GUI interface by detecting conspicuous areas such as color,

intensity, texture, and so on. The method proposed in our previous work has been shown to have better

accuracy and efficiency than the traditional Monkey technique. However, Smart Monkey may take longer to

detect operable areas in some cases. If some applications need to be tested for a short time or there are few

operable areas in the interface, then we may miss some key GUI operation events, resulting in a significant

waste of testing overhead. This paper proposes a new strategy to improve the Smart Monkey method‘s

inadequacies. We can adopt the Monkey method in the idle time of Smart Monkey operation. Because Smart

Monkey needs some time to calculate the salient region, and Monkey can generate a certain number of

operation events for testing during this time, minimizing any unnecessary waiting. We conduct experiments

on 14 widely used real-world mobile applications. The results demonstrate that Smart Monkey is more

effective than Android's Monkey, with 34.96 % of incorrectly detecting the operable region on the screen of

these mobile apps, and the first crash failure can be detected earlier. At the same time, Smart Monkey with

the idle strategy improves the average detection hit rate of the operation area by 13.21% compared with the

method without the idle strategy. The results also show that both the operation hit rate and unique hits per

second are greatly improved compared with our previous method.

The main contribution of this paper is threefold:

⚫ It aims to find operable region candidates in rendered GUIs and verify them through specific GUI

events.

⚫ The experiment indicates that our method can discover operable region candidates in a rendered GUI

and then confirm these possibilities with concrete GUI events, effectively increasing the probability of

generating a series of events that can cause the GUIs to respond.

⚫ The results of the experiments reveal that the Smart Monkey technology that uses the idle technique

is more efficient than the technology that does not. The operating area's average hit rate has grown by

13.21 %, while the execution duration has remained unchanged.

The rest of this paper is organized as follows. The motivation of this work is presented in Section 2. The

motivation of our technique is presented in Section 3. Sections 4 and 5 present the experiment and data

analysis of “Smart Monkey”. We presented related works in Section 6 and the conclusion of this paper in

Section 7.

2. Motivation

The graphical user interface (GUI) is the most intuitive and important way for a user to interact with

software. As a result, in recent years, application developers have paid more attention to the software's GUI.

2.1. GUI Testing

For the traditional Android GUI layout interface, the record-and-replay [4] is the mainstream method for

testing these programs. Most applications have many GUI widgets in fixed positions, and this method can be

used to control each widget in turn using a test script. However, the graphics engine[7][8][9] renders the full

image in gaming apps, which has no set layout structure and is constantly refreshed. Existing solutions

Journal of Software

144 Volume 18, Number 3, August 2023

struggle to deal with operational items whose appearance, amount, location, and other features cannot be

recognized statically or dynamically during record and replay testing. PUMA [10], for example, is an enhanced

version of Monkeys that uses UI-Automator to query the GUI widget layout during runtime. UI-Automator (or

DUMP) is unable to query the rendered GUI information.

There are also enhancement versions of Monkeys such as PUMA [10], which uses UI-Automator to query

the GUI widget structure at runtime. However, it cannot query the rendered GUI information through UI-

Automator (or DUMP for earlier versions of Android). As a result, existing automated testing techniques are

unable to handle gaming apps that primarily rely on displayed GUIs.

2.2. Our Insight

The GUI interface of the software should aesthetically try to attract the user and thus gain their attention

Human players are also often drawn to attractive elements in still images during gameplay, known as spatial

attention [11]. Furthermore, psychological research shows that the human perceptual system is sensitive to

visual contrasts such as color, intensity, and texture.

Our previously proposed Smart Monkey can detect operable GUI regions by applying computer vision

techniques. Monkey test generates two-dimensional coordinates to construct a user event flow sequence at

random in the presented graphical interface. However, there are some clear drawbacks to this strategy, such

as the fact that calculating and detecting key regions can take a lengthy time. This method is inefficient in

applications that just need to be evaluated for a short period of time or have a few operational regions of the

interface. Therefore, we consider if we try to combine this method and Monkey test, whether this combined

method can improve the test efficiency, is worth exploring. Next, we will propose an idea to improve the

above-mentioned possible deficiencies.

3. Our Technique

In Section III, we present the idle strategy of Smart Monkey and the overall architecture of our method,
then explain the detection algorithm.

3.1. Idle Strategy

Smart Monkey is a technology that uses the monkey testing method as its foundation. It can read and

analyze the visual content generated on the screen using computer vision technology, and select the picture

that is most likely to be a button or label to click or drag. But Smart Monkey takes a long time to calculate key

regions, yet many applications require short testing events for some operable regions that emerge seldom.

We could miss certain key GUI events if we just halt the testing tool to wait for saliency detection to complete.

As Fig. 1 shown, we propose an idle strategy to overcome the disadvantage. First, we create a new GUI

screen, causing our approach to take a picture of the current screen and transmit it to the saliency region

detecting server over an adb connection and the http protocol [1]. However, Lin et al. [12] used the camera to

capture the image on Android phone. The snapshot is received by the host server, which then initiates

Saliency Detecting. The Smart Monkey job is executed by one Thread, while Monkey is executed by the other.

Two threads start at the same time, and when the Smart Monkey thread finishes calculating, it stops the

Monkey thread and both threads store operation events into a ring buffer. We create a consumer thread that

picks up operation events from the ring buffer regularly and sends them to the android device over an adb

connection. If a GUI screen change is triggered by an event, we shall clean the ring buffer and thread status to

prepare the server for the next operation.

Journal of Software

145 Volume 18, Number 3, August 2023

Fig. 1. The structure of Idle Strategy.

3.2. Smart Monkey and Monkey

As part of our method, Smart Monkey takes a screenshot of the app under test and the class name of the

current Activity as part of our approach. It's then transferred to the host computer's technical components

via the adb [13] or http protocol [1]. Next, if encountering a new GUI interface currently, this method uses the

region detection technique to find the operable region and indexes the GUI state to save the operation result.

And if the GUI interface has been identified in the last work, this technology will generate events based on the

previous index identification results, which is also the same completely random and iterative exploration

strategy.

When exploring the state, Smart Monkey can detect and calculate the operation area of the current GUI

state and randomly select an operation area that has not been selected. However, the Monkey tool randomly

generates 2D coordinates within the size of the GUI interface. Both methods then send a specific type of event

(for example, touch, drag, or click) to random coordinates within that actionable area. The sequence of events

they generate is stored in a ring buffer.

3.3. Saliency Detection Algorithms

Our method applies three saliency detection algorithms to detect operable region candidates, by exploiting

three fundamental visual features, namely color, density, and texture. Gray spatial attention model [11] (GA

algorithm) utilizes density features in grayscale images, and the color spatial attention model [14] (CA

algorithm) uses both density and color features. The Spectral Residual Model [15] (SR algorithm) finds that

the log spectrum of many images is very similar, and this residual value part is the salient information that

can attract people's attention. Therefore, the SR algorithm removes similar spectral information to calculate

its residual value. The relationship between the saliency algorithm and the basic visual features used is shown

in Table 1.

Journal of Software

146 Volume 18, Number 3, August 2023

Table 1. Visual Features and Their Detection Algorithms
Saliency detection algorithms Visual Features

GA [11] density

CA [14] density color

SR [15] texture

As listed in Fig. 2, the purpose of the saliency detection algorithm is to detect actionable regions from still

images [1]. This algorithm of Smart Monkey is implemented using the OpenCV framework and Java and

integrated into our tool.

function SaliDtc (method)

 @INPUT: x[] - Image

 @OUTPUT: y[] - Points

01 switch method:

02 case GA: y  call GA (x)

03 case CA: y  call CA (x)

04 case SR: y  call SR (x)

05 return y

function GenSaliTbl (x)

 @INPUT: x[] – Image

 @OUTPUT: s[] - Saliency Image

06 for r, c in [1, nRow], [1, nCol]:

07 Hist[x[r][c]]++

08 for outlevel in Hist:

09 for inlevel in Hist:

10 Map[outlevel]  d[r][c]+

 Hist[level]*call dist(outlevel,inlevel)

11 for r, c in [1, nRow], [1, nCol]:

12 for level in Hist

13 s[r][c]  Map(x[r][c])

14 return s

function SaliCan (s)

 @INPUT: s - Saliency Image

 THRESHOLD

 @OUTPUT: y[] - Points

15 while y[] is not full

16 r, c  ran(1, nRow), ran(1, nCol)

17 if s[r][c] < THRESHOLD

18 y  call cancat(y, d)

19 return y

function GA

 @INPUT: x[] - Image

 @OUTPUT: y[] – Points

20 nRow, nCol  size of x

21 g  call gray(x)

22 s  call GenSaliTbl (g)

23 y  call SaliCan (s)

24 return y

function CA

 @INPUT: x[] - Image

 @OUTPUT: y[] – Points

25 l  call Lab (x)

26 s  call GenSaliTbl (l)

27 y  call SaliCan (s)

28 return y

function SR

 @INPUT: x[] - Image

 @OUTPUT: y[] - Points

29 g  call gausian(x)

30 x’  call fft(x)

31 x’’  x’ – g

32 s  call ifft (x’’)

33 y  call SaliCan(s)

34 return y

Fig. 2. The pseudo-code of Saliency algorithm.

The saliency map of an image is based on measuring the color contrast between image pixels. It is the
weighted distance through the pixel value of the image on the histogram of gray or color values of the entire
image. For a pixel 𝐼𝑘 in an image I, its saliency value can be defined as Eq. (1).

𝑆(𝐼𝑘) = ∑ 𝐷(𝐼𝑘 , 𝐼𝑖)∀𝐼𝑖∈𝐼 (1)

When we restructured the equation, calculate the frequency of the pixels, and keep it in the equation, the
above formula can be converted to the following,

𝑆(𝐼𝑘) = 𝐷(𝐼𝑘 , 𝐼1) + 𝐷(𝐼𝑘 , 𝐼2) + ⋯ + 𝐷(𝐼𝑘 , 𝐼𝑁)

 = ∑ [𝑓𝑗𝐷(𝑐𝑙 , 𝑐𝑖)]
𝑛

𝑗=1

 (2)

We calculate the frequency of the pixel value and save it in the hash-map, which can be directly calculated

in the subsequent calculation of the saliency value to reduce the complexity. In addition, we use a random

Journal of Software

147 Volume 18, Number 3, August 2023

strategy to identify the most likely operable points in the saliency image.

The GA algorithm calculates the grayscale distance between each pixel as a map for each saliency value.

The CA algorithm calculates the hash table of the saliency values between each pixel through the LC algorithm

for the color values in 𝐿 × 𝑎 × 𝑏 color space. The SR algorithm is calculated in the frequency domain. It first

calculates the Fourier spectrum of the image, and then subtracts Gaussian noise from the source spectral

image to obtain the saliency spectrum image. And we apply inverse fast Fourier transformation [15] to this

image.

4. Experiment

In this study, we sought to understand how the adoption of Monkey during idle periods affects the

effectiveness of testing. We address five main research questions in our paper through experiments.

RQ1: Can Smart Monkey effectively detect actionable widgets in mobile applications?

RQ2: Is Smart Monkey more effective than the built-in monkey of Android?

RQ3: Is it useful that run Monkey during Smart Monkey’s idle time?

RQ4: Under equal operation events, does the combination of Smart Monkey and Monkey is more efficient

than Smart Monkey or Monkey test?

RQ5: Which feature is the key part to increase testing effectiveness?

4.1. Evaluative Dimensions

In order to answer the questions proposed above, we take several evaluative dimensions, namely, Hit,

Unique Hit, Hit Ratio, Crash Time, Screen Cover Ratio.

• Hit is the number of generated operation events that trigger operable objects.

• Unique Hit is the number of operable objects triggered by generated operation events.

• Hit Ratio is the ratio between Unique Hit and all operable objects.

• Crash Time is the period of time from program start to crash end.

• Screen Cover Ratio is the one between the triggered screen and all screens.

The number of hits indicates how effective a tool is in generating valid operation events. We argue the tool

is inefficient in evaluating a program if most events trigger the same operable item. As a result, we'll require

a new dimension called Hit Ratio, which refers to the fraction of covered operable items on a single screen.

Because a tool seldom causes a program to crash, Crash Time may not be the best metric to use when

measuring a tool's effectiveness. We present the Screen Cover Ratio as a metric for determining the

effectiveness of testing.

4.2. Experimental Setup

We evaluate the effectiveness of our method on 14 representative real-world applications, compared to

Monkey that built in Android. We used a mobile phone running this Android OS 5.1 and a host with JDK,

OpenCV and Android SDK. Four parts of our experiment are as follows.

In the first experiment, we compared the Smart Monkey with Android's built-in monkey technology to test

the effectiveness of its method. We ran 14 applications five times on three devices for each technique to

calculate the average number of active actions (e.g., clicks, taps) throughout a three-minute period.

Furthermore, we also compared the relative effectiveness of three algorithms. Similarly, we ran the same

application 5 times on the same device to calculate the mean of effective operations.

In the second experiment, we tested several game applications separately and used the tool to record the

first crash’s time. so we could compare the performance of our tool and the built-in Monkey tool.

In our third experiment, we want to figure out how adopting Monkey during Smart Monkey’s affect the

effectiveness of testing. Monkey’s strategy is to generate a certain number of operation events and send them

Journal of Software

148 Volume 18, Number 3, August 2023

to the mobile device at once, while Smart Monkey takes up much more time to calculate the saliency region.

To get the convictive conclusion, we should measure all the technologies under the same condition that they

should generate an approximate number of operation events. Because if the ratio of generated GUI events

between Monkey and Smart Monkey were too large, the Smart Monkey with idle strategy will degenerate to

Monkey. So, we run all of programs by using single Monkey, by using Smart Monkey with mixture algorithm,

and by Smart Monkey with idle strategy. In the end, we record the Hit and Crash Time.

Our previous work shows that Smart Monkey’s hit ratio no longer apparently increases if the number of

operation events is more than10. So, we adopt the same strategy that limits the number of operation events

generated by Monkey and by Smart Monkey to 10 in one testing circle.

In our fourth experiment, we want to make sure of the affluence of saliency detecting algorithm. Therefore,

we run 14 programs by using the combination of Monkey and Smart Monkey, and Smart Monkey adopts single

saliency region detecting algorithm, namely LC or SR. So, we could know which property is the key part to

affect the testing effectiveness.

We developed our method as an android tool, which is built by Maven [16].

5. Analysis

In this section, the results of experiments are presented to answer the research questions.

5.1. Answering RQ1

Fig. 3 contains examples of four applications, where the plots (a), (c), (e), (g) are source images, and the

plots (b), (d), (f), (h) are saliency map binary images. The green dots1 in each graph represent the saliency

detection results.

And the green circles are the saliency point, the b, d, f, h pictures all are the binary saliency map.

The first four pictures are from the interface of the Android game Final Fight, including two sets of test

images. The screen is horizontal. The plots (b) and (d) are the saliency images of the plots (a) and (c),

respectively. After the calculation, a salient area will be marked in the image, and green dots will be randomly

placed in the area. Plot (a) contains 6 significant regions and plot (c) contains 10. The last four pictures are

the interface from the Android game Piano Tiles 2, and the screen is vertical. We notice that the principal

color in the interface changes from (e) to (g), and the saliency image reverses accordingly. However, the

actionable areas of the two images are similar, such as the Home and Hall buttons below the recognition

screen. This shows that this detection algorithm is robust. All computation costs take no more than 800ms

and the detection algorithm has a certain error rate, which is acceptable for the performance of the interactive

system.

(a) Screenshot of Final

Fight fighting scene

(b) Saliency image of Final

Fight fighting scene

(c) Screenshot of Final

Fight choose hero scene

(d) Saliency image of Final

Fight choose hero scene

1 Green dots may be hard to see on grayscale images.

Journal of Software

149 Volume 18, Number 3, August 2023

(e) Screenshot of Piano

Tiles start a scene

(f) Saliency image of

Piano Tiles start a scene

(g) Screenshot of Piano

Tiles music choose scene

(h) Saliency image of

Piano Tiles music choose

scene

Fig. 3. Some saliency detection in several android applications. The a, c, e, g pictures all are the source

image.

Our experiments then measure the percentage of effective hits for each application. The results are shown

in Table 2. We experimentally obtain the number of images for each application, and an overview of its

operable objects. In addition, the number of hits and unique hits in actionable positions is the result of

running our method. The number of unique hits refers to the number of operations that are not repeated for

the operable area, and the multiple tests of the same operable region are counted only once. Hit Ratio is

calculated by dividing the total number of actionable objects by the number of unique hits.

Table 2. The Coverage Ratio on Applications (Smart Monkey)
 Image Num Total Operable Objects Hit Num Hit Num Uniq Hit Ratio

WeChat 4 49 27.33 17.67 36.06%

Twitter 3 39 23.67 10.67 27.35%

Temple Run 3 22 17.33 4.67 21.21%

Snake 18 114 89 46 40.35%

Sanbei 9 102 53 36 35.29%

Momo 9 115 88 53 46.08%

Mobike 15 127 79 45 35.43%

Jingdong 5 103 35.33 26.33 25.57%

Instagram 3 27 21.00 9.67 35.80%

GuitarTune 5 55 28.33 18.33 33.33%

GameDev 4 32 8.00 7.67 23.96%

Flickr 4 25 23.00 9.67 38.67%

Deadlyracing 5 23 14.67 12.67 55.07%

ClashOfClan 23 368 179 130 35.33%

For example, the first row is the result of Smart Monkey running 3 images on Wechat. There are 49 operable

objects in total and 44operations. On average 23.67 of them hit operable objects, and 10.67 operations are

unique. So, the hit ratio is 27.35%.

Our tool attains the best results on Deadlyracing with a hit ratio of 55.07%, while the worst results on

Temple with a hit ratio 21.21%. The average hit ratio in these fourteen applications is 34.96%. Overall, the

above results can show that our proposed method is effective.

Journal of Software

150 Volume 18, Number 3, August 2023

Thus, we can answer RQ1 that our technique is effective to identifying operable widgets from the rendered

images of mobile game screenshots.

5.2. Answering RQ2

To analyze the relative effectiveness of our tool, we conducted an experiment comparing our method with

the Android built-in Monkey tool, and counted the number of valid operations within three minutes. The

experimental results are shown in Table 3. It includes the effective operands of our tool and Monkey, and the

incremental ratio of Smart Monkey in comparison to Monkey.

For example, in the first row of the table, the test of Smart Monkey on Wechat shows that it can perform

11.2 effective operations in 3 minutes, and the test result of Monkey test is 5.6. Therefore, the performance

of this method on these applications is improved by 100% compared to the Monkey. The result of other apps

can be explained similarly. Overall, the result of the incremental ratio is positive, with an average of 79.60%.

Table 3. The Valid Operations in 3 Minutes
 Smart Monkey Monkey Incremental Ratio

WeChat 11.2 5.6 100.00%

Twitter 12.4 8.2 51.22%

Temple Run 11.6 11.2 3.57%

Snake 11.3 6.1 85.25%

Sanbei 13.7 10.0 37%

Momo 18.8 7.9 137.97%

Mobike 10.4 3.6 188.89%

Jingdong 15.8 6.4 146.88%

Instagram 14.0 9.6 45.83%

GuitarTune 14.6 8.2 78.04%

GameDev 10.2 4.8 112.50%

Flickr 16.0 14.0 14.28%

Deadlyracing 12.6 10.8 16.67%

ClashOfClan 21.0 10.7 96.26%

To test the failure detection ability of our method, we performed an experiment to investigate the time it

takes to analyze the first failure, running our tool and Monkey on each application. We calculate the mean

time to failure in seconds for each of the five runs. The performance of the two methods is shown in Fig. 4.

Our tool can find crashing errors faster in all four applications, compared to monkeys. And three of the

programs tested have an improvement rate of 8%.

Fig. 4. The crash time (unit: second) of the application running on Smart Monkey and monkey separately.

Therefore, the above experimental results show that our technique is more effective than Monkey in

exposing crashing application failures when testing mobile game applications with rendered GUIs.

0 1000 2000 3000 4000

DesertShooting

MinionRush

DeadlyRacing

DungeonVillage

monkey

Smart Monkey

Journal of Software

151 Volume 18, Number 3, August 2023

5.3. Answering RQ3

Table 4. The Coverage Ratio on Applications (Smart Monkey with Idle)

 Image Num Total Operable

Objects

Hit Num Hit Num Uniq Hit Ratio

(Smart Monkey)

Hit Ratio

(with idle)

Wechat 4 49 32 20.3 36.06% 41.43%

Twitter 3 39 40.3 17.6 27.35% 45.13%

Temple Run 3 22 18.3 15.75 21.21% 71.59%

Snake 18 114 106 73 40.35% 64.04%

Sanbei 9 102 74 42 35.29% 41.18%

Momo 9 115 97 66 46.08% 57.39%

Mobike 15 127 83 59 35.43% 46.47%

Jingdong 5 103 39 27.33 25.57% 26.53%

Instagram 3 27 31.00 12.7 35.80% 47.04%

GuitarTune 5 55 33.6 23 33.33% 41.82%

GameDev 4 32 8.00 13.35 23.96% 41.72%

Flickr 4 25 24.00 11.7 38.67% 46.8%

Deadlyracing 5 23 17 14.2 55.07% 61.74%

ClashOfClan 23 368 255 153 35.33% 41.58%

Table 4 is the statistical information of fourteen different applications after running by Smart Monkey with

the idle Monkey strategy. The first five columns of Table IV are similar to that of Table II. The sixth and seventh

columns in Table 4 they are Hit Ratio of the previous method and the improved method using the idle strategy,

respectively. For instance, the first row is the Smart Monkey with idle strategy running on Momo’s 9

screenshots. There are a total 115 operable objects. And our tool has succeeded to predict 88 valid operations

and 66 operations are unique. so, the hit ratio is 57.39% (=
𝐻𝑖𝑡 𝑈𝑛𝑖𝑞

𝑇𝑜𝑡𝑎𝑙 𝑂𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑂𝑏𝑗𝑒𝑐𝑡𝑠
).

Among the 14 applications in the experiment, the improved method using the idle strategy has achieved a

high hit ratio, which is a significant improvement compared to the previous method. We can calculate the

average hit ratio of only adopting Smart Monkey is 34.96% from the sixth column. The seventh column of

Table V is our tool with idle strategy, the average hit ratio of the optimized tool by adding idle strategy is

48.17%. We can conclude that it could improve the effectiveness of Smart Monkey by adopting Monkey during

Smart Monkey idle time, and cause no time increase in execution.

Suppose if the new strategy didn’t increase the Unique Hit, the result will be equal to Smart Monkey, and in

other cases, adopting this strategy could improve Smart Monkey under the measure of Hit Ratio. The reason

why the Hit ratio doesn’t significantly improve lies in that Smart Monkey covers most of the operation events

generated by Monkey during idle.

5.4. Answering RQ4

Table 4. Hit Ratio Incremental
Application

Name

Monkey

Hit

Hit of Smart

Monkey with idle

Monkey

Hit Ratio

Hit Ratio of Smart

Monkey with idle

Incremental

Ratio

Twitter 14 40.3 14.34% 44.33% 209.14%

Instagram 14 31 8.81% 24.87% 182.28%

Momo 21 88 23.48% 46.08% 96.25%

Snake 43 89 23.68% 40.35% 70.40%

ClashOfClan 77 179 17.89% 35.33% 97.48%

Sanbei 42 53 17.65% 35.29% 99.94%

Mobike 39 79 22.05% 35.43% 60.68%

Flickr 13.39 19.6 18.45% 35.75% 93.77%

Journal of Software

152 Volume 18, Number 3, August 2023

Wechat 13 32 16.87% 37.80% 124.12%

GuitarTune 6.3 15.7 15.54% 35.97% 131.47%

Deadlyracing 4 11 20.37% 73.33% 259.99%

Temple Run 5.3 16.7 15.3% 61.14% 266.11%

GameDev 7.14 18.4 14.93% 22.37% 49.83%

Jingdong 19 39 10.27% 25.41% 147.41%

We compare our new tool with the Monkey tool to find out the effectiveness of our new tool. In Table V, the

second and third columns are Monkeys hits and Smart Monkey hits. The fourth and fifth columns separately

are Monkey’s hit ratio and that of Smart Monkey with idle. The last column is an incremental ratio, which can

be calculated by formula.

𝑆𝑚𝑎𝑟𝑡𝑚𝑜𝑛𝑘𝑒𝑦 𝑖𝑑𝑙𝑒 ℎ𝑖𝑡 𝑟𝑎𝑡𝑖𝑜−𝑀𝑜𝑛𝑘𝑒𝑦 ℎ𝑖𝑡 𝑟𝑎𝑡𝑖𝑜

𝑀𝑜𝑛𝑘𝑒𝑦 ℎ𝑖𝑡 𝑟𝑎𝑡𝑖𝑜
.

We can figure out that Smart Monkey with idle strategy can generate more valid operations. In our previous

work, the average incremental ratio is 63.22%, and our new tools incremental ratio is 134.92%. We can draw

the conclusion that our new tool is much better than Monkey and better than our previous work.

 Table 5. Screen Coverage Ratio

Application Name Smart Monkey
Smart Monkey with
idle increase

Twitter 6 8 16.67%

Instagram 5 9 80%

Momo 7 12 71.43%

Snake 4 6 50.00%

ClashOfClan 6 7.2 20.00%

Sanbei 4 5 25.00%

Mobike 10 11 10.00%

Flickr 13 15 15.38%

Wechat 6 11 83.33%

GuitarTune 7 8 14.29%

Deadlyracing 6 7 16.67%

Temple Run 5 7 40%

GameDev 5 8 60%

Jingdong 7 10 42.86%

While in most cases, popular applications are fully tested before handover, there is of small possibility to

trigger a program crash under limited testing times. Therefore, we need other measurements to evaluate

tool’s testing efficiency. We collect all the screens of each application triggered by our tool and Smart Monkey.

Table 5 is the triggered screen information; the second column is the number of triggered screens by Smart

Monkey and the third column is the one by Smart Monkey with idle. From the fourth column, we can find out

that Smart Monkey with idle can cover more screens than Smart Monkey. In a review of the testing result, we

find that some screen contains too many saliency regions, but they are not operable. what’s worse only a few

regions are operable. In such cases, only adopting Smart Monkey may stay on a screen too long, while Monkey

generates points faster and has a certain possibility to trigger screen change, so the result can improve.

We wonder how idle strategy can affect Smart Monkey. Then we collect the valid unique hits per second of

Smart Monkey and Smart Monkey with idle. In table VII, the first column is the unique hits per second of

Smart Monkey, the second column is the one of Smart Monkey with idle. The third column is the incremental

unique hit per second=(
𝑆𝑚𝑎𝑟𝑡 𝑚𝑜𝑛𝑘𝑒𝑦 𝑤𝑖𝑡ℎ 𝑖𝑑𝑙𝑒−𝑆𝑚𝑎𝑟𝑡 𝑚𝑜𝑛𝑘𝑒𝑦

𝑆𝑚𝑎𝑟𝑡 𝑚𝑜𝑛𝑘𝑒𝑦
). We can find that adopting idle strategy can

significantly improve Smart Monkey in unique hits per second, which means Smart Monkey with idle is more

effective. The reason why adopting idle can improve Smart Monkey lies in that we fully take advantage of the

idle time before Smart Monkey returns possible operable operations.

Journal of Software

153 Volume 18, Number 3, August 2023

5.5. Answering RQ5

Fig. 5. Saliency Algorithm Impact.

Smart Monkey includes two different algorithms to predict saliency regions, namely, LC and SR. In normal

processing, we consider both of them and adopt the predicting result according to their processing time. To

figure out whether different algorithms have different effectiveness in detecting saliency regions, we carry

out a comparison experiment, and the result is in Fig. 5. The vertical axis is the value of a unique hit per

second, the horizontal axis is five applications. We can find out the shapes of the three strategies are similar,

and the algorithm does insignificant influence in unique hit per second, and it indicates that the algorithm is

not the key feature to affect Smart Monkeys effectiveness.

5.6. Case Study

Fig. 6. Case study.

For the convenience of analysis, we use java library log4j to remark the points generated by Monkey and

Smart Monkey. The blue points are generated by Monkey and the green points are generated by Smart Monkey.

The numbers in points are the order in which they are generated. For instance, the green point with 4 located

in the top middle screen is the 4th point generated by Smart Monkey. The explanation can also be applied to

other points.

If we only use Monkey, the operable points are point 2, point 3, and point 5. The valid points generated by

Smart Monkey are point 1, point 3, point 5, and point 8. Unfortunately, blue point 5 clicked the left-below

button, and this would trigger screen change. What’s more, the new tool will abandon all results generated

by Smart Monkey.

Suppose the execution time of one point is 10 ms, it will cost 100 ms for Smart Monkey to generate 10

points. Monkey will generate 10 points and there is no screen change happened. Therefore, we can calculate

0
20
40
60
80

100

M
o

m
o

M
o

b
ik

e

Sh
an

b
ei

C
la

sh
 o

f
C

la
n

Sn
ak

e

W
eC

h
at

Ji
n

gd
o

n
g

In
st

ag
ra

m

F
li

ck
r

te
m

p
le

 r
u

n

D
ea

d
ly

R
u

n

G
u

it
ar

 t
u

n
e

tw
it

te
r

G
am

eD
ev

Uniq Hit Per Second

lc-idle sr-idle lc-sr-idle

Journal of Software

154 Volume 18, Number 3, August 2023

that the unique hits per second of Monkey is 30 = 3/0.1, Smart Monkey is 20 = 4/0.2 and Smart Monkey

with idle is 35 = 7/0.2 .

In this case, blue point 5 triggered screen change, so the costed time is 50𝑚𝑠 = 10𝑚𝑠 ∗ 5 and all three

operable points generated during idle time are executed. The unique hit per second is 60 = 3 /0.5, which is

bigger than that of Smart Monkey with idle.

Table 6. Idle Incremental in Unit Time
Application Name Smart Monkey Smart Monkey with idle Incremental Unique Hit per Second

Twitter 48.4 51.11 5.6%

Instagram 11.70 19.17 63.85%

Momo 32.7 37.08 13.39%

Snake 13.24 21.68 63.75%

ClashOfClan 15.05 24.48 62.66%

Sanbei 22.43 37.76 68.35%

Mobike 14.49 15.75 8.70%

Flickr 15.38 23.03 49.74%

Wechat 14.03 25.45 81.40%

GuitarTune 23.38 31.5 34.73%

Deadlyracing 27.04 31.06 14.87%

Temple Run 19.75 27.45 38.99%

GameDev 11.76 15.38 30.78%

Jingdong 14.56 20.58 41.35%

6. Related Work

6.1. Android UI Testing

Graphical user interface (GUI) testing [1] has always been an important method to ensure the quality of

Android applications. It can simulate the interaction behavior of real users and explore potential program

defects. Monkey [1] is a purely randomized Android test generation tool presented by Google that generates

random streams of UI events with no model construction. As a part of the Android developers’ toolkit, users

have not required any additional installation effort. Machiry et.al present Dynodroid [17], also based on

random exploration. It can choose both the least frequently chosen events (Frequency strategy) and context

(BiasedRandom strategy). Therefore, more contextually relevant events will be selected more frequently.

WeChat team develops a new approach named WCTester [6], combining several strategies to inherit the

advantages of Monkey while improving its main constraints.

Model-based testing is a widely used testing approach. Mao et.al present an evolutionary-testing-based test

generation tool for Android UI testing, called Sapienz [19]. It uses a genetic algorithm to evolve generated

seed input sequences to select the optimal test suites with short input sequences that maximize code

coverage and fault detection. Su et. al. presented Stoat [21], a model-based GUI testing tool for Android apps.

Stoat used Gibbs sampling to search for the optimized model and guide test generation from mutated models.

Li et.al introduced DroidBot [22], a lightweight and model-based Android UI testing tool, which generates UI-

guided test inputs based on a state-transition model.

PUMA [10] is a framework presented by Hao et al., which can implement any dynamic analysis on Android

apps based on its same basic random exploration as Monkey. Amalfitano et.al introduced GUIRipper [23]

which based on a user-interface driven ripper. It can automatically explore GUI and dynamically build a model

of the app under test by crawling it from a starting state. Yang et.al introduced ORBIT [24], which can statically

analyze the app’s source code and find the relevant UI events for a specific activity. It could generate more

relevant inputs, so is more efficient than GUIRipper.

Systematic exploration strategy uses more sophisticated techniques such as symbolic execution and

Journal of Software

155 Volume 18, Number 3, August 2023

evolutionary algorithms. It has more exploration capabilities and could provide specific input to reveal

certain applications behavior. N. Mirzaei et al. [25] used symbolic execution to improve the performance of

android testing. T. Azim et al. [26] proposed a strategy of Depth-first Exploration, which can explore the

components of activities in a more systematic way, to achieve the effect of imitating user behavior. Mahmood

et.al presents EvoDroid[27], an evolutionary algorithm to generate relevant inputs for system testing of

Android apps. It uses the test input sequence to represent individuals and implements a fitness function to

maximize coverage. Anand et al. introduced ACTEve [28], a concolic-testing tool that could handle both

system and UI events. It symbolically tracks events from the point where they generate to the point where

they are ultimately handled.

Computer vision is an interdisciplinary scientific field that deals with how computers can gain high-level

understanding from digital images or videos [29]. Chang et al. [30] used computer vision techniques to

improve GUI testing results. They implemented a testing tool called Sikuli, which takes screenshots of the

target and identifies graphics modules in desktop applications.

6.2. Saliency Detection

Visual saliency detection refers to simulating human visual characteristics through intelligent algorithms

to extract salient areas in images. It has been widely used in image segmentation, video compression, object

detection, and other fields.

There are a lot of other saliency detection algorithms, divided into two kinds, pixel space or spectral-based

[11], and feature-based [32]. Ltti et al. [34] proposed a visual attention model based on Gaussian pyramid

fusion of image color, brightness and orientation features. Xie et al. [33] exploited low- and mid-level cues

that based on Bayesian framework to detect saliency regions. Hou et al. [15] studied the spectral residual

contained in the log spectrum of the image frequency domain, which is the salient information in the image

that can attract the attention of the human visual system. Cheng et al. [35] proposed HC (Histogram-based

Contrast), which is a color contrast algorithm based on the color global histogram. The greater the difference

in color features between a pixel and other pixels, the higher the significance. The GR (Graph-Regularized)

algorithm is a saliency extraction algorithm based on superpixel segmentation and contrast between regions

proposed by Yang et al. [36].

7. Conclusion

Existing automated mobile testing methods cannot adequately test mobile gaming apps with displayed GUI

widgets. Our previous work proposes the Smart Monkey technique, which can use a saliency detection

algorithm to identify actionable regions displayed in applications as actionable region candidates. In this

study, we propose an idle strategy to improve the existing flaws of Smart Monkey by combining it with

Monkey testing techniques. It can avoid long waits for inspections that could potentially miss critical GUI time.

We have developed Android testing tools to implement our improved technique and tested it in real

applications. The experimental results show that the new strategy can improve the operation hit rate and

unique hits per second, confirming that our method is effective in detecting Actionable area aspects of

realistic rendering in applications that are accurate and more efficient.

In future work, we can consider combining multiple detection algorithms to improve detection efficiency,

and then run our technique on other platforms, such as mobile web applications or cloud test environments.

Conflict of Interest

The authors declare no conflict of interest.

Journal of Software

156 Volume 18, Number 3, August 2023

Author Contributions

Bingyi Cui and Long Zhang wrote the paper; Chenglong Sun conducted the research; all authors had

approved the final version.

References

[1] Android Developer Website. (2021). Monkey. Retrieved from:

https://developer.android.com/studio/test/monkey

[2] Android Developer Website. (2021). Monkeyrunner. Retrieved from:

https://developer.android.com/studio/test/monkeyrunner

[3] Android Developer Website. (2021). UI Automator. Retrieved from:

https://developer.android.com/training/testing/other-components/ui-automator

[4] Github, Inc. robotium. Retrieved from: http://code.google. com/p/robotium

[5] Sauce Labs. Appiunm. Retrieved from: https://saucelabs. com/appium

[6] Xia, Z. et al. (2016). Automated test input generation for Android: Are we really there yet in an industrial

case? Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (pp. 987–992).

[7] Khronos Group. Opengl. Retrieved from: https://www. opengl.org

[8] Cocos Play. Cocosplay. Retrieved from: http://play.cocos. com

[9] Unity Technologies. Retrieved from: http:// unity3d.com.

[10] Hao, S., Liu, B., Nath, S., Halfond, W., & Govindan, R. (2014). PUMA: programmable UI-automation for

large-scale dynamic analysis of mobile apps. Proceedings of the 12th Annual International Conference on

Mobile Systems, Applications, and Services (pp. 204−217).

[11] Zhai, Y., & Shah. M. (2006). Visual attention detection in video sequences using spatiotemporal cues.

Proceedings of the 14th Annual ACM International Conference on Multimedia (pages 815−824).

[12] Lin, Y. D., Chu, E. T., Yu, S. C., & Lai, Y. C. (2014). Improving the accuracy of automated GUI testing for

embedded systems. IEEE Software, 31(1), 39−45.

[13] Android Developer Website. Retrieved from: https://developer.android.com/studio/command-line/adb

[14] Cheng, M., et al. (2015). Global contrast based salient region detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 37(3), 569−582.

[15] Hou, X., & Zhang, L. (2007). Saliency detection: A spectral residual approach. Proceedings of 2007 IEEE

Conference on Computer Vision and Pattern Recognition.

[16] The Apache Software Foundation. Retrieved from: http://maven.apache.org

[17] Machiry, A., Tahiliani, R., & Naik, M. (2013). Dynodroid: An input generation system for Android apps.

Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering.

[18] Zheng, H. B., et al. (2017). Automated test input generation for android: Towards getting there in an

industrial case. Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering:

Software Engineering in Practice Track.

[19] Mao, K., Harman, M., & Jia, Y. (2016). Sapienz: Multi-objective automated testing for Android applications.

Proceedings of the 25th International Symposium on Software Testing and Analysis.

[20] Mao, K., Harman, M., & Jia, Y. (2017). Crowd intelligence enhances automated mobile testing. Proceedings

of the 2017 32nd IEEE/ACM International Conference on Automated Software Engineering.

[21] Su, T., et al. (2017). Guided, stochastic model-based GUI testing of Android apps. Proceedings of the 2017

11th Joint Meeting on Foundations of Software Engineering.

[22] Li, Y. C., et al. (2017). DroidBot: A lightweight UI-guided test input generator for android. Proceedings of

the 2017 IEEE/ACM 39th International Conference on Software Engineering Companion.

[23] Amalfitano, D., et al. (2012). Using GUI ripping for automated testing of android applications. Proceedings

Journal of Software

157 Volume 18, Number 3, August 2023

of the 27th IEEE/ACM International Conference on Automated Software Engineering.

[24] Yang, W., Prasad, M. R., & Xie, T. (2013). A grey-box approach for automated GUI-model generation of

mobile applications. Proceedings of the 16th International Conference on Fundamental Approaches to

Software Engineering.

[25] Mirzaei, N., Malek, S., Pa sa reanu, C. S., Esfahani, N., & Mahmood, R. (2012). Testing android apps through

symbolic execution. ACM SIGSOFT Software Engineering Notes, 37(6), 1−5.

[26] Azim, T., & Neamtiu, I. (2013). Targeted and depth-first exploration for systematic testing of android apps.

ACM SIGPLAN Notices, 48(10), 641−660.

[27] Mahmood, R., Mirzaei, N., & Malek, S. (2014). EvoDroid: Segmented evolutionary testing of android

apps. Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering.

[28] Anand, S., Naik, M., Harrold, M. J., & Yang, H. (2012). Automated concolic testing of smartphone apps.

Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering.

[29] Wikimedia Foundation. Retrieved from: https://en.wikipedia.org/wiki/Computer_ Vision

[30] Chang, T. H., Yeh, T. R., & Miller, C. (2010). GUI testing using computer vision. Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems.

[31] Chang, T. H., Yeh, T. R., & Miller, C. (2001). Sikuli: Using GUI screenshots for search and automation.

Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technology.

[32] Memon, A. M., Pollack, M. E., & Soffa, M. L. (2001). Hierarchical GUI test case generation using automated

planning. IEEE Transactions on Software Engineering, 27(2), 144−155.

[33] Xie, Y., Lu, H., & Yang, M. H. (2013). Bayesian saliency via low and mid-level cues. Image Processing, IEEE

Transactions, 22(5), 1689−1698.

[34] Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254−1259.

[35] Cheng, M. M., et al. (2015). Global contrast based salient region detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 37(3), 569−582.

[36] Yang, C., Zhang, L., & Lu, H. (2013). Graph-regularized saliency detection with convex-hull-based center

prior. IEEE Signal Processing Letters, 20(7), 637−5640.

Copyright © 2023 by the authors. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited (CC BY 4.0).

Journal of Software

158 Volume 18, Number 3, August 2023

https://creativecommons.org/licenses/by/4.0/

