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Abstract: This work aims to investigate the potential, from different perspectives, of a risk model to support 

Cross-Version Fault and Severity Prediction (CVFSP) in object-oriented software. The risk of a class is 

addressed from the perspective of two particular factors: the number of faults it can contain and their severity. 

We used various object-oriented metrics to capture the two risk factors. The risk of a class is modeled using 

the concept of Euclidean distance. 

We used a dataset collected from five successive versions of an open-source Java software system (ANT). 

We investigated different variants of the considered risk model, based on various combinations of object-

oriented metrics pairs. We used different machine learning algorithms for building the prediction models: 

Naive Bayes (NB), J48, Random Forest (RF), Support Vector Machines (SVM) and Multilayer Perceptron (ANN). 

We investigated the effectiveness of the prediction models for Cross-Version Fault and Severity Prediction 

(CVFSP), using data of prior versions of the considered system. We also investigated if the considered risk 

model can give as output the Empirical Risk (ER) of a class, a continuous value considering both the number 

of faults and their different levels of severity. We used different techniques for building the prediction models: 

Linear Regression (LR), Gaussian Process (GP), Random forest (RF) and M5P (two decision trees algorithms), 

SmoReg and Artificial Neural Network (ANN). 

The considered risk model achieves acceptable results for both cross-version binary fault prediction (a g-

mean of 0.714, an AUC of 0.725) and cross-version multi-classification of levels of severity (a g-mean of 0.758, 

an AUC of 0.771). The model also achieves good results in the estimation of the empirical risk of a class by 

considering both the number of faults and their levels of severity (intra-version analysis with a correlation 

coefficient of 0.659, cross-version analysis with a correlation coefficient of 0.486). 

 
Key words: Cross-version validation, fault proneness, fault severity, machine learning algorithms, object-
oriented metrics, prediction, risk.  

 
 

1. Introduction 

Nowadays, software engineering needs are growing more and more knowing the increasing complexity of 

developed applications, which increases the risk of faults and their severity. The presence of faults in a 

software system not only degrades its quality, but also increases its development and maintenance costs [1]. 

To prevent these faults, particularly the most severe ones, and ensure having high quality software, software 

systems need to be rigorously tested. However, software testing often has to be done under severe pressure 

due to limited resources and tight time deadlines constraints. In addition, exhaustive testing is cost 

prohibitive and would take too much time and resources. So, it is typically not feasible, except perhaps in 

extremely trivial cases [2]. Hence, software tests prioritization [3]-[5] appears as the best solution. 
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Many studies were conducted in the area of Software Quality Assurance addressing this problematic. A 

trivial solution proposed was random testing [6]. This method could be described as naive, and it is not 

accurate enough to cover all the faults [7]. Another widely active proposal was software fault prediction [8]-

[12]. Many studies focused on the investigation of the simple research question: Is a given class fault-prone? 

So, they proposed different binary classification models. The weakness of the use of binary classification 

models to support the construction (selection) of test cases is that it provides just simple information about 

whether a given class is fault-prone or not [12], what we denote as P, the probability of a class to be fault-

prone. We believe, in fact, that fault severity is also an important information that must be considered in the 

construction of fault-proneness prediction models [12], [13]. Recently, some studies have addressed the 

prediction of fault severity levels. Fault severity measures the impact of a fault on a system and its users [9], 

[14], what we denote as I. The output of these studies is severity-based fault prediction models [15] that can 

classify a fault into different levels of severity, for example: low or high. This is much more useful than simple 

binary classification models. In fact, severity-based prediction models allow much more effective testing by 

predicting (and focusing testing efforts on) relatively high-risk classes. However, they do not consider the 

number of faults, which in turn can affect the testing efforts allocation. 

In a previous work [16], we addressed the risk of a class from the perspective of two factors: the number 

of faults it can contain and their severity. We investigated different variants of the metrics-based risk model 

proposed in [17], which is based on the concept of Euclidean distance. The logic behind this 2D-model for the 

choice of the metrics is: one axe will be represented by a metric that better describes P (probability of fault-

proneness), and another axe that will be represented by a metric that better describes I (severity of faults). 

We investigated two research questions: (1) Is the considered risk model (variants) suitable for software fault 

prediction? and (2) Can the risk model (variants) predict different levels of fault severity? We considered two 

levels of severity: high and normal. Results showed that the risk model achieves good results for both binary 

fault prediction (with a g-mean of 0.821) and multi-classification of severity levels (with a g-mean of 0.827). 

In this study, we explored the effectiveness of the risk model (variants) for Cross-Version Fault and Severity 

Prediction (CVFSP), using data of prior versions of the considered system (ANT - five successive versions). 

We investigated the three following research questions: 

RQ1: Can a risk model built for a previous version of a given system be reused on its next version to predict 

fault-prone classes? 

Here, we wanted to perform cross-version fault-proneness prediction using the risk model to investigate if 

its eventual use in a real-life context will be accurate. 

RQ2: Can a risk model built for a previous version of a given system be reused on its next version to predict 

fault severity? 

Here, we wanted to perform cross-version severity level prediction using the risk model to investigate if its 

eventual use in a real-life context will be accurate. 

RQ3: Can the risk model be used to predict the empirical risk of a class, a continuous value considering 

both the number of faults the class can contain and their severity? 

As mentioned previously, we investigated in a previous work [16] two research questions: (1) Is the 

considered risk model suitable for software fault prediction? and (2) Can the risk model predict different 

levels of fault severity? Here, we aimed to investigate if the considered risk model can give valuable insight 

about faults severity levels without losing information about the number of faults that a given class can 

contain. If yes, this will give a serious advantage to the considered risk model compared to the prediction 

models proposed in the literature which predict either fault-prone classes, their number of faults or their 

severity. This will be much more useful for tests prioritization by predicting (and focusing testing efforts on) 

high-risk classes. We defined a software risk prediction methodology. We investigated the risk model in two 
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different situations: (1) intra-version validation, and (2) cross-version validation. 

The rest of the paper is organized as follows. Section 2 presents a summary of different studies related to 

software fault prediction. Section 3 presents the methodology we followed in this study. First, we present 

some descriptive statistics about the dataset we used to conduct our experiments, and an overview of the 

software metrics we used to build our different risk models (variants). Second, we explain how each 

experiment was conducted and how the different models were evaluated. Section 4 presents the different 

results obtained. Section 5 discusses the possible threats to validity of our study. Finally, Section 6 concludes 

this paper by summarizing the major contributions of this study and giving some future work directions. 

2. Related Work 

Shatnawi presented in [18] a study to determine the thresholds values for the CK (Chidamber and Kemerer) 

[19] metrics beyond which a given class would present a risk to be fault-prone. He led an empirical analysis 

using three software systems inspired by an epidemiological risk assessment model [20], to calculate the 

values of acceptable thresholds for each metric. The author performed a logistic regression analysis to restrict 

the CK suite to the complexity and coupling metrics WMC (Weighted Methods per Class), RFC (Response for 

a Class) and CBO (Coupling between Objects) as the more correlated with the probability of faults. After 

determining the thresholds values on version 2.0 of Eclipse, the author made a validation over version 2.1 by 

building a model (as a regression tree) and crossed the experimental results with the actual results. He 

showed the good ability of the model to predict faults using the determined thresholds. 

In addition, semi-supervised prediction models were used. This kind of models require less fault data than 

supervised ones. Lu et al. in [21], [22], have investigated the use of semi-supervised learning for software 

fault-proneness prediction with Random Forest and Dimension Reduction techniques. They showed that 

reducing the dimensionality of the source code metrics significantly improved the semi-supervised learning 

model. Moreover, Catal explored different semi-supervised classification algorithms for fault prediction [23]. 

He compared four methods, namely: Support Vector Machines, Class Mass Normalization, Low-Density 

Separation and Expectation-Maximization. He concluded that Low-Density Normalization gave the best 

results for large datasets but could also be used for small ones. 

On the other hand, unsupervised learning models come across this shortcoming since they do not require 

any fault data. In [24], Bishnu & Bhattacherjee used a similar approach as Catal et al. in [3], [25], using K-

means algorithm and the same threshold values to predict faulty modules. However, they used the Quad-Tree 

algorithm combined to a genetic algorithm to initialize the clusters used in the K-means algorithm. According 

to the authors, the classification performance of their model is as good as to the results obtained with 

supervised models which are built with fault data. Boucher and Badri investigated in [26] three threshold 

calculation techniques that can be used for fault-proneness prediction: ROC Curves [27], VARL (Value of an 

Acceptable Risk Level) [20] and Alves rankings [28]. They stand that ROC curves gives the best performance, 

but Alves Ranking is a good choice too. The advantage of Alves Rankings over ROC Curves technique is that it 

is completely unsupervised, so it does not require fault data and could be used when it is not available. In 

[29], the same authors adapted the HySOM model [30], originally working at function-level granularity, to 

work at class-level granularity for Object-Oriented Software. 

Moreover, several studies have shown that severity-based fault proneness prediction models are much 

more useful than binary classification models that simply determine whether a module is fault-prone or not. 

E. Hong [31] proposed new severity-based prediction models using two module severity metrics: MS (Module 

Severity) and MSD (Module Severity Density). The proposed models are different from the previous ones [15], 

[32], [33] by assigning a severity value to the model rather than treating each severity level alone. Through 
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an empirical study using the JM1 and PC4 projects from the NASA1  dataset, they concluded that the MS 

models outperform the previous prediction models, and that the MSD models show good performance with 

JM1. Besides, multi-layer perceptron neural network showed the best performance among the three 

classification algorithms used for model building. 

Recently, new techniques were proposed such as dynamic tracking fault diagnosis [34]. In [35], the authors 

showed the gain in baseline predictors combination in comparison to standalone baseline predictors. They 

conducted an empirical study, comparing ten ensemble predictors with baseline predictors and 

demonstrated the performance improvement of ensemble predictors. Another avenue, genetic based 

machine learning algorithms, was also explored [36], [37]. A well-known issue in software fault prediction is 

the imbalanced data. The authors in [38] proposed a new distance metric based on cost-sensitive learning to 

reduce the class imbalance. Their experimental results confirm the positive impact of their approach. 

3. Research Methodology 

3.1. Data Collection 

We used the dataset, extracted from five successive versions of the ANT system (from version 1.3 to version 

1.7), constructed by Toure  [17] for his thesis. He actually used the QA-metrics plugging integrated with the 

Borland Together tool to calculate the object-oriented metrics, and Bugzilla for collecting faults and their 

levels of severity. Each class is described with the number of faults it contains and their severity, which can 

be either: blocker, critical, major, normal, minor or trivial. This dataset was used in multiple studies [39]-[42]. 

In fact, version 1.7 was widely used, but we decided to include the four previous versions as well in order to 

investigate fault-proneness and fault-severity prediction in a cross-version analysis context. ANT is a 

command-line tool developed in Java and mainly used for building Java applications [40]. Besides that, the 

dataset also includes a couple of object-oriented source code metrics as defined by Chidamber & Kemerer 

[19] in addition to Ca (Afferent Coupling), Ce (Efferent Coupling) and Fan-in. For this reason, our choice was 

naturally focused on these metrics to conduct our study. The selected metrics can be subdivided as follows: 

3.1.1. Complexity metrics 

WMC (Weighted Methods per Class): Is a sum weighted by the cyclomatic complexity of each method of a 

class [43]. If the value of this metric is high for a given class, the class will be more difficult to test and even to 

be understood [44]. 

3.1.2. Size metrics 

LOC (Lines Of Code): Gives an idea on the size of a class in terms of the number of lines of code. The larger 

a class is, the more it is disposed to contain faults [45]. 

3.1.3. Coupling metrics 

CBO (Coupling Between Objects): The coupling between objects describes the number of classes to which a 

given class is coupled and vice versa [46]. In fact, it is the sum of two other existing coupling metrics that are 

Fan-in and Fan-out [47]. It is used to evaluate the interdependence between classes of a same system. 

Ca (Afferent Coupling): The afferent coupling counts the classes of a given package that depend on outer 

classes [48]. 

Ce (Efferent Coupling): The efferent coupling, unlike Ca, represents the number of outer classes that depend 

on classes in a given package [48]. 

Fan-in: Gives the number of module calls for a function / method for a given class [49]. This measure is 

mainly used to identify modules that require restructuring and high testing effort [50]. 

RFC (Response For a Class): Is a metric of both complexity and coupling at the same time. It is defined by 

 
1 NASA data-sets available at PROMISE Software Engineering Repository 
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the number of methods that can be called by an instance of a class [19]. The RFC metric indicates the degree 

of communication between a class and the rest of the system through the invocations of external methods 

that it can potentially call [51]. RFC is closely related to the testing effort and to the complexity. 

Table 1 describes the different versions of the ANT system we used and highlights the number of classes, 

faulty classes and the ratio of faulty classes before and after fault duplication (the -D stand for duplication, 

#C-D gives the number of classes after duplication and #F-D the number of faulty classes after duplication). 

Looking back to the literature, we can notice that the number of faults was not often taken into account. 

However, it represents an important information with valuable insight. Thus, we decided to make use of it. To 

do so, we were inspired by a simple methodology called ’Fault Duplication’, used among others by Shatnawi 

[52], Zhou and Leung [15], and Boucher and Badri [26], which involves duplicating each class containing 

more than one fault in the dataset. For example, if a class contains 3 faults, it will be present 3 times in the 

dataset, each one marked as containing one single fault. This allows taking into consideration the number of 

faults in the analysis without having to do much preprocessing. 

 

Table 1. ANT Versions Statistics 

System #Classes #Faulty Ratio #C-D #F-D Ratio 

ANT 1.3 126 60 47.62% 201 135 67.16% 

ANT 1.4 178 38 21.35% 190 50 26.21% 

ANT 1.5 293 106 36.18% 366 179 48.91% 

ANT 1.6 352 45 12.78% 368 61 16.58% 

ANT 1.7 745 70 10.37% 776 101 13.01% 

 

3.2. Risk Model 

Starting from the data presented above, we built a set of variants of the risk model defined in F. Toure  thesis 

[17]. The risk model is, in fact, built on Bernoulli’s risk theory [53], which is widely used in project 

management. The advantage of this method is that it provides a simple way to assess the risk associated to 

the classes of an object-oriented software. The risk of a class is considered from two perspectives: the 

probability of the class to be fault-prone and its impact (in terms of severity) on the rest of the system. 

Reducing the quantified risk of a class asks to reduce one or both axes that makes it up. We selected different 

combinations of metrics respecting the following disposition: (1) by taking 𝑚𝑃 as a metric that better 

describes fault probability (many studies e.g., [15], [54]-[56] stand that size and complexity metrics play this 

role), and (2) 𝑚𝐼 as a metric that better describes fault severity (many studies e.g., [50], [57], [58] indicate 

that coupling metrics better fulfill this aim). 

Considering a system of 𝑘 classes, 𝐾 ∈ ℕ2  and ∀ 𝑖 ∈ 𝑘 , the theoretical risk (TR) of a given class C is 

calculated as follows: 

𝑇𝑅𝑚𝑃,𝑚𝐼
(𝐶) = √(𝑚𝑃(𝐶) − 𝑚𝑎𝑥𝑖(𝑚𝑃(𝐶𝑖)))

2
+ (𝑚𝐼(𝐶) − 𝑚𝑎𝑥𝑖(𝑚𝐼(𝐶𝑖)))

2
 

Fig. 1 illustrates the two-dimensional risk model. The x-axis represents the metric 𝑚𝑃 and the y-axis 

represents the metric 𝑚𝐼. Point M represents the maximum of the two metrics and is calculated as follows: 

𝑀 = (𝑚𝑎𝑥(𝑚𝑃(𝐶𝑖)), 𝑚𝑎𝑥(𝑚𝐼(𝐶𝑖))) 
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Fig. 1. Risk model. 

3.3. Pre-processing  

Data pre-processing [59], [60], which allows to obtain a suitable dataset for the mining stage, includes: 

cleaning, normalization, transformation, feature extraction, selection and so on. Data pre-processing stage 

could take up to 80% of the time and resources of a data science project. Fortunately, there are some tools 

that could be used to avoid GIGO (Garbage IN Garbage Out) situations in the form of filters. In terms of data 

pre-processing, the following operations were performed on each ANT version: 

• Binarization of the number of faults of a given class in a new attribute called ’BugsBinary’ i.e. 0 

means not faulty and 1 means that the class contains one fault or more. 

• Grouping [15], [61], [62]: blocker, critical and major faults will form the high severity fault level. 

On the other hand, normal, minor and trivial faults will form the normal severity fault level. 

• For the sake of compatibility when using certain machine learning algorithms, the transformation 

filter in nominal type has been applied to the class attribute to predict. 

• In order to improve the results of the prediction, normalization has been carried out on the models 

to obtain values in the range [-1, 1]. 

• We also explored the contribution of stratification techniques such as oversampling by applying 

the smote filter to 35 − 65% as advised in [63] and the duplication of faulty classes. 

3.4. Machine Learning  

In this section, we present a brief description of the machine learning algorithms we used from the Weka-

API [64]. Machine learning algorithms are commonly used in fault-proneness classification to learn 

relationships between source code metrics (attributes) and faults (the class to predict or the target). These 

algorithms are trained using the datasets, including faults. In our study, we used the following machine 

learning algorithms: Naive Bayes (NB), J48, M5P, Random Forest (RF), Support Vector Machine (SVM), 

SmoReg, Linear regression (LR), Gaussian Process (GP) and Multilayer Perceptron (ANN). These algorithms 

have been widely used in literature and showed good performances. 

3.4.1. Naive bayes 

The Bayes Network algorithm classifies the given instances (classes in our case) by building a directed 

graph, where risk models will be represented by nodes and their independencies as links, to sort classes as 

faulty or not [52]. Many studies have investigated the use of this algorithm [41], [52], [65]. It can be used in 

different variants. The most popular one is the Naive Bayes Network that we chose in our study. 

3.4.2. Gaussian process 

Gaussian process is a collection of random variables such that every finite collection has a multivariate 

normal distribution [66]. Various studies explored the use of this process for software fault prediction among 
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other domains as well [67], [68]. 

3.4.3. Decision trees 

The J48, M5P and Random Forest algorithms are used for building decision trees. These algorithms 

calculate how efficiently each attribute is in splitting the data (in our case as fault-prone or not in a prior 

experiment than into levels of severity). The resulting decision tree is easy to understand as it is self-

explanatory [11]. Weka includes a tool for decision trees visualization. There are two main advantages of 

visual data exploration over data mining in addition to the direct involvement of the user [69]: it can easily 

deal with highly nonhomogeneous and noisy data, and visual data exploration is intuitive and requires no 

understanding of complex mathematical or statistical algorithms or parameters. This kind of algorithms were 

also used in numerous studies dealing with software fault prediction [11], [55], [65]. 

3.4.4. Support vector machine 

The Support Vector Machine algorithm is founded on the statistical learning theory, which makes it perfect 

for both regression and classification. This algorithm allows less weight to individuals that are far away from 

the tendency. It is also suitable for data that do not follow a linear distribution [11]. Malhotra et al. in [41] 

describe it as the best machine learning algorithm to use. It was also used in other studies addressing fault-

proneness prediction [11], [70]. SMOreg implements the support vector machine for regression. 

3.4.5. Artificial neural network 

Artificial Neural Networks (ANN) are various and widely used in several fields. In our case, a Multilayer 

Perceptron (feed forward ANN with back-propagation algorithm) is used, as in [70]. This specific ANN 

topology consists in having several layers of neurons, where each layer can have a different number of 

neurons. Each neuron of each layer is linked to the previous and next layer’s neurons. The network is first 

trained using training data, and the back-propagation algorithm will update the neurons’ weights. Several 

studies investigated this algorithm in fault-proneness prediction [41], [52], [55], [65]. 

3.5. Evaluation Method 

The machine learning algorithms mentioned above were used to build prediction models for CVFSP using 

the considered risk model. We performed 10-fold cross-validation. To evaluate the prediction efficiency of 

our machine learning prediction models, we used the geometric mean (g-mean) and the AUC (Area Under the 

Curve) metrics, which can be easily calculated using the confusion matrix resulting from the classification. 

Table 2 gives an example of a confusion matrix. 

 

Table 2. Confusion Matrix 
Classified Actual 

Faulty Not Faulty 

Faulty True Positives (TP) False Positives (FP) 

Not Faulty False Negatives (FN) True Negatives (TN) 

 

3.5.1. G-mean 

The g-mean metric was defined specifically for imbalanced data classification [41] and was also used in 

other studies on fault-proneness prediction [18], [41]. FPR (False Positive Rate) and FNR (False Negative Rate) 

are being calculated as follows: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
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In regards to g-mean calculation, in case of a binary classification, we need to calculate first the accuracy of 

positives (TPR) and the accuracy of negatives (TNR) [41] (which are the opposite metrics of FNR and FPR 

respectively). On the contrary to FPR and FNR, where lower is better, the higher are TPR, TNR and g-mean, 

better is the classification. The g-mean metric will be satisfying if both TPR and TNR are high, otherwise it 

will not. These metrics are calculated as follow: 

𝑇𝑃𝑅 = 1 − 𝐹𝑁𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑇𝑁𝑅 = 1 − 𝐹𝑃𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑔 − 𝑚𝑒𝑎𝑛 = √𝑇𝑃𝑅 × 𝑇𝑁𝑅 

In case of a multi-class classification, there is another formula for g-mean calculation [71] with the use of 

the recall for each class 𝑅𝑖, where k is the number of distinct classes. Table 3 describes a confusion matrix of 

a k-classes prediction, where 𝐶𝑖 denotes the 𝑖𝑡ℎ class: 

 

Table 3. Confusion Matrix Multi-Class 
 Predicted Class   

C1 C2 . . .  Ck 

True C1 n11 n12 . . . n1k 

Class C2 n21 n22 . . . n2k 

 . . . . . . . 

 . . . . . . . 

 Ck nk1 nk2 . . . nkk 

 

The recall of the 𝑖𝑡ℎ class denoted 𝑅𝑖 is given by: 

𝑅𝑖 =
𝑛𝑖𝑖

∑ 𝑛𝑖𝑗
𝑘
𝑗=1

 

Afterwards, g-mean can be calculated as: 

𝑔 − 𝑚𝑒𝑎𝑛 = (∏ 𝑅𝑖

𝑘

𝑖=1

)

1/𝑘

 

It is common to use a correction ℇ especially when the number of classes is consequent when 𝑅𝑖 = 0, in our 

study we chosen ℇ = 0.001. We followed the next g-mean interpretation [26] for our results: 

• g-mean < 0.5 means no good classification. 

• 0.5 ≤ g-mean < 0.6 means poor classification. 

• 0.6 ≤ g-mean < 0.7 means fair classification. 

• 0.7 ≤ g-mean < 0.8 means acceptable classification. 

• 0.8 ≤ g-mean < 0.9 means good classification. 

• 0.9 ≤ g-mean means outstanding classification. 

3.5.2. AUC 

The Receiver Operating Characteristic (ROC) analysis is used in classifiers evaluation [72]. The Area Under 

the Curve (AUC) shows a visual trade-off analysis between the rate of correctly classified classes as fault-

prone and the rate of incorrectly classified classes as not fault-prone. The AUC is a single value that evaluates 

the discrimination power in the curve between the faulty and not faulty classes [72]. Hosmer and Lemeshow 
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proposed the use of the following rules to evaluate the performance of classifiers [73]: 

• 𝐴𝑈𝐶 = 0.5 means no good classification (random classifier). 

• 0.5 ≤ 𝐴𝑈𝐶 < 0.6 means poor classification. 

• 0.6 ≤ 𝐴𝑈𝐶 < 0.7 means fair classification. 

• 0.7 ≤ 𝐴𝑈𝐶 < 0.8 means acceptable classification. 

• 0.8 ≤ 𝐴𝑈𝐶 < 0.9 means excellent classification. 

• 0.9 ≤ 𝐴𝑈𝐶 means outstanding classification. 

4. Results and Discussion 

4.1. Summary of Previous Work 

We investigated in a previous work [16], as mentioned above, different variants of the risk model following 

various combinations of object-oriented metrics, namely: TR (LOC, Fan-in), TR (WMC, fan-in), TR (WMC, CBO), 

TR (LOC, CBO), TR (LOC, Ce), TR (LOC, Ca), TR (WMC, Ce), TR (WMC, Ca), TR (RFC, Ca), TR (LOC, WMC), TR 

(LOC, RFC) and finally TR (WMC, RFC). As the work presented in this paper is built on our previous work, we 

give in what follows a brief summary of obtained results. 

In a first step (Is the considered risk model (variants) suitable for software fault prediction?), we have 

investigated the potential of the risk model (variants) to predict whether a given class is fault-prone or not. 

We explored the contribution of stratification methods. Here we give the statistics after Smote [74] filter 

application, an oversampling technique. -B aims for balanced, #C-B gives the number of classes after applying 

the Smote filter and #F-B the number of faulty classes after applying the same transformation. It can be seen 

that we did not touch either version 1.3 or version 1.5 because the average of faulty classes is already beyond 

35%. As explained in the preprocessing subsection, we followed a stratification of 35 − 65%. Many studies 

[75]-[77] explored the use of this technique by the past. 

 

Table 4. ANT Versions Statistics Oversampling 
System #C-D #F-D Ratio #C-B #F-B Ratio 

ANT 1.3 201 135 67.16% - - - 

ANT 1.4 178 38 21.35% 216 76 35.18% 

ANT 1.5 366 179 48.91% - - - 

ANT 1.6 368 61 16.58% 473 166 35.09% 

ANT 1.7 776 101 13.01% 1039 364 35.05% 

 

The best results have been obtained with the following variants: TR (LOC, Ce), TR (LOC, Fan-in), TR (LOC, 

RFC), TR (RFC, Ca) and TR (WMC, CBO); and that the variants including the metric LOC are a step above. For 

space limitations reasons, we give in Table 5 the best results which are obtained with TR (LOC, Fan-in). The 

table shows the results before, after duplication of faults and after oversampling. The best performances were 

put in bold to better draw attention. For space limitation reasons, we give only results of version ANT 1.3. 

 

Table 5. TR (LOC, Fan-in) Binary Classification Results 
 TPR TNR g-m AUC TPR-D TNR-D g-m-D AUC-D TPR-B TNR-B g-m-B AUC-B 

A
N
T
 1
.3

 

NB 0.733 0.758 0.745 0.781 0.741 0.909 0.821 0.867 - - - - 

J48 0.733 0.773 0.753 0.732 0.852 0.727 0.787 0.815 - - - - 

RF 0.633 0.682 0.657 0.730 0.837 0.682 0.792 0.885 - - - - 

RLog 0.667 0.818 0.739 0.836 0.677 0.788 0.812 0.892 - - - - 

SVM 0.400 0.955 0.618 0.677 0.993 0.076 0.275 0.530 - - - - 

ANN 0.733 0.818 0.774 0.830 0.875 0.732 0.817 0.888 - - - - 
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We can see that the best performances were obtained with ANN and NB algorithms. We have a good 

classification for the ANT version 1.3 (with a g-mean of 0.821 and an AUC of 0.892), no doubt, due to the 

relatively high number of faults in this early version. For the rest of the versions, we still have acceptable 

classifications (a g-mean > 0.745). Duplication of faults brings a big performance lift especially for versions 

1.4, 1.6 and 1.7 where the ratio of faults is lower (approximately 20% for version 1.4 and only 11% for the 

two other versions). 

The variant TR (LOC, Fan-in) includes a size metric (LOC). It has already been found in the literature that 

LOC (Lines Of Code) is a good indicator of the probability of occurrence of faults [45]. It is also for this reason 

that among the five most conclusive models, namely: TR (LOC, Ce), TR (LOC, Fan-in), TR (LOC, RFC), TR (RFC, 

Ca) and TR (WMC, CBO), models with LOC metric perform better. It seems logical that the larger is the code, 

the more vulnerable it is to contain faults. In addition, Fan-in (as a coupling metric) is a good indicator of 

classes that requires restructuring and more testing effort [50]. We can see that the combination of two 

metrics: size and coupling, more particularly LOC and Fan-in, in our risk model is satisfactory for fault 

prediction. 

In a second step (Can the risk model (variants) predict different levels of fault severity?), we investigated 

the efficiency of our risk model (different variants) for level of severity prediction. In order to fulfill this aim, 

we created two categories of faults: Normal and High as explained earlier. Table 6 and Table 7 give some 

statistics about Normal and High severity faults respectively within the ANT system, respectively before and 

after fault duplication. 

Table 6. ANT Versions Normal Severity Faults Statistics 
System #Classes #Faulty Ratio #C-D #F-D Ratio 

ANT 1.3 126 55 43.64% 285 214 75.09% 

ANT 1.4 178 29 16.29% 186 37 19.89% 

ANT 1.5 293 64 21.84% 330 101 30.61% 

ANT 1.6 352 32 9.09% 362 42 11.60% 

ANT 1.7 675 56 7.51% 765 76 9.93% 

For lightness, we restricted the number of our variants to only five; the best performing ones for binary 

classification which are: TR (LOC, Ce), TR (LOC, Fan-in), TR (LOC, RFC), TR (RFC, Ca) and TR (WMC, CBO). 

Moreover, it can be seen that there is no duplication for high severity faults on ANT 1.6. Thus, this version is 

discarded in that particular case.  

Table 7. ANT Versions High Severity Faults Statistics 
System #Classes #Faulty Ratio #C-D #F-D Ratio 

ANT 1.3 126 60 47.62% 279 147 52.69% 

ANT 1.4 178 12 6.74% 179 13 7.26% 

ANT 1.5 293 55 18.77% 298 60 20.13% 

ANT 1.6 352 19 5.40% - - - 

ANT 1.7 745 22 2.95% 748 25 3.34% 

We applied a multi-classification prediction. We tried to build models that can predict the level of severity 

of a given class in one multi-classification model we denoted by S. i.e. a single model that can predict whether 

a class is not faulty or faulty with a High or Normal severity level as follows: 

 

𝑆 = {
𝑁𝐹𝐶
𝑁𝑆𝐹
𝐻𝑆𝐹

 

𝑁𝑜𝑡 𝐹𝑎𝑢𝑙𝑡𝑦
𝑁𝑜𝑟𝑚𝑎𝑙 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝐹𝑎𝑢𝑙𝑡𝑠

𝐻𝑖𝑔ℎ 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝐹𝑎𝑢𝑙𝑡𝑠
 

 

A class is considered as HSF if it contains at least one high severity fault discarding how many normal 
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severity faults it contains. Afterwards, applying fault duplication will consider the number of faults of the 

same level of severity. Table 8 gives a brief description of the number of faults in the ANT system following 

their level of severity S, where: #C is the number of classes, NFC is the number of not faulty classes, NSF is the 

number of classes containing normal severity faults, HSF is the number of classes containing high severity 

faults and finally the suffix -D means after duplication of faults. 

 

Table 8. Statistics of ANT Faults’ Severity 
System #C #NFC #NSF #HSF #C-D #NFC-D #NSF-D #HSF-D 

ANT 1.3 126 66 0 60 213 66 0 147 

ANT 1.4 178 140 26 12 185 140 32 13 

ANT 1.5 293 193 51 55 321 193 68 60 

ANT 1.6 352 307 26 19 358 307 32 19 

ANT 1.7 745 675 48 22 765 675 65 25 

 

Table 9. TR (LOC, RFC) Results for Level of Severity Prediction 
 TPR TNR g-m AUC TPR-D TNR-D g-m-D AUC-D 

A
N
T
 1
.3

 

NB 0.762 0.747 0.739 0.815 0.808 0.813 0.810 0.879 

J48 0.730 0.726 0.729 0.729 0.779 0.726 0.749 0.797 

RF 0.675 0.675 0.675 0.766 0.840 0.736 0.776 0.879 

RLog 0.762 0.756 0.757 0.834 0.826 0.797 0.811 0.892 

SVM 0.754 0.738 0.728 0.746 0.831 0.824 0.827 0.827 

ANN 0.683 0.667 0.764 0.763 0.83 0.787 0.812 0.885 

A
N
T
 1
.4

 

NB 0.781 0.371 0.325 0.728 0.768 0.434 0.393 0.755 

J48 0.787 0.213 0.316 0.471 0.751 0.273 0.236 0.575 

RF 0.657 0.434 0.398 0.665 0.719 0.604 0.600 0.738 

RLog 0.781 0.331 0.325 0.737 0.773 0.403 0.382 0.759 

SVM 0.787 0.213 0.316 0.500 0.757 0.243 0.316 0.500 

ANN 0.784 0.259 0.330 0.733 0.773 0.403 0.382 0.757 

A
N
T
 1
.5

 

NB 0.672 0.455 0.000 0.736 0.614 0.538 0.442 0.775 

J48 0.655 0.427 0.000 0.635 0.620 0.700 0.534 0.715 

RF 0.584 0.607 0.362 0.677 0.660 0.740 0.680 0.750 

RLog 0.666 0.436 0.000 0.760 0.626 0.560 0.513 0.779 

SVM 0.659 0.341 0.000 0.500 0.611 0.448 0.339 0.528 

ANN 0.674 0.563 0.000 0.756 0.626 0.674 0.691 0.768 

A
N
T
 1
.6

 

NB 0.849 0.222 0.294 0.678 0.832 0.223 0.279 0.713 

J48 0.872 0.128 0.316 0.468 0.858 0.142 0.316 0.486 

RF 0.787 0.256 0.342 0.602 0.802 0.420 0.436 0.687 

RLog 0.866 0.147 0.248 0.703 0.846 0.191 0.280 0.726 

SVM 0.872 0.128 0.316 0.500 0.858 0.142 0.316 0.500 

ANN 0.872 0.128 0.316 0.679 0.858 0.142 0.316 0.722 

A
N
T
 1
.7

 

NB 0.887 0.298 0.385 0.800 0.877 0.408 0.425 0.812 

J48 0.906 0.120 0.254 0.591 0.894 0.264 0.341 0.750 

RF 0.839 0.296 0.332 0.684 0.856 0.553 0.600 0.776 

RLog 0.907 0.223 0.334 0.817 0.890 0.302 0.375 0.834 

SVM 0.906 0.094 0.316 0.500 0.882 0.118 0.316 0.500 

ANN 0.906 0.111 0.316 0.817 0.891 0.287 0.368 0.831 

 

The TR (LOC, RFC) variant gives the best results (before and after fault duplication, see Table 9). The best 

performing models are NB, SVM and ANN. We obtained a very good classification for the ANT version 1.3 

(with a g-mean equal to 0.827 and an AUC of 0.892), but only acceptable results for the other versions, apart 
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version 1.6 where we have a poor classification. It is important to mention that for this particular version, 

duplication of faults brings the least, since there are only six added classes. The strength of this model is that 

it consists of a size metric (LOC) and a Complexity / Coupling metric (RFC), which seems giving it a big 

informative potential. 

4.2. Cross-Version Validation Results 

We present in this section the results for CVFSP, obtained when training the risk model on a particular 

version of ANT and testing it on the successive one. The aim of these experiments is to answer to RQ1: Can a 

risk model built for a previous version of a given system be reused on its next version to predict fault-prone 

classes? and RQ2: Can a risk model built for a previous version of a given system be reused on its next version 

to predict fault severity? We used the best performing models presented in the previous section. 

Table 10 presents the results obtained for binary classification with TR (LOC, Fan-in). Table 11 shows the 

results for levels of severity prediction with TR (LOC, RFC). 

 

Table 10. Cross-Version Binary Classification TR (LOC, Fan-in) 
 1.3 on 1.4 1.4 on 1.5 1.5 on 1.6 1.6 on 1.7 

TPR TN

R 

g-m AU

C 

TPR TN

R 

g-m AU

C 

TPR TN

R 

g-m AU

C 

TPR TN

R 

g-m AU

C 

AU

C 

NB 0.7

20 

0.6

86 

0.7

03 

0.7

72 

0.0

95 

0.9

84 

0.3

06 

0.7

61 

0.5

57 

0.8

57 

0.6

91 

0.7

24 

0.2

57 

0.9

82 

0.5

02 

0.8

53 

0.7

20 

J48 0.8

60 

0.4

93 

0.6

51 

0.6

76 

0.1

56 

0.9

63 

0.3

88 

0.5

59 

0.8

20 

0.5

96 

0.6

99 

0.6

76 

0.0

00 

1.0

00 

0.0

00 

0.7

74 

0.8

60 

RF 0.7

20 

0.5

71 

0.6

41 

0.6

94 

0.2

35 

0.8

5 

0.4

47 

0.6

03 

0.4

75 

0.6

32 

0.5

48 

0.6

00 

0.2

48 

0.8

92 

0.4

70 

0.6

74 

0.7

20 

RL

og 

0.7

80 

0.6

07 

0.6

88 

0.7

80 

0.0

95 

0.9

84 

0.3

06 

0.8

39 

0.6

72 

0.7

59 

0.7

14 

0.7

25 

0.2

18 

0.9

93 

0.4

65 

0.8

54 

0.7

80 

SV

M 

0.9

60 

0.1

14 

0.3

31 

0.5

37 

0.0

45 

0.9

95 

0.2

12 

0.5

20 

0.6

72 

0.7

59 

0.7

14 

0.6

68 

0.0

00 

1.0

00 

0.0

00 

0.5

00 

0.9

60 

AN

N 

0.8

80 

0.4

86 

0.6

54 

0.7

80 

0.0

95 

0.9

84 

0.3

06 

0.8

39 

0.7

87 

0.6

32 

0.7

05 

0.7

25 

0.0

00 

1.0

00 

0.0

00 

0.8

54 

0.8

80 

 

Table 11. Cross-Version Levels of Severity Classification TR (LOC, RFC) 
 1.3 on 1.4 1.4 on 1.5 1.5 on 1.6 1.6 on 1.7 

TPR TNR g-m AUC TP

R 

TN

R 

g

-

m 

AU

C 

TPR TNR g-m AUC TPR TNR g-m AUC AUC 

NB 0.84

6 

0.67

9 

0.75

8 

0.77

1 

- - - - 0.81

3 

0.43

6 

0.01

9 

0.74

0 

0.88

6 

0.30

2 

0.01

4 

0.50

0 

0.84

6 

J48 0.84

6 

0.57

1 

0.69

5 

0.67

5 

- - - - 0.66

8 

0.67

3 

0.27

4 

0.73

2 

0.88

2 

0.11

8 

0.00

1 

0.50

0 

0.84

6 

RF 0.76

9 

0.63

6 

0.69

9 

0.72

7 

- - - - 0.66

5 

0.62

5 

0.26

7 

0.66

5 

0.83

3 

0.31

8 

0.17

1 

0.50

0 

0.76

9 

RLo

g 

0.84

6 

0.61

4 

0.72

1 

0.77

3 

- - - - 0.79

9 

0.43

4 

0.01

9 

0.74

0 

0.89

0 

0.23

5 

0.01

2 

0.50

0 

0.84

6 

SV

M 

0.84

6 

0.65

0 

0.74

2 

0.71

0 

- - - - 0.82

7 

0.25

5 

0.01

1 

0.54

1 

0.88

2 

0.11

8 

0.00

1 

0.50

0 

0.84

6 

AN

N 

0.92

3 

0.49

3 

0.67

5 

0.77

3 

- - - - 0.74

6 

0.61

1 

0.02

3 

0.74

0 

0.88

2 

0.11

8 

0.00

1 

0.50

0 

0.92

3 

 

Regarding cross-version analysis, we can notice (tables 10 and 11) that, in general, we obtained good 
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results when using ANT 1.3 or ANT 1.5 as a training set to build the classifier model, except when using 

version ANT 1.5 as training set for High severity level (where the number of high severity faults is very low) 

prediction. 

In the case of binary classification (Table 10), we can see that the considered model achieved an acceptable 

classification with a g-mean superior to 0.70 (an excellent evaluation according to the AUC value (0.854)). We 

can notice that the best g-mean obtained is 0.714 (ANT 1.5 on 1.6) using Rlog and SVM. Regarding Levels of 

Severity prediction (Table 11), only models trained on ANT 1.3 achieved acceptable results. The best 

performing model was obtained using NB with a g-mean of 0.76 (best AUC is 0.773). These results can be 

explained by the decremented number of bugs, probably due to the testing efforts, which allow fixing the high 

severity faults. Besides that, a huge number of new classes were added to this system on new versions. The 

cross-version validation seems giving good results (which is plausible) only if the version used as a training 

set contains enough faults. 

In a slightly different approach of cross-version validation, we tried building prediction models using the 

entire data gathered from N-1 previous versions as input data and performing prediction on version N (for 

example, we would use ANT 1.3 + ANT 1.4 + ANT 1.5 as input data to build our model and then perform the 

prediction on ANT 1.6). However, results of this approach did not give significant improvement then using 

the direct precedent version (N-1) to build our model. It would be interesting to investigate this avenue using 

datasets collected from other systems. 

The cross-version validation gives good results for fault prediction and more than acceptable results for 

levels of severity prediction in early versions. The choice of the version which will be the training set when 

using this method is crucial for achieving good results. According to the results, we can answer positively to 

both RQ1 and RQ2. 

4.3. Empirical Risk Prediction 

In this section, we introduce the concept of empirical risk of a class. The aim of this experiment is to answer 

to RQ3 (Can the risk model be used to predict the empirical risk of a class, a continuous value considering 

both the number of faults the class can contain and their severity?). We define the empirical risk (ER) of a 

given class C using the following formula, which takes into consideration both the number of faults and their 

different levels of severity: 

𝐸𝑅(𝐶) = ∑ 𝑆𝑖

6

𝑖=1

× 𝑁𝑖  

where 𝑆𝑖 is the weight given to the level of severity: 6 represents the highest level of severity, which is blocker 

and 1 corresponds to the lowest one, which represents trivial faults. 𝑁𝑖 will be the number of faults observed 

for the level of severity 𝑖. 

The objective is to use the risk model (best variant) to build a prediction model giving the ER of a class as 

output. We used the machine learning algorithms with the regression scheme and tried to predict the ER of 

a given class always by performing 10-cross validation, because we are trying to predict a continuous class 

not a categorical one. We used: Linear regression (LR), Gaussian Process (GP), Random forest (RF), M5P a 

decision tree algorithm, SmoReg and artificial neural network (ANN). Table 12 presents the results. We give 

the coefficient of correlation (r, Pearson’s), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), 

Relative Absolute Error (RAE) and Root Relative Squared Error (RSE) of the best variant TR (LOC, RFC) after 

experimenting all the variants mentioned before. 

For intra-version analysis, the best performing variant for ER prediction is TR (LOC, RFC) followed by TR 

(RFC, Ca). Table 12 gives the results of only (for space limitation reasons) the variant TR (LOC, RFC). The best 
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correlation coefficient completed is 0.659 for the ANT 1.3 version. For the ANT 1.5 version, it is 0.538. For 

both versions ANT 1.4 and 1.7, it exceeds 0.4 despite the few faults present in these versions. The 

performance is lower for version 1.6, which contains very few faults. 

Table 12. TR (LOC, RFC) Intra-Version Empirical Risk Prediction 
 r MAE RMSE RAE RSE 

A
N
T
 1
.3

 

LR 0.651 5.004 7.211 66.902 75.478 

GP 0.629 5.117 7.381 68.424 77.260 

RF 0.439 6.091 9.282 81.437 97.162 

M5P 0.651 5.004 7.211 66.902 75.478 

SmoReg 0.659 4.769 7.358 63.763 77.022 

ANN 0.557 5.659 8.059 75.669 84.354 

A
N
T
 1
.4

 

LR 0.391 1.257 2.001 81.595 91.507 

GP 0.355 1.287 2.033 83.597 92.987 

RF 0.203 1.335 2.419 86.661 110.591 

M5P 0.391 1.257 2.001 81.595 91.507 

SmoReg 0.351 0.972 2.378 63.118 108.742 

ANN 0.264 1.371 2.196 88.996 100.391 

A
N
T
 1
.5

 

LR 0.468 2.494 3.496 81.300 88.229 

GP 0.504 2.337 3.414 76.189 86.168 

RF 0.347 2.587 4.007 84.311 101.126 

M5P 0.431 2.461 3.594 80.201 90.703 

SmoReg 0.472 2.096 3.607 68.333 91.047 

ANN 0.482 2.644 3.571 86.194 90.104 

A
N
T
 1
.6

 

LR 0.232 0.858 1.584 92.253 96.965 

GP 0.243 0.845 1.580 90.890 96.733 

RF 0.070 0.878 1.930 94.385 118.11 

M5P 0.208 0.853 1.596 91.653 97.679 

SmoReg 0.087 0.533 1.710 57.277 104.679 

ANN 0.121 1.004 1.698 107.894 103.903 

A
N
T
 1
.7

 

LR 0.452 0.678 1.384 85.464 89.128 

GP 0.459 0.640 1.377 80.728 88.711 

RF 0.280 0.681 1.669 85.763 107.51 

M5P 0.452 0.678 1.384 85.464 89.128 

SmoReg 0.341 0.440 1.501 55.435 96.686 

ANN 0.343 0.870 1.499 109.589 96.517 

 

The results show good correlations for versions 1.3 (0.659) and 1.5 (0.504). Also, for versions 1.4 and 1.7 

(between 0.39 and 0.46) although both versions contain fewer faults. On the other hand, the lack of 

performance persists with version 1.6. As seen previously, due to the absence of faults in this version, the 

algorithms do not have enough input data for the training phase. We can notice from the error metrics given 

in Table 12 that predictions are very close to ground truth and that the average error is relatively small. The 

performance of this model for the prediction of the ER is related to its ability to predict the level of severity 

of faults as seen in the previous experiments. Indeed, thanks to the “LOC” component, this model is able to 

predict the probability of presence of faults. Its second component “RFC” allows predicting the level of 

severity of faults. 

For cross-version analysis, we used the variant TR (LOC, RFC), as the best model for intra-version analysis. 

Table 13 gives the results. We can see that the model created from version N-1 can perform better than the 

model created from the same version N, except when using ANT 1.4 as a training set. We have already 

demonstrated the lack of reported faults on this version. We can put in light the performance of the model 
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trained with data from ANT 1.3 and evaluated on ANT 1.4 that went up to a correlation coefficient of 0.417 

and ANT 1.6 on ANT 1.7 with a correlation coefficient of 0.466. We can notice that Linear Regression and 

Gaussian Process are the better performing machine learning algorithms for cross-version risk prediction. 

Regarding RQ3 (Can the considered risk model predict fault-prone classes by giving information about both 

their potential number of faults and levels of severity?), the theoretical risk model estimates the empirical 

risk with a good correlation coefficient. 

 

Table 13. TR (LOC, RFC) Cross-Version Empirical Risk Prediction 
 1.3 on 1.4 1.4 on 1.5 

r MAE RMSE RAE RSE r MAE RMSE RAE RSE 

LR 0.417 9.327 10.914 153.361 173.762 0.486 12.895 13.339 484.575 317.463 

GP 0.417 4.775 4.958 78.505 78.941 0.486 2.743 4.713 103.079 112.176 

RF 0.389 9.426 11.767 154.986 187.344 0.124 2.391 4.577 89.850 108.934 

M5P 0.417 9.327 10.914 153.361 173.762 0.486 12.895 13.339 484.575 317.463 

SmoReg 0.417 7.217 8.748 118.657 139.283 0.486 2.405 4.627 90.382 110.122 

ANN 0.390 9.511 11.282 156.382 179.621 0.211 7.054 8.024 265.078 190.967 

 1.5 on 1.6 1.6 on 1.7 

r MAE r MAE r MAE r MAE r MAE 

LR 0.267 2.363 0.267 2.363 0.267 2.363 0.267 2.363 0.267 2.363 

GP 0.267 2.067 0.267 2.067 0.267 2.067 0.267 2.067 0.267 2.067 

RF 0.216 2.421 0.216 2.421 0.216 2.421 0.216 2.421 0.216 2.421 

M5P 0.307 2.319 0.307 2.319 0.307 2.319 0.307 2.319 0.307 2.319 

SmoReg 0.267 1.503 0.267 1.503 0.267 1.503 0.267 1.503 0.267 1.503 

ANN 0.287 1.982 0.287 1.982 0.287 1.982 0.287 1.982 0.287 1.982 

 

5. Threats to Validity 

The major threats to validity of our study are: 

First of all, we relied exclusively on the ANT system to conduct our experiments. The considered risk model 

needs to be validated on other systems to confirm our results. 

Another threat lies in our formulation of the empirical risk. Indeed, the choice of the weights for the levels 

of severity is still subjective. Even though by giving the highest weight for the highest level of severity, we 

tried to follow a certain logic. The problem remains in the severity categorization itself which is not formal. 

The choice of the category of severity of faults is based only on the experience of testers (developers), whom 

reported them. This assignment could be changed using a more objective methodology which better takes 

into account the impact of faults. 

Besides that, the considered risk model is based on the concept of Euclidean distance. However, this choice 

is not arbitrary, it is based on the Bernoulli risk theory. It would be interesting to investigate another formula 

of distance calculation such as the Manhattan distance or a more complex one that better describes the 

relationship between P and I. 

6. Conclusion and Future Work 

In this work, we conducted a validation study to investigate the effectiveness of the considered risk model 

for Cross Version Fault and Severity Prediction (CVFSP). In a previous study [16], we showed that the 

considered model can be used to predict fault-prone classes and severity of faults as well. Our main 

contribution in the present work lies in presenting a more practical usage of the considered risk model by 

showing its effectiveness for Cross-Version Fault and Severity Prediction (CVFSP), using data of prior versions 
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of the considered system. In addition, we showed that the risk model gives good results in the estimation of 

the empirical risk of a class by considering both the number of faults and their levels of severity in the two 

situations: (1) intra-version analysis, and (2) cross-version analysis. 

About cross-version validation (RQ1 (Can a risk model built for a previous version of a given system be 

reused on its next version to predict fault-prone classes?) and RQ2 (Can a risk model built for a previous 

version of a given system be reused on its next version to predict fault severity?)), we wanted to investigate 

if a model built on a previous version can be reused for fault-proneness and fault-severity prediction for a 

new version. The objective was to verify if this approach can be used in a real-life context. We managed to 

achieve acceptable results (for both cross-version binary fault prediction (a g-mean of 0.714, an AUC of 0.725) 

and cross-version multi-classification of levels of severity (a g-mean of 0.758, an AUC of 0.771)), only when 

using an early version as training set. We also noticed that the choice of the training set (reference version 

dataset) is crucial. 

Regarding the empirical risk prediction (RQ3 (Can the risk model be used to predict the empirical risk of a 

class, a continuous value considering both the number of faults the class can contain and their severity?)), 

the theoretical risk model estimates the empirical risk with a good correlation coefficient when the data are 

more or less balanced. The risk model presented in this study seems, according to obtained results, having a 

good potential not only for software fault prediction but also for level of severity prediction. 

As future work, we plan to: (1) extend our study by considering many other object-oriented software 

systems in order to be able to give general conclusions, (2) investigate the risk model in a cross-system 

situation, using data from a system to build prediction models for other systems, and (3) conduct an empirical 

comparison of the risk model to other approaches. 
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