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Abstract: TensorFlow is an end-to-end open-source machine learning platform including various tools, 

libraries, and community resources. It supports users to use many mainstream programming languages 

including Python. TensorFlow contains multiple abstraction layers, with APIs play significant roles in every 

layers. In the version iteration of TensorFlow platform development, with the release of new TensorFlow 

versions, because of functionality evolution, or security and performance-related changes, some APIs 

eventually become unnecessary. These issues cause APIs to deprecate and influence the accuracy of deep 

learning models results. Prior studies have investigated API evolution and its potential impact on projects. 

However, their studies mainly focus on API evolution instead of API deprecation, and they do not find out how 

the evolution affects results of deep learning models in TensorFlow. Therefore, we present a research-based 

prototype tool called AIADA and apply it to different revisions of the TensorFlow platform projects code for 

characterizing deprecated APIs. Based on the data mined by AIADA, we develop a quantitative assessment of 

deprecated Python APIs usages on deep learning models accuracy. We first count the amount of TensorFlow 

Python APIs that are deprecated, finding out that with the development of TensorFlow version, the number 

of deprecated APIs increases constantly. Second, we discuss the reason behind TensorFlow Python APIs 

become deprecated, discover that name change, weed out, and compatibility issue lead to the main cause of 

deprecation. Finally, we construct a deep learning project as the comparative experiment. After comparing 

the results between deep learning model with TensorFlow deprecated APIs and without deprecated APIs, we 

conclude that using deprecated APIs will cause a 10% loss on efficiency and accuracy of deep learning model. 
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1. Introduction 

Application Programming Interfaces (APIs) are sets of defined functionalities provided by a programming 

library or framework [1]. APIs promote the reuse of existing software systems. By integrating APIs in a 

codebase, developers can save development time and effort by utilizing a well-tested system. 

TensorFlow is an end-to-end open-source machine learning platform which contains an extensive and 

elastic ecosystem, including various tools, libraries, and community resources [2]. It can assist researchers to 

promote the development of advanced machine learning technology and enable developers to build and 

deploy applications supported by machine learning [3]. TensorFlow manages several abstraction layers: the 

heigh-level TensorFlow APIs, the mid-level TensorFlow APIs, the low-level TensorFlow APIs, the TensorFlow 
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kernel APIs, and the hardware layer [4]. APIs play considerable characters among multiple abstraction layers. 

However, with the development of new TensorFlow versions, some APIs cannot fit the requirement of the 

framework which results in the deprecation of APIs. To enable a graceful adaptation of developers to 

framework changes, API deprecations are implemented following the deprecate-replace-remove cycle [5]. In 

this scheme, APIs that will no longer be maintained in the framework are first flagged as deprecated, through 

the @deprecation Python annotation. Subsequently, the code of deprecated APIs is updated with replacement 

messages which are meant to help developers refactor their applications to migrate from deprecated APIs to 

their replacements [6]. Finally, after some reasonable time, deprecated APIs are eventually removed to clean 

the framework and thereby reducing the maintenance burden on the framework codebase [7]. 

Deep learning is a research direction in the field of machine learning. It is introduced into machine learning 

to make it closer to artificial intelligence [8]. Deep learning is a complex machine learning algorithm, which 

enables the machine imitate human activities such as audio-visual and thinking to solve the problem of 

pattern recognition and make progress in artificial intelligence-related technologies [9]. Researchers utilize 

the TensorFlow platform to conduct deep learning studies such as process datasets and create patterns in 

decision making. Whereas the TensorFlow Python APIs evolutions have a potential impact on projects and 

results. Numerous investigations have examined the influence. Zhang et al. analyze APIs evolution in deep 

learning frameworks on TensorFlow 2 and reveal reasons for API changes [10]. However, their study mainly 

focuses on the APIs evolution instead of the APIs abandonment. Moreover, some researchers have discovered 

that the evolution and deprecation of APIs might result in incompatibility issues. Li et al. characterize 

deprecated APIs in the Androids ecosystem and identified three bugs related to deprecated APIs [11]. Anand 

et al. indicate an investigation into the motivation behind APIs deprecation and define a taxonomy of 12 high-

level reasons [12]. Ferdian et al develop a study on automated deprecated API usage updates for Android 

applications [13]. However, few pieces of research focus on deprecated APIs in the TensorFlow platform and 

the impact of deprecated APIs on deep learning models. Recent studies relevant to the APIs in the TensorFlow 

platform and their impacts of them on deep learning models have been proposed. Raschka et al. provide an 

in-depth look into the Python machine learning world and explores key topics to identify some of the core 

hardware and software paradigms that support it. They cover a wide range of APIs and concepts, gathering 

them together for an overall comparison [14]. However, their work does not address the impact of the 

deprecated APIs in Python machine learning on machine learning, data science, and scientific computing. 

Although researchers have conducted empirical studies to understand deep learning bugs, these studies focus 

on bugs of their applications, and the nature of bugs inside a deep library is still largely unknown. To deepen 

the understanding of such bugs, Jia et al. analyze 202 bugs inside TensorFlow [15]. We will further introduce 

research on analyzing versioning and internal deprecated APIs of the TensorFlow platform to complement 

empirical research on deep learning errors. Therefore, to characterize deprecated deep learning TensorFlow 

Python APIs, in this paper, we first design a prototype tool called AIADA. Then we apply AIADA to different 

revisions of the TensorFlow platform projects code and compare the obtained results to understand the 

evolution of deprecated TensorFlow Python APIs. The overall goal of this research is to draw insights into (1) 

the quantity and features of deprecated APIs, (2) the reason for APIs becoming abandoned, and (3) the 

potential impact of deprecated APIs on deep learning models. 

In this work, we present an exploratory study on the deprecation of TensorFlow Python APIs. This study 

builds on a systematic source code mining of the TensorFlow framework, which covers 23 TensorFlow 

releases spanning versions 1.0 to 2.6. This study also involves analyzing 22 deep learning models provided 

by the official TensorFlow GitHub organization and maintained by Intel and NIVIDA which cover the field of 

computer vision, object detection, segmentation, natural language processing, and recommendation systems. 

We first design and implement a prototype tool called AIADA. AIADA is based on the Abstract Syntax Tree 
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(AST) of source code. Then we apply AIADA to 23 different revisions of the TensorFlow framework code and 

22 deep learning models to conduct the statistical quantity of deprecation APIs. After that, we explore the 

deprecation messages extracted by AIADA AST to label deprecation features. Finally, we construct a deep 

learning project as a comparative experiment to assess the accuracy impact of deprecated API usages on deep 

learning models. 

2. Materials and Methods 

2.1.  Deprecated APIs Quantity Statistics Based on AST 

One of the core problems in collecting deprecated APIs from the TensorFlow Python deep learning library 

is that each of these deep learning libraries has a different way of documenting their API deprecations and 

different software engineers have diverse code styles [16]. To address this problem, we invest in an abstract 

syntax tree for deprecated API data collection. The abstract syntax tree (AST) represents the abstract syntax 

structure of the program source code that is expected to be analyzed as a tree structure [17]. Each node in 

the tree structure represents a structure type in the code fragment of the program to be analyzed, the 

structure of the program source code and the execution process of the source code are reflected by 

establishing the relationship between the parent node and brother node. The abstract syntax tree is used to 

represent the structural information between program codes to realize the analysis of source code [18]. The 

abstract syntax tree does not represent every detail of the real program syntax, but only retains the key syntax 

content of the program source code with analysis to realize the abstract representation of the program source 

code [19]. After the syntax structure of program code is abstractly identified and displayed as a tree structure, 

when compared with simple code text analysis, it is clear to acquire its code structure and syntax rules to find 

out deprecated APIs based on semantic information. 

We focused on looking for the APIs Python annotations containing the word “deprecate” and “replace”, 

which indicates API deprecation or replacement. Each input Python file is first transformed into its abstract 

syntax tree by AIADA using the abstract syntax tree module provided by Python. From the abstract syntax 

tree, all the public classes and methods are traversed. AIADA detects and locates the usage of the deprecated 

APIs based on the deprecated APIs' names and annotations syntax signature. Finally, methods and classes 

with deprecated APIs will be flagged by @deprecated and added to a statistics database. The architecture and 

pipeline of AIADA collecting deprecated APIs are given in Figure 1. 

 

 
Fig. 1. AIADA architecture and pipeline. 

 

2.2.  Comparative Experiment Design 

In this paper, we design a target tracking program based on deep learning models in the TensorFlow 

platform for the experiment. The experimental framework constructed in this paper is based on the 

TensorFlow Python library. TensorFlow utilizes graphs to represent computing tasks [20]. The nodes in the 

graph are defined as op (abbreviation for operation). A node obtains zero or more tensors, and each tensor is 
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a typed multidimensional array. TensorFlow program can be divided into two stages: construction graph and 

execution graph [21]. A construction graph is a calculation diagram that TensorFlow needs to build before 

performing calculation operations. The calculation diagram is composed of nodes and corresponding 

operations between nodes. At the same time, the required constants and variables need to be defined. The 

execution graph can only be run after the construction graph is created. The first step of the execution graph 

is to create a session object, called the start of the graph, then initialize the variables, perform the 

corresponding operations between nodes, update the variable values, and finally save the final data. The 

framework structure of the deep learning model for image recognition and tracking designed in this paper 

based on TensorFlow is shown in Fig. 2 [22]. 

 

 
Fig. 2. The framework structure of the deep learning model for image recognition and tracking. 

 

The experiment is divided into two parts: the model training part and the recognition tracking part. The 

node construction and inter-node operation of the two parts are the same. The main difference lies in the 

initial assignment of weight variables. The initial weights of the training part of the model are given artificially, 

and the weights of each layer of the frame structure are adjusted by training samples to make the errors 

between the actual output and the ideal output smaller. The weights of the recognition tracking part are 

directly used to obtain the weights of the model training part, the test video information is mapped through 

each layer network, and the final output is our recognition result. 

The data utilized in this experiment is the basketball photo set downloaded from the VOT2020 standard 

dataset. The pixel size of images is 800*480. 100 images are used as training samples and another 100 images 
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as test samples. The identified targets are marked with white rectangular boxes. For the training sample set, 

each image is processed as follows: mark the pixel position x and y of the target center point, as well as the 

length h and width w of the rectangular frame, and then normalize the data. Data normalization refers to 

putting each attribute of the input feature into a unified interval so that each attribute has the same 

contribution to classification. 

2.3.   Construction of Deep Learning Model 

At the beginning of the experiment, the relevant function library should be introduced. A construction 

graph is a key part of deep learning model design [23]. Its main work is to complete the creation of nodes and 

define the operation mode between nodes. Since the establishment and operation of nodes rely on tensors, 

the node connection of the model is usually represented by the connection of tensors [24]. A set of images is 

usually represented as a four-dimensional floating-point number group, and the four dimensions are Batch, 

Height, Width, and Channels. 

In this experiment, the learning method is the Adam algorithm, namely the adaptive moment estimation 

method. Adam algorithm dynamically adjusts the learning rate of each parameter according to the first and 

second moment estimation of the gradient of each parameter by the loss function [25]. The Adam algorithm 

is also based on the gradient descent method, but the learning steps of each iteration parameter have a certain 

range, and a large gradient will not lead to a large learning step, so the parameter value is stable [26]. 

At the beginning of the training, we need to initialize the gradient cumulant and the square cumulant: 

 

𝑉𝑑𝑤 = 0, 𝑉𝑑𝑏 = 0, 𝑆𝑑𝑤 = 0, 𝑆𝑑𝑏 = 0 
 
Suppose that in the 𝑡 round of training, we can first calculate the parameter update: 

𝑉𝑑𝑤 = 𝛽1𝑉𝑑𝑤 + (1 − 𝛽1)𝑑𝑊 

𝑉𝑑𝑏 = 𝛽1𝑉𝑑𝑏 + (1 − 𝛽1)𝑑𝑏 

𝑆𝑑𝑤 = 𝛽2𝑆𝑑𝑤 + (1 − 𝛽2)𝑑𝑊2 

𝑆𝑑𝑏 = 𝛽2𝑆𝑑𝑏 + (1 − 𝛽2)𝑑𝑏2 

Since the moving index average at the beginning of iteration will lead to a large difference from the initial 

value, we need to correct the deviation of several values obtained above. 

𝑉𝑑𝑤
𝑐 =

𝑉𝑑𝑤

1 − 𝛽1
𝑡 

𝑉𝑑𝑏
𝑐 =

𝑉𝑑𝑏

1 − 𝛽1
𝑡 

𝑆𝑑𝑤
𝑐 =

𝑆𝑑𝑤

1 − 𝛽2
𝑡 

𝑆𝑑𝑏
𝑐 =

𝑆𝑑𝑏

1 − 𝛽2
𝑡 

Through the above formula, 𝑉𝑑𝑤 , 𝑉𝑑𝑏 , 𝑆𝑑𝑤 , and 𝑆𝑑𝑏  respectively are the gradient momentum 

accumulated by the loss function during the first 𝑡 − 1 iteration. we can obtain the modified value of the 
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parameter gradient cumulant in the 𝑡 round of iteration, so that the weight and bias can be updated. 

𝑊 = 𝑊 − 𝛼
𝑉𝑑𝑤

𝑐

√𝑆𝑑𝑤
𝑐 + 𝜖

 

𝑏 = 𝑏 − 𝛼
𝑉𝑑𝑏

𝑐

√𝑆𝑑𝑤
𝑐 + 𝜖

 

In the algorithm, we define 𝛽1 = 0.9, 𝛽2 = 0.99. 𝜖 is a smooth top and we define 𝜖 = 10−8. Learning rate 

𝛼 requires fine-tuning during training. 

3. Results and Discussion 

3.1.  Quantity and Feature of Deprecated APIs 

From the results of AIADA, we first detect the quantity character of deprecated Python APIs. We discover 

that with the development of TensorFlow versions, both APIs and abandoned APIs of TensorFlow increase 

jointly as shown in Table 1. 

 

Table 1. Quantity of Deprecated APIs among TensorFlow Versions Evolvement 

TensorFlow Version Python Version Release Date APIs Deprecated APIs 

TensorFlow 2.6.0 3.6-3.9 2021.08.09 6638 283 

TensorFlow 2.5.0 3.6-3.9 2021.06.03 6605 257 

TensorFlow 2.4.0 3.5-3.8 2020.11.07 6537 219 

TensorFlow 2.3.0 3.5-3.8 2020.06.10 6493 192 

TensorFlow 2.2.0 3.5-3.8 2020.05.08 6381 168 

TensorFlow 2.1.0 2.7, 3.5-3.7 2019.12.21 6005 149 

TensorFlow 2.0.0 2.7, 3.3-3.7 2019.09.19 5722 142 

TensorFlow 1.15.0 2.7, 3.3-3.7 2019.09.18 5628 142 

TensorFlow 1.14.0 2.7, 3.3-3.7 2019.06.08 5267 133 

TensorFlow 1.13.0 2.7, 3.3-3.7 2019.03.15 4431 107 

TensorFlow 1.12.0 2.7, 3.3-3.6 2018.10.08 3809 54 

TensorFlow 1.11.0 2.7, 3.3-3.6 2018.09.13 3512 45 

TensorFlow 1.10.0 2.7, 3.3-3.6 2018.08.07 3362 38 

TensorFlow 1.9.0 2.7, 3.3-3.6 2018.07.11 3265 32 

TensorFlow 1.8.0 2.7, 3.3-3.6 2018.04.19 3189 27 

TensorFlow 1.7.0 2.7, 3.3-3.6 2018.03.29 3025 25 

TensorFlow 1.6.0 2.7, 3.3-3.6 2018.03.27 2983 25 

TensorFlow 1.5.0 2.7, 3.3-3.6 2018.01.18 2806 20 

TensorFlow 1.4.0 2.7, 3.3-3.6 2017.11.01 2630 18 

TensorFlow 1.3.0 2.7, 3.3-3.6 2017.08.22 2011 16 

TensorFlow 1.2.0 2.7, 3.3-3.6 2017.06.14 1879 15 

TensorFlow 1.1.0 2.7, 3.3-3.6 2017.04.21 1662 12 

TensorFlow 1.0.0 2.7, 3.3-3.6 2017.02.11 1508 12 

 

We explore the result of AIADA. For the growth trend of the total number of Python APIs in the TensorFlow 

platform, we indicate that APIs in the TensorFlow platform increased significantly between the release date 

2017.08.22 and 2017.11.01 from TensorFlow version 1.3.0 to 1.4.0. The number of APIs also grow drastically 

between the release date 2018.10.08 and 2019.09.18 from TensorFlow version 1.12.0 to 1.15.0. For the rest 

of the time, the number of APIs grows relatively slowly. The growth trend of a total number of Python APIs in 

the TensorFlow platform is displayed in Fig. 3. 
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Fig. 3. The framework structure of the deep learning model for image recognition and tracking. 

 

To find the characters of the growing trend of the number of deprecated Python APIs in the TensorFlow 

platform, we figure out that deprecated APIs in the TensorFlow platform increased significantly between the 

release date 2018.10.08 and 2019.06.08 from TensorFlow version 1.12.0 to 1.14.0. The number of APIs also 

see a drastic growth after the release date 2019.12.21 till now from TensorFlow version 2.1.0. While during 

the rest of the release time, the number of deprecated APIs raise relatively slowly. The growth trend of the 

number of deprecated Python APIs in the TensorFlow platform is displayed in Fig. 4. 

 

 
Fig. 4. The growth trend of the number of deprecated Python APIs in TensorFlow platform. 

 

Fig. 5 presents the proportion of deprecated APIs in all TensorFlow Python APIs among different release 

times. The proportion is comparatively steady from TensorFlow version 1.0.0 to 1.8.0 between release time 

2017.02.11 and 2018.04.19 which is 0.8%. The proportion is also relatively stable from TensorFlow version 

1.13.0 to 2.1.0 between release time 2019.03.15 and 2019.12.21 which is 2.5%. During the rest of the release 

time, with the evolvement of TensorFlow versions, the proportion of deprecated APIs in all TensorFlow 

Python APIs increased dramatically. 
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Fig. 5. The proportion of deprecated APIs in all TensorFlow Python APIs. 

 

The conclusion indicates that with the development of TensorFlow versions, the number of deprecated 

APIs and the proportion of deprecated APIs in all TensorFlow Python APIs increase jointly. Since the 

proportion of deprecated APIs in all TensorFlow APIs has increased significantly after release date 

2019.12.21 till now, we can indicate from the results of AIADA that developers of TensorFlow do not respect 

the deprecated-replace-remove cycle and deprecated APIs still exist in the TensorFlow platform library and 

deep learning models. 

3.2.  The Reason for TensorFlow APIs Becoming Deprecated 

We aim to detect the reason for TensorFlow APIs becoming abandoned. After TensorFlow 2.0, nearly every 

TensorFlow evolvement will lead to deprecated APIs incensement. To discover the reason, we first explore 

the deprecation annotation message extracted by AST in AIADA. If there is no deprecated annotation or the 

content of annotation is inaccurate, we will check the official document about the APIs. We will also compare 

the source of deprecated APIs with their substitution APIs if the substitution APIs are mentioned in the official 

TensorFlow API documentation and the version iteration description. 

The first reason is the name change. As TensorFlow evolves, some APIs' names may not reflect the current 

functionality [27]. Deprecated APIs will be given new names by developers while the underlying source code 

and functionality remain the same [28]. Some API parameters' names will be also updated during evolution 

to be more intuitive and enhance user-friendliness [29]. These name changes of API parameters will cause 

the abandonment of APIs. 

The second reason is to weed out. With the development of versions, some features will be removed from 

the TensorFlow library which will lead to APIs with these features deprecated [30]. Some parameters could 

become redundant and be abandoned due to the changes in API logic, which lead to API deprecation. Some 

APIs are no longer able to meet the increasing requirements of the TensorFlow platform. As a result, 

developers introduce newer APIs to replace the aged ones to improve performance and organization [31]. 

The third reason is the compatibility issue. When new features introduce to the TensorFlow platform, some 

APIs will face compatibility problems. These APIs will be prohibited by developers [32]. 

Among the reasons listed above, in 283 deprecated APIs from the latest release date version of TensorFlow, 

weed out is the main reason for API being abandoned, taking up 54.77% which is 155 out of 283. The name 
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change is the second primary result that caused the API deprecation, taking up 32.5% which is 92 out of 283. 

Compatibility issue is the least reason for API becoming deprecated, taking up 12.72% which is 36 out of 283. 

When comparing the result with java, Sawant et al. analyzed 4 Java frameworks and found that functional 

defect is the leading cause for API being deprecated in Java which is similar to the result we proposed. From 

the conclusion of Sawant et al., in Java, renaming of features only takes a small part of deprecated APIs while 

among deprecated TensorFlow Python APIs, it is the second major cause. 

3.3.  The Influence of Deprecated APIs on the Recognition Effect of Deep Learning 

The identification error is the quadratic root difference between the target center point pixel value 

obtained by the test and the actual target center point pixel value, namely, the center position error, which is 

defined as: 

𝜀 =  √(𝑥1 −  𝑥0)2 + (𝑦1 −  𝑦0)2 

 

𝒙𝟏 and 𝒚𝟏are the positions of the identified target center. 𝒙𝟎 and 𝒚𝟎 are the positions of the marking 

center. 𝒙𝟎 and 𝒚𝟎 are the normalized value, the identification error is also the normalized error. 

The unit of time is 𝒔. The training time of each step of the model was 9.527𝒔. The recognition time of each 

image is 0.2285𝒔. As the number of training steps increases, the curve of recognition error is shown in Figure 

6 as follows. As can be seen from Fig. 6, with the increase in the number of training steps, the recognition 

accuracy is also improving. However, when the number of training steps reaches 1200, the recognition 

accuracy hardly changes with the increase of training steps. This indicates that the weight obtained by deep 

learning training has reached stability. 

 

 
Fig. 6. The curve of recognition error before applied deprecated APIs. 

 

Then we replaced all APIs in the program with deprecated APIs according to AIADA detection results and 

repeated the above experimental steps. The training time of each step of the model was 10.457𝑠 . The 

recognition of each image is 0.2512 𝑠. Both the training time of each step of the model and the recognition 

time of each image increase 10%. As the number of training steps increases, the curve of recognition error is 

shown in Fig. 7 as follows. Figure 7 presents that with increase of the number of training steps, the recognition 

accuracy is also improving, and the recognition accuracy tends to be stable and hardly changes after step 

1200. However, the overall accuracy of recognition after replacing APIs by deprecated APIs decreased 10% 
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which indicates that deprecated TensorFlow Python API usages have almost 10% adverse impact on deep 

learning models. 

 

 
Fig. 7. The curve of recognition error after applied deprecated APIs. 

 

4. Conclusions 

Understanding the accuracy impact of deprecated python API usages on deep learning models helps 

developers better design their deep learning program and improve operating efficiency. This paper proposed 

a research-based prototype tool called AIADA to detect deprecated Python APIs and apply it to different 

revisions and models of the TensorFlow platform projects code. We discover that with the development of 

TensorFlow versions, the number of deprecated APIs and the proportion of deprecated APIs in all TensorFlow 

Python APIs increase jointly. Then we analyze the result from AIADA to discover the reason for APIs being 

abandoned in TensorFlow. There are three main reasons for APIs becoming deprecated: name change, weed 

out, and compatibility issues. Finally, we design a deep learning program for experiments and compare the 

results of recognition errors from the latest updated APIs and deprecated APIs. Results of the implementation 

and the experiment demonstrate that deprecated APIs in deep learning programs will lead to a 10% loss in 

accuracy and efficiency contradistinguish from the program with the latest API usages. 
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