

Software Fault Severity Prediction Using Git History
Metrics and Commits

Herimanitra Ranaivoson, Mourad Badri*

Software Engineering Research Laboratory, Department of Mathematics and Computer Science, University of
Quebec, Trois-Rivières, Qc, Canada.

* Corresponding author. Tel.: +1 (819) 692-8958; email: Mourad.Badri@uqtr.ca
Manuscript submitted June 15, 2021; accepted August 15, 2021.
doi: 10.17706/jsw.17.2.36-47

Abstract: In this paper, we propose new software agnostic metrics extracted from Git history. We compared

the proposed metrics to many traditional code-based metrics in terms of fault severity prediction. We used

three Machine Learning Algorithms (Random Forest, SVM and Multilayer Perceptron) to build the prediction

models. We used data (source code, source code metrics, fault severity information) collected from three

different data sources. Results show that the proposed software agnostic metrics perform better in terms of

fault severity prediction compared to traditional code-based metrics. They were able to achieve 84% of

accuracy in fault severity prediction. We also introduced some terms extracted from commits and showed

their effectiveness for fault severity classification.

Key words: Bug tracking system, commit messages, fault severity classification, git metrics, machine

learning.

1. Introduction

Software faults are, in most cases, inevitable when developing software systems, particularly complex ones.

Having a good software fault prediction model is highly desirable to effectively perform tests prioritization

on high-risk components, even more, when the model is independent of the programming language used. In

this paper, we propose new software agnostic metrics derived from Git history. We compared the proposed

metrics to many traditional code-based metrics (Object-Oriented metrics, Complexity metrics, Graph metrics,

etc.) proposed in the literature in terms of fault severity prediction. Fault severity was categorized in five

different levels: Blocker, Critical/Major, Minor, Trivial and non-bug issues. We used three Machine Learning

Algorithms (Random Forest, SVM and Multilayer Perceptron) to build the prediction models. We used data

(source code, source code metrics, fault severity information) collected from three different data sources. We

investigated the following main research question (RQ):

Can we build software agnostic metrics, extracted from Git histories, that can predict fault severity better than

traditional source code-based metrics?

Using metrics that are independent of the source code promotes, in fact, reusability across different

software projects. A software metric is considered as software agnostic when its (definition and) calculation

does not depend on the programming language used [1]. Radjenovic et al. [2] presented a comprehensive

literature review on metrics used in software defect prediction. Metrics were often compared in terms of

36 Volume 17, Number 2, March 2022

Journal of Software

mailto:Mourad.Badri@uqtr.ca

fault-proneness prediction using different Machine Learning algorithms. However, few papers have paid

attention to the reusability of these metrics across different software projects. To the best of our knowledge,

only few works have been done on the benefits of having a metric that is independent of the used

programming languages [3].

Git commit data histories have been used to analyze software defects [4], and metrics derived from Git

histories (also known as change metrics) have already shown to be effective when predicting software faults

[5]. Object-Oriented (OO) and complexity metrics heavily depend on the software project as they are

calculated from the source code characteristics. Metrics extracted from Git commit histories are unrelated to

the source code characteristics, and seem to have a good potential power for fault proneness prediction

according to Eyolfson et al. [6]. Zhang et al. [7] have, for example, shown that commit terms were able to infer

change types in a set of software projects that have Git histories. This will support more effective tests

prioritization on high-risk components, for different projects, thus allowing to fix faults having higher

severity as a priority.

2. Related Work

In this section, we present a brief summary of a few related studies. First of all, our study is related to the

work done by Kim et al. [8]. The proposed agnostic metrics verify the principles that they defined. Actually,

Kim et al. [8] tried to categorize faults that software developers often make when operating changes on their

code. Several situations were discussed: (1) Changed-entity locality (“If an entity was changed recently, it will

tend to introduce faults soon”), (2) New-entity locality (“If an entity has been added recently, it will tend to

introduce faults soon”), (3) Temporal locality (“If an entity introduced a fault recently, it will tend to introduce

other faults soon”), and (4) Spatial locality (“If an entity introduced faults recently, “nearby” entities (in the

sense of logical coupling) will also tend to introduce faults soon”).

We were also motivated by the work done by Barnett et al. [9]. They found a significant correlation between

the size of commits and software defects. Moreover, in their seminal paper, Zhang et al. [7] hypothesized a

relationship between textual description of commits and the reason of changes.

3. Research Methodology

Our methodology is organized around the following stages: data collection, data construction, metrics

construction and finally metrics evaluation and comparison. The last part of our study includes the

construction and comparison of the different prediction models.

3.1. Data Collection

The goal of data collection is to gather all data needed to facilitate the comparison, in terms of fault severity

prediction, between the proposed agnostic metrics and the traditional source code-based metrics we have

selected. In order to perform all our experiments, we collected and prepared three different data sources:

The first data source is the source code of the projects themselves (Apache Struts I and II: 378 java classes,

and ActiveMQ: 591 java classes). They have been collected from their Github repository. From these projects,

historical commits were extracted using some Git commands. The second data source is from Vasa [10], who

compiled a comprehensive set of metrics (78 in total) related to Apache software projects. They are

essentially composed of metrics used in the literature. These metrics were used to benchmark our proposed

metrics. The third data source comes from the JIRA platform. It is composed of issues and faults with their

severity. This data source is the source of our target variable.

3.2. Data Construction

First, we have the selected software projects coming from the Helix software evolution datasets (recalled

37 Volume 17, Number 2, March 2022

Journal of Software

D1 for brevity) compiled by Vasa [10], which are in our knowledge the most comprehensive set of metrics

available on Apache software projects.

Second, we have data on annotated issues collected from the JIRA website for the projects we analyzed

(recalled D2 for brevity). What we did was simply to recode non-bug issues as an entire category. From that,

we ended up with five distinct levels of severity as mentioned earlier (Blocker, Critical/Major, Minor, Trivial

and non- bug issues).

Third, we extracted commit messages (recalled D3 for brevity) from Git histories of the Apache software

projects (ActiveMQ, Struts I and II) we used. Git histories are unstructured datasets that we cleaned into

standard datasets using some text mining techniques such as lemmatization, stemming, etc. Git histories

include deletions and additions for any commits made on any files (classes) of each repository project. They

allowed us to define our metrics considering: (1) Changed-entity locality (“If an entity was changed recently,

it will tend to introduce faults soon”), (2) New-entity locality (“If an entity has been added recently, it will

tend to introduce faults soon”), (3) Spatial locality (“If an entity introduced faults recently, “nearby” entities

(in the sense of logical coupling) will also tend to introduce faults soon”), and (4) Temporal locality (“If an

entity introduced faults recently, it will tend to introduce other faults soon”).

Fig. 1. Raw commits.

By default, this last dataset (Git messages) is similar to what is given in Fig. 1, where all the information on

commits are compressed into a single column called “raw.” A text transformation (data cleaning) was applied

in order to make the commits exploitable. After transformation, we got a tabular dataset similar to what is

given in Fig 2., where we can find the Java classes and their corresponding tests. With this dataset, we

computed days elapsed since the last commit for any given Java class and all intermediary calculus needed to

compute our final software agnostic metrics. The final dataset was obtained by merging D1, D2 and D3 (as

defined above) using the following keys: software name, class name, date of commits, date of release and date

of issues.

Fig. 2. Commit data set.

3.3. Metrics Construction

38 Volume 17, Number 2, March 2022

Journal of Software

The metrics we defined are:

Ranking Index: which weights the contribution of the testing effort undertaken on a class and also time

elapsed since last changes to the likelihood of producing bugs in future. It is defined as follows:

𝛿𝑇𝑐𝑡
1/2

𝛿𝐿𝑐′𝑡
1/2

We have two members in the formula of Ranking Index: 𝛿𝑇𝑐𝑡
 is the time elapsed since the latest modification

for a class c. 𝛿𝐿𝑐′𝑡
 is the code length difference in the test class c’ corresponding to the class c. If a class does

not have a test, this will be set to one by default.

Bug Index: a binary indicator variable to point out whether a class has experienced bug(s) from the past.

Interpretation of the Ranking Index: The smaller the value of the Ranking Index of a class c at a given

time t is, the more the class is prone to faults. Conversely, the higher the value of the Ranking Index of a class

c at a given time t is, the lower the risk of the class to be fault-prone. In fact, we capture: 1) Changed-entity

locality because whenever a commit is made on a class c, 𝛿𝑇𝑐𝑡
 will become smaller thus lowering the Ranking

Index. 2) One or more classes may be concerned by a single commit, which should capture spatial locality as

well. 3) We capture new-entity locality as well because whenever a class is created, the Ranking Index will

take the smallest possible value of 1. And 4) We capture temporal locality by using a Bug Index (as a separate

variable) taking 1 if a class c has experienced a bug since its creation and 0 if not. We introduce testing effort

locality as well by adding in the formula of the Ranking Index, a term: 𝛿𝐿𝑐′𝑡
 . This term increases the Ranking

Index if a change has been made simultaneously on the test class c’ of a class c. This new addition should

capture the testing effort given the change made on its class.

3.4. Parameters in the Formula

The Cobb-Douglas [11] function is a generic formula defined as follow:

𝛿𝑇𝑐𝑡
𝛼 𝛿𝐿𝑐′𝑡

1−𝛼

The parameter α = 1/2 of the Ranking Index has been carefully obtained after minimizing intra-class

variance and further maximizing inter-class variance among our five distinct severity groups: Blocker, Critical

and Major, Minor, Trivial and non-bug issues. The goal of choosing parameters by an algorithm is that we

wanted a metric that best separates the different severity groups. Thus, we choose the k-nearest neighbors

classification algorithm (knn) to select the best formula metric among the following candidates:

Formula 0: 𝛿𝑇𝑐𝑡
 /𝛿𝐿𝑐′𝑡

Formula 1: 𝛿𝑇𝑐𝑡
1/2

𝛿𝐿𝑐′𝑡
1/2

Formula 2: 𝛿𝑇𝑐𝑡
2/3

𝛿𝐿𝑐′𝑡
1/3

Formula 3: 𝛿𝑇𝑐𝑡
3/4

𝛿𝐿𝑐′𝑡
1/4

Formula 4: 𝛿𝑇𝑐𝑡
1/3

𝛿𝐿𝑐′𝑡
2/3

Formula 5: 𝛿𝑇𝑐𝑡
1/4

𝛿𝐿𝑐′𝑡
3/4

These formulas vehicle the principles defined by [8] on the characteristics of a faulty component. These

formulas are the same Cobb-Douglas function with different values of α.

Formula 0: we wanted to penalize classes where modification happened a very long time ago by the amount

of modifications in its test class counterpart. A riskier class may have an imbalanced code delta compared to

time elapsed since the last commit.

Formula 1 to Formula 5 are the same with different values of the parameter α. We varied α and selected the

one that is optimal in terms of accuracy in classification. α and 1 − α are weights which can be interpreted as

39 Volume 17, Number 2, March 2022

Journal of Software

contribution of time elapsed since last modification and testing effort undertaken on a given class c during

the appearance of faults.

We ran a knn algorithm for each metric formula, and evaluated its accuracy at predicting our target variable

on a randomly chosen test dataset. According to the results (Table 1), Formula 1 is the best one. It separates

all different categories of bugs with an accuracy of 88% (Table 1, Line-4, col-6 and Line-8, col-3). It means

that modification time and testing effort contribute equally to the appearance of the bug severity. Formula 0

was competitive too, but gave relatively poor results on K=5 nearest neighbors votes (82% accuracy, Table I,

Line-1).

Table 1. K-NN One Variable to Classify Fault Severity

3.5. Performance Evaluation

In order to assess our metrics, we needed a target variable and some evaluation metrics. The target variable

is the class of severity we downloaded from the JIRA website. The severity of faults has been categorized into

five groups by the JIRA website. We labeled them as follows: Blocker bugs labeled as 1. Critical and major

bugs labeled as 2. Minor bugs labeled as 3. Trivial bugs labeled as 4. Any other issues different from bugs are

labeled as 9 in order to feed the data to the Machine Learning models.

4. Experimental Results and Discussion

In this section, the results of the different experiments we performed, in order to investigate our main

research question from different perspectives, are presented and discussed. We trained our prediction

models using the metrics in different conditions, and pre-releases as well as releases. We also used a two by

two comparison of the metrics and lastly a variance explanation of each metric we compared.

4.1. Cross-project and Multi-project Comparison

A cross-project comparison consists of evaluating metrics on each software repository, while multi-project

comparison consists of training models on a combination of all repositories. All of our experiments were

conducted with a multi-project setup because we wanted as much data as possible and also to show that the

Ranking Index and Bug Index metrics are really software agnostic. The results of our comparisons are

summarized in Table 2.

In Table 2, 03 kinds of models (Random Forest, Support Vectors Machine and Multilayer Perceptron) were

used to compare in isolation selected traditional metrics and our proposed metrics (Git features versus

selected metrics from [10]). Each model and a set of feature combinations were used to assess the overall

40 Volume 17, Number 2, March 2022

Journal of Software

performance (third column of Table 2) of the proposed metrics: Ranking Index and Bug Index. In multi-

projects setting, the Ranking Index and Bug Index metrics, and the source code-based metrics we used both

depicted similar performance for fault severity classification with an accuracy ranging from 70.9% to 71%

(Table 2, lines 1-6).

Table 2. All OO and Traditional Metrics vs (Ranking Metric+ Bug Index)

However, in a cross-project setting, Git features gave the best accuracy with 72%, while 66% for traditional

metrics. Table 2 leads us to conclude that our proposed metrics can perform as good as the selected

traditional metrics when predicting fault severity. They are significantly better in the case of the ActiveMQ

project (bringing 5% more accuracy than traditional source code-based metrics).

4.2. Two by Two Comparison of Metrics

Table 3. 02 Random Metrics vs Ranking Metric + Bug Index

From previous results summarized in Table 2, it can be seen that our Ranking Index and Bug Index metrics

can achieve similar performance as the 78 traditional metrics compiled by Vasa [10], which we used in our

study. However, it does not answer whether they are better than traditional metrics at predicting the different

severities of a fault. In order to answer this question, we have to compare metrics individually. Actually, when

comparing 02 metrics versus our selection of metrics (78), we don’t know which of them drive the results of

the latter. That’s the reason why we performed a 02 by 02 comparison of Ranking Index and Bug Index metrics

instead of a raw comparison as we did previously. By conducting our experiments in two by two comparison

(Table 3), we noticed that for every kind of severity, except for bug blocker, both 02 random metrics versus

our proposed metrics behave like a flipping coin (AUC of 0.5). For these categories, the Random Forest (RF)

model does not bring any value added at all. However, for bug blocker classification, the Ranking Index and

41 Volume 17, Number 2, March 2022

Journal of Software

Bug Index metrics achieve an excellent performance with an AUC of 0.97 (bottom of Table 3). From these

experiments, we can conclude that the proposed metrics, Ranking Index and Bug Index, outperform selected

metrics compiled by Vasa [10] for bug blocker classification.

4.3. Another Performance Metric with Random Forest

Last experiment showed that Ranking Index and Bug Index metrics are excellent at predicting bug blocker

with an AUC of 0.97. However, it does not mean that they are superior metrics for bug severity classification

tasks. Thus, we used RF to assess Mean Decrease Gini Score of all variables in order to see top variables that

contribute most in accuracy of predictions. This process should help us to decide which metrics are the most

important for bug severity classification. Mean Decrease Gini Score is an index of impurity of a node in tree-

based machine learning models [12]. It indicates how important a predictor is in classifying the output

response (target). It measures the importance of a variable or a set of features in terms of node impurity. A

node is considered pure if its output prediction is correct at 100%. The more a node is discriminative (its

output tends to 100%), the more it is pure, which indicates an accurate prediction. In order to obtain the

Mean Decrease Gini Score, we picked up the RF model built previously, see Table III (with all the metrics,

using a multi-project dataset, line-2). With this model, we plotted the graphical representation of the Mean

Decrease Gini Score (as can be seen in Fig. 3).

Fig. 3. Variable Importance.

The Ranking Index and Bug Index metrics appear to be the most important variables among all of our

metrics combined in the prediction of bugs severity. They are followed by traditional metrics such as Ref Store

Op Count (RSC), Raw Size (RSZ) and In Degree Count (IDC). We also evaluated the proposed agnostic metrics

to predict bugs at release date using RF (Table 4). The reported accuracy is between 61% and 75% depending

on the release date. These results remain consistent with those reported in Table 3.

Summary

We evaluated the proposed metrics (Ranking Index and Bug Index) in comparison to the 78 traditional

metrics as compiled by Vasa [10] in a: 1) Software project comparison using Machine Learning models. 2) 02

vs all comparison which consists of running models using all traditional metrics as features and another set

of models using Ranking Index and Bug Index metrics solely. 3) 02 by 02 random comparison which consists

of selecting any 02 random metrics among traditional ones and using them in a model which will be compared

42 Volume 17, Number 2, March 2022

Journal of Software

to a model using the Ranking Index and Bug Index metrics solely. And finally 4) A Mean Decrease Gini Score

was used to assess top predictors for fault severity classification among all metrics we analyzed. Results (Fig.

3) show that the Ranking Index and Bug Index metrics are among the most important features for fault

severity prediction.

These results suggest that the proposed agnostic metrics are interesting alternatives to the usual source

code-based metrics found in the literature of empirical software engineering. Our results show that they are

excellent at predicting bug blocker.

4.4. Comparison of Metrics Using Pre-release vs Release Periods

Several studies such as the systematic literature review of Radjenovic et al. [2] reported that process

metrics are superior in post release. Thus, we decided to investigate further the Ranking Index and Bug Index

metrics using our best model (Random Forest) by evaluating them in pre-release and release periods. In fact,

our dataset contains time series, so we can split it by date. Moreover, we already have different dates of release

which made our split easier. In this section, we tried to validate fault severity prediction using the last release

of each project as a validation set.

Table 4. Accuracy of EF for each Release of ActiveMQ Software

Our results (Table 4) suggest that the performance of the proposed metrics remains consistent in pre-

release and release periods. Actually, they can reach an AUC of 74.47% which is 3% better than the same

model using normal cross-validation (CV) split (Table III). We also used a different setup (binary classification

task) to distinguish among severe bugs or others to see if predictions are improved. Our results suggest that

we gain about 2% in accuracy by doing a binary classification task. In Table 5, we can see noticeable gain in

accuracy (78.67%) compared to the results of Sharma et al. (75.83%) [13] in the best case of their

experimentations.

Table 5. Accuracy of Different Classifiers Using all Metrics: 78 Metrics + Ranking and Bug Index

Summary

Combining datasets from different projects does not alter results as one could expect. In contrast, we

gained in accuracy compared to [13] among many others. Again, here our proposed Git features (Ranking

Index and Bug Index metrics) are consistent in their accuracy for fault severity classification.

4.5. Commit Terms as Features in Fault Severity Classification

In previous experimentations, we mainly focused on building our Git features (Ranking Index and Bug Index)

and comparing them to the traditional source code-based metrics we selected. In this section, we will

introduce Git commit keywords for fault severity classification. Git commit messages are another feature of

Git that can produce software agnostic metrics for fault severity classification.

We assume that the comments written by developers on the changes applied on the code portion they are

43 Volume 17, Number 2, March 2022

Journal of Software

working on contains relevant elements that can be used to predict future bugs. We opened up the possibility

that commit messages contain hidden information that can help to predict the severity of future bugs. We are

not the first who investigated this issue as can be seen in [4] and [6] who showed a significant correlation

between commit message length and fault-proneness.

Our approach consists of transforming commit messages into features that models understand. After this

transformation, we will then use those features to build Machine Learning models and evaluate their

predictive performance for fault severity classification. Transformation process involves standard text pre-

processing including stop words removal from English dictionary, lemmatization, etc. Before using them to

build Machine Learning models, we transformed words into vectors using one hot encoding and TF-IDF

weighting techniques which are commonly used in text preparation for predictive analytics [14].

TF-IDF Weighting

In order to capture the importance of each word in the commit corpus data set, we used the TF-IDF

weighting technique. In fact, rare words that belong only to a few documents and characterize them should

not be treated like common words that appear within all documents.

Table 6. Illustrations of an One Hot Encoded Matrix with Phrase: “Adding Component Reduce Time Loading”

For each keyword, we applied one hot encoding as seen in Table 5, then assigned weights to each individual

cleaned words (terms) of commit messages using Term Frequency-Inverse Document Frequency formula [14]

defined as follows:

𝑇𝐹𝐼𝐷𝐹𝑖𝑑 = 𝑓𝑖𝑑𝑙𝑜𝑔(
|𝐷|

𝑑𝑘 , 𝑚𝑖 ⊂ 𝑑𝑘
)

This weighting technique allows to give more importance to term 𝑚𝑖 , which is both frequent in the entire

document or corpus (by its frequency 𝑓𝑖𝑑 =
|𝑚𝑖|

∑|𝑑|
𝑗=1 𝑚𝑗𝑑

) and rare in other commit messages (this is captured

by the logarithmic part of the equation defined above) relative to the total number of commit messages

(Corpus) |D|.

Table 7. Accuracy of Different Classifiers with Commits and Other Combinations

After the transforming process, we ended up with more than 1200 cleaned words, which we used to build

our RF model. We trained the model with all Git metrics we collected (Table 5, line-1), then we used a

dimension reduction technique to lower the number of features (Table7, line-2) and finally we used solely

words from commits (Table 5, line-3). According to our results, text features appear to have more predictive

power than any traditional metric we used in this study with at least 80% accuracy. The best accuracy (84%)

was obtained using a combination of agnostic metrics: key word commits, Bug Index and Ranking Index (Table

VII, line-1). Furthermore, the Ranking Index and Bug Index metrics are among the top 5 most important

features for the severity prediction according to Fig. 4.

44 Volume 17, Number 2, March 2022

Journal of Software

Fig. 4. Variable Importance of RF models in Table 7.

5. Threats to Validity

First, the way we gathered datasets may introduce issues. In fact, our metrics have different frequencies of

calculation. Metrics compiled by Vasa [10], used as a benchmark, are calculated for every major version while

our Ranking Index and Bug Index metrics are computed for every change made in the source code. Thus, this

difference in frequency of calculation may introduce bias in the results. Second, unbalanced classes of severity

may prevent models we have used to learn the maximum amount of information on each different class. Thus,

our results may not be generalized for every dataset.

6. Conclusion and Future Work

In this study, we introduced and evaluated two software agnostic metrics derived from Git histories in order

to predict fault severity. Our results showed that the metrics we proposed, Ranking Index and Bug Index, are

better at predicting Bug Blocker (AUC of 0.97, Table 3, col-2) compared to our selection of source code-based

metrics extracted from Vasa [10]. However, like these traditional metrics, Ranking Index and Bug Index

metrics gave poor performance for the other categories of severity. Our study showed clearly that it is possible

to extract agnostic features from Git history for fault severity classification. In our future work, we plan to

extend our study by considering other software systems, and investigating the use of Deep Learning.

Conflict of Interest

The authors declare no conflict of interest.

Authors Contributions

Mourad Badri: Project definition, Conceptualization, Methodology, Writing - Review & Editing, Supervision,

Project administration

Ranaivoson Herimanitra : Methodology, Software, Data Collection, Formal data analysis, Investigation,

Writing - Original Draft, Writing - Review & Editing, Visualization

Acknowledgment

This work was partially supported by NSERC (Natural Sciences and Engineering Research Council of

45 Volume 17, Number 2, March 2022

Journal of Software

Canada).

References

[1] Conejero, J. M. F., Alessandro, G., Juan, H., & Elena, J. (2009). Early crosscutting metrics as predictors of

software instability. Objects, Components, Models and Patterns. Berlin, Heidelberg: Springer Berlin

Heidelberg.

[2] Radjenovic, D., Marjan, H., Richard, T., & Ales, Z. (2013). Software fault prediction metrics: A systematic

literature review. Information and Software Technology, 55(8), 1397–1418.

[3] Christoffer, R., Ben, G., & Emad, S. (2015). Commit guru: Analytics and risk prediction of software

commits. Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE

2015). Association for Computing Machinery, New York, NY, USA.

[4] Xu, J., Yan, L., Wang, F., & Ai, J. (2019). A github-based data collection method for software defect

prediction. (2019). Proceedings of the 6th International Conference on Dependable Systems and Their

Applications (pp. 100-108).

[5] Choudhary, G. R., Kumar, S., Kumar, K., Mishra, A., & Catal, C. (2018). Empirical analysis of change metrics

for software fault prediction. Computers and Electrical Engineering, 67, 15-24.

[6] Eyolfson, J., Lin, T., & Patrick, L. (2014). Correlations between bugginess and time-based commit

characteristics. Empirical Software Engineering, 19(4), 1009–1039.

[7] Zhang, F., Audris, M., Iman, K., & Ying, Z. (2014). Towards building a universal defect prediction model.

Proceedings of the 11th Working Conference on Mining Software Repositories (pp. 182–191). New York,

NY, USA: ACM.

[8] Kim, S., Zimmermann, T., Whitehead, E. J. J., & Zeller, A. (2007). Predicting faults from cached history.

Proceedings of the 29th International Conference on Software Engineering (pp. 489–498).

[9] Barnett, J. G., Gathuru, C. K., Soldano, L. S. & McIntosh, S. (2016). The relationship between commit

message detail and defect proneness in java projects on github. Proceedings of the 2016 IEEE/ACM 13th

Working Conference on Mining Software Repositories (MSR) (pp. 496–499).

[10] Vasa, R. (2010). Growth and change dynamics in open source software systems. Faculty of Information

and Communication Technologies, 254.

[11] Cobb, C. W., & Paul, H. D. (2021). A theory of production. The American Economic Review, 18.

[12] Liaw, A., & Matthew, W. (2001). Classification and regression by random forest. Forest 23 (November).

[13] Sharma, G., Sumit, S., & Shruti, G. (2015). A novel way of assessing software bug severity using dictionary

of critical terms. Procedia Computer Science, 70, 632–639.

[14] Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of literary Information.

IBM Journal of Research and Development, 1(4), 309–217.

Copyright © 2022 by the authors. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited (CC BY 4.0)

46 Volume 17, Number 2, March 2022

Journal of Software

https://creativecommons.org/licenses/by/4.0/

Mourad Badri is a full professor of computer science at the Department of Mathematics

and Computer Science of the University of Quebec at Trois-Rivières (Canada). He holds

a PhD in computer science (software engineering) from the National Institute of

Applied Sciences in Lyon, France. His main areas of interest include object and aspect-

oriented software engineering, software quality attributes, software testing,

refactoring, software evolution and application of machine learning in software

engineering.

Ranaivoson Herimanitra is a graduate student (master - applied mathematics and

computer science) from the Department of Mathematics and Computer Science of the

University of Que bec at Trois-Rivières (Canada). His main research fields are software

engineering, big data, data science, and application of machine learning in software

engineering.

47 Volume 17, Number 2, March 2022

Journal of Software

