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Abstract: Graphical User Interface (GUI) testing is an important approach to ensuring software applications’ 

quality. The rendered GUI screen contains operable regions that can be triggered when certain events are 

applied to these areas. The previous traditional testing methods cannot efficiently identify the GUI area of 

this operation and generate the sequence of events. Smart Monkey is based on computer vision techniques, 

which can utilize several basic visual features to confirm the real operable GUI regions. In this paper, we 

propose an idle strategy of Smart Monkey for enhancing GUI testing. It can use a combination of Monkey and 

Smart Monkey to achieve high accuracy and efficiency. We implemented the improved technique as an 

Android testing tool. Then we conduct experiments on 14 real-world applications, comparing with Monkey 

and Smart Monkey methods, respectively. The results show that it can more efficiently identify operable 

regions to generate event sequences. 

 
Keywords: Android UI testing, rendered GUI, monkey test 

 

1. Introduction 

Mobile Applications are widely used in our digital lives. The criteria for the quality and stability of Android 

apps are becoming increasingly necessary as the development and iteration of Android applications progress 

at a rapid pace. The application's Graphical User Interface (GUI) is an important part of ensuring a great user 

experience, so efficient and high-quality GUI testing is important to ensure the quality of Android apps before 

being delivered to users. 

There are various frameworks for automating GUI testing on the market, including Monkey [1], 

MonkeyRunner [2], UIAutomator [3], Robotium [4], and Appium [5]. They're great open-source frameworks 

for ease of use, support for numerous platforms, ensuring a higher quality minimal baseline, lowering 

expenses, and simplifying the overall testing process. 

Monkey test [1] is the most widely used toolkit from Google, due to its excellent compatibility and ease of 

use on different Android platforms. It sends a completely random sequence of UI events to the test application, 

with no predetermined rules. However, the current monkey testing technologies have significant drawbacks. 

There are a lot of modules (or possibly involving complex logic) deep within the structure of the UI interface. 

The id and class name of some modules may change during application development. Another scenario is 

when the structural relationship between certain modules changes, such as when a module is transferred to 

a different parent node. If the above changes occur in the application, the software’s interface will remain the 
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same, but it will have a higher impact on the efficiency and success rate of monkey tests. Due to the completely 

random exploration of the Monkey test, there is no guarantee that traversal explores all GUI elements. 

Previous work [6] has shown that monkey performs poorly in tests on WeChat, a very popular software in 

China. Most of the events generated by Monkey are redundant, such as repetitive execution of no-code 

behavior, and its code coverage and operational efficiency are also low, resulting in a large testing overhead. 

The user's attention will be drawn to the rendered GUI interface, which will then prompt them as to which 

regions can be manipulated. Human perception systems and psychological activities are very sensitive, 

especially to obvious visual cues and application interface modifications. Therefore, our main idea is to try to 

capture the region that may be changed in the GUI interface by detecting conspicuous areas such as color, 

intensity, texture, and so on. The method proposed in our previous work has been shown to have better 

accuracy and efficiency than the traditional Monkey technique. However, Smart Monkey may take longer to 

detect operable areas in some cases. If some applications need to be tested for a short time or there are few 

operable areas in the interface, then we may miss some key GUI operation events, resulting in a significant 

waste of testing overhead. This paper proposes a new strategy to improve the Smart Monkey method‘s 

inadequacies. We can adopt the Monkey method in the idle time of Smart Monkey operation. Because Smart 

Monkey needs some time to calculate the salient region, and Monkey can generate a certain number of 

operation events for testing during this time, minimizing any unnecessary waiting. We conduct experiments 

on 14 widely used real-world mobile applications. The results demonstrate that Smart Monkey is more 

effective than Android's Monkey, with 34.96 % of incorrectly detecting the operable region on the screen of 

these mobile apps, and the first crash failure can be detected earlier. At the same time, Smart Monkey with 

the idle strategy improves the average detection hit rate of the operation area by 13.21% compared with the 

method without the idle strategy. The results also show that both the operation hit rate and unique hits per 

second are greatly improved compared with our previous method. 

The main contribution of this paper is threefold:  

⚫ It aims to find operable region candidates in rendered GUIs and verify them through specific GUI 

events. 

⚫ The experiment indicates that our method can discover operable region candidates in a rendered GUI 

and then confirm these possibilities with concrete GUI events, effectively increasing the probability of 

generating a series of events that can cause the GUIs to respond. 

⚫ The results of the experiments reveal that the Smart Monkey technology that uses the idle technique 

is more efficient than the technology that does not. The operating area's average hit rate has grown by 

13.21 %, while the execution duration has remained unchanged. 

The rest of this paper is organized as follows. The motivation of this work is presented in Section 2. The 

motivation of our technique is presented in Section 3. Sections 4 and 5 present the experiment and data 

analysis of “Smart Monkey”. We presented related works in Section 6 and the conclusion of this paper in 

Section 7. 

2. Motivation 

The graphical user interface (GUI) is the most intuitive and important way for a user to interact with 

software. As a result, in recent years, application developers have paid more attention to the software's GUI. 

2.1.   GUI Testing 

For the traditional Android GUI layout interface, the record-and-replay [4] is the mainstream method for 

testing these programs. Most applications have many GUI widgets in fixed positions, and this method can be 

used to control each widget in turn using a test script. However, the graphics engine[7][8][9] renders the full 

image in gaming apps, which has no set layout structure and is constantly refreshed. Existing solutions 
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struggle to deal with operational items whose appearance, amount, location, and other features cannot be 

recognized statically or dynamically during record and replay testing. PUMA [10], for example, is an enhanced 

version of Monkeys that uses UI-Automator to query the GUI widget layout during runtime. UI-Automator (or 

DUMP) is unable to query the rendered GUI information. 

There are also enhancement versions of Monkeys such as PUMA [10], which uses UI-Automator to query 

the GUI widget structure at runtime. However, it cannot query the rendered GUI information through UI-

Automator (or DUMP for earlier versions of Android). As a result, existing automated testing techniques are 

unable to handle gaming apps that primarily rely on displayed GUIs. 

2.2.   Our Insight 

The GUI interface of the software should aesthetically try to attract the user and thus gain their attention 

Human players are also often drawn to attractive elements in still images during gameplay, known as spatial 

attention [11]. Furthermore, psychological research shows that the human perceptual system is sensitive to 

visual contrasts such as color, intensity, and texture. 

Our previously proposed Smart Monkey can detect operable GUI regions by applying computer vision 

techniques. Monkey test generates two-dimensional coordinates to construct a user event flow sequence at 

random in the presented graphical interface. However, there are some clear drawbacks to this strategy, such 

as the fact that calculating and detecting key regions can take a lengthy time. This method is inefficient in 

applications that just need to be evaluated for a short period of time or have a few operational regions of the 

interface. Therefore, we consider if we try to combine this method and Monkey test, whether this combined 

method can improve the test efficiency, is worth exploring. Next, we will propose an idea to improve the 

above-mentioned possible deficiencies. 

3. Our Technique 

In Section III, we present the idle strategy of Smart Monkey and the overall architecture of our method, 
then explain the detection algorithm. 

3.1.   Idle Strategy 

Smart Monkey is a technology that uses the monkey testing method as its foundation. It can read and 

analyze the visual content generated on the screen using computer vision technology, and select the picture 

that is most likely to be a button or label to click or drag. But Smart Monkey takes a long time to calculate key 

regions, yet many applications require short testing events for some operable regions that emerge seldom. 

We could miss certain key GUI events if we just halt the testing tool to wait for saliency detection to complete. 

As Fig. 1 shown, we propose an idle strategy to overcome the disadvantage. First, we create a new GUI 

screen, causing our approach to take a picture of the current screen and transmit it to the saliency region 

detecting server over an adb connection and the http protocol [1]. However, Lin et al. [12] used the camera to 

capture the image on Android phone. The snapshot is received by the host server, which then initiates 

Saliency Detecting. The Smart Monkey job is executed by one Thread, while Monkey is executed by the other. 

Two threads start at the same time, and when the Smart Monkey thread finishes calculating, it stops the 

Monkey thread and both threads store operation events into a ring buffer. We create a consumer thread that 

picks up operation events from the ring buffer regularly and sends them to the android device over an adb 

connection. If a GUI screen change is triggered by an event, we shall clean the ring buffer and thread status to 

prepare the server for the next operation. 
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Fig. 1. The structure of Idle Strategy. 

 

3.2.   Smart Monkey and Monkey 

As part of our method, Smart Monkey takes a screenshot of the app under test and the class name of the 

current Activity as part of our approach. It's then transferred to the host computer's technical components 

via the adb [13] or http protocol [1]. Next, if encountering a new GUI interface currently, this method uses the 

region detection technique to find the operable region and indexes the GUI state to save the operation result. 

And if the GUI interface has been identified in the last work, this technology will generate events based on the 

previous index identification results, which is also the same completely random and iterative exploration 

strategy. 

When exploring the state, Smart Monkey can detect and calculate the operation area of the current GUI 

state and randomly select an operation area that has not been selected. However, the Monkey tool randomly 

generates 2D coordinates within the size of the GUI interface. Both methods then send a specific type of event 

(for example, touch, drag, or click) to random coordinates within that actionable area. The sequence of events 

they generate is stored in a ring buffer. 

3.3.   Saliency Detection Algorithms 

Our method applies three saliency detection algorithms to detect operable region candidates, by exploiting 

three fundamental visual features, namely color, density, and texture. Gray spatial attention model [11] (GA 

algorithm) utilizes density features in grayscale images, and the color spatial attention model [14] (CA 

algorithm) uses both density and color features. The Spectral Residual Model [15] (SR algorithm) finds that 

the log spectrum of many images is very similar, and this residual value part is the salient information that 

can attract people's attention. Therefore, the SR algorithm removes similar spectral information to calculate 

its residual value. The relationship between the saliency algorithm and the basic visual features used is shown 

in Table 1.  
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Table 1. Visual Features and Their Detection Algorithms 
Saliency detection algorithms Visual Features 

GA [11] density   

CA [14] density color  

SR [15]   texture 

 

As listed in Fig. 2, the purpose of the saliency detection algorithm is to detect actionable regions from still 

images [1]. This algorithm of Smart Monkey is implemented using the OpenCV framework and Java and 

integrated into our tool. 

 

function SaliDtc (method) 

      @INPUT:  x[] - Image 

      @OUTPUT: y[] - Points 

 

01  switch method: 

02    case GA: y  call GA (x) 

03    case CA: y  call CA (x) 

04    case SR: y  call SR (x) 

05  return y 

function GenSaliTbl (x) 

  @INPUT:  x[] – Image 

  @OUTPUT: s[] - Saliency Image 

 

06 for r, c in [1, nRow], [1, nCol]: 

07   Hist[x[r][c]]++ 

08 for outlevel in Hist: 

09   for inlevel in Hist: 

10     Map[outlevel]  d[r][c]+   

         Hist[level]*call dist(outlevel,inlevel) 

11 for r, c in [1, nRow], [1, nCol]: 

12   for level in Hist 

13     s[r][c]  Map(x[r][c])   

14 return s 

function SaliCan (s) 

  @INPUT:  s - Saliency Image  

           THRESHOLD 

  @OUTPUT: y[] - Points 

 

15  while  y[] is not full 

16     r, c  ran(1, nRow), ran(1, nCol) 

17     if s[r][c] < THRESHOLD 

18        y  call cancat(y, d) 

19  return y 

function GA 

  @INPUT:  x[] - Image 

  @OUTPUT: y[] – Points 

   

20  nRow, nCol  size of x 

21  g  call gray(x)   

22  s  call GenSaliTbl (g) 

23  y  call SaliCan (s) 

24  return y 

function CA 

  @INPUT:  x[] - Image 

  @OUTPUT: y[] – Points 

 

25  l  call Lab (x)   

26  s  call GenSaliTbl (l) 

27  y  call SaliCan (s) 

28  return y 

function SR 

  @INPUT:  x[] - Image 

  @OUTPUT: y[] - Points 

 

29  g  call gausian(x) 

30  x’  call fft(x) 

31  x’’  x’ – g 

32  s  call ifft (x’’) 

33  y  call SaliCan(s) 

34  return y 

Fig. 2. The pseudo-code of Saliency algorithm. 

 

The saliency map of an image is based on measuring the color contrast between image pixels. It is the 
weighted distance through the pixel value of the image on the histogram of gray or color values of the entire 
image. For a pixel 𝐼𝑘 in an image I, its saliency value can be defined as Eq. (1). 

𝑆(𝐼𝑘) = ∑ 𝐷(𝐼𝑘 , 𝐼𝑖)∀𝐼𝑖∈𝐼                                                                      (1) 

When we restructured the equation, calculate the frequency of the pixels, and keep it in the equation, the 
above formula can be converted to the following, 

𝑆(𝐼𝑘) = 𝐷(𝐼𝑘 , 𝐼1) + 𝐷(𝐼𝑘 , 𝐼2) + ⋯ + 𝐷(𝐼𝑘 , 𝐼𝑁)

 = ∑ [𝑓𝑗𝐷(𝑐𝑙 , 𝑐𝑖)]
𝑛

𝑗=1

                                                 (2)  

We calculate the frequency of the pixel value and save it in the hash-map, which can be directly calculated 

in the subsequent calculation of the saliency value to reduce the complexity. In addition, we use a random 
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strategy to identify the most likely operable points in the saliency image. 

The GA algorithm calculates the grayscale distance between each pixel as a map for each saliency value. 

The CA algorithm calculates the hash table of the saliency values between each pixel through the LC algorithm 

for the color values in 𝐿 × 𝑎 × 𝑏 color space. The SR algorithm is calculated in the frequency domain. It first 

calculates the Fourier spectrum of the image, and then subtracts Gaussian noise from the source spectral 

image to obtain the saliency spectrum image. And we apply inverse fast Fourier transformation [15] to this 

image. 

4. Experiment 

In this study, we sought to understand how the adoption of Monkey during idle periods affects the 

effectiveness of testing. We address five main research questions in our paper through experiments. 

RQ1: Can Smart Monkey effectively detect actionable widgets in mobile applications? 

RQ2: Is Smart Monkey more effective than the built-in monkey of Android? 

RQ3: Is it useful that run Monkey during Smart Monkey’s idle time?  

RQ4: Under equal operation events, does the combination of Smart Monkey and Monkey is more efficient 

than Smart Monkey or Monkey test?  

RQ5: Which feature is the key part to increase testing effectiveness?  

4.1.  Evaluative Dimensions 

In order to answer the questions proposed above, we take several evaluative dimensions, namely, Hit, 

Unique Hit, Hit Ratio, Crash Time, Screen Cover Ratio. 

• Hit is the number of generated operation events that trigger operable objects. 

• Unique Hit is the number of operable objects triggered by generated operation events. 

• Hit Ratio is the ratio between Unique Hit and all operable objects. 

• Crash Time is the period of time from program start to crash end. 

• Screen Cover Ratio is the one between the triggered screen and all screens. 

The number of hits indicates how effective a tool is in generating valid operation events. We argue the tool 

is inefficient in evaluating a program if most events trigger the same operable item. As a result, we'll require 

a new dimension called Hit Ratio, which refers to the fraction of covered operable items on a single screen. 

Because a tool seldom causes a program to crash, Crash Time may not be the best metric to use when 

measuring a tool's effectiveness. We present the Screen Cover Ratio as a metric for determining the 

effectiveness of testing. 

4.2.  Experimental Setup 

We evaluate the effectiveness of our method on 14 representative real-world applications, compared to 

Monkey that built in Android. We used a mobile phone running this Android OS 5.1 and a host with JDK, 

OpenCV and Android SDK. Four parts of our experiment are as follows. 

In the first experiment, we compared the Smart Monkey with Android's built-in monkey technology to test 

the effectiveness of its method. We ran 14 applications five times on three devices for each technique to 

calculate the average number of active actions (e.g., clicks, taps) throughout a three-minute period. 

Furthermore, we also compared the relative effectiveness of three algorithms. Similarly, we ran the same 

application 5 times on the same device to calculate the mean of effective operations. 

In the second experiment, we tested several game applications separately and used the tool to record the 

first crash’s time. so we could compare the performance of our tool and the built-in Monkey tool. 

In our third experiment, we want to figure out how adopting Monkey during Smart Monkey’s affect the 

effectiveness of testing. Monkey’s strategy is to generate a certain number of operation events and send them 

Journal of Software

148 Volume 18, Number 3, August 2023



  

to the mobile device at once, while Smart Monkey takes up much more time to calculate the saliency region. 

To get the convictive conclusion, we should measure all the technologies under the same condition that they 

should generate an approximate number of operation events. Because if the ratio of generated GUI events 

between Monkey and Smart Monkey were too large, the Smart Monkey with idle strategy will degenerate to 

Monkey. So, we run all of programs by using single Monkey, by using Smart Monkey with mixture algorithm, 

and by Smart Monkey with idle strategy. In the end, we record the Hit and Crash Time.  

Our previous work shows that Smart Monkey’s hit ratio no longer apparently increases if the number of 

operation events is more than10. So, we adopt the same strategy that limits the number of operation events 

generated by Monkey and by Smart Monkey to 10 in one testing circle. 

In our fourth experiment, we want to make sure of the affluence of saliency detecting algorithm. Therefore, 

we run 14 programs by using the combination of Monkey and Smart Monkey, and Smart Monkey adopts single 

saliency region detecting algorithm, namely LC or SR. So, we could know which property is the key part to 

affect the testing effectiveness. 

We developed our method as an android tool, which is built by Maven [16]. 

5. Analysis 

In this section, the results of experiments are presented to answer the research questions. 

5.1.  Answering RQ1 

Fig. 3 contains examples of four applications, where the plots (a), (c), (e), (g) are source images, and the 

plots (b), (d), (f), (h) are saliency map binary images. The green dots1 in each graph represent the saliency 

detection results. 

And the green circles are the saliency point, the b, d, f, h pictures all are the binary saliency map. 

The first four pictures are from the interface of the Android game Final Fight, including two sets of test 

images. The screen is horizontal. The plots (b) and (d) are the saliency images of the plots (a) and (c), 

respectively. After the calculation, a salient area will be marked in the image, and green dots will be randomly 

placed in the area. Plot (a) contains 6 significant regions and plot (c) contains 10. The last four pictures are 

the interface from the Android game Piano Tiles 2, and the screen is vertical. We notice that the principal 

color in the interface changes from (e) to (g), and the saliency image reverses accordingly. However, the 

actionable areas of the two images are similar, such as the Home and Hall buttons below the recognition 

screen. This shows that this detection algorithm is robust. All computation costs take no more than 800ms 

and the detection algorithm has a certain error rate, which is acceptable for the performance of the interactive 

system. 

 
(a) Screenshot of Final 

Fight fighting scene 

 
(b) Saliency image of Final 

Fight fighting scene 

 
(c) Screenshot of Final 

Fight choose hero scene 

 
(d) Saliency image of Final 

Fight choose hero scene 

 
1 Green dots may be hard to see on grayscale images. 
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(e) Screenshot of Piano 

Tiles   start a scene 

 
(f) Saliency image of 

Piano Tiles start a scene 

 
(g) Screenshot of Piano 

Tiles music choose scene 

 
(h) Saliency image of 

Piano Tiles music choose 

scene 

Fig. 3. Some saliency detection in several android applications. The a, c, e, g pictures all are the source 

image. 

 

Our experiments then measure the percentage of effective hits for each application. The results are shown 

in Table 2. We experimentally obtain the number of images for each application, and an overview of its 

operable objects. In addition, the number of hits and unique hits in actionable positions is the result of 

running our method. The number of unique hits refers to the number of operations that are not repeated for 

the operable area, and the multiple tests of the same operable region are counted only once. Hit Ratio is 

calculated by dividing the total number of actionable objects by the number of unique hits. 

 

Table 2. The Coverage Ratio on Applications (Smart Monkey) 
 Image Num Total Operable Objects Hit Num Hit Num Uniq Hit Ratio 

WeChat 4 49 27.33  17.67  36.06% 

Twitter 3 39 23.67  10.67  27.35% 

Temple Run 3 22 17.33  4.67  21.21% 

Snake 18 114 89 46 40.35% 

Sanbei 9 102 53 36 35.29% 

Momo 9 115 88 53 46.08% 

Mobike 15 127 79 45 35.43% 

Jingdong 5 103 35.33 26.33  25.57% 

Instagram 3 27 21.00  9.67  35.80% 

GuitarTune 5 55 28.33  18.33  33.33% 

GameDev 4 32 8.00  7.67  23.96% 

Flickr 4 25 23.00  9.67  38.67% 

Deadlyracing 5 23 14.67  12.67  55.07% 

ClashOfClan 23 368 179 130 35.33% 

For example, the first row is the result of Smart Monkey running 3 images on Wechat. There are 49 operable 

objects in total and 44operations. On average 23.67 of them hit operable objects, and 10.67 operations are 

unique. So, the hit ratio is 27.35%. 

Our tool attains the best results on Deadlyracing with a hit ratio of 55.07%, while the worst results on 

Temple with a hit ratio 21.21%. The average hit ratio in these fourteen applications is 34.96%. Overall, the 

above results can show that our proposed method is effective. 
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Thus, we can answer RQ1 that our technique is effective to identifying operable widgets from the rendered 

images of mobile game screenshots. 

5.2.   Answering RQ2 

To analyze the relative effectiveness of our tool, we conducted an experiment comparing our method with 

the Android built-in Monkey tool, and counted the number of valid operations within three minutes. The 

experimental results are shown in Table 3. It includes the effective operands of our tool and Monkey, and the 

incremental ratio of Smart Monkey in comparison to Monkey. 

For example, in the first row of the table, the test of Smart Monkey on Wechat shows that it can perform 

11.2 effective operations in 3 minutes, and the test result of Monkey test is 5.6. Therefore, the performance 

of this method on these applications is improved by 100% compared to the Monkey. The result of other apps 

can be explained similarly. Overall, the result of the incremental ratio is positive, with an average of 79.60%. 

 

Table 3. The Valid Operations in 3 Minutes 
 Smart Monkey Monkey Incremental Ratio 

WeChat 11.2 5.6 100.00% 

Twitter 12.4 8.2 51.22% 

Temple Run 11.6 11.2 3.57% 

Snake 11.3 6.1 85.25% 

Sanbei 13.7 10.0 37% 

Momo 18.8 7.9 137.97% 

Mobike 10.4 3.6 188.89% 

Jingdong 15.8 6.4 146.88% 

Instagram 14.0 9.6 45.83% 

GuitarTune 14.6 8.2 78.04% 

GameDev 10.2 4.8 112.50% 

Flickr 16.0 14.0 14.28% 

Deadlyracing  12.6 10.8 16.67% 

ClashOfClan 21.0 10.7 96.26% 

To test the failure detection ability of our method, we performed an experiment to investigate the time it 

takes to analyze the first failure, running our tool and Monkey on each application. We calculate the mean 

time to failure in seconds for each of the five runs. The performance of the two methods is shown in Fig. 4. 

Our tool can find crashing errors faster in all four applications, compared to monkeys. And three of the 

programs tested have an improvement rate of 8%. 

 

Fig. 4. The crash time (unit: second) of the application running on Smart Monkey and monkey separately. 

 

Therefore, the above experimental results show that our technique is more effective than Monkey in 

exposing crashing application failures when testing mobile game applications with rendered GUIs. 

0 1000 2000 3000 4000

DesertShooting

MinionRush

DeadlyRacing

DungeonVillage

monkey

Smart Monkey
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5.3.  Answering RQ3 

 
Table 4. The Coverage Ratio on Applications (Smart Monkey with Idle) 

 Image Num Total Operable 

Objects 

Hit Num Hit Num Uniq Hit Ratio 

(Smart Monkey) 

Hit Ratio 

(with idle) 

Wechat 4 49 32  20.3 36.06% 41.43% 

Twitter 3 39 40.3 17.6 27.35% 45.13% 

Temple Run 3 22 18.3  15.75  21.21% 71.59% 

Snake 18 114 106 73 40.35% 64.04% 

Sanbei 9 102 74 42 35.29% 41.18% 

Momo 9 115 97 66 46.08% 57.39% 

Mobike 15 127 83 59 35.43% 46.47% 

Jingdong 5 103 39 27.33  25.57% 26.53% 

Instagram 3 27 31.00  12.7  35.80% 47.04% 

GuitarTune 5 55 33.6  23  33.33% 41.82% 

GameDev 4 32 8.00  13.35  23.96% 41.72% 

Flickr 4 25 24.00  11.7 38.67% 46.8% 

Deadlyracing 5 23 17  14.2  55.07% 61.74% 

ClashOfClan 23 368 255 153 35.33% 41.58% 

Table 4 is the statistical information of fourteen different applications after running by Smart Monkey with 

the idle Monkey strategy. The first five columns of Table IV are similar to that of Table II. The sixth and seventh 

columns in Table 4 they are Hit Ratio of the previous method and the improved method using the idle strategy, 

respectively. For instance, the first row is the Smart Monkey with idle strategy running on Momo’s 9 

screenshots. There are a total 115 operable objects. And our tool has succeeded to predict 88 valid operations 

and 66 operations are unique. so, the hit ratio is 57.39% (=
𝐻𝑖𝑡 𝑈𝑛𝑖𝑞

𝑇𝑜𝑡𝑎𝑙 𝑂𝑝𝑒𝑟𝑎𝑏𝑙𝑒 𝑂𝑏𝑗𝑒𝑐𝑡𝑠
). 

Among the 14 applications in the experiment, the improved method using the idle strategy has achieved a 

high hit ratio, which is a significant improvement compared to the previous method. We can calculate the 

average hit ratio of only adopting Smart Monkey is 34.96% from the sixth column. The seventh column of 

Table V is our tool with idle strategy, the average hit ratio of the optimized tool by adding idle strategy is 

48.17%. We can conclude that it could improve the effectiveness of Smart Monkey by adopting Monkey during 

Smart Monkey idle time, and cause no time increase in execution.  

Suppose if the new strategy didn’t increase the Unique Hit, the result will be equal to Smart Monkey, and in 

other cases, adopting this strategy could improve Smart Monkey under the measure of Hit Ratio. The reason 

why the Hit ratio doesn’t significantly improve lies in that Smart Monkey covers most of the operation events 

generated by Monkey during idle.  

5.4.  Answering RQ4 

Table 4. Hit Ratio Incremental 
Application 

Name 

Monkey 

Hit 

Hit of Smart 

Monkey with idle 

Monkey 

Hit Ratio 

Hit Ratio of Smart 

Monkey with idle 

Incremental 

Ratio 

Twitter 14 40.3 14.34% 44.33% 209.14% 

Instagram 14 31 8.81% 24.87% 182.28% 

Momo 21 88 23.48% 46.08% 96.25% 

Snake 43 89 23.68% 40.35% 70.40% 

ClashOfClan 77 179 17.89% 35.33% 97.48% 

Sanbei 42 53 17.65% 35.29% 99.94% 

Mobike 39 79 22.05% 35.43% 60.68% 

Flickr 13.39 19.6 18.45% 35.75% 93.77% 
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Wechat 13 32 16.87% 37.80% 124.12% 

GuitarTune 6.3 15.7 15.54% 35.97% 131.47% 

Deadlyracing 4 11 20.37% 73.33% 259.99% 

Temple Run 5.3 16.7 15.3% 61.14% 266.11% 

GameDev 7.14 18.4 14.93% 22.37% 49.83% 

Jingdong 19 39 10.27% 25.41% 147.41% 

We compare our new tool with the Monkey tool to find out the effectiveness of our new tool. In Table V, the 

second and third columns are Monkeys hits and Smart Monkey hits. The fourth and fifth columns separately 

are Monkey’s hit ratio and that of Smart Monkey with idle. The last column is an incremental ratio, which can 

be calculated by formula. 

𝑆𝑚𝑎𝑟𝑡𝑚𝑜𝑛𝑘𝑒𝑦 𝑖𝑑𝑙𝑒 ℎ𝑖𝑡 𝑟𝑎𝑡𝑖𝑜−𝑀𝑜𝑛𝑘𝑒𝑦 ℎ𝑖𝑡 𝑟𝑎𝑡𝑖𝑜

𝑀𝑜𝑛𝑘𝑒𝑦 ℎ𝑖𝑡 𝑟𝑎𝑡𝑖𝑜
. 

We can figure out that Smart Monkey with idle strategy can generate more valid operations. In our previous 

work, the average incremental ratio is 63.22%, and our new tools incremental ratio is 134.92%. We can draw 

the conclusion that our new tool is much better than Monkey and better than our previous work.  

 Table 5. Screen Coverage Ratio  

Application Name Smart Monkey 
Smart Monkey with 
idle increase 

Twitter 6 8 16.67% 

Instagram 5 9 80% 

Momo 7 12 71.43% 

Snake 4 6 50.00% 

ClashOfClan 6 7.2 20.00% 

Sanbei 4 5 25.00% 

Mobike 10 11 10.00% 

Flickr 13 15 15.38% 

Wechat 6 11 83.33% 

GuitarTune 7 8 14.29% 

Deadlyracing 6 7 16.67% 

Temple Run 5 7 40% 

GameDev 5 8 60% 

Jingdong 7 10 42.86% 

While in most cases, popular applications are fully tested before handover, there is of small possibility to 

trigger a program crash under limited testing times. Therefore, we need other measurements to evaluate 

tool’s testing efficiency. We collect all the screens of each application triggered by our tool and Smart Monkey. 

Table 5 is the triggered screen information; the second column is the number of triggered screens by Smart 

Monkey and the third column is the one by Smart Monkey with idle. From the fourth column, we can find out 

that Smart Monkey with idle can cover more screens than Smart Monkey. In a review of the testing result, we 

find that some screen contains too many saliency regions, but they are not operable. what’s worse only a few 

regions are operable. In such cases, only adopting Smart Monkey may stay on a screen too long, while Monkey 

generates points faster and has a certain possibility to trigger screen change, so the result can improve.  

We wonder how idle strategy can affect Smart Monkey. Then we collect the valid unique hits per second of 

Smart Monkey and Smart Monkey with idle. In table VII, the first column is the unique hits per second of 

Smart Monkey, the second column is the one of Smart Monkey with idle. The third column is the incremental 

unique hit per second=( 
𝑆𝑚𝑎𝑟𝑡 𝑚𝑜𝑛𝑘𝑒𝑦 𝑤𝑖𝑡ℎ 𝑖𝑑𝑙𝑒−𝑆𝑚𝑎𝑟𝑡 𝑚𝑜𝑛𝑘𝑒𝑦

𝑆𝑚𝑎𝑟𝑡 𝑚𝑜𝑛𝑘𝑒𝑦
 ). We can find that adopting idle strategy can 

significantly improve Smart Monkey in unique hits per second, which means Smart Monkey with idle is more 

effective. The reason why adopting idle can improve Smart Monkey lies in that we fully take advantage of the 

idle time before Smart Monkey returns possible operable operations. 
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5.5.  Answering RQ5 

 
Fig. 5. Saliency Algorithm Impact. 

 

Smart Monkey includes two different algorithms to predict saliency regions, namely, LC and SR. In normal 

processing, we consider both of them and adopt the predicting result according to their processing time. To 

figure out whether different algorithms have different effectiveness in detecting saliency regions, we carry 

out a comparison experiment, and the result is in Fig. 5. The vertical axis is the value of a unique hit per 

second, the horizontal axis is five applications. We can find out the shapes of the three strategies are similar, 

and the algorithm does insignificant influence in unique hit per second, and it indicates that the algorithm is 

not the key feature to affect Smart Monkeys effectiveness. 

5.6.   Case Study 

 
Fig. 6. Case study. 

 

For the convenience of analysis, we use java library log4j to remark the points generated by Monkey and 

Smart Monkey. The blue points are generated by Monkey and the green points are generated by Smart Monkey. 

The numbers in points are the order in which they are generated. For instance, the green point with 4 located 

in the top middle screen is the 4th point generated by Smart Monkey. The explanation can also be applied to 

other points.  

If we only use Monkey, the operable points are point 2, point 3, and point 5. The valid points generated by 

Smart Monkey are point 1, point 3, point 5, and point 8. Unfortunately, blue point 5 clicked the left-below 

button, and this would trigger screen change. What’s more, the new tool will abandon all results generated 

by Smart Monkey.  

Suppose the execution time of one point is 10 ms, it will cost 100 ms for Smart Monkey to generate 10 

points. Monkey will generate 10 points and there is no screen change happened. Therefore, we can calculate 
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that the unique hits per second of Monkey is 30 =  3/0.1, Smart Monkey is 20 =  4/0.2 and Smart Monkey 

with idle is 35 =  7/0.2 .  

In this case, blue point 5 triggered screen change, so the costed time is 50𝑚𝑠 = 10𝑚𝑠 ∗  5 and all three 

operable points generated during idle time are executed. The unique hit per second is 60 =  3 /0.5, which is 

bigger than that of Smart Monkey with idle. 

Table 6. Idle Incremental in Unit Time 
Application Name Smart Monkey Smart Monkey with idle Incremental Unique Hit per Second 

Twitter 48.4 51.11 5.6% 

Instagram 11.70 19.17 63.85% 

Momo 32.7 37.08 13.39% 

Snake 13.24 21.68 63.75% 

ClashOfClan 15.05 24.48 62.66% 

Sanbei 22.43 37.76 68.35% 

Mobike 14.49 15.75 8.70% 

Flickr 15.38 23.03 49.74% 

Wechat 14.03 25.45 81.40% 

GuitarTune 23.38 31.5 34.73% 

Deadlyracing 27.04 31.06 14.87% 

Temple Run 19.75 27.45 38.99% 

GameDev 11.76 15.38 30.78% 

Jingdong 14.56 20.58 41.35% 

 

6. Related Work 

6.1. Android UI Testing 

Graphical user interface (GUI) testing [1] has always been an important method to ensure the quality of 

Android applications. It can simulate the interaction behavior of real users and explore potential program 

defects. Monkey [1] is a purely randomized Android test generation tool presented by Google that generates 

random streams of UI events with no model construction. As a part of the Android developers’ toolkit, users 

have not required any additional installation effort. Machiry et.al present Dynodroid [17], also based on 

random exploration. It can choose both the least frequently chosen events (Frequency strategy) and context 

(BiasedRandom strategy). Therefore, more contextually relevant events will be selected more frequently. 

WeChat team develops a new approach named WCTester [6], combining several strategies to inherit the 

advantages of Monkey while improving its main constraints. 

Model-based testing is a widely used testing approach. Mao et.al present an evolutionary-testing-based test 

generation tool for Android UI testing, called Sapienz [19]. It uses a genetic algorithm to evolve generated 

seed input sequences to select the optimal test suites with short input sequences that maximize code 

coverage and fault detection. Su et. al. presented Stoat [21], a model-based GUI testing tool for Android apps. 

Stoat used Gibbs sampling to search for the optimized model and guide test generation from mutated models. 

Li et.al introduced DroidBot [22], a lightweight and model-based Android UI testing tool, which generates UI-

guided test inputs based on a state-transition model.  

PUMA [10] is a framework presented by Hao et al., which can implement any dynamic analysis on Android 

apps based on its same basic random exploration as Monkey. Amalfitano et.al introduced GUIRipper [23] 

which based on a user-interface driven ripper. It can automatically explore GUI and dynamically build a model 

of the app under test by crawling it from a starting state. Yang et.al introduced ORBIT [24], which can statically 

analyze the app’s source code and find the relevant UI events for a specific activity. It could generate more 

relevant inputs, so is more efficient than GUIRipper. 

Systematic exploration strategy uses more sophisticated techniques such as symbolic execution and 
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evolutionary algorithms. It has more exploration capabilities and could provide specific input to reveal 

certain applications behavior. N. Mirzaei et al. [25] used symbolic execution to improve the performance of 

android testing. T. Azim et al. [26] proposed a strategy of Depth-first Exploration, which can explore the 

components of activities in a more systematic way, to achieve the effect of imitating user behavior. Mahmood 

et.al presents EvoDroid[27], an evolutionary algorithm to generate relevant inputs for system testing of 

Android apps. It uses the test input sequence to represent individuals and implements a fitness function to 

maximize coverage. Anand et al. introduced ACTEve [28], a concolic-testing tool that could handle both 

system and UI events. It symbolically tracks events from the point where they generate to the point where 

they are ultimately handled.  

Computer vision is an interdisciplinary scientific field that deals with how computers can gain high-level 

understanding from digital images or videos [29]. Chang et al. [30] used computer vision techniques to 

improve GUI testing results. They implemented a testing tool called Sikuli, which takes screenshots of the 

target and identifies graphics modules in desktop applications. 

6.2.  Saliency Detection 

Visual saliency detection refers to simulating human visual characteristics through intelligent algorithms 

to extract salient areas in images. It has been widely used in image segmentation, video compression, object 

detection, and other fields. 

There are a lot of other saliency detection algorithms, divided into two kinds, pixel space or spectral-based 

[11], and feature-based [32]. Ltti et al. [34] proposed a visual attention model based on Gaussian pyramid 

fusion of image color, brightness and orientation features. Xie et al. [33] exploited low- and mid-level cues 

that based on Bayesian framework to detect saliency regions. Hou et al. [15] studied the spectral residual 

contained in the log spectrum of the image frequency domain, which is the salient information in the image 

that can attract the attention of the human visual system. Cheng et al. [35] proposed HC (Histogram-based 

Contrast), which is a color contrast algorithm based on the color global histogram. The greater the difference 

in color features between a pixel and other pixels, the higher the significance. The GR (Graph-Regularized) 

algorithm is a saliency extraction algorithm based on superpixel segmentation and contrast between regions 

proposed by Yang et al. [36]. 

7. Conclusion 

Existing automated mobile testing methods cannot adequately test mobile gaming apps with displayed GUI 

widgets. Our previous work proposes the Smart Monkey technique, which can use a saliency detection 

algorithm to identify actionable regions displayed in applications as actionable region candidates. In this 

study, we propose an idle strategy to improve the existing flaws of Smart Monkey by combining it with 

Monkey testing techniques. It can avoid long waits for inspections that could potentially miss critical GUI time. 

We have developed Android testing tools to implement our improved technique and tested it in real 

applications. The experimental results show that the new strategy can improve the operation hit rate and 

unique hits per second, confirming that our method is effective in detecting Actionable area aspects of 

realistic rendering in applications that are accurate and more efficient. 

In future work, we can consider combining multiple detection algorithms to improve detection efficiency, 

and then run our technique on other platforms, such as mobile web applications or cloud test environments. 
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