
Fundamental Algorithms in Distributed Systems

Zhiliang Wan
United World College Changshu China, China.

* Corresponding author. Tel.: +86 13121099737; email: zlwan20@uwcchina.org
Manuscript submitted November 10, 2022; revised November 28, 2022; accepted December 10, 2022.

Abstract:

A distributed system is a collection of spatially separated processes that communicate over a

network and coordinate their actions by exchanging messages. Because of the failure-prone nature of the

network and the processes themselves, many complex problems arise in distributed systems. If not

addressed, these problems can prove to

be significantly costly to applications that involve communication

and coordination between multiple processes. Many of these problems can be

overcome through the use of

fundamental algorithms

for ordering, coordination, and agreement. This paper will review some of these

algorithms, including synchronization, ordering of events, mutual exclusion, election, multicast, consensus,

and Byzantine Generals Problem.

Keywords:

Distributed systems, Synchronization, Fault tolerance, Agreement

1. Introduction

In a distributed system, multiple processes communicate over a network and coordinate their actions to

achieve certain objectives. Before devising algorithms, one must identify a system model to specify

assumptions of how the network and the processes behave [1].

The basic assumption about the underlying network is that processes communicate via bidirectional

point-to-point channels. These channels can be assumed reliable, where a message is received if and only if

it is sent. Alternatively, these channels can be assumed to be unreliable, where messages may be lost or

duplicated. In general, communication channels in actual networks tend to be unreliable, but these

unreliable channels can be made reliable if the sender continually retransmits lost messages and the

receiver discards duplicated messages. Since unreliable channels can be made reliable, many of the

algorithms reviewed in this paper assume reliable communication channels.

In respect to the behavior of the processes, it can be idealistically assumed that processes do not fail. In

reality, however, it is important for algorithm designers to be pessimistic with their assumptions and

consider unlikely but possible scenarios. The failure model of processes can be crash-stop, in which the

processes stop executing forever after failing, or crash-recovery, in which the processes may resume

executing after a finite amount of time. It can even be assumed that processes behave in arbitrary,

potentially malicious manners, and algorithms have been devised to cope with such a failure model.

Under certain assumptions of the system model, researchers in the past decades have devised algorithms

to solve various important problems in distributed systems, including synchronization, ordering of events,

mutual exclusion, election, multicast, consensus, and Byzantine Generals Problem. These algorithms are

very important to applications that rely on the underlying distributed system.

44 Volume 18, Number 1, February 2023

Journal of Software

doi: 10.17706/jsw.18.1.44-54

mailto:zlwan20@uwcchina.org

2. Time and Clocks

In a distributed system, it is ideal for every process to have relatively accurate knowledge about the

physical time. This knowledge is important in various situations, which include determining timeouts,

calculating some duration of time, and recording timestamps for events [1]. Because of the inherent

limitations of the hardware clocks on ordinary computers, it is tremendously important for processes to

obtain information of physical time from external sources that are more accurate. As it is impossible for

processes to have completely accurate knowledge of physical time, logical clocks were invented to capture

the ordering of events that occur on different processes [2].

2.1. Physical Clocks

Computers typically have hardware quartz clocks that oscillate at an almost constant rate [1]. By counting

the number oscillations, a computer is able to obtain information about the number of seconds elapsed

since a certain time point, which is usually the Unix epoch of January 1st, 1970. Unfortunately, under this

method, the clock is subject to deviation from the actual time when the rate of quartz oscillation varies,

perhaps due to changes in temperatures or other factors. As time elapses, the discrepancy between the

clocks on separate computers gradually increases, which is known as clock drift. As a result, many

computers tend to synchronize their clocks with more accurate external sources. These sources typically

rely on atomic clocks to derive the Coordinated Universal Time (UTC) as a standard reference.

2.2. Network Time Protocol

The network time protocol (NTP) is selected for the review because it is the dominant algorithm that

synchronizes the physical clock of processes in a distribute system. The network time protocol

synchronizes the clocks of clients to the clock of a server, which relatively closer to UTC [3]. NTP divides the

processes in a distributed system into strata 𝑖, where stratum 0 has an accurate UTC. A client on stratum 𝑖

synchronizes with a server on stratum 𝑖 − 1, 𝑖 > 0. Essentially, the synchronization procedure involves a

roundtrip of message exchange to estimate the one-way delay and the clock skew between the client and

the server. The client can then mitigate this skew by adjusting the rate of its clock for a designated period of

time.

However, there are two significant limitations of the network time protocol in its primitive form. Firstly,

since the structure of the NTP closely resembles a tree rooted at the server on stratum 0, any failure of a

server can jeopardize the synchronization of its descendants. Secondly, it is unsound to assume that each

one-way delay is exactly half of the total roundtrip delay. This assumption fails when there’s queueing in the

network as well as other unforeseeable factors, leading to inaccuracy [3]. To mitigate these two limitations,

a client can perform the protocol with multiple servers. This approach not only reduces the probability of

all servers failing simultaneously but also improves accuracy by using average values to calculate the clock

skew.

2.3. Happen-before Relation

The happen-before relation, denoted by →, is selected for this review because it is of critical importance

to the literature, laying a foundation for many later works on distributed systems. With an understanding of

special relatively, Lamport realized that there is no invariant ordering of two events unless one event can

casually affect the other event [2]. Therefore, he proposed the happen-before relation, which is independent

from physical time, to capture the potential causality thus the ordering between events in a distributed

system. The happen-before relation is defined by the following properties.

(1) If event 𝑎 and event 𝑏 occur in the same process, and 𝑎 occurs before 𝑏 in the order the code

execution of the same process, then 𝑎 → 𝑏.

45 Volume 18, Number 1, February 2023

Journal of Software

(2) If event 𝑎 is the sending of a message and event 𝑏 is the receiving of the message, then 𝑎 → 𝑏.

(3) If 𝑎 → 𝑏 and 𝑏 → 𝑐, then 𝑎 → 𝑐.

Fig. 1. Sequence diagram for the happen-before relation [2].

In Figure 1, since event 𝑝1 occurs before event 𝑝2 in the order of the code execution of process 𝑝, 𝑝1 → 𝑝2

according to (1). Because 𝑝1 is the sending of a message and 𝑞2 is the receiving of the message, 𝑝1 → 𝑞2

according to (2). Moreover, because 𝑝1 → 𝑞2 and 𝑞2 → 𝑞4, 𝑝1 → 𝑞4 follows from the transitive property (3).

The chain of events that follows from the transitive property (3) can be arbitrarily long. For example, the

previously arrived conclusion 𝑝1 → 𝑞4, combined with the observation that 𝑞4 → 𝑟3 from (2), can lead to a

further conclusion that 𝑝1 → 𝑟3 using (3), and so on and so forth.

The significance of the happen-before relation lies in the notion of potential causality [2]. If 𝑎 → 𝑏, then 𝑎

may or may not caused 𝑏. If neither 𝑎 → 𝑏 nor 𝑏 → 𝑎, then 𝑎 and 𝑏 are said to be concurrent, or 𝑎 || 𝑏, where

no potential causality is involved in the relationship between the two events.

2.4. Lamport Clocks

The Lamport clock mechanism is included in this review because it is the first algorithm to determine the

happen-before relation between events in a distributed system. This mechanism involves a software

counter maintained by every process, whose value is independent of physical time [2]. Whenever an event

occurs, the Lamport clock mechanism assigns the counter value to the event.

The timestamp of event 𝑒 is denoted by 𝐿(𝑒), and 𝐿𝑖 is the counter maintained by process 𝑝𝑖 [3]. The

Lamport clocks algorithm works as follows.

(1) Prior to the execution of a relevant event at process 𝑝𝑖 , 𝐿𝑖 = 𝐿𝑖 + 1.

(2) When 𝑝𝑖 sends a message, it piggybacks the value of 𝐿𝑖 as 𝑡 on the message.

(3) When 𝑝𝑖 receives a message, 𝐿𝑖 = 𝑚𝑎𝑥(𝐿𝑖 , 𝑡)

Fig. 2. Sequence diagram for Lamport clocks [3].

In Figure 2, since process 𝑝1 increments its counter 𝐿1 from 0 to 1 prior to event 𝑎 according to (1), the

process assigns its counter value 1 to event 𝑎. Because event 𝑏 is the sending of a message and event 𝑐 is the

receiving of the message, the Lamport timestamp of 𝑐 is greater than the timestamp of 𝑏 by 1.

Although the value by which 𝐿𝑖 increments is 1, any positive integer would suffice [2]. By induction, it can

be shown that 𝑎 → 𝑏 ⇒ 𝐿(𝑎) < 𝐿(𝑏). In the above example, because 𝑎 → 𝑏, 𝐿(𝑎) > 𝐿(𝑏). However, 𝐿(𝑎) <

46 Volume 18, Number 1, February 2023

Journal of Software

𝐿(𝑏) ⇒ 𝑎 → 𝑏 is false because if 𝐿(𝑎) < 𝐿(𝑏), then either 𝑎 → 𝑏 or 𝑎 || 𝑏 is true. In the above example,

although 𝐿(𝑒) < 𝐿(𝑏), 𝑏 || 𝑒, which means 𝑒 → 𝑏 is false.

2.5. Vector Clocks

The vector clock mechanism is chosen for this review because it allows processes to determine the partial

ordering between two events using the timestamps, overcoming a significant limitation of Lamport clocks

[3]. In a system of 𝑁 processes, every process 𝑝𝑖 maintains a vector of 𝑁 elements to timestamp local events.

Initially, all elements of all vectors are zero. Similar to Lamport clocks, 𝑝𝑖 increments the 𝑖th element of its

vector prior to the execution of a relevant event and assigns its vector to the event. When 𝑝𝑖 sends a

message, it attaches its vector on the message. When 𝑝𝑗 receives the message, if an element on the attached

vector is greater than the corresponding element on the vector 𝑝𝑗 maintains, 𝑝𝑗 updates the element on its

vector to the greater value.

Given event 𝑎 and event 𝑏, if every element in vector of 𝑎 is less or equal to the corresponding element in

the vector of 𝑏, and 𝑎 and 𝑏 are different events, then 𝑎 happens-before 𝑏 [3]. This is because the vectors

provide sufficient information to demonstrate that the events happened-before 𝑎 constitute a subset of the

events happened-before 𝑏. Therefore, the mechanism can determine the happen-before relation between

two events by comparing their vectors, which is a significant improvement over Lamport clocks. In addition,

vector clocks can also demonstrate if two events are concurrent by vector comparison. It is important to

determine concurrency in many systems, such as a replicated database [1]. When multiple clients are

updating values in multiple replicas, the application must know if these updating events are concurrent or

not to resolve potential conflicts.

However, there are inherent limitations to vector clocks [3]. Firstly, it is challenging to apply vector clocks

to dynamic systems where processes join and leave, as all processes must be able to insert and delete

elements in their vectors. Secondly, vector clocks are expensive due to the 𝑂(𝑁) space complexity resulting

from storing each vector and the 𝑂(𝑁) time complexity resulting from each comparison.

3. Coordination and Agreement

3.1. Mutual Exclusion

The problem of mutual exclusion arises when processes in a distributed system share a resource and only

one process can enter the critical section at a time [3]. The critical section is a section of the program that

accesses the shared resource, perhaps a variable or an object. To prevent conflicts, no more than one

process can enter the critical section at a time. The simplest algorithm is one where a central server issues a

token to permit a process to enter the critical section and retrieves the token when it leaves the critical

section. If a process requests the token while another process is in the critical section, the server queues its

request based on the order of message arrival. This algorithm guarantees that only one process enters the

critical section at a time. However, the algorithm fails to achieve fairness because the ordering of the queue

is based on physical time of message arrivals at the server instead of the happen-before order, making it

possible for a process to enter the critical section multiple times while another process waits to enter. In

addition, the system fails if the server fails, and the server may become a potential performance bottleneck.

Ricart and Agrawala’s algorithm is selected from the literature because it is the first algorithm that solves

mutual exclusion with a distributed approach. For a process to enter the critical section, it sends a request

message to the other 𝑁 − 1 processes and attaches a Lamport timestamp to the message. After receiving all

𝑁 − 1 responses, the process enters the critical section. When receiving a request message, if the receiving

process is currently in the critical section, or it is attempting to enter the critical section and has a

timestamp-identifier pair smaller than that of the requesting process, it queues the requests according to

47 Volume 18, Number 1, February 2023

Journal of Software

the comparison of the timestamp-identifier pair. Otherwise, the receiving process replies to the requesting

process. After a process exits the critical section, it replies to the process at the front of the queue. The

algorithm guarantees that only one process is in the critical section at a time because the process that is in

the critical section will not reply to the requesting process until it exits the critical section. Fairness is

ensured because the requests are ordered according to the Lamport timestamps with arbitrary identifiers

breaking ties, which guarantees that a process only enters the critical section once while another process

waits to enter. However, the 𝑂(𝑁) messages sent incur a significant overhead on the network and makes the

algorithm impractical in large systems.

Maekawa devised an algorithm that only uses 𝑂(√𝑁) messages to achieve mutual exclusion [5]. The

voting set of a process consists of 𝐾 processes, where 𝐾 ≈ √𝑁. Maekawa’s algorithm is chosen for the

review because it is considered to be a significant improvement over the expensive Ricart and Agrawala’s

algorithm. For a process to enter the critical section, it sends a request message to every process in its

voting set and enters the critical section after it has received all 𝐾 votes. When a process receives a request

message, if it is currently in the critical section, or if it has already sent a vote to a requesting process, it

queues the requests according to the comparison of the timestamp-identifier pair. Otherwise, it replies to

the request and sets its state to voted. When a process is informed that another process has exited the

critical section, it replies to the request from the process at the head of the queue and sets its state to voted.

Only one process can enter the critical section at a time because the processes at the intersection of voting

sets can only vote for one process at a time. Requests eventually succeed and fairness is ensured because of

the use of Lamport timestamps. Although this algorithm sends significantly less messages than the above

one, its delay between one process exiting the critical section and the next subsequently entering is worse

because two messages are required instead of one. Therefore, a tradeoff must be made by the system

designer.

However, all of the above mutual exclusion algorithms do not tolerate unreliable message transmission

and the failure of processes that assume certain roles [3]. Fault tolerance can be achieved through general

consensus algorithms, which will be discussed afterwards.

3.2. Elections

Analogous to elections of political figures, distributed elections choose coordinators, perhaps as the

servers in the centralized mutual exclusion algorithm [3]. Distributed election algorithms must choose a

single coordinator instead of multiple. This is challenging when multiple processes initiate elections

concurrently, as the algorithm must choose the process with the highest identifier among all 𝑁 processes in

the system with unique identifiers.

The ring-based election algorithm is chosen for this review because it was one of the first algorithms to

solve the problem of distributed election. In the ring-based election algorithm, the neighbor of process 𝑝𝑖 is

process 𝑝(𝑖+1)𝑚𝑜𝑑𝑁 [3]. When a process initiates an election, it sends a message containing its identifier to

its neighbor. When a process receives such a message, if the identifier in the message is greater than the

identifier of the receiving process, it propagates the message to its neighbor. Otherwise, the process only

propagates the message with its identifier if it is not currently participating in an election. If a process

receives a message consisting of its identifier, it means that all processes in the ring have agreed that this

process should be elected. Therefore, the process sends a message around the ring announcing its status as

the new coordinator. Although the algorithm correctly selects the process with the greatest identifier while

tolerating concurrent elections, it is not fault-tolerant because the failure of one process on the ring

undermines the entire algorithm.

48 Volume 18, Number 1, February 2023

Journal of Software

Fig. 3. Progress of the bully algorithm [3].

The bully algorithm is chosen from the literature because it was one of the first fault tolerant algorithms

to elect the process with the highest identifier [3]. The bully algorithm is considered to be a significant

improvement over the ring-based election algorithm because the former is fault tolerant whereas the latter

is not. In the bully algorithm, all processes know which processes have higher identifiers. A process initiates

an election after discovering the possibility of failure of the previous coordinator using timeouts. The

process can simply elect itself if it knows it has the highest identifier. Otherwise, the process sends an

election message to the processes with higher identifiers. If it receives no answer message after a timeout, it

announces itself as the coordinator to the rest of the processes because assuming a maximum delay of

message delivery, all processes with higher identifiers have failed. If the process receives any message, that

means one or more processes with higher identifiers are still functional. These processes with higher

identifiers will continue to execute the algorithm that the first process executed, eventually electing a

functional process with the highest identifier. In Figure 3, process 𝑝1 initiates an election due to speculating

the failure of the previous coordinator 𝑝4. 𝑝1 sends an election message to both 𝑝2 and 𝑝3, who have higher

identifiers. Upon receiving the messages, 𝑝2 and 𝑝3 continue to execute the same algorithm that 𝑝1 executed,

which is to send messages to processes with higher identifiers. Eventually, since process 𝑝3 has failed, 𝑝2

has not received an answer message from 𝑝3 after a timeout. Therefore, 𝑝2 announces to 𝑝1 that it is the

new coordinator. To prove that the algorithm guarantees only a single coordinator, assume the contrary that

several coordinators were to coexist. Those with lower identifiers will not be coordinators because they will

have received an answer from the process with the highest identifier, which contradicts the assumption and

proves the case of a single coordinator. However, the algorithm relies on the assumption of a maximum

delay of message delivery, which is impractical in real systems. Furthermore, the algorithm requires 𝑂(𝑁2)

messages if the process with the lowest identifier initiates an election, making the algorithm unrealistic for

large systems. Therefore, consensus algorithms with weaker assumptions and greater efficiency must be

devised, and these algorithms will be discussed afterwards.

3.3. Group Communication

Multicast refers to fault tolerant message transmission to multiple processes [6]. It is solely based on

point-to-point communication between processes, without functionalities supported on the hardware level

such as IP multicast. In the simplest multicast algorithm, a process sends individual messages to other

processes, but this algorithm is unreliable because the processes will have inconsistent knowledge about

the message if the sender fails before sending all the messages. Therefore, reliable multicast is designed in

such a way that every process sends the message to the rest of the processes after delivering it, which

49 Volume 18, Number 1, February 2023

Journal of Software

guarantees that the correct processes will either all deliver the message or all not deliver it. Since reliable

multicast involves no timing assumptions, it tolerates an asynchronous system model. However, reliable

multicast involves a total of 𝑂(|𝑔|2) messages, where |𝑔| is the size of the group 𝑔 involved in the multicast,

making the algorithm inefficient and impractical for large systems.

The reliable multicast algorithm results in processes delivering multiple messages in arbitrary orders due

to the unpredictable behavior of the underlying network. This is unacceptable in many scenarios, such as a

replicated database system whose updates from the messages are not commutative [1]. Therefore,

multicast algorithms that deliver messages in a certain order must be devised. These algorithms are

reviewed because they are able to satisfy different ordering properties that satisfy applications of different

nature. In these algorithms, the delivery of a message may not immediately follow the receiving of a

message to satisfy the specified ordering property.

In FIFO-ordered multicast, if two messages are multicast by the same process, then all processes will

deliver those messages in the same order [3]. In the algorithm that ensures FIFO-ordering, every process 𝑝𝑖

maintains the variables 𝑠𝑖 and 𝑟𝑖𝑗 , where 𝑠𝑖 represents the number of messages process 𝑝𝑖 has sent to the

group, and 𝑟𝑖𝑗 denotes the sequence number of the most recent message from process 𝑝𝑗 that process 𝑝𝑖 has

delivered. For 𝑝𝑖 to multicast a message 𝑚, it piggybacks 𝑠𝑖 on the message as 𝑠𝑚. When 𝑝𝑗 receives 𝑚, if

𝑠𝑚 = 𝑟𝑗𝑖 + 1, then 𝑝𝑗 immediately deliver the message because it is the subsequent one from 𝑝𝑖 . Otherwise,

it would queue the message and wait until 𝑟𝑗𝑖 = 𝑠𝑚 − 1 to deliver it. This algorithm guarantees FIFO-

ordering by the sequence number mechanism, and its reliability depends on the reliability of the underlying

multicast. However, since FIFO-ordered multicast arbitrarily orders messages sent by different processes, it

cannot satisfy the happen-before relation in the sequence of messages being delivered, which is

problematic in certain applications.

To overcome the limitation of FIFO-ordered multicast, causally ordered multicast is devised such that

message 𝑚1 is delivered before message 𝑚2 in all correct processes if the multicast of 𝑚1 happens before

the multicast of 𝑚2 [3]. Essentially, the underlying algorithm uses vector timestamps to determine if a

message is the subsequent one in the sequence of causal ordering. If so, the message is delivered

immediately. Otherwise, the message is queued until it is the subsequent one. However, in casually ordered

multicast, different processes may deliver messages in different orders. To understand why this is the case,

consider a directed graph whose nodes are messages. A directed edge is formed between two messages

with a causal dependency in between. A topological sorting of the messages must be a valid causal ordering

of them. Since there may exist multiple ways to sort events topologically, processes may deliver messages in

different order.

If the application demands that all processes must deliver messages in the exact same order, then it is

necessary to use total order multicast. Unfortunately, devising an algorithm for total order multicast is non-

trivial, and the problem is usually considered under the context of consensus.

3.4. Consensus

Many of the above problems involve algorithms that enable processes to agree on a certain value. The

processes agree on which process to enter the critical section in mutual exclusion, which process to be the

leader in elections, and the next message to deliver in total order multicast. As discussed above, these

problems can be solved using a general consensus algorithm that enables processes to reach agreement on

a certain value [1]. More specifically, after one or more processes propose a value, the consensus algorithm

will decide on a value among the proposed values, and all correct processes will decide on the same value.

An algorithm that solves the consensus problem is chosen from the literature and reviewed because of its

simplicity. This algorithm guarantees termination and correctness in the presence of 𝑓 crash failures

50 Volume 18, Number 1, February 2023

Journal of Software

exhibited by processes [3]. In essence, the algorithm proceeds in 𝑓 + 1 rounds, and in each round, each

process multicasts values that have not been sent in previous rounds. Every correct process will arrive at

the same set of values even in the worst case, in which all 𝑓 crashes occur during the rounds, because

eventually the correct processes will be able to agree with the additional round. Then, the processes

perform the majority function on the set of values, which returns the value that appears the most often in

the set or some special value if no majority exists. Functions such as minimum, maximum, and median are

applicable as well if the values can be sorted. As such, the correct processes arrive at the same value, and

the consensus problem is solved. This algorithm relies on the assumption of synchrony because the notion

of rounds is defined by physical time. This assumption is impractical in real systems because it does not

align with the asynchronous behavior of networks. Therefore, it seems necessary to weaken the assumption

of synchrony to one of asynchrony.

3.5. Paxos

Paxos is chosen for this review because it is the dominant offering in solving the distributed consensus

problem in an asynchronous system, which has no assumptions about network latency and process

execution speed [7, 8]. Paxos involves three roles, proposers, acceptors, and learners. A process can assume

multiple roles at a time. If a process wants to be the proposer, perhaps due to speculating about the failure

of the previous proposer from some timeout mechanism, the process multicasts a proposal consisting of a

sequence number to all acceptors. The sequence number is unique to those other potential proposers can

choose, which is ensured by proposers choosing their sequence numbers from disjoint sets. In addition, the

sequence number must be greater than any sequence number the proposer has seen.

Upon receiving the proposal, if the sequence number in the proposal is higher than any sequence number

the receiving acceptor has seen, then it sends a promise message to the proposer to accept the proposal,

promising not to accept proposals consisting of lower sequence numbers. Otherwise, the acceptor sends a

reject message to the proposer. If a promise message is to be sent, the acceptor attaches the latest value it

has seen and the sequence number of the proposer who sent that value. This mechanism aims to ensure

that current proposers can select the same value as the previous ones to continue the consensus established

previously.

If the proposer receives promise messages from a majority of acceptors, it has been effectively elected. If

any of the promise messages contain a value from previous rounds, the newly elected proposer must choose

the value from the message containing the largest sequence number, which signifies the most recent

previous proposer. Otherwise, any value can be chosen. After determining the value, the proposer

multicasts the value to all other acceptors in an accept message. Once the proposer receives the

acknowledgment from a majority of its acceptors, the proposer multicasts the value in a commit message to

the learners, and consensus has been reached.

This algorithm ensures a single proposer in most cases, although it is possible for several to coexist due to

the system model of asynchrony [8]. The algorithm guarantees correctness in the presence of multiple

proposers, but progress is not necessarily ensured when two proposers keep issuing proposals with

increasing sequence numbers. This is consistent with the FLP impossibility result obtained by Fisher, Lynch,

and Paterson, stating that it is impossible for a deterministic algorithm to guarantee reaching consensus in

an asynchronous system in the presence of failures [9]. Nevertheless, Paxos manages to terminate with high

probability while guaranteeing correctness, which is usually sufficient for the purposes of most systems [3].

In practical systems, consensus algorithms are usually used to generate a sequence of values such as a

replicated log that all processes agree on, which is analogous to total order multicast previously discussed.

It is inefficient to run the entire Paxos algorithm repeatedly for every entry in the sequence, so

51 Volume 18, Number 1, February 2023

Journal of Software

optimizations must be devised. Assuming that the proposer does not need to change between instances of

Paxos, the election phase of the algorithm does not need to be repeated between instances [8], which

significantly reduces the number of message exchanges and disk writes. This optimization is known as

Multi-Paxos.

Fig. 4. Brief overview of the Paxos algorithm [3, 10].

Paxos is a complicated and subtle algorithm, and it is inevitably challenging for engineers to implement it

in real systems. The team that developed Chubby, a distributed lock and file system that uses Paxos at its

core, made adaptations to the original algorithm to suit the purposes of the system [10]. For example,

because every cluster that uses the Paxos algorithm only involves 6 processes, the team made all processes

other than the proposer, or the coordinator, both the acceptors and the learners. The correctness of this

adaptation is ensured by an assumption made in the original algorithm that processes can assume multiple

roles. Figure 4 provides a brief overview of the Paxos algorithm after this adaptation.

However, the team encountered numerous engineering challenges when implementing the algorithm. For

example, disk corruption defeats the assumption of Paxos that processes have persistent memory. Another

challenge they encountered was handling changes in group membership. This challenge could not be simply

resolved, as Lamport suggested [8], by making group membership part of the state and changing it with

ordinary state-machine commands. After altering the original Paxos algorithm to address the above

challenges, the team arrived at an algorithm that is robust testing-wise but unproven mathematically, with

somewhat satisfactory robustness.

3.6. Byzantine Generals Problem

All of the fault-tolerant algorithms above assume that processes fail by crashing, and in some cases, they

would recover from failures and rejoin the system. However, in reality, it is possible for processes to fail in

arbitrary ways, known as Byzantine faults [11]. For example, if the proposer in Paxos were to fail arbitrarily,

it may send different values to different learners in the commit messages in the third phase, which

undermines the algorithm’s ability to reach consensus. Therefore, an algorithm that can reach consensus

despite Byzantine faults must be devised to meet the requirements of certain applications.

The Byzantine Generals Problem is an analogy of a distributed system seeking consensus. In this analogy,

a general sends a value to his 𝑁 − 1 lieutenants such that all loyal lieutenants agree on the same value,

which is the value the general sent if he is loyal. If the commander is not loyal, the lieutenants must agree on

some value, nevertheless.

52 Volume 18, Number 1, February 2023

Journal of Software

Fig. 5. Diagram for Byzantine Generals Problem [3].

In a situation involving three generals, one of whom is faulty, no solution is possible assuming the

generals can only exchange oral messages, which do not allow the generals to prove that another general

sent a certain message. Suppose 𝑝1 is the commander, and 𝑝2 and 𝑝3 are his lieutenants. Consider the case

in which 𝑝3 is a traitor. 𝑝1 sends the value 𝑣 to 𝑝2 and 𝑝3. 𝑝2 correctly echoes 𝑣 to 𝑝3, but 𝑝3 sends some

other value 𝑢 to 𝑝2. As a result, 𝑝2 has received two conflicting values, 𝑢 and 𝑣. Alternatively, consider the

case in which the commander 𝑝1 is the traitor. 𝑝1 sends the value 𝑤 to 𝑝2 but some other value 𝑥 to 𝑝3. 𝑝2

and 𝑝3 correctly echo the value they have received from 𝑝1 to each other. In this case, both 𝑝2 and 𝑝3 have

received conflicting values, 𝑤 and 𝑥. In the two cases, it is indistinguishable from the perspective of 𝑝2

whether 𝑝1 or 𝑝3 is the traitor because it would receive conflicting values either way. Therefore, 𝑝2 cannot

choose a value among the two it has received. In fact, the Byzantine Generals Problem is unsolvable with

𝑁 = 3 and 𝑓 = 1, where 𝑓 is the number of faulty generals. This intuitive observation can be generalized

into a mathematical proof that states the Byzantine Generals Problem is unsolvable if 𝑁 ≤ 3𝑓 but solvable if

𝑁 > 3𝑓 [12].

An algorithm was devised to solve the Byzantine Generals Problem when 𝑁 > 3𝑓 [11]. This algorithm is

reviewed because it is the only algorithm that solves the Byzantine Generals Problem without cryptography.

Processes recursively assume the role of commander and multicast the value they obtained from the

majority function whose input is from previous rounds of recursions. Due to the recursive nature of the

algorithm, it involves sending 𝑂(𝑁𝑓+1) messages, which can be considered as multiplying an additional 𝑁

for every round of recursion that aims to eliminate the impact of one traitor. Due to the expensive nature of

the algorithm, more efficient solutions were devised using cryptography to achieve the assumption of

signed messages, which allow processes to prove that a process sent a certain message.

Given an algorithm for the Byzantine Generals Problem, distributed consensus can be achieved in

presence of arbitrary faults [11]. Every correct process maintains a vector 𝑣. After running the algorithm of

the Byzantine Generals Problem, all correct processes set 𝑣𝑖 to be the value the lieutenants agreed on with

𝑝𝑖 being the commander. Due to the requirements of the Byzantine Generals Problem, 𝑣𝑖 is precisely the

value process 𝑝𝑖 proposed if 𝑝𝑖 is correct. Even if 𝑝𝑖 is faulty, 𝑣𝑖 is consistent on the vectors of all correct

processes. As such, all correct processes obtain the same vector. They can perform the majority function on

the vector to extract the most popular value, and consensus is achieved because all correct processes will

reach the same value.

4. Conclusion

This is a review of some of the fundamental algorithms in distributed systems that aim to solve a variety

of problems that include synchronization, ordering of events, mutual exclusion, election, ordered multicast,

consensus, and Byzantine Generals Problem. In these algorithms, processes typically need to coordinate

their actions to achieve some objective. Distributed systems engineers need to be familiar with these

algorithms and be aware of their usage and limitations. Many other important algorithms exist for solving

these problems in the literature, but the algorithms reviewed in this paper are to a large extent relevant to

53 Volume 18, Number 1, February 2023

Journal of Software

the other algorithms.

Conflict of Interest

The author declares no conflict of interest.

References

[1] Kleppmann, Martin. Designing Data-intensive applications: The big ideas behind reliable, scalable, and

maintainable systems. First edition, O’Reilly, 2017.

[2] Lamport, L. “Time, clocks, and the ordering of events in a distributed system.” Communications of the

ACM, vol. 21, no. 7, July 1978, pp. 558–65.

[3] Coulouris, George F., et al. Distributed Systems: Concepts and Design. Fifth edition, Addison-Wesley, 2012.

[4] Ricart, G, and Ashok K. A. An optimal algorithm for mutual exclusion in computer networks.

Communications of the ACM, vol. 24, no. 1, Jan. 1981, pp. 9–17.

[5] Maekawa, M. A √N Algorithm for Mutual Exclusion in Decentralized Systems. ACM Transactions on

Computer Systems, vol. 3, no. 2, May 1985, pp. 145–59.

[6] Birman, Kenneth P. The process group approach to reliable distributed computing. Communications of

the ACM, vol. 36, no. 12, Dec. 1993, pp. 37–53.

[7] Lamport, L. The part-time parliament. ACM Transactions on Computer Systems, vol. 16, no. 2, May 1998,

pp. 133–69.

[8] Lamport, L. “Paxos made simple.” ACM SIGACT News (Distributed Computing Column) 32, 4 (Whole

Number 121, December 2001), Dec. 2001, pp. 51–58.

[9] Fischer, Michael J., et al. Impossibility of distributed consensus with one faulty process. Journal of the

ACM, vol. 32, no. 2, Apr. 1985, pp. 374–82.

[10] Chandra, Tushar D., et al. “Paxos made live-An engineering perspective (2006 Invited Talk).”

Proceedings of the 26th Annual ACM Symposium on Principles of Distributed Computing, 2007.

[11] Lamport, L. et al. The byzantine generals problem. ACM Transactions on Programming Languages and

Systems, vol. 4, no. 3, July 1982, pp. 382–401.

[12] Pease, M., et al. Reaching agreement in the presence of faults. Journal of the ACM, vol. 27, no. 2, Apr.

1980, pp. 228–34.

54 Volume 18, Number 1, February 2023

Journal of Software

