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Abstract: The complexity of current software and the various dependencies between their components can 

affect their reliability, in particular their ability to tolerate faults. In object-oriented software, the interactions 

derived from such dependencies can lead to the propagation of errors. This problem can be resolved by 

implementing error detection and error containment mechanisms. Such techniques are used to tolerate 

faults. In this paper, we present three solutions where a component is reinforced in order to detect errors 

and limit their propagation to dependent components.

Key words: Fault tolerance, error-checking, fault injection, measurement techniques, performance 
attributes, software engineering.

1. Introduction

A software is composed of different components, whose behavior is defined according to their 

specifications, inputs and outputs that they produce. The outputs of a component are consistent with the 

inputs received and its internal logic. A failure occurs when the system environment observes a system 

output that does not conform to the software specifications [1]. An error usually originates from a latent fault 

located in a component. The occurrence of such errors encourages the emergence of new errors that can lead 

to observable failures. As a tightly coupled system increases in complexity, the potential for fault propagation 

(errors and failures) also increases [2].

Fault tolerance has long been deployed exclusively in high-level systems. However, faults are not exclusive 

to this type of systems as they occur in any system designed by humans. Some software components rely 

exclusively on external services, that is libraries of all kinds including recent ones such as deep learning 

libraries [3]. Error propagation can be mitigated by implementing protection mechanisms (error detection 

and error containment) in specific components. This would strengthen critical components and limit or even 

completely contain the propagation of their errors.

In this paper, we present three solutions to limit error propagation. These three solutions have been 

designed to be grafted onto existing components. They have been evaluated and compared in an empirical 

study using a concrete case study (JHotDraw). The results of the evaluation demonstrate the relevance of the 

presented solutions.

The remainder of the paper is organized as follows: Section 2 presents the problem and the solutions that 

were developed to solve it; Section 3 presents the three object-oriented solutions that were developed and 

the underlying technical principles; Section 4 presents the case study used for the evaluation of the solutions; 
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Section 5 presents the methodology of this evaluation; the results are provided in Section 6; a discussion 

follows in Section 7; Section 8 concludes the paper. 

2. Problem Statement and Related Work 

Protection mechanisms aim to increase the resilience of software to faults. Software resilience means “the 

ability of a system to consistently and reliably provide its services, especially in the face of changes, failures, 

and intrusions [4]”. A fault tolerance mechanism is a set of features implemented to handle faults. Two steps 

are necessary: the errors are detected first and then they are contained. This two-step process limits the 

propagation of an error to other components, thus improving the robustness, availability and reliability of 

the software. 

Classical fault tolerance relies on solutions developed according to design diversity: redundancy [5]. This 

solution remains limited and costly, especially since it increases the complexity of a system [6]-[8]. Current 

solutions are based on executable assertions [9] that allow runtime verification [10]-[15]. Many methods 

have been proposed to confine errors: partitioning [16], encapsulation [17]-[19] based on the Adapter 

pattern [20], reflection [11], [13], [21]-[23] and even the use of aspect-oriented programming [24]. 

The approaches developed so far have mostly been developed to provide dependability to off-the-shelf 

components (COTS). We have tried to design solutions that can be implemented in any critical object-

oriented software (the predominant paradigm), and that are the least invasive possible (code modifications 

are kept to a minimum). 

3. Solutions 

As shown in Fig. 1, the proposed solutions are based on a similar model. A layer intercepts and filters a 

component’s inputs and outputs. The three possible configurations are detailed in the following subsections. 

 

 
Fig. 1. Basic structure of a protection mechanism. 

 

3.1. Adapter Design Pattern 

The Adapter design pattern [20], [25] is used to contain errors appropriately using an executable assertion. 

Just like an object adapter, one component is encapsulated in another. The code must be accessible since the 

component targeted by the solution application must be modified. The adapter is seen as a wrapper 

transforming a component into an error containment unit. 

An interface is created in which the target class’ method definitions are added. These methods are 

redefined by both the adapter class and the class being evaluated. The target class remains independent of 

the adapter; its visibility level remains unchanged. The adapter instantiates an object of the type of the target 

class and implements the methods of the target class through the newly created interface. Since the adapter 

now handles the target class’ requests, the object instantiations of the old class for the adapter must be 

adapted. When a method is called on the adapter, the adapter first checks whether the input parameters are 

valid using an executable assertion. The check is implemented by an if statement. If the parameters are valid, 

the original method is called in the target class. A second check is performed on the return of a result of the 

method to ensure that the result is valid. When the condition is not satisfied, an exception is thrown. 
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3.2. Java Reflection 

Java reflection is used to confine errors appropriately using an executable assertion. The reflexive process 

is embodied by the implementation of java.lang.reflect. InvocationHandler, available since JDK 1.1. The 

reflexive process is provided by a proxy sharing an interface with the component to be protected. The Java 

Reflection API is a concretization of the Proxy design pattern [20]. 

As for the previous solution, an interface is created in which the headers of the methods of the targeted 

class are added. We then create a class implementing java.lang.reflect.InvocationHandler (this class 

corresponds to the proxy, and is thus a handler of the invocations of the targeted class). When a method call 

is made on the targeted class, the invoke method in the proxy observes the invocation. In this method, we 

first check the name of the called method. When the method name matches that of the targeted method, the 

validity of the input parameters is checked by an if statement. When the parameters match, the original 

method is invoked on the targeted component by invoking the invoke method. The invocation’s result is then 

checked to ensure the validity of the output. When the condition is not met, an exception is thrown. 

3.3. Aspect-oriented Solution 

Aspect weaving is used to confine errors appropriately using executable assertions. AspectJ [26] is used to 

compile the solution. An aspect is created containing a breakpoint at the execution of a component-targeted 

method (around). The advice is executed when the method is executed to intercept the inputs and outputs. 

No changes to the source code are required. Using an executable assertion, we first check that the method’s 

inputs are valid. As for the two previous solutions, the check is implemented by an if statement. When the 

parameters are valid, the original method is called in the target class with proceed. A second check is 

performed at the end of the execution of the method, thus ensuring the validity of the result. When the 

condition is not satisfied, an exception is thrown. 

4. Case Study 

In this section, we present the case study used for the evaluation. 

4.1. Introduction 

The evaluation focuses on the open source software JHotDraw 7 [27]. JHotDraw is a 2D graphical drawing 

framework developed in Java. Its design is based on design patterns [20]. Version 7.7.0 2010 is used in this 

evaluation. The software contains 84,077 lines of uncommented code divided into 1,094 classes (65 

interfaces). The coupling factor is about 2.01% and the average cyclomatic complexity is 2.39. This case study 

is used to demonstrate the feasibility of our approach and to position it with respect to those of Voas [17] 

and Salles et al. [11], both of whom have developed solutions applied to a software component in order to 

improve its reliability. 

We choose, in this paper, a single component in this software to apply our solutions to, a class with the 

highest inherent coupling factor. The BezierFigure class has a FAN-IN of 42. This class allows to represent a 

figure with Bezier curves. The operations of the class are limited to: filling; connecting segments; adding and 

deleting points; setting boundaries and points; drawing on the screen; etc. This class is linked to several other 

classes (FAN-OUT = 15). One method is chosen in the component: getNode (see Fig. 2). The integer passed as 

a parameter makes the method easily manipulated by fault injection. The method gets a node of the curve 

belonging to the Bézier curve. The obtained node is cloned and returned to the client. The method is only 

composed of a single line of code: a call to a BezierPath method, hence the great risk of error propagation.  
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Fig. 2. Method selected for the evaluation. 

 

4.2. Implementation of the Solutions 

The executable assertions are written according to the comments written in the headers of the dependent 

methods (get methods in the BezierPath class, get in java.util.ArrayList and checkIndex in java.util.Objects). As 

it can be seen in Fig. 3, the index must correspond to the position of a node located on the curve, the curve 

corresponding to a list with variable dimensions. The runtime precondition of getNode specifies that the 

value of the parameterized integer must be greater than zero and less than the size of the list. Implicitly, this 

32-bit signed integer is non-zero and within the bounds of its type (between −231 and 231 − 1).  

 
Fig. 2.  Executable assertions designed for the evaluation. 

 

The output node object is a duplicate of an existing node, so we assume that it cannot be null. We refer to 

the previous section for the methodology of implementing the error containment mechanisms. The 

experiments were run on a 3.1 GHz Intel Core i7 dual-core processor with 16 GB of memory in the IDEA 

2020.1.1 development environment [28], running macOS 10.15.4. The following library and software 

versions were used: JRE 1.8.0_241; JUnit 4.13; AspectJ Runtime 1.9.5; Javassist 3.26; JMH 1.23. 

5. Methodology 

Fault injection tests fault tolerance mechanisms according to specific inputs, i.e., the faults they are 

designed to tolerate. This process is typically employed to assess the robustness of an application [29], [30]. 

In our case, faults are injected at the parameter level of the targeted method. Typically, the interface of a class 

is targeted by injecting randomly generated values into it. The statistics obtained are used to determine an 

error coverage rate. The detection coverage rate typically depends on the error detection and containment 

mechanism used [31]. Statistical inference is frequently used to derive meaningful reliability measures 

following the injection of a limited number of random faults [32], [33]. 

Two types of fault injections are performed: one in the method parameters and the other at the structural 

level. For each test carried out, the ratio between the results obtained before and after the implementation 

makes it possible to evaluate the robustness of the error detection mechanism. Thus, the coverage of detected 

errors can be determined. Others criteria are complementary to the evaluation: size of the solution in lines 

of code [10]; performance according to execution time [10], [14], [15], [23], [34]; processor use [15]; whether 

or not propagation has been observed [11], [34], [35]. These criteria will support the discussion of the results. 

The first fault injection, namely fuzz tests [36], operates in the parameters of the designated method by 
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injecting random values into them. A JUnit test case performs this task. JUnit is a framework for developing 

and executing unit tests [37]. In our case study, a pseudorandom integer uniformly distributed between −231 

and 231 − 1 is generated using the ThreadLocalRandom singleton (the generation is isolated from the current 

thread) and is injected a hundred times into the parameter of the evaluated method. The number of iterations 

thus allows a greater consistency in the obtained results. The test case is parameterized with 

@RunWith(Parameterized.class) to be able to run the tests individually, thus improving the readability of the 

results. Based on the results obtained, the error detection coverage rate is determined. 

A second fault injection is performed at the structural level, i.e. in the bytecode. A Java agent [38] is used 

to intercept the targeted class and Javassist [39] to manipulate the code. The bytecode is more easily 

manipulated with Javassist than with the API provided by the JDK. The agent allows the offending code to be 

integrated with the JVM at runtime, which is a negative value. 

We use several code metrics to evaluate several quality criteria: maintainability, testability and 

performance. Although these metrics are secondary to the interpretation and discussion of fault injections, 

the contribution of these features is important: they allow us to quantify the quality of the code, especially in 

the case of invasive solutions. Software metrics are useful in evaluating quality attributes [40, 41, 42, 43] and 

crucial in decision making [44]. Moreover, the availability of such metrics to characterize solutions seems 

essential to us since not all solutions have the same level of maintainability, testability and do not perform in 

the same way. 

Maintainability is quantified using the metrics of Chidamber and Kemerer [45]: CBO, WMC, RFC, LCOM, 

and the metrics FAN-IN and FAN-OUT. All these metrics are collected on the designated class and on the 

solutions with MetricsReloaded [46]. The MI maintainability index [47] is also used, which is based on the 

metrics of [48] and [49] and then implemented in Visual Studio [50]. The value of MI is obtained by the 

following formula:   

MI = 171 - 5.2 ln(V) - 0.23(VG) - 16.2 ln(LOC) 

where V is Halstead's volume, VG is cyclomatic complexity, LOC is the number of lines of code. 

To evaluate the performance, JMH [51] is used to compute the average execution time of the targeted 

method. The runtime collection is preceded by a JVM “warm-up” period during which the code is executed 

without taking any action. Five warm-up iterations of 10 seconds each are executed on four threads for a 

period of 50 seconds. This allows the machine to allocate necessary resources and compile the bytecode for 

the calculated iterations. The accuracy of the results depends on the number of iterations done. A high 

number of iterations is required, simulating in a way the conditions found in production software [52]. 

6. Results 

We present the results of the case study evaluation in three parts: first are presented the results of fault 

injections to determine the robustness of the solutions (random data tests and structural tests); secondly are 

the code metrics; and finally, the performances of the solutions are presented in terms of average execution 

time. 

6.1. Robustness 

In JHotDraw, the 100 integers injected in the method parameter are validated by an assertion checking if 

the number is used by the method, in other words if the fault becomes active. Let us recall that the method is 

used to obtain a node of the Bézier curve. As the parameter of the method corresponds to the index of a node, 

its value must be between zero and the size of the array length. The index corresponds to the position in the 

array of BezierPath objects where the nodes are stored. The results observed during this fault injection with 

and without the solutions applied are presented in Table 1. The number of injected faults corresponds to the 
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proportion of invalid numbers with respect to the specifications. Of the 100 numbers injected on the software 

without solutions, 45% of the inputs were considered invalid. Each of these faults caused an 

IndexOutOfBounds exception to be thrown in BezierFigure, handled by the try-catch block of the test case. The 

numbers that were valid against the specification had no effect on the software. For the adapter, 43 faulty 

inputs were injected into the designated method. Each was detected as faulty and the AssertionError

exception was raised. No failures or error propagation could be observed. For the proxy, 46 faulty numbers 

were injected and all were handled. 40 faulty numbers were injected in the aspect solution and each of them 

could be detected by the advice and an exception was raised.

Table 1. Distribution of Faults Injected in the Method Parameters of getNode

Injected Detected Propagated

Without solution 45 0 45

Adapter 43 43 0

Proxy 46 46 0

Aspect 40 40 0

Since the anti-propagation capabilities of the solutions could not be tested on getNode, the same evaluation 

is repeated, but on a separate class. A component is again chosen according to different criteria this time. 

This is done by examining the dependent classes of BezierFigure. The BezierControlPointHandle class is 

chosen given the ease with which the index set in the constructor is handled in one of its methods. The class 

represents a figure’s control point’s manipulation handle (extends AbstractHandle, which implements 

Handle). As always, only one method is targeted: getBezierNode (the source code is presented in Fig. 4). When 

this class is instantiated, the index of a node is passed in the parameters. This same index is used by the 

previously evaluated method. Although the method does not accept any parameters, the index passed in the 

constructor makes fault injection possible. The assertion must therefore detect whether the index is greater 

than zero or not since the method does not check if the index is negative or out of bounds (array length minus 

1).

Fig. 4.  Selected method for evaluating error propagation.

The results observed during this fault injection with and without the solutions are presented in Table 2. Of 

the 42 faulty numbers generated and injected into the software without solutions, none could be detected. 

All of them caused an IndexOutOfBounds exception to be thrown in BezierFigure and were handled by the test 

case try-catch block. Each error was propagated in the following sequence: when invoking getBezierNode

method, the index passed in the constructor and then assigned to a class variable was passed to getNode in 

BezierFigure; the faults activated in that class and created errors where an exception was thrown and a failure 

ensued. This phenomenon has not been observed when the adapter was implemented, where 69 injected 

faults were detected and properly contained. The situation is identical for the proxy and the aspect, which 

respectively detected and successfully contained 68 and 70 faults.

For the fault injection performed at the bytecode level, the injected fault assigns a negative value to the 
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index (−1). As expected, the fault was not detected or contained in the software without a solution. The fault 

caused an IndexOutOfBoundsException to be thrown in BezierFigure, handled by the test case try-catch block. 

The fault injected into the adapter was correctly detected and thus caused the AssertionError exception to be 

thrown, again handled by the test case. The same phenomenon was observed in the proxy in an identical 

sequence of events. For the aspect solution, the fault was detected by the advice and caused the 

AssertionError exception to be thrown.

Table 2. Distribution of Faults Injected in the Method Parameters of Get BezierNode.

Injected Detected Propagated

Without solution 42 0 42

Adapter 69 69 0

Proxy 68 68 0

Aspect 70 70 0

6.2. Maintainability and testability

Table 3 shows the code metrics for the BezierControlPointHandle class of JHotDraw. The results do not 

include the interface metrics since they have, for the most part, no object correspondent. For the FAN-OUT 

metric, only dependencies in the software are considered (external dependencies are excluded).

Table 3. JHotDraw Source Code Metrics

MAINTAINABILITY TESTABILITY

CBO FAN-IN WMC RFC LCOM MI FAN-OUT RFC

Adapter 8 4 5 9 1 95.79 4 9

Proxy 6 3 7 12 1 86.72 4 12

Maintainability is considered in terms of complexity and coupling. For dependencies: the FAN-IN index is 

4 for the adapter and 3 for the proxy; the coupling between objects (CBO) is 8 for the adapter and 6 for the 

proxy. The WMC complexity index is 5 for the adapter and 7 for the proxy. The RFC complexity metric for 

JHotDraw is 9 for the adapter and 12 for the proxy. The solution is perfectly cohesive, i.e. LCOM = 0. The 

adapter and the proxy are highly maintainable since their index, 96 and 87 respectively, are above the 85 

threshold. The testability is quantified by the number of efferent dependencies (FAN-IN) and by RFC. The 

number of dependencies of the adapter and the proxy is 4.

6.3. Performance

The average execution times for the getBezierNode method in BezierControlPointHandle are summarized 

in Table 4. The measurements are expressed in nanoseconds. For the adapter, the average processing time 

for the designated method is the lowest of the three solutions, at about 42 ns per operation (ns/op). These 

measurements are similar to those where no solution is implemented. The proxy has a slightly higher 

execution time than the adapter, of 57 ns/op with a 2.7 margin of error (half the adapter). With a score of 

100.6 ns/op, the aspect admits a 172% increase in processing time, with a 16.7 margin of error (three times 

that of the adapter).

Table 4. Average execution time of getBezierNode

avg (ns) median (ns)

Without solution 37.001 2.072
Adapter 42.354 5.360

Proxy 57.113 2.736
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Aspect 100.584 16.742

7. Discussion

The results indicated that the solutions were all able to prevent the propagation of errors caused by the 

two fault injections. The goal of the evaluation was to assess the solutions to determine the effectiveness of 

executable assertions as a means of error detection and the effectiveness of three containment methods. The 

evaluation was limited to one particular class, where a single method was selected.

When injecting random data, all solutions were able to prevent the introduction of invalid inputs into the 

targeted method. When assertions are designed strictly according to the software specifications, they are an 

effective means of error detection for the evaluated software. Assertions act as a semantic data integrity 

checker, a type of verification widely used in fault tolerant designs [53].

The method inputs and outputs were checked. All errors could be detected. Checking the outputs was not 

useful since the errors were caused before a result was even produced. Thus, during the evaluation of the 

BezierFigure class, no propagation could be observed. The method selection criteria in the methodology 

should be revised accordingly in order to consider a method that can cause error propagation. A strongly 

coupled method would have facilitated the evaluation. The solutions therefore prevent error propagation. 

The same results were observed when injecting faults at the bytecode level: faults were detected and 

adequately contained by the three containment methods.

Only object-oriented metrics have been used to quantify solutions since no metric can adequately define 

an aspect. Although maintainability metrics have been developed for the aspect paradigm [54], these metrics 

neglect the characteristics specific to the aspect language, often adapted from object-oriented [55]. For this 

reason, no metric has been used to quantify aspect solution complexity and coupling. The CBO metric is at 

near-equality in both object solutions, however the adapter is slightly more coupled than the proxy (+33%). 

The afferent coupling (FAN-IN) does not reveal anything special; we only note that the value for the adapter 

is slightly higher. The value for efferent coupling (FAN-OUT) is identical for both solutions. The LCOM metric 

indicates zero in both cases, meaning that the solutions are perfectly cohesive. Finally, the maintainability 

index is above the high maintainability threshold [47], which means that both the adapter and the proxy are 

equally maintainable.

The performance of the solutions was evaluated according to the average processing time per operation. 

The measurements range from 42 to 100 nanoseconds. The adapter has an increase in processing time of 

about 14.47%. The increase is more significant in the other two solutions, 54.36% for the proxy and 171.84% 

for the aspect solution. In the first two cases, the degradation of the software performance seems to us 

negligible for the observed robustness gain. However, the Java reflection library and the AspectJ weaver 

induce a more significant increase in execution time. The adapter is the least expensive solution, making it 

an ideal solution when we want the least possible degradation in performance. Note however that the sample 

size does not allow a generalization of these results. Thus, it could be interesting to increase the number of 

experiments to obtain a large enough sample to assume a good performance of solutions on object-oriented 

software. Regarding testability, the RFC metric being in direct correlation with the metric (DNOTC) indicating 

the size of a test suite [56, 57] indicates that more test cases will have to be written to test the proxy than for 

the adapter. The FAN-OUT and RFC metrics are good predictors of the size of the test suite [56]. The adapter 

has the lower testability of the two solutions. This solution therefore requires more understanding from 

developers.

The use of an adapter as a method of containment and executable assertions as a means of error detection 

was proposed for COTS [17] and subsequently as a design pattern [25]. The design of the adapter was 
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originally done by the authors of Design Patterns [20], whose object variant was initially considered here. 

The novelty of our study with respect to these two studies will have been, among other things, to evaluate 

this containment mechanism as a cohesive unit allowing to limit the propagation of errors.

The proxy is also loosely coupled with the software classes for the case study used. Weak coupling is 

desirable since we want a future modification to have the minimum risk of affecting another component. The 

use of reflection is a limiting factor in its transfer to other platforms, although Java is not the only language 

with an introspection library. A reflective object cannot be tested in the same way as an adapter, adding a 

level of complexity to the testing phase. For this solution, it was necessary to adapt the definition of the 

BezierFigure and BezierControlPointHandle classes in order to implement a class. However, the body of these 

classes was not altered. Executable assertions could therefore introduce new faults or errors (use of an 

uninitialized variable, algorithmic errors, infinite loops added during instrumentation, out-of-bounds array 

reference, etc.), given our limited knowledge of the characteristics of the software being evaluated. 

Assertions are effective when the nature of the errors to be detected is known.

The aspect-oriented process is considered similar to the one of the proxy. No difficulties were encountered 

during the implementation of the solution, unlike the other two. Unlike the other two solutions, this one could 

not be adequately tested, as no tool is able to test an aspect’s pointcuts [58]. Moreover, the type of advice 

used in the solution implies a significant increase in processing time [59].

8. Conclusion

The complexity of software and the plurality of its inter-component dependencies can affect its reliability, 

in particular its ability to tolerate faults. In object-oriented software, such dependencies imply a coupling that 

can, in fact, lead to error propagation. This can be solved by implementing error detection and containment 

solutions. In the first step, we presented three solutions whose goal was to limit the propagation of errors. 

These solutions were successively implemented and evaluated in a Java object-oriented software. The 

proposed solutions are based on the use of executable assertions as a means of error detection and on three 

distinct means of error containment: the Adapter design pattern, Java reflexivity and aspect weaving. Two 

types of fault injections were used: the first test determined the robustness of the solutions by injecting 

random numerical values into the parameters of a method; the second test was performed at the bytecode 

level, where a variable was instrumented. According to the results, all solutions were able to properly detect 

the injected faults and prevented error propagation. When the assertions are developed according to the 

specifications, these solutions are effective in detecting and preventing fault propagation in the data of an 

object-oriented software.
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