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Abstract:
 
A distributed system is a collection of spatially separated processes that communicate over a 

network and coordinate their actions by exchanging messages. Because of the failure-prone nature of the 

network and the processes themselves, many complex problems arise in distributed systems. If not 

addressed, these problems can prove to
 
be significantly costly to applications that involve communication 

and coordination between multiple processes. Many of these problems can be
 
overcome through the use of 

fundamental algorithms
 
for ordering, coordination, and agreement. This paper will review some of these 

algorithms, including synchronization, ordering of events, mutual exclusion, election, multicast, consensus, 

and Byzantine Generals Problem.
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1. Introduction 

In a distributed system, multiple processes communicate over a network and coordinate their actions to 

achieve certain objectives. Before devising algorithms, one must identify a system model to specify 

assumptions of how the network and the processes behave [1]. 

The basic assumption about the underlying network is that processes communicate via bidirectional 

point-to-point channels. These channels can be assumed reliable, where a message is received if and only if 

it is sent. Alternatively, these channels can be assumed to be unreliable, where messages may be lost or 

duplicated. In general, communication channels in actual networks tend to be unreliable, but these 

unreliable channels can be made reliable if the sender continually retransmits lost messages and the 

receiver discards duplicated messages. Since unreliable channels can be made reliable, many of the 

algorithms reviewed in this paper assume reliable communication channels. 

In respect to the behavior of the processes, it can be idealistically assumed that processes do not fail. In 

reality, however, it is important for algorithm designers to be pessimistic with their assumptions and 

consider unlikely but possible scenarios. The failure model of processes can be crash-stop, in which the 

processes stop executing forever after failing, or crash-recovery, in which the processes may resume 

executing after a finite amount of time. It can even be assumed that processes behave in arbitrary, 

potentially malicious manners, and algorithms have been devised to cope with such a failure model. 

Under certain assumptions of the system model, researchers in the past decades have devised algorithms 

to solve various important problems in distributed systems, including synchronization, ordering of events, 

mutual exclusion, election, multicast, consensus, and Byzantine Generals Problem. These algorithms are 

very important to applications that rely on the underlying distributed system. 
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2. Time and Clocks 

In a distributed system, it is ideal for every process to have relatively accurate knowledge about the 

physical time. This knowledge is important in various situations, which include determining timeouts, 

calculating some duration of time, and recording timestamps for events [1]. Because of the inherent 

limitations of the hardware clocks on ordinary computers, it is tremendously important for processes to 

obtain information of physical time from external sources that are more accurate. As it is impossible for 

processes to have completely accurate knowledge of physical time, logical clocks were invented to capture 

the ordering of events that occur on different processes [2]. 

2.1. Physical Clocks 

Computers typically have hardware quartz clocks that oscillate at an almost constant rate [1]. By counting 

the number oscillations, a computer is able to obtain information about the number of seconds elapsed 

since a certain time point, which is usually the Unix epoch of January 1st, 1970. Unfortunately, under this 

method, the clock is subject to deviation from the actual time when the rate of quartz oscillation varies, 

perhaps due to changes in temperatures or other factors. As time elapses, the discrepancy between the 

clocks on separate computers gradually increases, which is known as clock drift. As a result, many 

computers tend to synchronize their clocks with more accurate external sources. These sources typically 

rely on atomic clocks to derive the Coordinated Universal Time (UTC) as a standard reference. 

2.2.  Network Time Protocol 

The network time protocol (NTP) is selected for the review because it is the dominant algorithm that 

synchronizes the physical clock of processes in a distribute system. The network time protocol 

synchronizes the clocks of clients to the clock of a server, which relatively closer to UTC [3]. NTP divides the 

processes in a distributed system into strata 𝑖, where stratum 0 has an accurate UTC. A client on stratum 𝑖 

synchronizes with a server on stratum 𝑖 − 1, 𝑖 > 0. Essentially, the synchronization procedure involves a 

roundtrip of message exchange to estimate the one-way delay and the clock skew between the client and 

the server. The client can then mitigate this skew by adjusting the rate of its clock for a designated period of 

time. 

However, there are two significant limitations of the network time protocol in its primitive form. Firstly, 

since the structure of the NTP closely resembles a tree rooted at the server on stratum 0, any failure of a 

server can jeopardize the synchronization of its descendants. Secondly, it is unsound to assume that each 

one-way delay is exactly half of the total roundtrip delay. This assumption fails when there’s queueing in the 

network as well as other unforeseeable factors, leading to inaccuracy [3]. To mitigate these two limitations, 

a client can perform the protocol with multiple servers. This approach not only reduces the probability of 

all servers failing simultaneously but also improves accuracy by using average values to calculate the clock 

skew. 

2.3.  Happen-before Relation 

The happen-before relation, denoted by →, is selected for this review because it is of critical importance 

to the literature, laying a foundation for many later works on distributed systems. With an understanding of 

special relatively, Lamport realized that there is no invariant ordering of two events unless one event can 

casually affect the other event [2]. Therefore, he proposed the happen-before relation, which is independent 

from physical time, to capture the potential causality thus the ordering between events in a distributed 

system. The happen-before relation is defined by the following properties. 

(1) If event 𝑎 and event 𝑏 occur in the same process, and 𝑎 occurs before 𝑏 in the order the code 

execution of the same process, then 𝑎 → 𝑏. 
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(2) If event 𝑎 is the sending of a message and event 𝑏 is the receiving of the message, then 𝑎 → 𝑏. 

(3) If 𝑎 → 𝑏 and 𝑏 → 𝑐, then 𝑎 → 𝑐. 

 
Fig. 1. Sequence diagram for the happen-before relation [2]. 

 

In Figure 1, since event 𝑝1 occurs before event 𝑝2 in the order of the code execution of process 𝑝, 𝑝1 → 𝑝2 

according to (1). Because 𝑝1 is the sending of a message and 𝑞2 is the receiving of the message, 𝑝1 → 𝑞2 

according to (2). Moreover, because 𝑝1 → 𝑞2 and 𝑞2 → 𝑞4, 𝑝1 → 𝑞4 follows from the transitive property (3). 

The chain of events that follows from the transitive property (3) can be arbitrarily long. For example, the 

previously arrived conclusion 𝑝1 → 𝑞4, combined with the observation that 𝑞4 → 𝑟3 from (2), can lead to a 

further conclusion that 𝑝1 → 𝑟3 using (3), and so on and so forth. 

The significance of the happen-before relation lies in the notion of potential causality [2]. If 𝑎 → 𝑏, then 𝑎 

may or may not caused 𝑏. If neither 𝑎 → 𝑏 nor 𝑏 → 𝑎, then 𝑎 and 𝑏 are said to be concurrent, or 𝑎 || 𝑏, where 

no potential causality is involved in the relationship between the two events. 

2.4.  Lamport Clocks 

The Lamport clock mechanism is included in this review because it is the first algorithm to determine the 

happen-before relation between events in a distributed system. This mechanism involves a software 

counter maintained by every process, whose value is independent of physical time [2]. Whenever an event 

occurs, the Lamport clock mechanism assigns the counter value to the event.  

The timestamp of event 𝑒 is denoted by 𝐿(𝑒), and 𝐿𝑖 is the counter maintained by process 𝑝𝑖  [3]. The 

Lamport clocks algorithm works as follows. 

(1) Prior to the execution of a relevant event at process 𝑝𝑖 , 𝐿𝑖 = 𝐿𝑖 + 1. 

(2) When 𝑝𝑖  sends a message, it piggybacks the value of 𝐿𝑖 as 𝑡 on the message. 

(3) When 𝑝𝑖  receives a message, 𝐿𝑖 = 𝑚𝑎𝑥(𝐿𝑖 , 𝑡) 

 
Fig. 2. Sequence diagram for Lamport clocks [3]. 

 

In Figure 2, since process 𝑝1 increments its counter 𝐿1 from 0 to 1 prior to event 𝑎 according to (1), the 

process assigns its counter value 1 to event 𝑎. Because event 𝑏 is the sending of a message and event 𝑐 is the 

receiving of the message, the Lamport timestamp of 𝑐 is greater than the timestamp of 𝑏 by 1. 

Although the value by which 𝐿𝑖 increments is 1, any positive integer would suffice [2]. By induction, it can 

be shown that 𝑎 → 𝑏 ⇒ 𝐿(𝑎) < 𝐿(𝑏). In the above example, because 𝑎 → 𝑏, 𝐿(𝑎) > 𝐿(𝑏). However, 𝐿(𝑎) <
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𝐿(𝑏) ⇒ 𝑎 → 𝑏 is false because if 𝐿(𝑎) < 𝐿(𝑏), then either 𝑎 → 𝑏 or 𝑎 || 𝑏 is true. In the above example, 

although 𝐿(𝑒) < 𝐿(𝑏), 𝑏 || 𝑒, which means 𝑒 → 𝑏 is false. 

2.5.  Vector Clocks 

The vector clock mechanism is chosen for this review because it allows processes to determine the partial 

ordering between two events using the timestamps, overcoming a significant limitation of Lamport clocks 

[3]. In a system of 𝑁 processes, every process 𝑝𝑖  maintains a vector of 𝑁 elements to timestamp local events. 

Initially, all elements of all vectors are zero. Similar to Lamport clocks, 𝑝𝑖  increments the 𝑖th element of its 

vector prior to the execution of a relevant event and assigns its vector to the event. When 𝑝𝑖  sends a 

message, it attaches its vector on the message. When 𝑝𝑗 receives the message, if an element on the attached 

vector is greater than the corresponding element on the vector 𝑝𝑗 maintains, 𝑝𝑗 updates the element on its 

vector to the greater value. 

Given event 𝑎 and event 𝑏, if every element in vector of 𝑎 is less or equal to the corresponding element in 

the vector of 𝑏, and 𝑎 and 𝑏 are different events, then 𝑎 happens-before 𝑏 [3]. This is because the vectors 

provide sufficient information to demonstrate that the events happened-before 𝑎 constitute a subset of the 

events happened-before 𝑏. Therefore, the mechanism can determine the happen-before relation between 

two events by comparing their vectors, which is a significant improvement over Lamport clocks. In addition, 

vector clocks can also demonstrate if two events are concurrent by vector comparison. It is important to 

determine concurrency in many systems, such as a replicated database [1]. When multiple clients are 

updating values in multiple replicas, the application must know if these updating events are concurrent or 

not to resolve potential conflicts. 

However, there are inherent limitations to vector clocks [3]. Firstly, it is challenging to apply vector clocks 

to dynamic systems where processes join and leave, as all processes must be able to insert and delete 

elements in their vectors. Secondly, vector clocks are expensive due to the 𝑂(𝑁) space complexity resulting 

from storing each vector and the 𝑂(𝑁) time complexity resulting from each comparison. 

3. Coordination and Agreement 

3.1.  Mutual Exclusion 

The problem of mutual exclusion arises when processes in a distributed system share a resource and only 

one process can enter the critical section at a time [3]. The critical section is a section of the program that 

accesses the shared resource, perhaps a variable or an object. To prevent conflicts, no more than one 

process can enter the critical section at a time. The simplest algorithm is one where a central server issues a 

token to permit a process to enter the critical section and retrieves the token when it leaves the critical 

section. If a process requests the token while another process is in the critical section, the server queues its 

request based on the order of message arrival. This algorithm guarantees that only one process enters the 

critical section at a time. However, the algorithm fails to achieve fairness because the ordering of the queue 

is based on physical time of message arrivals at the server instead of the happen-before order, making it 

possible for a process to enter the critical section multiple times while another process waits to enter. In 

addition, the system fails if the server fails, and the server may become a potential performance bottleneck. 

Ricart and Agrawala’s algorithm is selected from the literature because it is the first algorithm that solves 

mutual exclusion with a distributed approach. For a process to enter the critical section, it sends a request 

message to the other 𝑁 − 1 processes and attaches a Lamport timestamp to the message. After receiving all 

𝑁 − 1 responses, the process enters the critical section. When receiving a request message, if the receiving 

process is currently in the critical section, or it is attempting to enter the critical section and has a 

timestamp-identifier pair smaller than that of the requesting process, it queues the requests according to 
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the comparison of the timestamp-identifier pair. Otherwise, the receiving process replies to the requesting 

process. After a process exits the critical section, it replies to the process at the front of the queue. The 

algorithm guarantees that only one process is in the critical section at a time because the process that is in 

the critical section will not reply to the requesting process until it exits the critical section. Fairness is 

ensured because the requests are ordered according to the Lamport timestamps with arbitrary identifiers 

breaking ties, which guarantees that a process only enters the critical section once while another process 

waits to enter. However, the 𝑂(𝑁) messages sent incur a significant overhead on the network and makes the 

algorithm impractical in large systems. 

Maekawa devised an algorithm that only uses 𝑂(√𝑁) messages to achieve mutual exclusion [5]. The 

voting set of a process consists of 𝐾 processes, where 𝐾 ≈ √𝑁. Maekawa’s algorithm is chosen for the 

review because it is considered to be a significant improvement over the expensive Ricart and Agrawala’s 

algorithm. For a process to enter the critical section, it sends a request message to every process in its 

voting set and enters the critical section after it has received all 𝐾 votes. When a process receives a request 

message, if it is currently in the critical section, or if it has already sent a vote to a requesting process, it 

queues the requests according to the comparison of the timestamp-identifier pair. Otherwise, it replies to 

the request and sets its state to voted. When a process is informed that another process has exited the 

critical section, it replies to the request from the process at the head of the queue and sets its state to voted. 

Only one process can enter the critical section at a time because the processes at the intersection of voting 

sets can only vote for one process at a time. Requests eventually succeed and fairness is ensured because of 

the use of Lamport timestamps. Although this algorithm sends significantly less messages than the above 

one, its delay between one process exiting the critical section and the next subsequently entering is worse 

because two messages are required instead of one. Therefore, a tradeoff must be made by the system 

designer. 

However, all of the above mutual exclusion algorithms do not tolerate unreliable message transmission 

and the failure of processes that assume certain roles [3]. Fault tolerance can be achieved through general 

consensus algorithms, which will be discussed afterwards. 

3.2.  Elections 

Analogous to elections of political figures, distributed elections choose coordinators, perhaps as the 

servers in the centralized mutual exclusion algorithm [3]. Distributed election algorithms must choose a 

single coordinator instead of multiple. This is challenging when multiple processes initiate elections 

concurrently, as the algorithm must choose the process with the highest identifier among all 𝑁 processes in 

the system with unique identifiers. 

The ring-based election algorithm is chosen for this review because it was one of the first algorithms to 

solve the problem of distributed election. In the ring-based election algorithm, the neighbor of process 𝑝𝑖  is 

process 𝑝(𝑖+1)𝑚𝑜𝑑𝑁 [3]. When a process initiates an election, it sends a message containing its identifier to 

its neighbor. When a process receives such a message, if the identifier in the message is greater than the 

identifier of the receiving process, it propagates the message to its neighbor. Otherwise, the process only 

propagates the message with its identifier if it is not currently participating in an election. If a process 

receives a message consisting of its identifier, it means that all processes in the ring have agreed that this 

process should be elected. Therefore, the process sends a message around the ring announcing its status as 

the new coordinator. Although the algorithm correctly selects the process with the greatest identifier while 

tolerating concurrent elections, it is not fault-tolerant because the failure of one process on the ring 

undermines the entire algorithm. 
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Fig. 3. Progress of the bully algorithm [3]. 

 

The bully algorithm is chosen from the literature because it was one of the first fault tolerant algorithms 

to elect the process with the highest identifier [3]. The bully algorithm is considered to be a significant 

improvement over the ring-based election algorithm because the former is fault tolerant whereas the latter 

is not. In the bully algorithm, all processes know which processes have higher identifiers. A process initiates 

an election after discovering the possibility of failure of the previous coordinator using timeouts. The 

process can simply elect itself if it knows it has the highest identifier. Otherwise, the process sends an 

election message to the processes with higher identifiers. If it receives no answer message after a timeout, it 

announces itself as the coordinator to the rest of the processes because assuming a maximum delay of 

message delivery, all processes with higher identifiers have failed. If the process receives any message, that 

means one or more processes with higher identifiers are still functional. These processes with higher 

identifiers will continue to execute the algorithm that the first process executed, eventually electing a 

functional process with the highest identifier. In Figure 3, process 𝑝1 initiates an election due to speculating 

the failure of the previous coordinator 𝑝4. 𝑝1 sends an election message to both 𝑝2 and 𝑝3, who have higher 

identifiers. Upon receiving the messages, 𝑝2 and 𝑝3 continue to execute the same algorithm that 𝑝1 executed, 

which is to send messages to processes with higher identifiers. Eventually, since process 𝑝3 has failed, 𝑝2 

has not received an answer message from 𝑝3 after a timeout. Therefore, 𝑝2 announces to 𝑝1 that it is the 

new coordinator. To prove that the algorithm guarantees only a single coordinator, assume the contrary that 

several coordinators were to coexist. Those with lower identifiers will not be coordinators because they will 

have received an answer from the process with the highest identifier, which contradicts the assumption and 

proves the case of a single coordinator. However, the algorithm relies on the assumption of a maximum 

delay of message delivery, which is impractical in real systems. Furthermore, the algorithm requires 𝑂(𝑁2) 

messages if the process with the lowest identifier initiates an election, making the algorithm unrealistic for 

large systems. Therefore, consensus algorithms with weaker assumptions and greater efficiency must be 

devised, and these algorithms will be discussed afterwards. 

3.3. Group Communication 

Multicast refers to fault tolerant message transmission to multiple processes [6]. It is solely based on 

point-to-point communication between processes, without functionalities supported on the hardware level 

such as IP multicast. In the simplest multicast algorithm, a process sends individual messages to other 

processes, but this algorithm is unreliable because the processes will have inconsistent knowledge about 

the message if the sender fails before sending all the messages. Therefore, reliable multicast is designed in 

such a way that every process sends the message to the rest of the processes after delivering it, which 
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guarantees that the correct processes will either all deliver the message or all not deliver it. Since reliable 

multicast involves no timing assumptions, it tolerates an asynchronous system model. However, reliable 

multicast involves a total of 𝑂(|𝑔|2) messages, where |𝑔| is the size of the group 𝑔 involved in the multicast, 

making the algorithm inefficient and impractical for large systems.  

The reliable multicast algorithm results in processes delivering multiple messages in arbitrary orders due 

to the unpredictable behavior of the underlying network. This is unacceptable in many scenarios, such as a 

replicated database system whose updates from the messages are not commutative [1]. Therefore, 

multicast algorithms that deliver messages in a certain order must be devised. These algorithms are 

reviewed because they are able to satisfy different ordering properties that satisfy applications of different 

nature. In these algorithms, the delivery of a message may not immediately follow the receiving of a 

message to satisfy the specified ordering property.  

In FIFO-ordered multicast, if two messages are multicast by the same process, then all processes will 

deliver those messages in the same order [3]. In the algorithm that ensures FIFO-ordering, every process 𝑝𝑖  

maintains the variables 𝑠𝑖 and 𝑟𝑖𝑗 , where 𝑠𝑖 represents the number of messages process 𝑝𝑖  has sent to the 

group, and 𝑟𝑖𝑗 denotes the sequence number of the most recent message from process 𝑝𝑗 that process 𝑝𝑖  has 

delivered. For 𝑝𝑖  to multicast a message 𝑚, it piggybacks 𝑠𝑖 on the message as 𝑠𝑚. When 𝑝𝑗 receives 𝑚, if 

𝑠𝑚 = 𝑟𝑗𝑖 + 1, then 𝑝𝑗 immediately deliver the message because it is the subsequent one from 𝑝𝑖 . Otherwise, 

it would queue the message and wait until 𝑟𝑗𝑖 = 𝑠𝑚 − 1 to deliver it. This algorithm guarantees FIFO-

ordering by the sequence number mechanism, and its reliability depends on the reliability of the underlying 

multicast. However, since FIFO-ordered multicast arbitrarily orders messages sent by different processes, it 

cannot satisfy the happen-before relation in the sequence of messages being delivered, which is 

problematic in certain applications. 

To overcome the limitation of FIFO-ordered multicast, causally ordered multicast is devised such that 

message 𝑚1 is delivered before message 𝑚2 in all correct processes if the multicast of 𝑚1 happens before 

the multicast of 𝑚2 [3]. Essentially, the underlying algorithm uses vector timestamps to determine if a 

message is the subsequent one in the sequence of causal ordering. If so, the message is delivered 

immediately. Otherwise, the message is queued until it is the subsequent one. However, in casually ordered 

multicast, different processes may deliver messages in different orders. To understand why this is the case, 

consider a directed graph whose nodes are messages. A directed edge is formed between two messages 

with a causal dependency in between. A topological sorting of the messages must be a valid causal ordering 

of them. Since there may exist multiple ways to sort events topologically, processes may deliver messages in 

different order. 

If the application demands that all processes must deliver messages in the exact same order, then it is 

necessary to use total order multicast. Unfortunately, devising an algorithm for total order multicast is non-

trivial, and the problem is usually considered under the context of consensus. 

3.4. Consensus 

Many of the above problems involve algorithms that enable processes to agree on a certain value. The 

processes agree on which process to enter the critical section in mutual exclusion, which process to be the 

leader in elections, and the next message to deliver in total order multicast. As discussed above, these 

problems can be solved using a general consensus algorithm that enables processes to reach agreement on 

a certain value [1]. More specifically, after one or more processes propose a value, the consensus algorithm 

will decide on a value among the proposed values, and all correct processes will decide on the same value. 

An algorithm that solves the consensus problem is chosen from the literature and reviewed because of its 

simplicity. This algorithm guarantees termination and correctness in the presence of 𝑓 crash failures 
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exhibited by processes [3]. In essence, the algorithm proceeds in 𝑓 + 1 rounds, and in each round, each 

process multicasts values that have not been sent in previous rounds. Every correct process will arrive at 

the same set of values even in the worst case, in which all 𝑓 crashes occur during the rounds, because 

eventually the correct processes will be able to agree with the additional round. Then, the processes 

perform the majority function on the set of values, which returns the value that appears the most often in 

the set or some special value if no majority exists. Functions such as minimum, maximum, and median are 

applicable as well if the values can be sorted. As such, the correct processes arrive at the same value, and 

the consensus problem is solved. This algorithm relies on the assumption of synchrony because the notion 

of rounds is defined by physical time. This assumption is impractical in real systems because it does not 

align with the asynchronous behavior of networks. Therefore, it seems necessary to weaken the assumption 

of synchrony to one of asynchrony. 

3.5.  Paxos 

Paxos is chosen for this review because it is the dominant offering in solving the distributed consensus 

problem in an asynchronous system, which has no assumptions about network latency and process 

execution speed [7, 8]. Paxos involves three roles, proposers, acceptors, and learners. A process can assume 

multiple roles at a time. If a process wants to be the proposer, perhaps due to speculating about the failure 

of the previous proposer from some timeout mechanism, the process multicasts a proposal consisting of a 

sequence number to all acceptors. The sequence number is unique to those other potential proposers can 

choose, which is ensured by proposers choosing their sequence numbers from disjoint sets. In addition, the 

sequence number must be greater than any sequence number the proposer has seen. 

Upon receiving the proposal, if the sequence number in the proposal is higher than any sequence number 

the receiving acceptor has seen, then it sends a promise message to the proposer to accept the proposal, 

promising not to accept proposals consisting of lower sequence numbers. Otherwise, the acceptor sends a 

reject message to the proposer. If a promise message is to be sent, the acceptor attaches the latest value it 

has seen and the sequence number of the proposer who sent that value. This mechanism aims to ensure 

that current proposers can select the same value as the previous ones to continue the consensus established 

previously. 

If the proposer receives promise messages from a majority of acceptors, it has been effectively elected. If 

any of the promise messages contain a value from previous rounds, the newly elected proposer must choose 

the value from the message containing the largest sequence number, which signifies the most recent 

previous proposer. Otherwise, any value can be chosen. After determining the value, the proposer 

multicasts the value to all other acceptors in an accept message. Once the proposer receives the 

acknowledgment from a majority of its acceptors, the proposer multicasts the value in a commit message to 

the learners, and consensus has been reached. 

This algorithm ensures a single proposer in most cases, although it is possible for several to coexist due to 

the system model of asynchrony [8]. The algorithm guarantees correctness in the presence of multiple 

proposers, but progress is not necessarily ensured when two proposers keep issuing proposals with 

increasing sequence numbers. This is consistent with the FLP impossibility result obtained by Fisher, Lynch, 

and Paterson, stating that it is impossible for a deterministic algorithm to guarantee reaching consensus in 

an asynchronous system in the presence of failures [9]. Nevertheless, Paxos manages to terminate with high 

probability while guaranteeing correctness, which is usually sufficient for the purposes of most systems [3]. 

In practical systems, consensus algorithms are usually used to generate a sequence of values such as a 

replicated log that all processes agree on, which is analogous to total order multicast previously discussed. 

It is inefficient to run the entire Paxos algorithm repeatedly for every entry in the sequence, so 
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optimizations must be devised. Assuming that the proposer does not need to change between instances of 

Paxos, the election phase of the algorithm does not need to be repeated between instances [8], which 

significantly reduces the number of message exchanges and disk writes. This optimization is known as 

Multi-Paxos. 

 
Fig. 4. Brief overview of the Paxos algorithm [3, 10]. 

 

Paxos is a complicated and subtle algorithm, and it is inevitably challenging for engineers to implement it 

in real systems. The team that developed Chubby, a distributed lock and file system that uses Paxos at its 

core, made adaptations to the original algorithm to suit the purposes of the system [10]. For example, 

because every cluster that uses the Paxos algorithm only involves 6 processes, the team made all processes 

other than the proposer, or the coordinator, both the acceptors and the learners. The correctness of this 

adaptation is ensured by an assumption made in the original algorithm that processes can assume multiple 

roles. Figure 4 provides a brief overview of the Paxos algorithm after this adaptation. 

However, the team encountered numerous engineering challenges when implementing the algorithm. For 

example, disk corruption defeats the assumption of Paxos that processes have persistent memory. Another 

challenge they encountered was handling changes in group membership. This challenge could not be simply 

resolved, as Lamport suggested [8], by making group membership part of the state and changing it with 

ordinary state-machine commands. After altering the original Paxos algorithm to address the above 

challenges, the team arrived at an algorithm that is robust testing-wise but unproven mathematically, with 

somewhat satisfactory robustness. 

3.6. Byzantine Generals Problem 

All of the fault-tolerant algorithms above assume that processes fail by crashing, and in some cases, they 

would recover from failures and rejoin the system. However, in reality, it is possible for processes to fail in 

arbitrary ways, known as Byzantine faults [11]. For example, if the proposer in Paxos were to fail arbitrarily, 

it may send different values to different learners in the commit messages in the third phase, which 

undermines the algorithm’s ability to reach consensus. Therefore, an algorithm that can reach consensus 

despite Byzantine faults must be devised to meet the requirements of certain applications. 

The Byzantine Generals Problem is an analogy of a distributed system seeking consensus. In this analogy, 

a general sends a value to his 𝑁 − 1 lieutenants such that all loyal lieutenants agree on the same value, 

which is the value the general sent if he is loyal. If the commander is not loyal, the lieutenants must agree on 

some value, nevertheless. 
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Fig. 5. Diagram for Byzantine Generals Problem [3]. 

 

In a situation involving three generals, one of whom is faulty, no solution is possible assuming the 

generals can only exchange oral messages, which do not allow the generals to prove that another general 

sent a certain message. Suppose 𝑝1 is the commander, and 𝑝2 and 𝑝3 are his lieutenants. Consider the case 

in which 𝑝3 is a traitor. 𝑝1 sends the value 𝑣 to 𝑝2 and 𝑝3. 𝑝2 correctly echoes 𝑣 to 𝑝3, but 𝑝3 sends some 

other value 𝑢 to 𝑝2. As a result, 𝑝2 has received two conflicting values, 𝑢 and 𝑣. Alternatively, consider the 

case in which the commander 𝑝1 is the traitor. 𝑝1 sends the value 𝑤 to  𝑝2 but some other value  𝑥 to 𝑝3. 𝑝2 

and 𝑝3 correctly echo the value they have received from 𝑝1 to each other. In this case, both 𝑝2 and 𝑝3 have 

received conflicting values, 𝑤 and 𝑥. In the two cases, it is indistinguishable from the perspective of 𝑝2 

whether 𝑝1 or 𝑝3 is the traitor because it would receive conflicting values either way. Therefore, 𝑝2 cannot 

choose a value among the two it has received. In fact, the Byzantine Generals Problem is unsolvable with 

𝑁 = 3 and 𝑓 = 1, where 𝑓 is the number of faulty generals. This intuitive observation can be generalized 

into a mathematical proof that states the Byzantine Generals Problem is unsolvable if 𝑁 ≤ 3𝑓 but solvable if 

𝑁 > 3𝑓 [12]. 

An algorithm was devised to solve the Byzantine Generals Problem when 𝑁 > 3𝑓 [11]. This algorithm is 

reviewed because it is the only algorithm that solves the Byzantine Generals Problem without cryptography. 

Processes recursively assume the role of commander and multicast the value they obtained from the 

majority function whose input is from previous rounds of recursions. Due to the recursive nature of the 

algorithm, it involves sending 𝑂(𝑁𝑓+1) messages, which can be considered as multiplying an additional 𝑁 

for every round of recursion that aims to eliminate the impact of one traitor. Due to the expensive nature of 

the algorithm, more efficient solutions were devised using cryptography to achieve the assumption of 

signed messages, which allow processes to prove that a process sent a certain message. 

Given an algorithm for the Byzantine Generals Problem, distributed consensus can be achieved in 

presence of arbitrary faults [11]. Every correct process maintains a vector 𝑣. After running the algorithm of 

the Byzantine Generals Problem, all correct processes set  𝑣𝑖 to be the value the lieutenants agreed on with 

𝑝𝑖  being the commander. Due to the requirements of the Byzantine Generals Problem, 𝑣𝑖 is precisely the 

value process 𝑝𝑖  proposed if 𝑝𝑖  is correct. Even if 𝑝𝑖  is faulty, 𝑣𝑖 is consistent on the vectors of all correct 

processes. As such, all correct processes obtain the same vector. They can perform the majority function on 

the vector to extract the most popular value, and consensus is achieved because all correct processes will 

reach the same value. 

4. Conclusion 

This is a review of some of the fundamental algorithms in distributed systems that aim to solve a variety 

of problems that include synchronization, ordering of events, mutual exclusion, election, ordered multicast, 

consensus, and Byzantine Generals Problem. In these algorithms, processes typically need to coordinate 

their actions to achieve some objective. Distributed systems engineers need to be familiar with these 

algorithms and be aware of their usage and limitations. Many other important algorithms exist for solving 

these problems in the literature, but the algorithms reviewed in this paper are to a large extent relevant to 
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the other algorithms. 
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