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Abstract: This paper presents the application of a Natural Language Processing (NLP) pipeline, which 
automatically extracts procedural knowledge in a standardized way from assembly instructions. The 
developed pipeline is able to parse and process written German assembly instructions regardless of the 
language discourse. The pipeline helps resolve ambiguities in assembly instructions by converting them into 
a Controlled Natural Language (CNL). The pipeline fully automates the translation process from free-text 
assembly instructions to CNL representations. We investigated and evaluated the efficiency and robustness 
of the NLP pipeline along multiple dimensions, such as different assembly process designers, language and 
fuzzy string matching models. To test the developed pipeline we used to automatically extract procedural 
knowledge in a standardized way for 2,740 assembly instructions obtained from automotive industry. Our 
investigation shows that the NLP pipeline is able to extract CNL representations with high accuracy (ø 87%). 
Downstream applications, such as assembly line balancing, can reuse the uniformly extracted procedural 
knowledge.  
 
Keywords: Controlled Natural Language, Industrial Data Science, Information Extraction, Natural Language 
Processing, Text Mining

 
 

1. Introduction 

In order to satisfy the increasing diversity of customer demand, manufacturing companies have to manage 

an ever-growing number of product variants [1]. From an economic point of view, the resulting variability 

has to be categorized into the two groups of value-adding and non-value-adding variability. The former 

constitutes waste according to the philosophy of Lean Thinking [2]. Taiichi Ohno originated Lean Thinking at 

Toyota in 1988 [3]. Since then, practitioners strive to eliminate waste with established tools of Industrial 

Engineering (IE). The second type results directly from customer requests and represents an additional value 

through individualization, which customers seek [2]. Here, conventional methods of IE can reach their limit 

due to the high number of variants and the high degree of variability. During the past decade, tools and 

methods from the domain of Data Science began to trickle into IE, where they are nowadays referred to as 

applications of Industrial Data Science (IDS) [4]. The methods promise novel solutions for the increasingly 

diverse planning and scheduling tasks of the manufacturing industry. 
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Particularly in assembly lines, the total number of product variants has a significant impact on the 

complexity, as all variations have to be taken into account during planning and production [5]. The whole 

process relies on a comprehensive documentation that summarizes and sustains the assembly process in a 

defined data structure [6]. Hence, such textual instructions for assembly operations contain valuable process 

knowledge, e.g. a detailed itemization of process steps or information about hierarchical dependencies for 

component assembly [7]. Through the application of traditional IE methods alone, manufacturing companies 

are not able to exploit the full potential contained in this data [8]. The language used in assembly operations, 

with regard to grammar and vocabulary, can vary vastly, either from plant to plant or from user to user [9]. 

Additionally, free text, abbreviations and acronyms cause ambiguities and a lack of consistency. Controlled 

Natural Language (CNL) provides a remedy as it facilitates the reuse and repurpose of procedural knowledge 

[7]. Nonetheless, unstructured and non-standard assembly instructions are often prevalent and compromise 

the integrity of the CNL framework. To overcome the inconsistencies, IDS provides a provision solution in the 

form of Natural Language Processing (NLP). Methods and tools of NLP can enable a data-driven extraction 

and a machine-assisted understanding of free-text descriptions of assembly operations [9]. For this reason, 

this paper presents an approach for data-driven extraction of knowledge from written assembly instructions. 

Using NLP, ambiguous texts are converted in a standardized format, relating to CNL. The main goal is the 

development of a pipeline that applies NLP steps to automatically extract and translate information into 

standardized CNL representation. The processing pipeline is evaluated by using German assembly 

instructions of various door assembly plans from the automotive industry. Additionally, a comparison for each 

part of the ensemble model is evaluated. 

The remaining paper is organized in six parts. First, a brief overview of the related work on the use of CNL 

in manufacturing as well as on automatic extraction of procedural knowledge from textual representations 

of assembly information is provided (Chap. 2). Then, the NLP pipeline is described, which has been chosen 

for an automatic extraction of procedural knowledge (Chap. 3). Next, the case study is introduced. The case 

study comes from the automotive industry and forms the basis of the validation (Chap. 4). Here, the focus lies 

on the characteristics of the given assembly instructions and the necessary preprocessing steps. It is 

noteworthy that work plans from automotive industry are available for the case study. In the next chapter 

(Chap. 5), the introduced pipeline is demonstrated and evaluated using the case study for a group of assembly 

tasks. After the validation, an extensive overview of further applications for the pipeline. 

2. Related Work 

2.1. Controlled Natural Language for Manufacturing 

The aforementioned term CNL describes subsets of natural language that can be accurately and efficiently 

processed by a computer, while also being expressive enough to allow natural usage by non-specialized 

human operators [10]. Within the manufacturing domain, a number of CNL exist, such as ASD Simplified 

Technical English (ASD-STE) or the Standard Language (SLANG). 

ASD-STE is a CNL that originated in the aerospace industry. It is based on English and uses restrictions 

through about 60 general rules to make texts easier to understand, particularly for non-native speakers. ASD-

STE relies on a defined vocabulary of terms common in the aerospace industry and allows the introduction 

of user-defined terms [11]. However, even though it is considerably more precise than full English, it does not 

yet allow reliable and automatic interpretation [12]. The second example is SLANG, a language developed at 

the Ford Motor Company that serves to create process sheets with build instructions for component and 

vehicle assembly plans. All SLANG instructions use an imperative mood and follow a standardized pattern 

starting with a main verb followed by a noun phrase. Thus, it allows writing clear and concise instructions 

that are also readable for a machine. At Ford, SLANG helps to automatically generate a list of required 
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elements and to calculate labor times [13]. These two examples serve to outline the overall extent and goal 

of existing models for CNL. For an in-depth description, we refer to [12] who provide a full survey and 

classification of existing CNL. 

The Uniform Process Description (UPD) is a language for describing operations in a standardized way. The 

Volkswagen AG uses UPD to identify the same assembly scope of different models and variants [14]. UPD 

descriptions always refer to a single built-in part and just one activity. Additionally, the language can include 

optional information regarding the current part or component that another element in the assembly process 

is mounted to. In addition to the system-readable elements, text equivalents and synonyms are available in 

different languages. At Volkswagen, UPD is a central component for solving the Assembly Line Balancing 

Problem (ALBP). For this purpose, UPD describes the respective order of priority of assembly operations in 

the form of a precedence graph. 

2.2. Automatic Extraction of Procedural Knowledge 

Current research utilizes a wide range of different NLP techniques to extract procedural knowledge in an 

automated manner. The following segment elaborates cases of where and how NLP techniques have found 

application in the manufacturing domain. 

Ford’s Direct Labor Management System (DLMS) is a prominent example. It applies NLP to evaluate free-

text part descriptions within assembly work instructions [13, 15–17]. The DLMS system uses an automotive 

ontology to assist in Part-Of-Speech (POS) tagging and to identify free-text part descriptions. It converts part 

descriptions into a standardized format and uses them for ergonomic studies. However, most research 

includes no in-depth description about the used NLP system and the developed ontology. In another scenario, 

Renu, R. S. et al. [18] apply the Stanford POS tagger to extract objects and verbs from assembly work 

instructions for the automatic selection of movements from a predetermined motion time system. Here, 

Methods-Time Measurement (MTM) is used as a basis. Based on the results of the POS tagger the automated 

method converts the extracted verbs into standard language and distinguishes objectives between one of five 

potential types: Part, consumable, tool, fixture or plant item. The combination of verb and objective type 

allows an automated selection from predefined tables of MTM tasks. The requirements and performance of 

POS taggers are investigated using assembly work instructions [9]. This research presents the Stanford 

CoreNLP as the best approach to parse assembly process information in text. However, the research takes 

data of only a single company into account. Additionally, Costa, C. M. et al. [19] present an approach that 

applied the Stanford Named Entity Recognizer (NER) for extracting assembly information from instruction 

manuals. The research shows that the Stanford NER achieves a high accuracy when identifying named entities. 

The model also aims to classify entities in pre-defined categories and achieves a precision of almost 90% and 

a F1 of around 85%. Lastly, Chen, J., & Jia, X. [20] apply an approach to discover assembly process case for 

assembly process reuse using multimedia information source. Here, joint application of POS and NER 

manages to achieve an improvement of the assembly process design.  

2.3. Research Gap and Objective 

This paper focuses on CNL that provide reliable and automatic semantic analysis of written assembly 

instructions. Related work usually assumes raw data that adheres to the format of a CNL. Furthermore, 

several methods and tools of NLP applications exist that can help to gain process knowledge from texts that 

were standardized using a CNL. As such, existing research tends to skip the uniform extraction of procedural 

knowledge from assembly process information. For this task, we propose a machine-learning pipeline that 

combines different NLP techniques and attempts to convert assembly instructions written in natural 

language into a CNL representation. 
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Fig. 1. Procedure to use written assembly instructions in a correctly formatted Controlled Natural Language 

with instructions without a control system using Natural Language Processing. 

 

Fig. 1. summarizes the process for knowledge extraction. We refer to the extraction from natural and 

uncontrolled text documents in a CNL form as a first-order extraction. The extraction of process knowledge 

for later use then represents a second-order extraction. The goal of this step is to generalize human-written 

texts in the standardized format of a CNL. During a second-order extraction, both synthetically generated CNL 

from the first step and instructions in a CNL correctly contributed by human operators, find application. As 

such, both steps rely on the usage of NLP, but we consider a first-order extraction as an important 

preprocessing step. 

3. Pipeline for Knowledge Extraction 

The proposed pipeline for knowledge extraction contains three separate steps. It combines several NLP 

techniques to translate individual language of respective assembly process designers into a CNL 

representation. We outline the pipeline in Fig. 2. 

 

 
Fig. 2. Schematic structure of the NLP pipeline for performing a first-order extraction. 

 

The pipeline relies on NLP, since it provides a wide range of methods that enable the automated processing 

of natural language [21]. Furthermore, it allows a robust parsing of information from written instructions of 

the assembly processes [9]. The focus of the pipeline lies on the execution of a first-order extraction, as 

described earlier. 

The pipeline is useful for avoiding the time-intensive process of manually establishing a CNL. It also allows 

the utilization of already available process descriptions that do not yet adhere to the format of a CNL. Thus, 

the pipeline helps a process designer in accessing data irrespective of the data veracity and volume. The 

three-step approach intends to enable the translation of natural language to CNL: Process candidate retrieval, 

candidate decision making, and a candidate and CNL representation mapping. In the next sections, we 

elaborate on the tasks and goals of these phases. 

3.1. Process Candidate Retrieval (Step 1) 

Written assembly instructions usually contain all information required for CNL. For this reason, assembly 

instructions form the input of the pipeline. However, the linguistic complexity of the textual descriptions must 

first be reduced, e.g., by replacing tokens with regular expressions. Subsequently, the candidate retrieval 

process can be performed. 

For the direct comparison, the pipeline compares assembly instructions with standard vocabulary as well 

as their known synonyms and abbreviations. For this reason, the NLP pipeline needs a targeted standard 

language. During the following validation, we will consider the Volkswagen UPD proposed by [14] as the 
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standard language. For this purpose, we extended the UPD with frequent synonyms and abbreviations. The 

pipeline performs the direct comparison using the Stanford Named Entity Recognizer (NER) and conducts an 

exact string matching. Since assembly instructions may contain more than one part, the direct comparison 

approach requires a distinction of such parts. However, the direct comparison ignores existing pattern in the 

textual descriptions. POS-Tagging can determine lexical categories like nouns, verbs, adverbs and adjectives 

in an assembly instruction. We use this information to differentiate between built-in and add-on part by 

considering existing prepositions. Prepositions are usually placed before their reference word, i.e. before the 

add-on part. The Stanford POS Tagger assigns the POS tag for each token in an assembly instruction. That 

helps to identify only the built-in part of an assembly instruction. Although there is a large number of standard 

vocabulary, synonyms and abbreviations, the pipeline cannot consider all of the existing designations in 

advance. 

The second approach to retrieve potential candidates requires a further analysis of the meaning and 

structure of the assembly instructions. For this purpose, we rely on SpaCy, an effective library for advanced 

NLP in Python. Among other things, it allows to continue training NER model for extracting information from 

text. The trained NER Model identifies specific entity-based tags out of the initial data. These entities relates 

to the considered CNL representations (built-in part, installation position, activity). Therefore, we created a 

training corpus with 134 assembly instructions. The custom NER enables also the identification of those 

designations that are not found by the direct comparison approach (e.g. misspelled words). 

Another approach extracts procedural knowledge from stored part numbers. The instruction level usually 

contains information about the part number. However, assembly process designers not always maintain part 

numbers at instruction level and moreover, part numbers are not always clearly assigned to a specific part. 

3.2. Candidate Decision Making (Step 2) 

The second step of the NLP pipeline is to select a candidate for each text category of the CNL. The different 

outlined extraction approaches can result in different recommended candidates for the CNL representations, 

such as built-in part, activity or installation position. The performance of each approach is relevant to 

candidate decision making because it defines the order of approaches in the NLP pipeline. 

In some cases, however, the candidate decision making is difficult. The reasons for these difficulties can 

have various causes, e.g. inaccurate or non-specific assembly instructions. Moreover, the cooperation of 

different process planners during the creation of a process plan can lead to changing styles or different levels 

of detail in the assembly instructions. Furthermore, the integration of more than one built-in part, multiple 

activities or different installation positions in a single assembly instruction can cause problems for the 

identification of the correct candidate. This irregular usage of mixed assembly information does not comply 

with today's rules for process plans. The NLP. 

3.3. Candidate and CNL Representation Mapping (Step 3) 

The third step converts the selected candidates into their corresponding standard language word and its 

numerical representation. The synthetically generated CNL is the input to the downstream applications (Chap. 

4). The pipeline performs this conversion using different NLP techniques. 

First, the pipeline compares each extracted text element to the standard language list using an exact 

matching method. Then, the pipeline compares the remaining text elements to the synonyms and 

abbreviations of the standard language using the same method. This order reduces ambiguity, since different 

standard language words can have the same synonyms and abbreviations. 

Only if this does not result in a CNL representation, the pipeline considers a fuzzy matching of the extracted 

text descriptions and the standard vocabulary lists including synonyms and abbreviation. Fuzzy matching of 

the textual descriptions is quintessential to avoid only straight comparisons. Fuzzy matching models enables 
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the conversion of those designations that are not found by the exact matching method (e.g. misspelled words). 

We propose the following three fuzzy matching algorithms that help to map a candidate with the correct CNL 

representation: Phonetic encoding, substring matching and the Levenshtein distance. This method selection 

has proven itself in our application, but it may need to be supplemented according to the analysis scenario. 

For the application of the algorithms, the pipeline differentiates according to the length of the extracted 

descriptions. The pipeline performs only substring matching for short tokens. Because both the phonetic 

encoding and the Levensthein distance lead for those elements to many incorrect results. For long tokens, the 

mapping is conducted based on the three fuzzy matching methods. However, only the candidate with the 

highest similarity is used. The determined similarity must be above 90%. 

 

Table 1. Excerpt of candidates and their CNL representation including a similarity index 

Candidate CNL representation Similarity 

Tiefton-Lautsprecher 

woo-fer 

Tieftonlautsprecher 

woofer 
0.95 

Geha use vollsta ndig 

housing complete 

Geha use (vollsta ndig) 

housing (complete) 
0.91 

Lautprecher 

Speker 

Lautsprecher 

speaker 
0.92 

Tuersteuergraet 

doôr control unit 

Tu rsteuergera t 

door control unit 
1.00 

Links vorne 

front lefte 

Links vorn 

front left 
0.91 

 

 

Table 1 shows an excerpt of candidates, where an exact matching of the textual descriptions does not lead 

to the corresponding CNL representation. The use of the fuzzy matching methods allows for such cases the 

mapping to their corresponding CNL representation. Therefore, the outlined fuzzy matching algorithms 

indicates the similarity of the textual descriptions. 

4. Case Study 

For this research, assembly instructions from automotive industry are used. Our dataset is composed of 

seven German historical door assembly plans of thirteen different products. Each door assembly plan 

contains multiple assembly instructions. These assembly instructions do not follow the CNL framework 

proposed by [14] yet. As such, those work instructions often contain words that are not part of the standard 

vocabulary. However, we chose to select only value-adding assembly instructions for the analysis. Non-value 

added assembly instructions are for example logistics tasks or wasted motions, like walking to get a material. 

By removing those non-value added assembly instructions, we ensure that only part-related assembly 

instructions are considered. Therefore, every assembly instruction includes at least one element of the CNL 

categories built-in part and activity. After preprocessing, the dataset contains 2,740 assembly instructions, 

which represents approx. 60% of the initial dataset. We use these instructions as input for the NLP pipeline.  

Additionally, we reduce the linguistic complexity of the textual descriptions by replacing tokens with 

regular expressions, e.g. for range information or separators (see Table 2). Language discourse varies from 
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highly professional and structured to informal language. To preserve the integrity of the dataset, we do not 

correct exist-ing spelling mistakes and capitalization errors manually.” 

 

Table 2. Example of Initial and Preprocessed Instructions. 

Initial instructions Preprocessed instructions 

door front right: assemble door 

handle mount bracket 

door front right <SEP> assemble 

door handle mount bracket 

plug in door control unit 2x to door 

harness - front left 

plug in door control unit <MULT> to 

door harness <SEP> front left 

L0L: clip clutch carrier in inner door 

panel 

<GUELT> <SEP> clip clutch carrier in 

inner door panel 

 

In addition to assembly line plan data, we also use the master data lists of USD with information of the 

presented CNL categories. For each category, the master data contains standard vocabulary and their numeric 

representations. However, the standard vocabulary and the human natural language often do not use the 

same terminology. Therefore, some descriptions refer to the same element, but the assembly process 

designers uses a synonym rather than the exact standard vocabulary. A straight comparison will not match 

these descriptions that is why the master data lists are extended with synonyms and abbreviations. Thus, 

standard vocabulary and its synonyms belong to the same numeric representation. For instance, the activities 

‘press’ and ‘push’ are assigned to the same number. We summarize detailed information regarding the 

respective categories in Table 3. 

Additionally, most part numbers are linked to a standard part vocabulary. Such data may help to identify 

the part of an assembly instruction. However, this requires the process designer to store the corresponding 

part number for each assembly operation. 

 

Table 3. Overview Standard Language Master Data List 

Reference data Unique entries Total entries 

Part 1,359 5,236 
Installation 

position 
93 127 

Activity 127 210 

5. Validation 

We apply the developed pipeline using data of the case study. Moreover, we manually label the initial 

dataset so that for each assembly instruction the candidate (built-in part, activity and installation position) as 

well as their CNL representations are stored. We apply and evaluate the methods and the NLP pipeline before 

introducing two promising use cases for the industrial utilization of the pipelines’ results. 

5.1. Application and Performance of Information Retrieval 

In order to develop the pipeline, we first validated the performance of the outlined information retrieval 

approaches. For this purpose, we determined the number of extracted textual descriptions per category and 

compared them to the manually labeled candidates. Considering the best performance, the different 

approaches are then combined into the proposed NLP pipeline. 

Stanford NER. Table 4 displays the performance of the direct comparison approach. Out of the 2,740 

activities contained in the dataset, the direct comparison approach extracted 2,523 candidates. Therefore, we 

considered only those 92.1% of the assembly instructions to determine the accuracy of the direct comparison 

approach. From these 2,523 extracted activities, 95.0% correspond to the manually labeled activities. The 

remaining assembly instruction do not have an extracted activity candidate or the candidate is not equal to 
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the manual label. 

Furthermore, the direct comparison approach determines an installation position for 2,182 instructions. 

This corresponds to 87.9% of the instructions that actually contain an installation position. Unlike the other 

categories, not every assembly instruction contains an installation position. 

Moreover, the direct comparison approach identifies various instructions that contain a built-in part 

(77.6%). However, only a few of those extracted built-in parts are equal to the manual labels (56.7%). 

Overall, the direct comparison approach achieves good results for the CNL categories activity and 

installation position. The approach achieves good results regarding those categories because they have only 

a limited number of synonyms and abbreviations. Errors occur mainly with neologisms or designations that 

are not included in the extended standard vocabulary list. In terms of the built-in parts, the pipeline leads to 

various incorrect candidates. This happens especially because the direct comparison approach ignores 

existing structures in the textual descriptions. 

SpaCy Custom NER. Table 5 displays the performance of the Custom NER model. Compared against the 

results of the Stanford NER the Custom NER achieved results that are more accurate according to the CNL 

categories activity and built-in part. The Custom NER tagged 97.7% of the extracted activity candidates and 

75.4% of the built-in parts correctly. 

According to the installation position, 88.4% of the 2,473 identified candidates are equal to the manually 

labeled installation positions. Thus, the results are less accurate compared to the results of the Stanford NER. 

Overall, the results show that the latter two methods already provide accurate results in terms of the 

categories activity and installation position. However, further procedural knowledge is quintessential to 

extract built-in parts correctly. For this reason, the pipeline additionally takes into account information about 

the part number. 

 

Table 4. Results Stanford NER 

Reference 

data 

Instructions with extracted 

candidates 

Correctly labeled 

candidates 

Built-in part 
77.6% 

(2,127 of 2,740) 
56.7% 
(1,207 of 2,127) 

Activity 
92.1% 

(2,523 of 2,740) 

95.0% 

(2,397 of 2,523) 

Installation 

Position 

79.6% 

(2,182 of 2,740) 

96.9% 

(2,114 of 2,182) 

Installation 

Position* 

87.9% 

(2,182 of 2,483) 

96.9% 

(2,114 of 2,182) 
*Only 2,483 of the 2,740 assembly instructions contain information about the installation position. 

 
Table 5. Results Custom NER 

CNL 

categories 

Instructions with extracted 

candidates 

Correctly labeled 

candidates 

Built-in part 
96.0% 

(2,630 of 2,740) 
75.4%  
(1,983 of 2,630) 

Activity 
99.6% 

(2,730 of 2,740) 

97.7% 

(2,666 of 2,730) 

Installation 

Position 

90.3% 

(2,473 of 2,740) 

88.4% 

(2,185 of 2,473) 

Installation 

Position* 

99.4% 

(2,468 of 2,483) 

88.5% 

(2,185 of 2,468) 
*Only 2,483 of the 2,740 assembly instructions contain information about the installation position. 

 

Part Number Approach. The part number contains information about the built-in part of an assembly 

instruction. Table 6 contains the results of the part number approach. Only about half of the assembly 
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instructions include information for the part number. Of those stored part numbers, 69.8% could be assigned 

to their respective CNL representation. From these 1,021 extracted built-in parts, the part number approach 

tags 89.1% correctly. 

Table 6. Results part number approach 

Example Entries 

Instructions with part number 
53.4% 

(1,462 of 2,740) 

Instructions mapped to CNL 

representation 

69,8% 

(1,021 of 1,462) 

Correctly mapped candidates 
89.1% 

(910 of 1,021) 

 

5.2. Application and Performance of NLP Pipeline 

The consideration of the information retrieval approaches in the pipeline differs with respect to the CNL 

category. The determined performance of each approach defines their order and is thus relevant to the 

candidate decision making. Afterwards, the pipeline assigns the identified and selected candidates to their 

respective CNL representation applying exact or fuzzy matching methods. 

 

• Activity. Related to the CNL category activity, the NLP pipeline considers first the results of the Custom 

NER approach. If this approach does not lead to a candidate, the pipeline considers the results of the 

Stanford NER. 

• Installation Position. For the installation positions, the candidate decision is initially based on the 

Stanford NER results. The pipeline considers the Custom NER results only subsequently. 

• Built-in part. For the built-in part, the information retrieval takes place via the stored part number. If no 

part number exists, the pipeline extends the scope of the search by taking into account the context of the 

assembly instruction. We realized this by creating a dictionary containing already found upstream part 

numbers with the found textual descriptions from the Custom NER Model. This is possible because an 

investigation shows that assembly process designers use similar terminology in their process 

descriptions for similar built-in parts. Only if no CNL representation is found in this way, the results of 

Custom NER and the Stanford NER are taken into account. 

 

Table 7 includes the results of the pipeline for the information retrieval and the candidate decision making. 

For this purpose, we determined the number of extracted textual descriptions per category and compared 

them to the manually labeled candidates. Out of the 2,740 assembly instructions contained in the dataset, the 

pipeline extracted and selected more than 90% of the CNL candidates in terms of all categories. Moreover, 

more than 90% of those candidates correspond to the manual labels. However, the latter cannot be checked 

for the built-in parts. A comparison to the manual labels is not possible since the textual descriptions resulting 

from the part number approach are not identical to the manual labels. Overall, the results show that the 

combination of the different approaches leads to better results compared to individual methods. This applies 

in particular to the categories installation position and built-in part. 

Table 8 presents the results of the candidate and CNL representation mapping. For this purpose, we 

determine the number of the instructions with a mapped CNL category and compare them to the manually 

inserted CNL representations. For 95.4% of the assembly instructions the pipeline mapped a CNL 
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representation for the category activity. Of those 2,613 extracted CNL representations 100% are mapped 

correctly. The CNL representations of the installation positions are also almost completely correct. However, 

the number of instructions with an identified CNL representation is lower. In terms of the built-in parts, the 

candidate and CNL representation mapping works for 74.5%. Of those, 2,040 CNL representations 81.4% are 

mapped correctly. 

In some cases, assignment to a specific CNL representation is still a problem. Possible reasons for this 

problem are e.g., inaccurate or non-specific assembly instructions as well as the multiple use of same 

synonyms for different CNL representations. Another influencing factor is incorrect data. In addition to 

spelling mistakes or the use of neologisms, missing or multiple statements of different part numbers within 

an assembly instruction are other reasons for difficulties in the CNL candidate mapping. Due to their specific 

characteristics, different influences in the creation and maintenance of process plans lead to a number of 

challenges during the identification of candidates and mapping them to the respective CNL representations. 

 

Table 7. Pipeline results information retrieval and candidate decision-making 

CNL 

categories 

Instructions with extracted 

candidates 
Correctly labeled candidates 

Built-in  

part 

99.6% 

(2,730 of 2,740) 
-** 

Activity 
99.7% 

(2,732 of 2,740) 

97.6% 

(2,668 of 2,732) 

Installation 

Position 

90.6% 

(2,483 of 2,740) 

95.0% 

(2,358 of 2,483) 

Installation 

Position* 

99.8% 

(2,478 of 2,483) 

95.1% 

(2,358 of 2,478) 

*Only 2,483 of the 2,740 assembly instructions contain information about the installation position. 

**Candidates out of the part number approach conatin standard language vocabulary which are not equal to the manually labeld candidates 

out of the assembly instructions. 

 
Table 8. Pipeline results candidate CNL mapping 

CNL 

categories 

Instructions with mapped 

CNL representations 

Correctly mapped CNL 

representations 

Built-in part 
74.5% 

(2,040 of 2,740) 
81.4% 

(1,661 of 2,040) 

Activity 
95.4% 

(2,613 of 2,740) 

100% 

(2,613 of 2,613) 

Installation 

Position 

77.2% 

(2,116 of 2,740) 

98.3% 

(2,079 of 2,116) 

Installation 

Position* 

85.2% 

(2,115 of 2,483 

98.3% 

(2,079 of 2,115) 

*Only 2,483 of the 2,740 assembly instructions contain information about the installation position. 

6. Further Application 

We developed the pipeline as a configurable analysis module. This allows a simplified usage of the pipeline 

results for different downstream applications. This chapter provides a comprehensive overview of two 

applications that are already using the analysis module or plan to use it. The input to the downstream 

applications are the determined synthetically generated CNL instructions. The generated novel process 
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knowledge represents the second-order extraction. 

6.1. Use Case 1: Line Balancing 

A variety of downstream applications can benefit immensely from the information extraction and 

standardization. CNL representations of assembly information allows for example the creation of a product 

precedence graph needed for solving the assembly line balancing problem in practice [14]. For this purpose, 

Gebler, M. [14] uses a graph generation approach, which creates a sufficient precedence graph from feasible 

production sequences [22]. The graph generation approach uses former production plans available in the 

firm to collect precedence relations between operations. From this a so called maximum graph with proven 

independences and not proven precedence relations is built by examining all possible combinations of two 

operations in the sequences. If an operation 𝑖 is in each sequence executed before 𝑗 than 𝑖 is a predecessor 

of 𝑗. However, if one sequence exists where 𝑖 is conducted before 𝑗 and another sequence exists where 𝑖 

is executed after 𝑗 than 𝑖 and 𝑗 are independent. 
The basic concept of generating a maximum graph has some disadvantages [23]. The benefit highly 

depends on the characteristics of the input sequences. Degrees of freedom can only be deduced from pairs of 

operations where both possible orders were planned. For this reason, the approach achieves its effectiveness 

only months after the start of production when different production plans are available. Even then, it is not 

guaranteed that certain degrees of freedom will be found because some independent operations never 

change their relative position to each other.  

Using the results of the first-order extraction can solve one of the significant disadvantages of the basic 

concept. For this purpose, the CNL built-in part representation is used as a preprocessing step before 

generating the sequences out of the production plans. After that, the CNL built-in part representation serves 

for building up the sequences instead of the operation identification. These can then be used to create a 

product maximum graph [14]. The advantage of this approach is that sequences with standardized elements 

are used. For this reason, production plans from the previous model as well as production plans from other 

assembly lines with similar or identical products can be used. 

6.2. Use Case 2: Data-based Decision Support for Work Process Design and 
Optimization 

The process design and optimization task in manufacturing can also benefit immensely from the 

information extraction and standardization. Currently, design and optimization solutions for manual 

processes in manufacturing are highly dependent on domain knowledge and individual experience. With an 

increasing number of products and a large production network, the personal network and previous 

experiences lose importance. At the same time, establishing cross-connections and transferring knowledge 

is a challenging task. 

In terms of the design and optimization task, the results of the first-order extraction reduces the manual 

effort required to identify relevant data. Synthetically generated CNL allows for example the automatic 

identification of best practices in manufacturing processes. This gives assembly process designers the ability 

to fulfill their design and optimization tasks more efficiently and effectively. We use the machine-readable 

assembly information to develop a data-driven decision-making based on a three-step approach. 

 

• Step 1: Developing a methodology to identify similar work systems 

• Step 2: Developing an automated benchmarking, which compares and evaluates similar work systems 

for work process design and optimization tasks 

• Step 3: Developing and implementing data mining methods for the contextual provision of proposals for 

work process design and optimization 
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In this application, synthetically generated CNL allows comparisons of different part-related process 

sequences regardless of language usage and of the language used in the textual descriptions. Overall, the 

machine-readable assembly instructions lead to proactive, databased-decision making and reduce time and 

effort expended in process design and optimization tasks. 

7. Conclusion 

This paper contributes to the research on automatic acquisition of procedural knowledge from textual 

description and CNL. We propose a novel NLP pipeline that enables the first-order extraction of procedural 

knowledge and retrieval of synthetically generated CNL. Our research showed that an automatic translation 

of assembly instructions into CNL is possible mostly regardless of the language discourse.  

For the first-order extraction, we use information from assembly instructions and part numbers. Both are 

stored at operation level. By implementing and merging different NLP techniques, we obtained the 

procedural knowledge (built-in part, installation position, activity) which is then translated into a machine-

readable format (synthetically generated CNL). 

The presented knowledge extraction pipeline has proven itself in a use case, as shown in the validation. To 

ensure universal applicability of the pipeline, further applications in other areas and domains are to be 

carried out. Of particular interest are synergies in the extraction of similar text documents from different 

application areas. This may lead to a joint analysis of documents across the entire value stream, e.g. from 

product design, process planning and quality management. Due to the high proximity of the pipeline to the 

presented use case, further work is required especially for a generally valid abstraction. 

In future, we plan to use the NLP pipeline for the whole assembly plan, other languages, and crafts. 

Moreover, we plan to evaluate the second-order extraction based on the results of the first-order extraction 

in terms of the outlined applications.  
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