
A Research for Executable Path Automatic Generation
Method Based on EFSM

Biao Wu1*, Qi-Wei Ge2
1 The School of Science, Zhejiang Sci-Tech University, China.
2 Faculty of Education, Yamaguchi University, Japan.

* Corresponding author. Tel.: +86057186843329; email: biaowuzg@zstu.edu.cn
Manuscript submitted August 8, 2022; revised September 18, 2022; accepted November 1, 2022.

Abstract: Extended finite state machine (EFSM) is currently one of the most widely used model in the field
of software testing. EFSM model is an enhanced model based on finite state machine (FSM). Automated test
data generation is still a challenging problem due to the complexity of EFSM which extends the input and
output parameters, context variables as well as the predicate condition. These reasons lead to conflict of the
context variable with the enable conditions in the transition path. In order to avoid infeasible path
generation, this paper proposes a method based on modified breadth first search to generate feasible
transition path (MBFS-FTP). To solve the problem of state explosion in path generation, this paper converts
state diagram to transition diagram on EFSM model. In order to make the EFSM static model can be driven
execution, this paper uses UML model and generate executable model, so that implements EFSM execute
dynamically. When using breadth-first search algorithm (MBFS) on every target transition to generate an
executable transition path, the conflict detection algorithm is utilized to the transition path for conflict
decision, avoiding the occurrence of an infeasible transition path. Considering target transition has multiple
feasible transition paths, this paper combines suggested penalized value of definition-predicate-use
(def-p-use) pair and length of feasible transition path, and then develops the measurement method of
feasible transition path, and obtained a set of feasible transition path containing all of transitions. Through
the experiment on two actual EFSM model, verifying the effectiveness of MBFS-FTP for feasible transition
automatic generation, the experimental results show that MBFS-FTP can reduce the feasible transition path
length, and make transition paths are more easily to be triggered at the times of generating test cases lately,
furthermore, it can improve the efficiency of generate feasible transition path and save a lot of time.

Keywords: EFSM model, feasible path, collision detection, feasible measures

1. Introduction
There are statistics show that in traditional software development projects, software testing work usually

accounted for more than 40% of the total workload of software development, in total cost of software
development, test cost to account for 30% to 50% [1], software testing in software development has
become an indispensable important segment.
In the process of software testing, one of the key issues is generation of test cases, as a difficult point of

software testing, which affects the actual effectiveness of software testing. Model-based tests can be
automatically generated test cases through the software requirements specification, which save the test
time and test cost, therefore, this method attaches great importance to the industry and become a new
challenge in the field of software testing [2]. Finite State Machine (FSM) and Extended Finite State Machine

15 Volume 18, Number 1, February 2023

Journal of Software 

doi: 10.17706/jsw.18.1.15-30



(EFSM) are two of the most widely used models. EFSM expands on the basis of input and output parameters,
context variables, defined in the context variable and input parameters on the predicate condition and
operation on the foundation of FSM [3], and it can express control flow and also data flow section, thus
EFSM is more suitable to describe the application of complex system. So, this paper uses EFSM as tested
model for solving the problem of generating test cases.
In the test case generation technology based on EFSM, mainly includes two aspects: one is the automatic

generation of test sequence; the other one is the automatic generation of test data. This paper is focus on
the former.
At present, there have been many test sequence generation methods based on FSM [4-6], but there are

still many challenges based on EFSM. Due to the mutual influence between data flow and control flow, some
existing predicate conditions in transition path of EFSM model are not met, which leading to the path is
infeasible, therefore, feasible path in EFSM model is an undecidable problem [7]. In addition, although there
have some test data generation methods based on model [8-10], but test data generation technology is still
immature based on EFSM.
In view of the automatic generation test sequence EFSM-based model, the key factor lies in feasibility

analysis of transition path. Several kinds of methods of automatic generation of test sequence meet test
coverage criteria based on data flow respectively are proposed in References [11]-[13] proposed. In order
to solve the problem of the feasibility of transition path, Huang [14] proposed a method of the transition
enforceability analysis, using this method, the states regarded as node, the transitions regard as edge, and
using breadth-first search algorithm for extending EFSM model into a TEA tree, and thus generating an
executable transition sequence. Hierons [15] used a method of expand the EFSM model method to avoid
infeasible path problem, but the disadvantage of the method is likely to cause the problem of states
explosion. Some internal researchers also successively put forward its own methods of automatically
generated executable transition sequence, such as Zhao Baohua [16] put forward an improved method in
transformation perform analysis, this method adopts the only input and output sequence in the control flow
part, adopts full Definition-Use Path in the data flow part, and then use the depth first search strategy to
generate TEA tree, then obtains test sequence. Yang Rui [17-18] proposes a path feasibility measurement
method based on data flow analysis to predict the feasibility of the test sequence, this method combines the
technique of static analysis and dynamic analysis, as far as possible to avoid the infeasible path, generate a
more feasible path subset. But it is possible to cause the problem of state explosion. This paper used
transition graph to generate test sequence, which avoided the problem of state explosion effectively. Shu
Ting [19] proposed a test sequence generation approach for EFSM-based protocols conformance test by
using the transition feasibility estimation. They designed a fitness function to guide the test generation with
a trade-off among path feasibility, coverage criterion and path length and developed an adaptive exploration
algorithm to generate executable test sequences through expanding CPs. Wang Weiwei [20] investigated the
relationship between EFSM test data generation efficiency and its influence factors, build a multi-gene
genetic programming (MGGP) predictive model to forecast EFSM test data generation efficiency according
to the feasible transition paths of EFSMs.
After analyze the relevant contents of EFSM model, aiming at some existing disadvantages of methods of

test cases generated automatically based on EFSM model, in this paper, the test sequence generation
method of EFSM model were studied. The major contributions of this paper are as follows:
1)To obtain test transition paths from EFSM model, this paper defined a rule for converting state diagram

to the transition diagram. The method can directly generate transition paths avoid the problem of state
explosion.

16 Volume 18, Number 1, February 2023

Journal of Software 



2)This paper modified Breadth-First Search Algorithm (MBFS) to automatically generate test sequence
from the initial transition to every other transition based on the transition diagram.
3)To make EFSM model having the dynamical executed ability, this paper adopts the method of UML

modeling, takes advantage of state model analyzer (SMC) tool to establish the executable model.
4)In the MBFS, it is must detect and analysis the feasibility of the test sequence, this paper designed

Conflict Checker Method (CCM) and Feasible Measure Method (FMM) to identify the test sequence. The two
methods are based on the data flow and control flow for quantitative analysis the feasibility of the test
sequence.
According to the experiment on two actual EFSM model, we verified the effectiveness of MBFS-FTP for

feasible transition automatic generation. And the experimental results showed that MBFS-FTP can reduce
the feasible transition path length, so that make transition paths are more easily to be triggered at the times
of generating test cases lately, even it can improve the efficiency of generate feasible transition path and
save a lot of time.
Rest of the paper is organized as follows. Section 2 mentions the description of EFSM model and focus on

the Model conversion. Section 3 describes how to obtain test sequence including establish the executable
model and modify BFS. The design and implement of CCM and FMM are given in section 4. And section 5 is
design and analysis of simulation experiments. Finally, section 6 presents the conclusions and some
suggestions for future work.

2. EFSMModel Conversion

2.1. Related Description and Definition of EFSMModel
An EFSM M can be expressed a six-tuple: �, �0,�, �,�,� , where: � is a finite set of states; �0 ∈ � is an initial

state; � is a set of context variables; � is a finite set of input; � is a finite set of output; � is a finite set of
transitions. Each transition � of set � is a six-tuple � = ��, ��, ��, ��,��,�� where �� is the source state of
transition �, �� is the target transition of transition �, �� ∈ � is input operator, �� ∈ � is the output operator, ��
is predicate condition of the current value of variable, �� is a series of operating statements of output or
assignment, �� and �� are called the guard and the action in some paper.
EFSM model expands input and output parameters, context variables and the predicate condition and

operation defined in the context variable and input parameters on the foundation of FSM model. An ATM
(Automated Teller Machine) [21] EFSM model is shown in Fig. 1.

Fig. 1. EFSMmodel of ATM system [21]

17 Volume 18, Number 1, February 2023

Journal of Software 



Definition 1. Transition Path (TP): in EFSM model, for each target transition �� , regardless of the predicate
condition, if there is a transition sequence TP from the initial transition �1 to target transition �� , namely �� =
�1⋯�� , which called TP is a transition path.
Definition 2. Transition Path Length (TPL): in EFSM model, a transition path length is defined as the

number of transitions in a path, denoted as ��� = �� .
Definition 3. Test Sequence (TS): in EFSM model, the TS is the Feasible Transition Path (FTP), which is a

transition path after the predicate condition to judge if the transition path is feasible, so the transition path
is called a test sequence. For a transition path, if there are at least a set of test data driven EFSM execution
when all the transitions of the transition path are covered orderly, said the transition path is the feasible
transition path or test sequence.
Definition 4. Definition-Predicate-use (def-p-use): Existing def-p-use pair in a transition path �� =
��⋯�� , if and only if the transition �� in �� has assignment operations of variable �, the transition �� in
�� has the predicate used of variable � for judging, and the definition assignment of the variable � in the
path from �� to �� does not exist again.

2.2. Model Conversion
General EFSM model diagram is shown in Fig. 1, every “circle” expresses the state of the software system,

it does not contain any variables, the transitions between states includes variable operations and determine
of predicate condition from one state to another state in software system. However, we need to get the
transition paths in EFSM model at last instead of state paths.
To get transition path set of EFSM model, Yang, R. et al. [17] generates state path according to state path

diagram of EFSM model, then consider transition between states, using a whole combination algorithm to
convert state paths to transition path. Although this method is effective, but the complexity and time of the
method for obtaining the transition path are increased. Therefore, this paper adopts the method of
converting state diagram to transition diagram, directly obtained TPs, which will save a lot of time and
manpower.
We defined transition directed graph and it can be obtained by transform state diagram, more convenient

to using the improved first search algorithm for generating transition paths automatically later based on
directed graph. Due to the complexity of the EFSM model diagram, consider the following when converting:
1) EFSM state model in general. Consider the following EFSM state model diagram with that the

transition predicate condition, variable update, input and output are omitted, as shown in Fig. 2 (a):

Fig. 2. General EFSM state diagram conversion

In this situation, during the conversion process, starting from the initial transition �1 to the end of the
transition �8 , each transitions is treated as a node, and each state is treated as the edge of each connection
between transitions. The initial node represents the out-transition of the initial state of EFSM model, which

18 Volume 18, Number 1, February 2023

Journal of Software 



is the initial transition, terminal node is the terminal transition. The two nodes are adjacent to each other
and are connected by an edge representing the state. Since the state is only a signal representing the
location state of model and does not contain other useful information, so the converted EFSM transition
diagram ignores the initial state �0 and the ending state �6 , and the same as to other EFSM transition
diagram. The converted EFSM transition diagram is shown in Fig. 2 (b).
2) EFSM state model with multi-transitions. In the actual EFSM, the two states may be converted by a

variety of different conditions, resulting in the state may have a number of transitions to other state, as
shown in Fig. 3 (a):

Fig. 3. EFSM state diagram conversion with multi-transitions

In the Fig. 3 (a), there are three transitions �2, �3, �4 between the states �1 and �2 , where �1 is the
initial state, �3 is the terminal state, �1 is the initial transition, the converted EFSM transition diagram as
shown in Fig. 3 (b), no matter how many transitions exist between �1 and �2 , we only need to know that
the path of the initial transition �1 to reach these transitions by passes states.
3) EFSM state model with self-cycle. In the actual EFSM, we can also see the situation, when one EFSM in

a certain state, after the “refresh” operation or "reset" operation, the EFSM is still at this state, so that the
state exists the self-cycle. As shown in Fig. 4 (a):

Fig. 4. EFSM state diagram conversion with self-cycle

In the Fig. 4 (a), the state �1 and the state �2 have self-cycle, where �0 is the initial state, �3 is the
terminal state, �1 is the initial transition, and the converted EFSM transition diagram is shown in Fig. 4 (b).
The self-cycle transition of state �1 is transition �3, from the initial transition to �3 through the state is �1.
Therefore, from the converted transition diagram, the path �1, �3 through the state �1, the path �3, �2 is
also through the state �1.Therefore, when considering the case of self-cycle, it is only necessary to note that
the state in which the self-cycle exists in the edge between the in-transition and the out-transition.
4) EFSM state model with loop. Most EFSMs exist the situation that one state returned to this state

through other transitions, and therefore, there is a loop in the EFSM state diagram, as shown in Fig. 5 (a):

19 Volume 18, Number 1, February 2023

Journal of Software 



Fig. 5. EFSM state diagram conversion with loop

In the Fig. 5 (a), there is a loop between the states �1, �2, �3 , no matter which three states can start and
return to the state, where �0 is the initial state and �4 is the terminal state , �1 is the initial transition.
According to the principle of conversion that the transition as a node and the state as the edge, the
converted transition diagram shown in Fig. 5 (b), we can see the converted transition diagram also have the
loop between transitions correspondingly. But in the situation of generating transition paths, the loop will
be considered only once.

3. Design of Feasible Paths Generation Method

3.1. Establish Executable EFSMModel
EFSM model is usually obtained according to the requirements of the system, in general, these models are

static, and exists in the form of diagrams or abstract graphics, which does not possess dynamic behavior. In
order to be able to obtain feasibility transition paths, and automatically generate test data subsequent,
EFSM should be expressed in the form of an executable model. Therefore, this paper uses the executable
model to represent the needed EFSM dynamic model. Executable model is a model system that can simulate
the real system with dynamic behavior, executable models can be even used as a prototype system to test,
and different from the static model, the executable model defines the dynamic behavior as part of the model.
This paper using the State Machine Compiler (SMC) to establish executable EFSM model according to the
form of UML modeling, converts it to a form of programming language description.
UML modeling of Executable EFSM model [17] as shown in Fig. 6:

Fig. 6. EFSM class diagram [17]

20 Volume 18, Number 1, February 2023

Journal of Software 



3.2. Test Sequence Generation

Path Generation Description. In this paper, we improved the breadth-first search algorithm in directed
graph, the method (MBFS-FTP) automatically generates the feasible transition path for EFSM model
according to transition directed graph. Detailed steps as follows:
Step1: Analyzing state diagram of EFSM model, converting it to transition diagram, adopting the method

of UML modeling, and establishing dynamic executable model.
Step2: For the initial value of input variables in each transition, using Modified Breadth First Search

(MBFS) automatically generate feasible transition path.
Step3: Detecting the conflict of transition path and measuring the feasibilities of test sequences in step2.
Test Sequence Generation. EFSM transition diagram is a directed graph, how to obtain transition path

based on directed graph, you will need to traverse the directed graph. Graph traversal belong to the
contents of the data structure, every vertex from a graph, access to all other vertices only one at a time.
Graph traversal is a basic operation, and many other methods of graph are based on its traversal operation.
Graph traversal operation mainly has two basic methods, Depth-First Search Algorithm (DFS) and
Breadth-First Search Algorithm (BFS).
This paper is to obtain transition path as short as possible from the initial transition to all other

transitions. However, some paths may be triggered multiple times, which lead to each transition node may
visit more than one times, so DFS is not suitable. Therefore, this paper designs MBFS to realize transition
path automatically generation.
Because of each transition node of EFSM model may visited many times, so every node no longer needs to

be marked tag, MBFS is shown in Algorithm 1:
Algorithm 1: MBFS
Input: initial transition ��0, target transition �������
Output: TS
BEGIN
Q[n]; //empty queue
Enqueue(Q,��0);
WHILE count = false do
Check(Q,�); //transition �
FOR m<max iteration do
FOR each next transition ����� adjacent to � do
IF flag of CCM = true THEN //CCM: according to Algorithm 2
Enqueue(Q,�����);
Previous[������]=��; //location
m++;
IF ������� = ����� THEN
count = true;
break;

END
In the algorithm 1, each transition will be as target transition in turn, seeking the executable shortest

path from initial node to the destination node. For every target transition node, starting from the initial
transition node, looking for adjacent nodes, and then use the conflict detection algorithm to determine
whether the node and its adjacent conflict or not. If there is no conflict, then adding the node to the path
queue, otherwise the neighboring node is given up, looking for the next adjacent node sequentially.

21 Volume 18, Number 1, February 2023

Journal of Software 



Eventually, the shortest executable path from the initial transition node to the target transition node stores
in the form of queue.

4. Feasibility Analysis of Transition Path
4.1. Feasibility Decision of Transition Path
Due to context variables, operation and precondition decision in EFSM model, when the preconditions of

a transition path containing these variables are not satisfied, the transition path will be infeasible.
Therefore, in our method, once generating a transition path, we need decide the feasibility of generated
transition path. In this paper, conflict checker algorithm is used to decide the feasibility of the transition
path.
When using MBFS is to generate automatically transition path, we only considered the feasibility of the

path in the directed graph regardless of predicate condition decision and variable update operations of
transition in the actual EFSM model. Considering the EFSM model in the actual situation, in order to realize
the infeasible transition path eliminated automatically, this paper designs a transition path feasibility
decision algorithm, called Conflict Checker Method (CCM), as shown in Algorithm 2:

Algorithm 2: CCM
Input: current transition, previous transition
Output: flag
BEGIN
Read input event(��); //include input variables
� = random(); // variable value based on range
flag = false;
FOR each pair of variable and operator of current transition do
IF left_var = � and left_var ∈ �� THEN // left_var is the left variable of an assignment
Set left_var according to operator;
flag = true;

return flag;
ELSE
Check condition according to operator
return flag;

END IF
END FOR
IF flag = true THEN
Update variables and conditions;
Update queue memory;

END IF
END

4.2. Feasibility Measure of Transition Path
If there are multiple feasible transition paths for a target transition after the feasibility decision, thus a

feasible measure is required to these feasible transition paths. In this paper, we mining the relationship
between the predicate condition and the operation in these executable transition paths, take into account
the length of the executable path, the type of operation and the type of guard, measure the feasibility of the
transition path, and select higher executable transition path to generate test data for improving the

22 Volume 18, Number 1, February 2023

Journal of Software 



efficiency of test data generation. On the foundation of Kalaji [13] dependence analysis, we propose a
method of Feasible Measure Method (FMM) based on the knowledge of data flow.
Previous studies shown that a shorter transition path is to be triggered with higher possibility in the case

of the number of transitions is given, and it is easier to generate the required test data [22]. The longer
transition path may have more predicate conditions and def-p-use pairs, resulting in the proposed penalty
value may be larger, increasing the path length to balance the contradiction between the proposed penalty
values. For each target transition, in order to find a path with shorter length and higher executable, we
propose the following feasibility measure of transition path:

� =
�� �

�=1
� � ���� , �=1

� � ���� ≠ 0
�� , �=1

� � ���� = 0


Where �� is the length of transition path, � 0 < � < 1 is the weight value of the influence of the path
length to the probability of the transition path, used to balance the path length and the recommended
penalty value, ��� is the def-p-use pairs in transition path, � ��� represents the recommended penalty
value for the DP-use pair between two transitions in the transition path, and � is the total number of
DP-use pairs in transition path. Equation (1) shows that when the value of f is smaller, the feasibility of the
test sequence is higher; on the contrary, the feasibility of the test sequence is lower. When the sum of the
recommended penalty values for DP-use in a transition path is 0, that is �=1

� � ���� = 0 , indicating that
there is no def-p-use pair dependency between all transitions in the test sequence, and the test sequence is
most feasible, the shorter test sequence is more likely to be triggered, the value of f is set to �� .
After the feasibility analysis of transition path, for each target transition, there is a shortest executable

path with higher feasibility from the initial transition to the target transition. And finally obtain an
executable transition path set, which used to generate a better test data set in the later detection EFSM
system.

5. Design and Analysis of Simulation Experiments
This paper adopts two actual EFSM model to validation test. We verify the effectiveness of the test

sequence generation method compared to the traditional method based on simply control flow or data flow
at first. And then verify the effectiveness of the test data generation method, using scatter search algorithm
compared with the other methods to generate test data, such as genetic algorithm.

5.1. Experimental Model

In this paper, software environment using Eclipse 4.5 experiment platform + JDK1.7, hardware
environment using Windows 10 64 bit operating system (R) Core (TM) i5-10500 CPU @ 3.10GHz. In order
to verify the effectiveness of the method, chose two more typical actual EFSM model to make a series of
experiments, respectively is: (Automated Teller Machine, ATM) [21] (as shown in Fig. 1), (Initiator
Responder Protocol, INRES) [14] (as shown in Fig. 7).
The ATM model contains definite termination status, and INRES model has loops. In this experiment, the

ATM model experiment is not set the end state of path must be the model termination status, because in
EFSM model transition path, the initial state reaches the termination state is just a special case of the all
transition paths.

Table 1. Experimental Target Model Properties
Target model States Transitions Input parameters

ATM 10 30 6
INRES 4 16 2

23 Volume 18, Number 1, February 2023

Journal of Software 



Table 1 lists the general properties of two targets model, where “input parameters” column is the number
of states, and “transition number” column is the target model contains the total number of transition, and
“input parameters” column is the number of input parameters required in target model.

Fig. 7. INRES EFSMModel [14]
In order to verify the effectiveness of test sequence automatic generation method (MBFS-FTP), this

experiment is aimed to answer the following questions in the research:
(Q1) How are validity and efficiency of MBFS-FTP?
(Q2) How is the effectiveness of CCM and FMM?

5.2. Effectiveness of Test Sequence Generation Method

1) To answer the validity of MBFS-FTP method in (Q1), we measure from two aspects:
A) Does the generated feasible path set all cover all transitions?
B) What is the length of the generated feasible path?
Since the EFSM model starts from the initial state until the end of the state. Therefore, this paper

considers all transitions in the EFSM model as target transition, looking for a shorter set of feasible
transition paths from the initial transition to the target transition, thus ensuring that the generated set of
feasible paths covers all the transitions. The experimental results of using MBFS-FTP method, ATM target
model and INRES target model to generate feasible path are shown in Table 2 and Table 3 (some feasible
transition paths are listed in Table).

Table 2. ATM：Transition path for each transition

�� Path Length Time(ms)
�1 �1 1 31
�2 �1�2 2 32
�3
t2

�1�2�2�2�3 5 31
�4 �1�4 2 31
… … … …
�27 �1�4�5�25�27 5 47
�28 �1�4�5�25�28 5 31

��

(��, (AK, num ,
num = ������),
������ = 1,
undef �,
������ ≔ 0,
� ≔ �, ��)

disconnect
��

connect
��

sending
��

wait
��

��
�0, , , � ≔ 5, ��

��(��, ICONreq, , ,
������� ≔ 0;
! CR; � ≔ �, ��)

��

(��, T_expired, , ,
������� < 4, undef �; ! CR;
������� ≔ ������� + 1;
� ≔ �, ��)

��
(��, CC, , , , undef �;
������ ≔ 1; ! CONconf, ��)

��

(��, T_expired, , ,
������� ≥ 4, undef �;
! IDISind, ��)

���

(��, DR, , ,
undef �;
! IDISind, ��)

���

��, DR, , , , ! IDISind, ��

���

(��, DR, , , ,
! IDISind, ��)

��

(��, (AK, num ,
num <> ������),
������� ≥ 4, undef �,
! IDISind, ��)

��
(��, (AK, num ,
num = ������),
������ = 0,
undef �,
������ ≔ 1, ��)

��

(��, (IDATreq, data , ),,
������� = 0, ������� ≔ data;
DT ������, data ; � ≔ �, ��)

���

(��, (T_expired, , ),
������� < 4, undef �;
������� ≔ ������� + 1;
DT(number,olddata);
� ≔ �, ��)

��

(��, (AK, num ,
num <> ������),
������� < 4, undef �;
������� ≔ ������� + 1;
DT(number,olddata);
� ≔ �, ��)

���

(��, (T_expired, , ),
������� ≥ 4,undef �;
! �������, ��)

24 Volume 18, Number 1, February 2023

Journal of Software 



�29 �1�4�5�25�27�29 6 63
�30 �1�4�5�25�27�30 6 47
Average 5.46 46.08

Can be seen from Table 2, ATM target model finally got 30 short test sequence and covers all the
transitions in EFSM model. Due to the character of MBFS algorithm, each test sequence on the premise of
feasible, guarantees has a minimum path length, each executable path there is no unnecessary transition, if
there is a cycle, the cycle is executed only once according to the principle of circulating. Among them, the
transition �3 is the only transition appeared in the infeasible path, due to the operation (attempts = 0) of
transition �1 and the guard (attempts = 3) of transition �3 conflict, therefore, the transition path �1�3 is
a infeasible path. Thus, in the path �1�2�2�2�3 of table 2, the transition �2 repeated three times to change
update the value of the variable attempts to make attempts meet the guard condition of the transition �3.

Table 3. INRES：Transition path for each transition

�� Path Length Time(ms)
�0 �0 1 29
�1 �0�1 2 31
�2 �0�1�2 3 34
t3 �0�1�3 3 35
… … … …
�12 �1�12 2 29
�13 �0�1�13 3 31
�14 �0�1�2�14 4 53
�15 �0�1�2�5�10�8�15 7 72
Average 4.74 41.25

Because of the INRES model represents a network request and response protocol, the circulation is more,
so in order to ensure path length is small, circulating executed only once in accordance with the principles
of. MBFS - FTP method is used to get the test sequence as shown in Table 3.
2) In order to answer the efficiency of MBFS-FTP method in (Q1), MBFS-FTP is compared with the

method MOST proposed in [23], and the results are shown in Table 4:

Table 4. Experimental result of comparison between different approaches

Approach
ATM INRES

Coverage (%) Path length Coverage (%) Path length
max averag max average

MBFS-FTP (ours) 100 8 5.46 100 7 4.74
MOST [23] 100 13 6.63 100 9 5.69
Reduction (%) - 38.46 17.65 - 22.20 16.70

We can see from Table 4, in terms of the longest transition path, MBFS reduces 38.46% on the ATMmodel
method and decreased by 22.2% on the INRES model compared with MOST, MBFS method has more
advantages. In the full transition coverage rate, MOST and MBFS both have very good effect on the two
target models, reached 100%. But in terms of average transition path length, MBFS reduces 17.65% on the
ATM model and decreased by 16.7% on the INRES model compared with MOST. Therefore, in the case of
transition coverage rate has reached 100%, the length of transition path generated MBFS is smaller, so in
the case of the number of test sequence is certain. In the generation of test data, transition path generated
by MBFS-FTP are more likely to be triggered.
3) In order to answer the effectiveness of CCM and FMM in (Q2), we measure from two aspects:
a) Using MBFS-FTP to generate feasible transition path, in the case of WITH and WITHOUT the CCM.

Verify the impact of CCM on feasible transition paths.

25 Volume 18, Number 1, February 2023

Journal of Software 



b) Using MBFS-FTP with CCM to generate feasible transition path, in the case of USE and UNUSE the FMM
and compared in terms of path length and feasible value, and the validity of the FMM will be tested at
generating test data in the late based on feasible transition paths.
① In the case of a), drive two target EFSM models to be executed. In the case of WITH and WITHOUT the

CCM, generate feasible transition paths. The comparison between the transition path length and the
number of feasible transition paths is shown in Table 5 and Table 6:

Table 5. Comparison result of transition path generation between WITH and WITHOUT CCM (ATM)

Approach
ATM

Path length No. of Path
max average feasible infeasible

WITH 8 5.46 30 0
WITHOUT 9 6.15 17 13

Reduction (%) 11.11 11.22 43.33

Table 6. Comparison result of transition path generation between WITH andWITHOUT CCM (INRES)

Approach
INRES

Path length No. of Path
max average feasible infeasible

WITH 7 4.74 16 0
WITHOUT 8 5.32 9 7

Reduction (%) 12.50 10.90 43.75
As can be seen from Table 5 and Table 6, the use of conflict detection mechanism (WITH) has a greater

degree of improvement than the use of the collision detection mechanism (WITHOUT), no matter where the
path length or the number of feasible transition path. For example, consider the target model ATM, the
maximum path length is 8 when with CCM, and the maximum path length is 9 when without CCM. So that it
is easier to be triggered for feasible transition to generate test data in the late. In the case of average path
length, WITH is only reduced 11.22% compared to WITHOUT in the ATM model and only reduced 10.90%
in the INRES model. Therefore, the CCM has no obvious effect on reducing the path length. In the case of the
number of feasible transition path, WITH has more 13 feasible paths in the ATM model than WITHOUT, and
increased 43.33%, while in the INRES model the number respectively are 7 and 43.75%, the effect is very
significant. Those means that the use of CCM can form more feasible transition path, and also makes the
transition path is more likely to be triggered under generating test data
② In the case of b), using MBFS-FTP with CCM to generate feasible transition path, USE and NONUSE

FMM compared the two aspects of the path length and the transition path feasibility value (τ takes 0.5
calculated according to the equation (1)), the compared results are shown in Table 7 and Table 8:

Table 7. Comparison result of transition path generation between USE and NONUSE FMM (ATM)

Approach
ATM

Path length Path feasible value
max average max average

USE 8 5.46 1229.84 278.29
NONUSE 9 5.83 1396.92 354.36

Reduction (%) 11.11 6.35 11.96 21.47

26 Volume 18, Number 1, February 2023

Journal of Software 



Table 8. Comparison result of transition path generation between USE and NONUSE FMM (INRES)

Approach
INRES

Path length Path feasible value
max average max average

USE 7 4.74 1035.34 225.32
NONUSE 8 5.09 1131.95 297.24

Reduction (%) 12.50 6.88 8.53 24.20
As can be seen from Table 7 and Table 8, the use of the feasibility measure method (USE) and the nonuse

of feasibility measures (NONUSE) compared, the same result as ①, because of BFS algorithm
characteristics in graph theory, the aspect of reducing the length of the transition path is no obvious effect,
such as in the ATM model average path length USED only reduced by 6.35%, while in the INRES model, USE
is only reduced by 6.88%, so in improving the length of the transition path, due to the inherent advantages
of BFS, USE does not have any great effect, we can see the validity of MBFS selected in this paper.
In the comparison of the feasible value of transition path, because of the case of using CMM, the transition

path generated is feasible. The FMM is used to determine the suitable feasible transition path when the
target transition has multiple feasible paths, and finally select the transition path with low feasible value to
generate test data in the late.
Since the type of guard in the transition of ATM model is ��� , it may make the recommended penalty

value of some transition paths large, resulting in a greater value of feasibility measure, which indicate the
feasibility of transition paths are low. But there are a lot of “select (id)” such methods, making ��� is easy
to be met, so most of transition paths are still very high feasible, therefore, the feasibility measure value is
relatively small, so it makes the average transition path feasibility value much smaller than the maximum
value. The same situation also occurs in the INRES model, through such the expression “counter = counter +
1” to make the predicate condition is satisfied.
Thus, it can be seen from Table 6 that USE reduces 21.47% in the ATMmodel, and in the INRES model, the

USE decreases by 24.20% in the comparison of average path feasibility value in aspect of the transition path
feasibility values. Which indicate that FMM has a good effect, making the transition path length and the type
of guard more trade-off between, so that the feasible transition path is more likely to be triggered in the late
of generating test data.
After the experimental and analysis of the results of (Q1) and (Q2), the MBFS-FTP method proposed in

this paper for automatic generation feasible transition paths has been valid in this experiment, both in
terms of validly and efficiency. Better results, CCM and FMM are met our test requirements, in the future we
will find more EFSM models to verify the effectiveness of this method to make it more practical.

6. Conclusions
Because of the existence of the infeasible path, which makes the test of EFSM-based model is still a

challenging problem till now. In this paper, we propose a method (MBFS-FTP) for automatic generation of
feasible transition paths based on EFSM model. We take advantage of the properties of BFS to shorten the
path and improve the path node mark for designing MBFS. Then CCM is designed and using FMM, a feasible
transition path set with short path is obtained, which lays the foundation of test data generation in later.
Firstly, because the EFSM model is a static model, which cannot be driven implementation, this paper uses
UML modeling method, which using SMC tool to build the executable model of EFSM, through initializing
the value of the input variable to drive EFSM model dynamic execution. In order to avoid the problem of
state explosion, and save the time of converting state path to transition path, we design the directed graph
conversion method for converting state diagram to transition diagram, and then, we use MBFS to generate

27 Volume 18, Number 1, February 2023

Journal of Software 



transition path automatically. In the process of automatically generating transition paths, CCM is designed
to avoid the conflicting transition existing in the transition path, therefore, every transition path generated
for the target transition is executable. Aiming at multiple paths for the target transition, FMM is designed,
which consider the length of the executable path, the type of operation and the type of guard, measure the
feasibility of transition path, and select the transition path with high feasible value into the executable
transition path set. Finally, a feasible transition path set with shortest length is obtained. After the
verification of two EFSM models (ATM and INRES), our method proposed in this paper has high
performance for automatic generation of feasible transition paths.
Now the research achievement of this paper is still a preliminary result, there are still many shortages

need to be improved, further research mainly from the following several aspects: 1) Further studying
effective method for automatic generation of feasible transition path based on EFSM model, and how to
improve intelligent optimization algorithm for more effective automatic generation of test data; 2) Finding a
suitable and efficient method to make the technology of automatically generate test cases based on EFSM
model instrument, which applied to the actual situation and improve software testing efficiency in model
testing.

Funding
This research was supported in part by the National Natural Science Foundation of China (Grant

No.61502430), Science Foundation of Zhejiang Sci-Tech University (ZSTU) (Grant No.21062291-Y).

References
[1] Beizer, B. (2003). Software Testing Techniques. Dreamtech Press.
[2] Cohen, M. B., (2019). The Maturation of search-based software testing: Successes and challenges.

Proceedings of 2019 IEEE/ACM 12th International Workshop on Search-Based Software Testing
(SBST)(pp. 13-14), Montreal, QC, Canada, 2019.

[3] Cao, Z., Wang, Y., Guo, P. & Tian, B., (2020). EFSM Test data generation based on fault propagation and
multi-population genetic algorithm. Proceedings of 2020 7th International Conference on Dependable
Systems and Their Applications (DSA)(pp. 240-245), Xi'an, China, 2020.

[4] Sajjad, M., Wasim, M., Shahbaz, M., Saghar, K. & Khan, U. G., (2018). Dynamic testing of C program
interfaces based on FSM modeling. Proceedings of 2018 International Conference on Frontiers of
Information Technology (FIT)(pp. 24-29), Islamabad, Pakistan, 2018.

[5] Nguena, T. O., Prestat, D. & Avellaneda, F., (2019). Fault detection in timed FSM with timeouts by
SAT-solving. Proceedings of 2019 IEEE 19th International Conference on Software Quality, Reliability and
Security (QRS)(pp. 326-333), Sofia, Bulgaria, 2019.

[6] He, C., Cui, A. & Chang, C. H., (2019). Identification of state registers of FSM through full scan by data
analytics. Proceedings of 2019 Asian Hardware Oriented Security and Trust Symposium (Asian HOST)(pp.
1-6), Xi'an, China, 2019.

[7] Hedley, D., & Hennell, M. A. (1985, August). The causes and effects of infeasible paths in computer
programs. Proceedings of the 8th international conference on Software engineering (pp. 259-266). IEEE
Computer Society Press.

[8] Turlea, A., (2019). Search-based testing using EFSMs. Proceedings of 2019 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW)(pp.100-103), Berlin, Germany,
2019..

[9] Turlea, A., Ipate, F. & Lefticaru, R., (2017). A test suite generation approach based on EFSMs using a
multi-objective genetic algorithm. In 2017 19th International Symposium on Symbolic and Numeric

28 Volume 18, Number 1, February 2023

Journal of Software 



Algorithms for Scientific Computing (SYNASC)(pp.153-160), Timisoara, Romania, 2017.
[10] Turlea, A., Ipate, F. & Lefticaru, R., (2018). Generating complex paths for testing from an EFSM.

Proceedings of 2018 IEEE International Conference on Software Quality, Reliability and Security
Companion (QRS-C)(pp. 242-249), Lisbon, Portugal, 2018.

[11] Ural, H., & Yang, B. (1991). A test sequence selection method for protocol testing. IEEE Transactions on
Communications, 39(4), 514-523.

[12] Miller, R. E., & Paul, S. (1992). Generating conformance test sequences for combined control and data
flow of communication protocols. In Protocol Specification, Testing and Verification, XII (pp. 13-27).

[13] Kalaji, A. (2010). Search-based software engineering: A search-based approach for testing from extended
finite state machine (EFSM) models (Doctoral dissertation, Brunel University, School of Information
Systems, Computing and Mathematics).

[14] Huang, C. M., Jang, M. Y., & Lin, Y. C. (1999). Executable EFSM-based data flow and control flow protocol
test sequence generation using reachability analysis. Journal of the Chinese Institute of Engineers, 22(5),
593-615.

[15] Hierons, R. M. (2004). Testing from a nondeterministic finite state machine using adaptive state
counting. IEEE Transactions on Computers, 53(10), 1330-1342.

[16] Zhao, B., Chen, B., & Qu, Y. (2007). An improved transformation perform analysis test sequence
generation algorithm. Journal of China University of Science and Technology, 37 (9), 1096-1100.

[17] Yang, R., Chen, Z., & Zhang, Z. (2014). An automation test case generation method based on extend
finite state machine. Chinese Science, Information Science, 5(003).

[18] Yang, R., Chen, Z., Xu, B., Zhang, Z., & Zhou, W. (2012). A new approach to evaluate path feasibility and
coverage ratio of EFSM based on multi-objective optimization. In SEKE (pp. 470-475).

[19] Shu, T., Ye, T., Yin, X., & Xia, J. (2016). A test generation method for efsm-based protocols using the
transitions feasibility estimation. International Journal of Control and Automation, 9(5), 207-218.

[20]Wang, W., Zhao, R., Shang, Y., & Liu, Y. (2016, October). Test data generation efficiency prediction model
for EFSM based on MGGP. Proceedings of International Symposium on Search Based Software
Engineering (pp. 176-191). Springer, Cham.

[21] Korel, B., Singh, I., Tahat, L., & Vaysburg, B. (2003). Slicing of state-based models. In Software
Maintenance, 2003. ICSM 2003. Proceedings of International Conference on (pp. 34-43). IEEE.

[22] Abdurazik, A., & Offutt, J. (2000, October). Using UML collaboration diagrams for static checking and
test generation. Proceedings of International Conference on the Unified Modeling Language (pp.
383-395). Springer, Berlin, Heidelberg.

[23] Yano, T., Martins, E., & de Sousa, F. L. (2011, March). MOST: A multi-objective search-based testing from
EFSM. In Software Testing, Verification and Validation Workshops (ICSTW), Proceedings of 2011 IEEE
Fourth International Conference on (pp. 164-173). IEEE.

Copyright © 2023 by the authors. This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited (CC BY 4.0)

29 Volume 18, Number 1, February 2023

Journal of Software 



Biao Wu was born in 1989. He received the B.S. from Hubei University of Technology in 2013
and the M.E. from Zhejiang Sci-Tech University in 2016 both in the People's Republic of China.
He received the Ph.D. from Yamaguchi University, Japan in 2021. Since April of 2021, he has
been a Lecturer at Zhejiang Sci-Tech University. His main research interests include software
testing and program net theory.

Qi-Wei Ge received the B.E. from Fudan University, China, in 1983, M.E. and Ph.D. from
Hiroshima University, Japan, in 1987 and 1991, respectively. He was with Fujitsu Ten Limited
from 1991 to 1993. He was an Associate Professor at Yamaguchi University, Japan, from 1993
to 2004. Since April of 2004, he has been a Professor at Yamaguchi University, Japan. His
research interest includes Petri nets, program net theory and combination.

30 Volume 18, Number 1, February 2023

Journal of Software 




