

Using Metrics for Risk Prediction in Object-Oriented
Software: A Cross-Version Validation

Salim Moudache*, Mourad Badri

Software Engineering Research Laboratory, Department of Mathematics and Computer Science, University
of Quebec, Trois-Rivie res, Canada

* Corresponding author. Tel.: +1 (438) 725-4259; email: salim.moudache@uqtr.ca
Manuscript submitted January 17, 2021; accepted May 11, 2021.
doi: 10.17706/jsw.17.1.1-20

Abstract: This work aims to investigate the potential, from different perspectives, of a risk model to support

Cross-Version Fault and Severity Prediction (CVFSP) in object-oriented software. The risk of a class is

addressed from the perspective of two particular factors: the number of faults it can contain and their severity.

We used various object-oriented metrics to capture the two risk factors. The risk of a class is modeled using

the concept of Euclidean distance.

We used a dataset collected from five successive versions of an open-source Java software system (ANT).

We investigated different variants of the considered risk model, based on various combinations of object-

oriented metrics pairs. We used different machine learning algorithms for building the prediction models:

Naive Bayes (NB), J48, Random Forest (RF), Support Vector Machines (SVM) and Multilayer Perceptron (ANN).

We investigated the effectiveness of the prediction models for Cross-Version Fault and Severity Prediction

(CVFSP), using data of prior versions of the considered system. We also investigated if the considered risk

model can give as output the Empirical Risk (ER) of a class, a continuous value considering both the number

of faults and their different levels of severity. We used different techniques for building the prediction models:

Linear Regression (LR), Gaussian Process (GP), Random forest (RF) and M5P (two decision trees algorithms),

SmoReg and Artificial Neural Network (ANN).

The considered risk model achieves acceptable results for both cross-version binary fault prediction (a g-

mean of 0.714, an AUC of 0.725) and cross-version multi-classification of levels of severity (a g-mean of 0.758,

an AUC of 0.771). The model also achieves good results in the estimation of the empirical risk of a class by

considering both the number of faults and their levels of severity (intra-version analysis with a correlation

coefficient of 0.659, cross-version analysis with a correlation coefficient of 0.486).

Key words: Cross-version validation, fault proneness, fault severity, machine learning algorithms, object-
oriented metrics, prediction, risk.

1. Introduction

Nowadays, software engineering needs are growing more and more knowing the increasing complexity of

developed applications, which increases the risk of faults and their severity. The presence of faults in a

software system not only degrades its quality, but also increases its development and maintenance costs [1].

To prevent these faults, particularly the most severe ones, and ensure having high quality software, software

systems need to be rigorously tested. However, software testing often has to be done under severe pressure

due to limited resources and tight time deadlines constraints. In addition, exhaustive testing is cost

prohibitive and would take too much time and resources. So, it is typically not feasible, except perhaps in

extremely trivial cases [2]. Hence, software tests prioritization [3]-[5] appears as the best solution.

1 Volume 17, Number 1, January 2022

Journal of Software

Many studies were conducted in the area of Software Quality Assurance addressing this problematic. A

trivial solution proposed was random testing [6]. This method could be described as naive, and it is not

accurate enough to cover all the faults [7]. Another widely active proposal was software fault prediction [8]-

[12]. Many studies focused on the investigation of the simple research question: Is a given class fault-prone?

So, they proposed different binary classification models. The weakness of the use of binary classification

models to support the construction (selection) of test cases is that it provides just simple information about

whether a given class is fault-prone or not [12], what we denote as P, the probability of a class to be fault-

prone. We believe, in fact, that fault severity is also an important information that must be considered in the

construction of fault-proneness prediction models [12], [13]. Recently, some studies have addressed the

prediction of fault severity levels. Fault severity measures the impact of a fault on a system and its users [9],

[14], what we denote as I. The output of these studies is severity-based fault prediction models [15] that can

classify a fault into different levels of severity, for example: low or high. This is much more useful than simple

binary classification models. In fact, severity-based prediction models allow much more effective testing by

predicting (and focusing testing efforts on) relatively high-risk classes. However, they do not consider the

number of faults, which in turn can affect the testing efforts allocation.

In a previous work [16], we addressed the risk of a class from the perspective of two factors: the number

of faults it can contain and their severity. We investigated different variants of the metrics-based risk model

proposed in [17], which is based on the concept of Euclidean distance. The logic behind this 2D-model for the

choice of the metrics is: one axe will be represented by a metric that better describes P (probability of fault-

proneness), and another axe that will be represented by a metric that better describes I (severity of faults).

We investigated two research questions: (1) Is the considered risk model (variants) suitable for software fault

prediction? and (2) Can the risk model (variants) predict different levels of fault severity? We considered two

levels of severity: high and normal. Results showed that the risk model achieves good results for both binary

fault prediction (with a g-mean of 0.821) and multi-classification of severity levels (with a g-mean of 0.827).

In this study, we explored the effectiveness of the risk model (variants) for Cross-Version Fault and Severity

Prediction (CVFSP), using data of prior versions of the considered system (ANT - five successive versions).

We investigated the three following research questions:

RQ1: Can a risk model built for a previous version of a given system be reused on its next version to predict

fault-prone classes?

Here, we wanted to perform cross-version fault-proneness prediction using the risk model to investigate if

its eventual use in a real-life context will be accurate.

RQ2: Can a risk model built for a previous version of a given system be reused on its next version to predict

fault severity?

Here, we wanted to perform cross-version severity level prediction using the risk model to investigate if its

eventual use in a real-life context will be accurate.

RQ3: Can the risk model be used to predict the empirical risk of a class, a continuous value considering

both the number of faults the class can contain and their severity?

As mentioned previously, we investigated in a previous work [16] two research questions: (1) Is the

considered risk model suitable for software fault prediction? and (2) Can the risk model predict different

levels of fault severity? Here, we aimed to investigate if the considered risk model can give valuable insight

about faults severity levels without losing information about the number of faults that a given class can

contain. If yes, this will give a serious advantage to the considered risk model compared to the prediction

models proposed in the literature which predict either fault-prone classes, their number of faults or their

severity. This will be much more useful for tests prioritization by predicting (and focusing testing efforts on)

high-risk classes. We defined a software risk prediction methodology. We investigated the risk model in two

2 Volume 17, Number 1, January 2022

Journal of Software

different situations: (1) intra-version validation, and (2) cross-version validation.

The rest of the paper is organized as follows. Section 2 presents a summary of different studies related to

software fault prediction. Section 3 presents the methodology we followed in this study. First, we present

some descriptive statistics about the dataset we used to conduct our experiments, and an overview of the

software metrics we used to build our different risk models (variants). Second, we explain how each

experiment was conducted and how the different models were evaluated. Section 4 presents the different

results obtained. Section 5 discusses the possible threats to validity of our study. Finally, Section 6 concludes

this paper by summarizing the major contributions of this study and giving some future work directions.

2. Related Work

Shatnawi presented in [18] a study to determine the thresholds values for the CK (Chidamber and Kemerer)

[19] metrics beyond which a given class would present a risk to be fault-prone. He led an empirical analysis

using three software systems inspired by an epidemiological risk assessment model [20], to calculate the

values of acceptable thresholds for each metric. The author performed a logistic regression analysis to restrict

the CK suite to the complexity and coupling metrics WMC (Weighted Methods per Class), RFC (Response for

a Class) and CBO (Coupling between Objects) as the more correlated with the probability of faults. After

determining the thresholds values on version 2.0 of Eclipse, the author made a validation over version 2.1 by

building a model (as a regression tree) and crossed the experimental results with the actual results. He

showed the good ability of the model to predict faults using the determined thresholds.

In addition, semi-supervised prediction models were used. This kind of models require less fault data than

supervised ones. Lu et al. in [21], [22], have investigated the use of semi-supervised learning for software

fault-proneness prediction with Random Forest and Dimension Reduction techniques. They showed that

reducing the dimensionality of the source code metrics significantly improved the semi-supervised learning

model. Moreover, Catal explored different semi-supervised classification algorithms for fault prediction [23].

He compared four methods, namely: Support Vector Machines, Class Mass Normalization, Low-Density

Separation and Expectation-Maximization. He concluded that Low-Density Normalization gave the best

results for large datasets but could also be used for small ones.

On the other hand, unsupervised learning models come across this shortcoming since they do not require

any fault data. In [24], Bishnu & Bhattacherjee used a similar approach as Catal et al. in [3], [25], using K-

means algorithm and the same threshold values to predict faulty modules. However, they used the Quad-Tree

algorithm combined to a genetic algorithm to initialize the clusters used in the K-means algorithm. According

to the authors, the classification performance of their model is as good as to the results obtained with

supervised models which are built with fault data. Boucher and Badri investigated in [26] three threshold

calculation techniques that can be used for fault-proneness prediction: ROC Curves [27], VARL (Value of an

Acceptable Risk Level) [20] and Alves rankings [28]. They stand that ROC curves gives the best performance,

but Alves Ranking is a good choice too. The advantage of Alves Rankings over ROC Curves technique is that it

is completely unsupervised, so it does not require fault data and could be used when it is not available. In

[29], the same authors adapted the HySOM model [30], originally working at function-level granularity, to

work at class-level granularity for Object-Oriented Software.

Moreover, several studies have shown that severity-based fault proneness prediction models are much

more useful than binary classification models that simply determine whether a module is fault-prone or not.

E. Hong [31] proposed new severity-based prediction models using two module severity metrics: MS (Module

Severity) and MSD (Module Severity Density). The proposed models are different from the previous ones [15],

[32], [33] by assigning a severity value to the model rather than treating each severity level alone. Through

3 Volume 17, Number 1, January 2022

Journal of Software

an empirical study using the JM1 and PC4 projects from the NASA1 dataset, they concluded that the MS

models outperform the previous prediction models, and that the MSD models show good performance with

JM1. Besides, multi-layer perceptron neural network showed the best performance among the three

classification algorithms used for model building.

Recently, new techniques were proposed such as dynamic tracking fault diagnosis [34]. In [35], the authors

showed the gain in baseline predictors combination in comparison to standalone baseline predictors. They

conducted an empirical study, comparing ten ensemble predictors with baseline predictors and

demonstrated the performance improvement of ensemble predictors. Another avenue, genetic based

machine learning algorithms, was also explored [36], [37]. A well-known issue in software fault prediction is

the imbalanced data. The authors in [38] proposed a new distance metric based on cost-sensitive learning to

reduce the class imbalance. Their experimental results confirm the positive impact of their approach.

3. Research Methodology

3.1. Data Collection

We used the dataset, extracted from five successive versions of the ANT system (from version 1.3 to version

1.7), constructed by Toure [17] for his thesis. He actually used the QA-metrics plugging integrated with the

Borland Together tool to calculate the object-oriented metrics, and Bugzilla for collecting faults and their

levels of severity. Each class is described with the number of faults it contains and their severity, which can

be either: blocker, critical, major, normal, minor or trivial. This dataset was used in multiple studies [39]-[42].

In fact, version 1.7 was widely used, but we decided to include the four previous versions as well in order to

investigate fault-proneness and fault-severity prediction in a cross-version analysis context. ANT is a

command-line tool developed in Java and mainly used for building Java applications [40]. Besides that, the

dataset also includes a couple of object-oriented source code metrics as defined by Chidamber & Kemerer

[19] in addition to Ca (Afferent Coupling), Ce (Efferent Coupling) and Fan-in. For this reason, our choice was

naturally focused on these metrics to conduct our study. The selected metrics can be subdivided as follows:

3.1.1. Complexity metrics

WMC (Weighted Methods per Class): Is a sum weighted by the cyclomatic complexity of each method of a

class [43]. If the value of this metric is high for a given class, the class will be more difficult to test and even to

be understood [44].

3.1.2. Size metrics

LOC (Lines Of Code): Gives an idea on the size of a class in terms of the number of lines of code. The larger

a class is, the more it is disposed to contain faults [45].

3.1.3. Coupling metrics

CBO (Coupling Between Objects): The coupling between objects describes the number of classes to which a

given class is coupled and vice versa [46]. In fact, it is the sum of two other existing coupling metrics that are

Fan-in and Fan-out [47]. It is used to evaluate the interdependence between classes of a same system.

Ca (Afferent Coupling): The afferent coupling counts the classes of a given package that depend on outer

classes [48].

Ce (Efferent Coupling): The efferent coupling, unlike Ca, represents the number of outer classes that depend

on classes in a given package [48].

Fan-in: Gives the number of module calls for a function / method for a given class [49]. This measure is

mainly used to identify modules that require restructuring and high testing effort [50].

RFC (Response For a Class): Is a metric of both complexity and coupling at the same time. It is defined by

1 NASA data-sets available at PROMISE Software Engineering Repository

4 Volume 17, Number 1, January 2022

Journal of Software

the number of methods that can be called by an instance of a class [19]. The RFC metric indicates the degree

of communication between a class and the rest of the system through the invocations of external methods

that it can potentially call [51]. RFC is closely related to the testing effort and to the complexity.

Table 1 describes the different versions of the ANT system we used and highlights the number of classes,

faulty classes and the ratio of faulty classes before and after fault duplication (the -D stand for duplication,

#C-D gives the number of classes after duplication and #F-D the number of faulty classes after duplication).

Looking back to the literature, we can notice that the number of faults was not often taken into account.

However, it represents an important information with valuable insight. Thus, we decided to make use of it. To

do so, we were inspired by a simple methodology called ’Fault Duplication’, used among others by Shatnawi

[52], Zhou and Leung [15], and Boucher and Badri [26], which involves duplicating each class containing

more than one fault in the dataset. For example, if a class contains 3 faults, it will be present 3 times in the

dataset, each one marked as containing one single fault. This allows taking into consideration the number of

faults in the analysis without having to do much preprocessing.

Table 1. ANT Versions Statistics

System #Classes #Faulty Ratio #C-D #F-D Ratio

ANT 1.3 126 60 47.62% 201 135 67.16%

ANT 1.4 178 38 21.35% 190 50 26.21%

ANT 1.5 293 106 36.18% 366 179 48.91%

ANT 1.6 352 45 12.78% 368 61 16.58%

ANT 1.7 745 70 10.37% 776 101 13.01%

3.2. Risk Model

Starting from the data presented above, we built a set of variants of the risk model defined in F. Toure thesis

[17]. The risk model is, in fact, built on Bernoulli’s risk theory [53], which is widely used in project

management. The advantage of this method is that it provides a simple way to assess the risk associated to

the classes of an object-oriented software. The risk of a class is considered from two perspectives: the

probability of the class to be fault-prone and its impact (in terms of severity) on the rest of the system.

Reducing the quantified risk of a class asks to reduce one or both axes that makes it up. We selected different

combinations of metrics respecting the following disposition: (1) by taking 𝑚𝑃 as a metric that better

describes fault probability (many studies e.g., [15], [54]-[56] stand that size and complexity metrics play this

role), and (2) 𝑚𝐼 as a metric that better describes fault severity (many studies e.g., [50], [57], [58] indicate

that coupling metrics better fulfill this aim).

Considering a system of 𝑘 classes, 𝐾 ∈ ℕ2 and ∀ 𝑖 ∈ 𝑘 , the theoretical risk (TR) of a given class C is

calculated as follows:

𝑇𝑅𝑚𝑃,𝑚𝐼
(𝐶) = √(𝑚𝑃(𝐶) − 𝑚𝑎𝑥𝑖(𝑚𝑃(𝐶𝑖)))

2
+ (𝑚𝐼(𝐶) − 𝑚𝑎𝑥𝑖(𝑚𝐼(𝐶𝑖)))

2

Fig. 1 illustrates the two-dimensional risk model. The x-axis represents the metric 𝑚𝑃 and the y-axis

represents the metric 𝑚𝐼. Point M represents the maximum of the two metrics and is calculated as follows:

𝑀 = (𝑚𝑎𝑥(𝑚𝑃(𝐶𝑖)), 𝑚𝑎𝑥(𝑚𝐼(𝐶𝑖)))

5 Volume 17, Number 1, January 2022

Journal of Software

Fig. 1. Risk model.

3.3. Pre-processing

Data pre-processing [59], [60], which allows to obtain a suitable dataset for the mining stage, includes:

cleaning, normalization, transformation, feature extraction, selection and so on. Data pre-processing stage

could take up to 80% of the time and resources of a data science project. Fortunately, there are some tools

that could be used to avoid GIGO (Garbage IN Garbage Out) situations in the form of filters. In terms of data

pre-processing, the following operations were performed on each ANT version:

• Binarization of the number of faults of a given class in a new attribute called ’BugsBinary’ i.e. 0

means not faulty and 1 means that the class contains one fault or more.

• Grouping [15], [61], [62]: blocker, critical and major faults will form the high severity fault level.

On the other hand, normal, minor and trivial faults will form the normal severity fault level.

• For the sake of compatibility when using certain machine learning algorithms, the transformation

filter in nominal type has been applied to the class attribute to predict.

• In order to improve the results of the prediction, normalization has been carried out on the models

to obtain values in the range [-1, 1].

• We also explored the contribution of stratification techniques such as oversampling by applying

the smote filter to 35 − 65% as advised in [63] and the duplication of faulty classes.

3.4. Machine Learning

In this section, we present a brief description of the machine learning algorithms we used from the Weka-

API [64]. Machine learning algorithms are commonly used in fault-proneness classification to learn

relationships between source code metrics (attributes) and faults (the class to predict or the target). These

algorithms are trained using the datasets, including faults. In our study, we used the following machine

learning algorithms: Naive Bayes (NB), J48, M5P, Random Forest (RF), Support Vector Machine (SVM),

SmoReg, Linear regression (LR), Gaussian Process (GP) and Multilayer Perceptron (ANN). These algorithms

have been widely used in literature and showed good performances.

3.4.1. Naive bayes

The Bayes Network algorithm classifies the given instances (classes in our case) by building a directed

graph, where risk models will be represented by nodes and their independencies as links, to sort classes as

faulty or not [52]. Many studies have investigated the use of this algorithm [41], [52], [65]. It can be used in

different variants. The most popular one is the Naive Bayes Network that we chose in our study.

3.4.2. Gaussian process

Gaussian process is a collection of random variables such that every finite collection has a multivariate

normal distribution [66]. Various studies explored the use of this process for software fault prediction among

6 Volume 17, Number 1, January 2022

Journal of Software

other domains as well [67], [68].

3.4.3. Decision trees

The J48, M5P and Random Forest algorithms are used for building decision trees. These algorithms

calculate how efficiently each attribute is in splitting the data (in our case as fault-prone or not in a prior

experiment than into levels of severity). The resulting decision tree is easy to understand as it is self-

explanatory [11]. Weka includes a tool for decision trees visualization. There are two main advantages of

visual data exploration over data mining in addition to the direct involvement of the user [69]: it can easily

deal with highly nonhomogeneous and noisy data, and visual data exploration is intuitive and requires no

understanding of complex mathematical or statistical algorithms or parameters. This kind of algorithms were

also used in numerous studies dealing with software fault prediction [11], [55], [65].

3.4.4. Support vector machine

The Support Vector Machine algorithm is founded on the statistical learning theory, which makes it perfect

for both regression and classification. This algorithm allows less weight to individuals that are far away from

the tendency. It is also suitable for data that do not follow a linear distribution [11]. Malhotra et al. in [41]

describe it as the best machine learning algorithm to use. It was also used in other studies addressing fault-

proneness prediction [11], [70]. SMOreg implements the support vector machine for regression.

3.4.5. Artificial neural network

Artificial Neural Networks (ANN) are various and widely used in several fields. In our case, a Multilayer

Perceptron (feed forward ANN with back-propagation algorithm) is used, as in [70]. This specific ANN

topology consists in having several layers of neurons, where each layer can have a different number of

neurons. Each neuron of each layer is linked to the previous and next layer’s neurons. The network is first

trained using training data, and the back-propagation algorithm will update the neurons’ weights. Several

studies investigated this algorithm in fault-proneness prediction [41], [52], [55], [65].

3.5. Evaluation Method

The machine learning algorithms mentioned above were used to build prediction models for CVFSP using

the considered risk model. We performed 10-fold cross-validation. To evaluate the prediction efficiency of

our machine learning prediction models, we used the geometric mean (g-mean) and the AUC (Area Under the

Curve) metrics, which can be easily calculated using the confusion matrix resulting from the classification.

Table 2 gives an example of a confusion matrix.

Table 2. Confusion Matrix
Classified Actual

Faulty Not Faulty

Faulty True Positives (TP) False Positives (FP)

Not Faulty False Negatives (FN) True Negatives (TN)

3.5.1. G-mean

The g-mean metric was defined specifically for imbalanced data classification [41] and was also used in

other studies on fault-proneness prediction [18], [41]. FPR (False Positive Rate) and FNR (False Negative Rate)

are being calculated as follows:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃

7 Volume 17, Number 1, January 2022

Journal of Software

In regards to g-mean calculation, in case of a binary classification, we need to calculate first the accuracy of

positives (TPR) and the accuracy of negatives (TNR) [41] (which are the opposite metrics of FNR and FPR

respectively). On the contrary to FPR and FNR, where lower is better, the higher are TPR, TNR and g-mean,

better is the classification. The g-mean metric will be satisfying if both TPR and TNR are high, otherwise it

will not. These metrics are calculated as follow:

𝑇𝑃𝑅 = 1 − 𝐹𝑁𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑇𝑁𝑅 = 1 − 𝐹𝑃𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

𝑔 − 𝑚𝑒𝑎𝑛 = √𝑇𝑃𝑅 × 𝑇𝑁𝑅

In case of a multi-class classification, there is another formula for g-mean calculation [71] with the use of

the recall for each class 𝑅𝑖, where k is the number of distinct classes. Table 3 describes a confusion matrix of

a k-classes prediction, where 𝐶𝑖 denotes the 𝑖𝑡ℎ class:

Table 3. Confusion Matrix Multi-Class
 Predicted Class

C1 C2 . . . Ck

True C1 n11 n12 . . . n1k

Class C2 n21 n22 . . . n2k

 Ck nk1 nk2 . . . nkk

The recall of the 𝑖𝑡ℎ class denoted 𝑅𝑖 is given by:

𝑅𝑖 =
𝑛𝑖𝑖

∑ 𝑛𝑖𝑗
𝑘
𝑗=1

Afterwards, g-mean can be calculated as:

𝑔 − 𝑚𝑒𝑎𝑛 = (∏ 𝑅𝑖

𝑘

𝑖=1

)

1/𝑘

It is common to use a correction ℇ especially when the number of classes is consequent when 𝑅𝑖 = 0, in our

study we chosen ℇ = 0.001. We followed the next g-mean interpretation [26] for our results:

• g-mean < 0.5 means no good classification.

• 0.5 ≤ g-mean < 0.6 means poor classification.

• 0.6 ≤ g-mean < 0.7 means fair classification.

• 0.7 ≤ g-mean < 0.8 means acceptable classification.

• 0.8 ≤ g-mean < 0.9 means good classification.

• 0.9 ≤ g-mean means outstanding classification.

3.5.2. AUC

The Receiver Operating Characteristic (ROC) analysis is used in classifiers evaluation [72]. The Area Under

the Curve (AUC) shows a visual trade-off analysis between the rate of correctly classified classes as fault-

prone and the rate of incorrectly classified classes as not fault-prone. The AUC is a single value that evaluates

the discrimination power in the curve between the faulty and not faulty classes [72]. Hosmer and Lemeshow

8 Volume 17, Number 1, January 2022

Journal of Software

proposed the use of the following rules to evaluate the performance of classifiers [73]:

• 𝐴𝑈𝐶 = 0.5 means no good classification (random classifier).

• 0.5 ≤ 𝐴𝑈𝐶 < 0.6 means poor classification.

• 0.6 ≤ 𝐴𝑈𝐶 < 0.7 means fair classification.

• 0.7 ≤ 𝐴𝑈𝐶 < 0.8 means acceptable classification.

• 0.8 ≤ 𝐴𝑈𝐶 < 0.9 means excellent classification.

• 0.9 ≤ 𝐴𝑈𝐶 means outstanding classification.

4. Results and Discussion

4.1. Summary of Previous Work

We investigated in a previous work [16], as mentioned above, different variants of the risk model following

various combinations of object-oriented metrics, namely: TR (LOC, Fan-in), TR (WMC, fan-in), TR (WMC, CBO),

TR (LOC, CBO), TR (LOC, Ce), TR (LOC, Ca), TR (WMC, Ce), TR (WMC, Ca), TR (RFC, Ca), TR (LOC, WMC), TR

(LOC, RFC) and finally TR (WMC, RFC). As the work presented in this paper is built on our previous work, we

give in what follows a brief summary of obtained results.

In a first step (Is the considered risk model (variants) suitable for software fault prediction?), we have

investigated the potential of the risk model (variants) to predict whether a given class is fault-prone or not.

We explored the contribution of stratification methods. Here we give the statistics after Smote [74] filter

application, an oversampling technique. -B aims for balanced, #C-B gives the number of classes after applying

the Smote filter and #F-B the number of faulty classes after applying the same transformation. It can be seen

that we did not touch either version 1.3 or version 1.5 because the average of faulty classes is already beyond

35%. As explained in the preprocessing subsection, we followed a stratification of 35 − 65%. Many studies

[75]-[77] explored the use of this technique by the past.

Table 4. ANT Versions Statistics Oversampling
System #C-D #F-D Ratio #C-B #F-B Ratio

ANT 1.3 201 135 67.16% - - -

ANT 1.4 178 38 21.35% 216 76 35.18%

ANT 1.5 366 179 48.91% - - -

ANT 1.6 368 61 16.58% 473 166 35.09%

ANT 1.7 776 101 13.01% 1039 364 35.05%

The best results have been obtained with the following variants: TR (LOC, Ce), TR (LOC, Fan-in), TR (LOC,

RFC), TR (RFC, Ca) and TR (WMC, CBO); and that the variants including the metric LOC are a step above. For

space limitations reasons, we give in Table 5 the best results which are obtained with TR (LOC, Fan-in). The

table shows the results before, after duplication of faults and after oversampling. The best performances were

put in bold to better draw attention. For space limitation reasons, we give only results of version ANT 1.3.

Table 5. TR (LOC, Fan-in) Binary Classification Results
 TPR TNR g-m AUC TPR-D TNR-D g-m-D AUC-D TPR-B TNR-B g-m-B AUC-B

A
N
T
 1
.3

NB 0.733 0.758 0.745 0.781 0.741 0.909 0.821 0.867 - - - -

J48 0.733 0.773 0.753 0.732 0.852 0.727 0.787 0.815 - - - -

RF 0.633 0.682 0.657 0.730 0.837 0.682 0.792 0.885 - - - -

RLog 0.667 0.818 0.739 0.836 0.677 0.788 0.812 0.892 - - - -

SVM 0.400 0.955 0.618 0.677 0.993 0.076 0.275 0.530 - - - -

ANN 0.733 0.818 0.774 0.830 0.875 0.732 0.817 0.888 - - - -

9 Volume 17, Number 1, January 2022

Journal of Software

We can see that the best performances were obtained with ANN and NB algorithms. We have a good

classification for the ANT version 1.3 (with a g-mean of 0.821 and an AUC of 0.892), no doubt, due to the

relatively high number of faults in this early version. For the rest of the versions, we still have acceptable

classifications (a g-mean > 0.745). Duplication of faults brings a big performance lift especially for versions

1.4, 1.6 and 1.7 where the ratio of faults is lower (approximately 20% for version 1.4 and only 11% for the

two other versions).

The variant TR (LOC, Fan-in) includes a size metric (LOC). It has already been found in the literature that

LOC (Lines Of Code) is a good indicator of the probability of occurrence of faults [45]. It is also for this reason

that among the five most conclusive models, namely: TR (LOC, Ce), TR (LOC, Fan-in), TR (LOC, RFC), TR (RFC,

Ca) and TR (WMC, CBO), models with LOC metric perform better. It seems logical that the larger is the code,

the more vulnerable it is to contain faults. In addition, Fan-in (as a coupling metric) is a good indicator of

classes that requires restructuring and more testing effort [50]. We can see that the combination of two

metrics: size and coupling, more particularly LOC and Fan-in, in our risk model is satisfactory for fault

prediction.

In a second step (Can the risk model (variants) predict different levels of fault severity?), we investigated

the efficiency of our risk model (different variants) for level of severity prediction. In order to fulfill this aim,

we created two categories of faults: Normal and High as explained earlier. Table 6 and Table 7 give some

statistics about Normal and High severity faults respectively within the ANT system, respectively before and

after fault duplication.

Table 6. ANT Versions Normal Severity Faults Statistics
System #Classes #Faulty Ratio #C-D #F-D Ratio

ANT 1.3 126 55 43.64% 285 214 75.09%

ANT 1.4 178 29 16.29% 186 37 19.89%

ANT 1.5 293 64 21.84% 330 101 30.61%

ANT 1.6 352 32 9.09% 362 42 11.60%

ANT 1.7 675 56 7.51% 765 76 9.93%

For lightness, we restricted the number of our variants to only five; the best performing ones for binary

classification which are: TR (LOC, Ce), TR (LOC, Fan-in), TR (LOC, RFC), TR (RFC, Ca) and TR (WMC, CBO).

Moreover, it can be seen that there is no duplication for high severity faults on ANT 1.6. Thus, this version is

discarded in that particular case.

Table 7. ANT Versions High Severity Faults Statistics
System #Classes #Faulty Ratio #C-D #F-D Ratio

ANT 1.3 126 60 47.62% 279 147 52.69%

ANT 1.4 178 12 6.74% 179 13 7.26%

ANT 1.5 293 55 18.77% 298 60 20.13%

ANT 1.6 352 19 5.40% - - -

ANT 1.7 745 22 2.95% 748 25 3.34%

We applied a multi-classification prediction. We tried to build models that can predict the level of severity

of a given class in one multi-classification model we denoted by S. i.e. a single model that can predict whether

a class is not faulty or faulty with a High or Normal severity level as follows:

𝑆 = {
𝑁𝐹𝐶
𝑁𝑆𝐹
𝐻𝑆𝐹

𝑁𝑜𝑡 𝐹𝑎𝑢𝑙𝑡𝑦
𝑁𝑜𝑟𝑚𝑎𝑙 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝐹𝑎𝑢𝑙𝑡𝑠

𝐻𝑖𝑔ℎ 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝐹𝑎𝑢𝑙𝑡𝑠

A class is considered as HSF if it contains at least one high severity fault discarding how many normal

10 Volume 17, Number 1, January 2022

Journal of Software

severity faults it contains. Afterwards, applying fault duplication will consider the number of faults of the

same level of severity. Table 8 gives a brief description of the number of faults in the ANT system following

their level of severity S, where: #C is the number of classes, NFC is the number of not faulty classes, NSF is the

number of classes containing normal severity faults, HSF is the number of classes containing high severity

faults and finally the suffix -D means after duplication of faults.

Table 8. Statistics of ANT Faults’ Severity
System #C #NFC #NSF #HSF #C-D #NFC-D #NSF-D #HSF-D

ANT 1.3 126 66 0 60 213 66 0 147

ANT 1.4 178 140 26 12 185 140 32 13

ANT 1.5 293 193 51 55 321 193 68 60

ANT 1.6 352 307 26 19 358 307 32 19

ANT 1.7 745 675 48 22 765 675 65 25

Table 9. TR (LOC, RFC) Results for Level of Severity Prediction
 TPR TNR g-m AUC TPR-D TNR-D g-m-D AUC-D

A
N
T
 1
.3

NB 0.762 0.747 0.739 0.815 0.808 0.813 0.810 0.879

J48 0.730 0.726 0.729 0.729 0.779 0.726 0.749 0.797

RF 0.675 0.675 0.675 0.766 0.840 0.736 0.776 0.879

RLog 0.762 0.756 0.757 0.834 0.826 0.797 0.811 0.892

SVM 0.754 0.738 0.728 0.746 0.831 0.824 0.827 0.827

ANN 0.683 0.667 0.764 0.763 0.83 0.787 0.812 0.885

A
N
T
 1
.4

NB 0.781 0.371 0.325 0.728 0.768 0.434 0.393 0.755

J48 0.787 0.213 0.316 0.471 0.751 0.273 0.236 0.575

RF 0.657 0.434 0.398 0.665 0.719 0.604 0.600 0.738

RLog 0.781 0.331 0.325 0.737 0.773 0.403 0.382 0.759

SVM 0.787 0.213 0.316 0.500 0.757 0.243 0.316 0.500

ANN 0.784 0.259 0.330 0.733 0.773 0.403 0.382 0.757

A
N
T
 1
.5

NB 0.672 0.455 0.000 0.736 0.614 0.538 0.442 0.775

J48 0.655 0.427 0.000 0.635 0.620 0.700 0.534 0.715

RF 0.584 0.607 0.362 0.677 0.660 0.740 0.680 0.750

RLog 0.666 0.436 0.000 0.760 0.626 0.560 0.513 0.779

SVM 0.659 0.341 0.000 0.500 0.611 0.448 0.339 0.528

ANN 0.674 0.563 0.000 0.756 0.626 0.674 0.691 0.768

A
N
T
 1
.6

NB 0.849 0.222 0.294 0.678 0.832 0.223 0.279 0.713

J48 0.872 0.128 0.316 0.468 0.858 0.142 0.316 0.486

RF 0.787 0.256 0.342 0.602 0.802 0.420 0.436 0.687

RLog 0.866 0.147 0.248 0.703 0.846 0.191 0.280 0.726

SVM 0.872 0.128 0.316 0.500 0.858 0.142 0.316 0.500

ANN 0.872 0.128 0.316 0.679 0.858 0.142 0.316 0.722

A
N
T
 1
.7

NB 0.887 0.298 0.385 0.800 0.877 0.408 0.425 0.812

J48 0.906 0.120 0.254 0.591 0.894 0.264 0.341 0.750

RF 0.839 0.296 0.332 0.684 0.856 0.553 0.600 0.776

RLog 0.907 0.223 0.334 0.817 0.890 0.302 0.375 0.834

SVM 0.906 0.094 0.316 0.500 0.882 0.118 0.316 0.500

ANN 0.906 0.111 0.316 0.817 0.891 0.287 0.368 0.831

The TR (LOC, RFC) variant gives the best results (before and after fault duplication, see Table 9). The best

performing models are NB, SVM and ANN. We obtained a very good classification for the ANT version 1.3

(with a g-mean equal to 0.827 and an AUC of 0.892), but only acceptable results for the other versions, apart

11 Volume 17, Number 1, January 2022

Journal of Software

version 1.6 where we have a poor classification. It is important to mention that for this particular version,

duplication of faults brings the least, since there are only six added classes. The strength of this model is that

it consists of a size metric (LOC) and a Complexity / Coupling metric (RFC), which seems giving it a big

informative potential.

4.2. Cross-Version Validation Results

We present in this section the results for CVFSP, obtained when training the risk model on a particular

version of ANT and testing it on the successive one. The aim of these experiments is to answer to RQ1: Can a

risk model built for a previous version of a given system be reused on its next version to predict fault-prone

classes? and RQ2: Can a risk model built for a previous version of a given system be reused on its next version

to predict fault severity? We used the best performing models presented in the previous section.

Table 10 presents the results obtained for binary classification with TR (LOC, Fan-in). Table 11 shows the

results for levels of severity prediction with TR (LOC, RFC).

Table 10. Cross-Version Binary Classification TR (LOC, Fan-in)
 1.3 on 1.4 1.4 on 1.5 1.5 on 1.6 1.6 on 1.7

TPR TN

R

g-m AU

C

TPR TN

R

g-m AU

C

TPR TN

R

g-m AU

C

TPR TN

R

g-m AU

C

AU

C

NB 0.7

20

0.6

86

0.7

03

0.7

72

0.0

95

0.9

84

0.3

06

0.7

61

0.5

57

0.8

57

0.6

91

0.7

24

0.2

57

0.9

82

0.5

02

0.8

53

0.7

20

J48 0.8

60

0.4

93

0.6

51

0.6

76

0.1

56

0.9

63

0.3

88

0.5

59

0.8

20

0.5

96

0.6

99

0.6

76

0.0

00

1.0

00

0.0

00

0.7

74

0.8

60

RF 0.7

20

0.5

71

0.6

41

0.6

94

0.2

35

0.8

5

0.4

47

0.6

03

0.4

75

0.6

32

0.5

48

0.6

00

0.2

48

0.8

92

0.4

70

0.6

74

0.7

20

RL

og

0.7

80

0.6

07

0.6

88

0.7

80

0.0

95

0.9

84

0.3

06

0.8

39

0.6

72

0.7

59

0.7

14

0.7

25

0.2

18

0.9

93

0.4

65

0.8

54

0.7

80

SV

M

0.9

60

0.1

14

0.3

31

0.5

37

0.0

45

0.9

95

0.2

12

0.5

20

0.6

72

0.7

59

0.7

14

0.6

68

0.0

00

1.0

00

0.0

00

0.5

00

0.9

60

AN

N

0.8

80

0.4

86

0.6

54

0.7

80

0.0

95

0.9

84

0.3

06

0.8

39

0.7

87

0.6

32

0.7

05

0.7

25

0.0

00

1.0

00

0.0

00

0.8

54

0.8

80

Table 11. Cross-Version Levels of Severity Classification TR (LOC, RFC)
 1.3 on 1.4 1.4 on 1.5 1.5 on 1.6 1.6 on 1.7

TPR TNR g-m AUC TP

R

TN

R

g

-

m

AU

C

TPR TNR g-m AUC TPR TNR g-m AUC AUC

NB 0.84

6

0.67

9

0.75

8

0.77

1

- - - - 0.81

3

0.43

6

0.01

9

0.74

0

0.88

6

0.30

2

0.01

4

0.50

0

0.84

6

J48 0.84

6

0.57

1

0.69

5

0.67

5

- - - - 0.66

8

0.67

3

0.27

4

0.73

2

0.88

2

0.11

8

0.00

1

0.50

0

0.84

6

RF 0.76

9

0.63

6

0.69

9

0.72

7

- - - - 0.66

5

0.62

5

0.26

7

0.66

5

0.83

3

0.31

8

0.17

1

0.50

0

0.76

9

RLo

g

0.84

6

0.61

4

0.72

1

0.77

3

- - - - 0.79

9

0.43

4

0.01

9

0.74

0

0.89

0

0.23

5

0.01

2

0.50

0

0.84

6

SV

M

0.84

6

0.65

0

0.74

2

0.71

0

- - - - 0.82

7

0.25

5

0.01

1

0.54

1

0.88

2

0.11

8

0.00

1

0.50

0

0.84

6

AN

N

0.92

3

0.49

3

0.67

5

0.77

3

- - - - 0.74

6

0.61

1

0.02

3

0.74

0

0.88

2

0.11

8

0.00

1

0.50

0

0.92

3

Regarding cross-version analysis, we can notice (tables 10 and 11) that, in general, we obtained good

12 Volume 17, Number 1, January 2022

Journal of Software

results when using ANT 1.3 or ANT 1.5 as a training set to build the classifier model, except when using

version ANT 1.5 as training set for High severity level (where the number of high severity faults is very low)

prediction.

In the case of binary classification (Table 10), we can see that the considered model achieved an acceptable

classification with a g-mean superior to 0.70 (an excellent evaluation according to the AUC value (0.854)). We

can notice that the best g-mean obtained is 0.714 (ANT 1.5 on 1.6) using Rlog and SVM. Regarding Levels of

Severity prediction (Table 11), only models trained on ANT 1.3 achieved acceptable results. The best

performing model was obtained using NB with a g-mean of 0.76 (best AUC is 0.773). These results can be

explained by the decremented number of bugs, probably due to the testing efforts, which allow fixing the high

severity faults. Besides that, a huge number of new classes were added to this system on new versions. The

cross-version validation seems giving good results (which is plausible) only if the version used as a training

set contains enough faults.

In a slightly different approach of cross-version validation, we tried building prediction models using the

entire data gathered from N-1 previous versions as input data and performing prediction on version N (for

example, we would use ANT 1.3 + ANT 1.4 + ANT 1.5 as input data to build our model and then perform the

prediction on ANT 1.6). However, results of this approach did not give significant improvement then using

the direct precedent version (N-1) to build our model. It would be interesting to investigate this avenue using

datasets collected from other systems.

The cross-version validation gives good results for fault prediction and more than acceptable results for

levels of severity prediction in early versions. The choice of the version which will be the training set when

using this method is crucial for achieving good results. According to the results, we can answer positively to

both RQ1 and RQ2.

4.3. Empirical Risk Prediction

In this section, we introduce the concept of empirical risk of a class. The aim of this experiment is to answer

to RQ3 (Can the risk model be used to predict the empirical risk of a class, a continuous value considering

both the number of faults the class can contain and their severity?). We define the empirical risk (ER) of a

given class C using the following formula, which takes into consideration both the number of faults and their

different levels of severity:

𝐸𝑅(𝐶) = ∑ 𝑆𝑖

6

𝑖=1

× 𝑁𝑖

where 𝑆𝑖 is the weight given to the level of severity: 6 represents the highest level of severity, which is blocker

and 1 corresponds to the lowest one, which represents trivial faults. 𝑁𝑖 will be the number of faults observed

for the level of severity 𝑖.

The objective is to use the risk model (best variant) to build a prediction model giving the ER of a class as

output. We used the machine learning algorithms with the regression scheme and tried to predict the ER of

a given class always by performing 10-cross validation, because we are trying to predict a continuous class

not a categorical one. We used: Linear regression (LR), Gaussian Process (GP), Random forest (RF), M5P a

decision tree algorithm, SmoReg and artificial neural network (ANN). Table 12 presents the results. We give

the coefficient of correlation (r, Pearson’s), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),

Relative Absolute Error (RAE) and Root Relative Squared Error (RSE) of the best variant TR (LOC, RFC) after

experimenting all the variants mentioned before.

For intra-version analysis, the best performing variant for ER prediction is TR (LOC, RFC) followed by TR

(RFC, Ca). Table 12 gives the results of only (for space limitation reasons) the variant TR (LOC, RFC). The best

13 Volume 17, Number 1, January 2022

Journal of Software

correlation coefficient completed is 0.659 for the ANT 1.3 version. For the ANT 1.5 version, it is 0.538. For

both versions ANT 1.4 and 1.7, it exceeds 0.4 despite the few faults present in these versions. The

performance is lower for version 1.6, which contains very few faults.

Table 12. TR (LOC, RFC) Intra-Version Empirical Risk Prediction
 r MAE RMSE RAE RSE

A
N
T
 1
.3

LR 0.651 5.004 7.211 66.902 75.478

GP 0.629 5.117 7.381 68.424 77.260

RF 0.439 6.091 9.282 81.437 97.162

M5P 0.651 5.004 7.211 66.902 75.478

SmoReg 0.659 4.769 7.358 63.763 77.022

ANN 0.557 5.659 8.059 75.669 84.354

A
N
T
 1
.4

LR 0.391 1.257 2.001 81.595 91.507

GP 0.355 1.287 2.033 83.597 92.987

RF 0.203 1.335 2.419 86.661 110.591

M5P 0.391 1.257 2.001 81.595 91.507

SmoReg 0.351 0.972 2.378 63.118 108.742

ANN 0.264 1.371 2.196 88.996 100.391

A
N
T
 1
.5

LR 0.468 2.494 3.496 81.300 88.229

GP 0.504 2.337 3.414 76.189 86.168

RF 0.347 2.587 4.007 84.311 101.126

M5P 0.431 2.461 3.594 80.201 90.703

SmoReg 0.472 2.096 3.607 68.333 91.047

ANN 0.482 2.644 3.571 86.194 90.104

A
N
T
 1
.6

LR 0.232 0.858 1.584 92.253 96.965

GP 0.243 0.845 1.580 90.890 96.733

RF 0.070 0.878 1.930 94.385 118.11

M5P 0.208 0.853 1.596 91.653 97.679

SmoReg 0.087 0.533 1.710 57.277 104.679

ANN 0.121 1.004 1.698 107.894 103.903

A
N
T
 1
.7

LR 0.452 0.678 1.384 85.464 89.128

GP 0.459 0.640 1.377 80.728 88.711

RF 0.280 0.681 1.669 85.763 107.51

M5P 0.452 0.678 1.384 85.464 89.128

SmoReg 0.341 0.440 1.501 55.435 96.686

ANN 0.343 0.870 1.499 109.589 96.517

The results show good correlations for versions 1.3 (0.659) and 1.5 (0.504). Also, for versions 1.4 and 1.7

(between 0.39 and 0.46) although both versions contain fewer faults. On the other hand, the lack of

performance persists with version 1.6. As seen previously, due to the absence of faults in this version, the

algorithms do not have enough input data for the training phase. We can notice from the error metrics given

in Table 12 that predictions are very close to ground truth and that the average error is relatively small. The

performance of this model for the prediction of the ER is related to its ability to predict the level of severity

of faults as seen in the previous experiments. Indeed, thanks to the “LOC” component, this model is able to

predict the probability of presence of faults. Its second component “RFC” allows predicting the level of

severity of faults.

For cross-version analysis, we used the variant TR (LOC, RFC), as the best model for intra-version analysis.

Table 13 gives the results. We can see that the model created from version N-1 can perform better than the

model created from the same version N, except when using ANT 1.4 as a training set. We have already

demonstrated the lack of reported faults on this version. We can put in light the performance of the model

14 Volume 17, Number 1, January 2022

Journal of Software

trained with data from ANT 1.3 and evaluated on ANT 1.4 that went up to a correlation coefficient of 0.417

and ANT 1.6 on ANT 1.7 with a correlation coefficient of 0.466. We can notice that Linear Regression and

Gaussian Process are the better performing machine learning algorithms for cross-version risk prediction.

Regarding RQ3 (Can the considered risk model predict fault-prone classes by giving information about both

their potential number of faults and levels of severity?), the theoretical risk model estimates the empirical

risk with a good correlation coefficient.

Table 13. TR (LOC, RFC) Cross-Version Empirical Risk Prediction
 1.3 on 1.4 1.4 on 1.5

r MAE RMSE RAE RSE r MAE RMSE RAE RSE

LR 0.417 9.327 10.914 153.361 173.762 0.486 12.895 13.339 484.575 317.463

GP 0.417 4.775 4.958 78.505 78.941 0.486 2.743 4.713 103.079 112.176

RF 0.389 9.426 11.767 154.986 187.344 0.124 2.391 4.577 89.850 108.934

M5P 0.417 9.327 10.914 153.361 173.762 0.486 12.895 13.339 484.575 317.463

SmoReg 0.417 7.217 8.748 118.657 139.283 0.486 2.405 4.627 90.382 110.122

ANN 0.390 9.511 11.282 156.382 179.621 0.211 7.054 8.024 265.078 190.967

 1.5 on 1.6 1.6 on 1.7

r MAE r MAE r MAE r MAE r MAE

LR 0.267 2.363 0.267 2.363 0.267 2.363 0.267 2.363 0.267 2.363

GP 0.267 2.067 0.267 2.067 0.267 2.067 0.267 2.067 0.267 2.067

RF 0.216 2.421 0.216 2.421 0.216 2.421 0.216 2.421 0.216 2.421

M5P 0.307 2.319 0.307 2.319 0.307 2.319 0.307 2.319 0.307 2.319

SmoReg 0.267 1.503 0.267 1.503 0.267 1.503 0.267 1.503 0.267 1.503

ANN 0.287 1.982 0.287 1.982 0.287 1.982 0.287 1.982 0.287 1.982

5. Threats to Validity

The major threats to validity of our study are:

First of all, we relied exclusively on the ANT system to conduct our experiments. The considered risk model

needs to be validated on other systems to confirm our results.

Another threat lies in our formulation of the empirical risk. Indeed, the choice of the weights for the levels

of severity is still subjective. Even though by giving the highest weight for the highest level of severity, we

tried to follow a certain logic. The problem remains in the severity categorization itself which is not formal.

The choice of the category of severity of faults is based only on the experience of testers (developers), whom

reported them. This assignment could be changed using a more objective methodology which better takes

into account the impact of faults.

Besides that, the considered risk model is based on the concept of Euclidean distance. However, this choice

is not arbitrary, it is based on the Bernoulli risk theory. It would be interesting to investigate another formula

of distance calculation such as the Manhattan distance or a more complex one that better describes the

relationship between P and I.

6. Conclusion and Future Work

In this work, we conducted a validation study to investigate the effectiveness of the considered risk model

for Cross Version Fault and Severity Prediction (CVFSP). In a previous study [16], we showed that the

considered model can be used to predict fault-prone classes and severity of faults as well. Our main

contribution in the present work lies in presenting a more practical usage of the considered risk model by

showing its effectiveness for Cross-Version Fault and Severity Prediction (CVFSP), using data of prior versions

15 Volume 17, Number 1, January 2022

Journal of Software

of the considered system. In addition, we showed that the risk model gives good results in the estimation of

the empirical risk of a class by considering both the number of faults and their levels of severity in the two

situations: (1) intra-version analysis, and (2) cross-version analysis.

About cross-version validation (RQ1 (Can a risk model built for a previous version of a given system be

reused on its next version to predict fault-prone classes?) and RQ2 (Can a risk model built for a previous

version of a given system be reused on its next version to predict fault severity?)), we wanted to investigate

if a model built on a previous version can be reused for fault-proneness and fault-severity prediction for a

new version. The objective was to verify if this approach can be used in a real-life context. We managed to

achieve acceptable results (for both cross-version binary fault prediction (a g-mean of 0.714, an AUC of 0.725)

and cross-version multi-classification of levels of severity (a g-mean of 0.758, an AUC of 0.771)), only when

using an early version as training set. We also noticed that the choice of the training set (reference version

dataset) is crucial.

Regarding the empirical risk prediction (RQ3 (Can the risk model be used to predict the empirical risk of a

class, a continuous value considering both the number of faults the class can contain and their severity?)),

the theoretical risk model estimates the empirical risk with a good correlation coefficient when the data are

more or less balanced. The risk model presented in this study seems, according to obtained results, having a

good potential not only for software fault prediction but also for level of severity prediction.

As future work, we plan to: (1) extend our study by considering many other object-oriented software

systems in order to be able to give general conclusions, (2) investigate the risk model in a cross-system

situation, using data from a system to build prediction models for other systems, and (3) conduct an empirical

comparison of the risk model to other approaches.

Conflict of Interest

Mourad Badri: Project definition, Conceptualization, Methodology, Data Collection, Writing - Review &

Editing, Supervision, Project administration

Salim Moudache: Methodology, Software, Data Collection, Formal data analysis, Investigation, Writing -

Original Draft, Writing - Review & Editing, Visualization

Authors Contributions

The authors declare no conflict of interest.

7. Acknowledgment

This work was partially supported by NSERC (Natural Sciences and Engineering Research Council of

Canada) grant. We would also like to give special thanks to Professor Fadel Toure for his help with the risk

models.

References

[1] Tim, M., Zach, M., Burak, T., Bojan, C., Yue, J., & Ayşe, B. (2010). Defect prediction from static code features:

Current results, limitations, new approaches. Automated Software Engineering, 17(4), 375–407.

[2] Antonia, B. (2007). Software testing research: Achievements, challenges, dreams. Proceedings of the 2007

Future of Software Engineering (pp. 85–103).

[3] Cagatay, C., Ugur, S., & Banu, D. (2010). Metrics-driven software quality prediction without prior fault

data. Electronic Engineering and Computing Technology, 189–199, Springer.

[4] Alireza, H., Mika, M., Markku, O., & Pasi, K. (2018). Test prioritization in continuous integration

environments. Journal of Systems and Software, 146, 80–98.

16 Volume 17, Number 1, January 2022

Journal of Software

[5] Lu, Y. F., Lou, Y., Cheng, S. Y., Zhang, L. M., Hao, D., Zhou, Y. F., & Zhang, L. (2016). How does regression test

prioritization perform in real-world software evolution? Proceedings of the 2016 IEEE/ACM 38th

International Conference on Software Engineering (ICSE).

[6] Chen, T. Y., Kuo, F. C., Liu, H., & Wong, W. E. (2013). Code coverage of adaptive random testing. IEEE

Transactions on Reliability, 62(1), 226–237.

[7] Wu, H. Y., Petke, J., Yue, J., Harman, M., et al. (2018). An empirical comparison of combinatorial testing,

random testing and adaptive random testing. IEEE Transactions on Software Engineering.

[8] Busjaeger, B., & Xie., T. (2016). Learning for test prioritization: an industrial case study. Proceedings of

the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (pp. 975–

980).

[9] Erturk, E., & Sezer, E. A. (2015). A comparison of some soft computing methods for software fault

prediction. Expert Systems with Applications, 42(4), 1872–1879.

[10] Malhotra, R. (2015). A systematic review of machine learning techniques for software fault prediction.

Applied Soft Computing, 27, 504–518.

[11] Moeyersoms, J., Fortuny, E. J., Dejaeger, K., Baesens, B., & Martens, D. (2015). Comprehensible software

fault and effort prediction: A data mining approach. Journal of Systems and Software, 100, 80–90.

[12] Rathore, S. S., & Kumar, S. (2017). An empirical study of some software fault prediction techniques for

the number of faults prediction. Soft Computing, 21(24), 7417–7434.

[13] Madeyski, L., & Jureczko, M. (2015). Which process metrics can significantly improve defect prediction

models? An empirical study. Software Quality Journal, 23(3), 393–422.

[14] Harter, D. E., Kemerer, C. F., & Slaughter, S. A. (2012). Does software process improvement reduce the

severity of defects? A longitudinal field study. IEEE Transactions on Software Engineering, 38(4), 810–

827.

[15] Zhou, Y. M., & Leung, H. (2006). Empirical analysis of object-oriented design metrics for predicting high

and low severity faults. IEEE Transactions on Software Engineering.

[16] Moudache, S., & Badri, M., (2019). Software fault prediction based on fault probability and impact.

Proceedings of the 2019 18th IEEE International Conference on Machine Learning And Applications

(ICMLA).

[17] Toure, F. (2016). Effort orientation of unit tests in objectoriented systems, an approach based on

software metrics. Ph.D. Dissertation. Universite Laval.

[18] Raed, S. (2010). A quantitative investigation of the acceptable risk levels of object-oriented metrics in

open-source systems. IEEE Transactions on Software Engineering, 36(2), 216–225.

[19] Shyam, R. C., & Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE Transactions on

Software Engineering, 20(6), 476–493.

[20] Bender, R. (1999). Quantitative risk assessment in epidemiological studies investigating threshold

effects. Biometrical Journal, 41(3), 305–319.

[21] Lu, H. H., Cukic, B., & Culp, M. (2012). Software defect prediction using semi-supervised learning with

dimension reduction. Proceedings of the 27th IEEE/ACM International Conference on Automated Software

Engineering.

[22] Lu, H. H., Cukic, B., & Culp, M. (2014). A semi-supervised approach to software defect prediction.

Proceedings of the 2014 IEEE 38th Annual Computer Software and Applications Conference (pp. 416–425).

[23] Catal, C. (2014). A comparison of semi-supervised classification approaches for software defect

prediction. Journal of Intelligent Systems, 23(1), 75–82.

[24] Bishnu, P. S., & Bhattacherjee, V. (2012). Software fault prediction using quad tree-based k-means

clustering algorithm. IEEE Transactions on Knowledge and Data Engineering, 24(6), 1146–1150.

17 Volume 17, Number 1, January 2022

Journal of Software

[25] Catal, C., Sevim, U., & Diri, B. (2009). Clustering and metrics thresholds based software fault prediction

of unlabeled program modules. Proceedings of the Sixth International Conference on Information

Technology: New Generations (pp. 199–204).

[26] Boucher, A., & Badri, M. (2018). Software metrics thresholds calculation techniques to predict fault-

proneness: An empirical comparison. Information and Software Technology, 96, 38–67.

[27] Shatnawi, R., Li, W., Swain, J., & Newman, T. (2010). Finding software metrics threshold values using ROC

curves. Journal of Software Maintenance and Evolution: Research and Practice, 22(1), 1–16.

[28] Alves, T. L., Ypma, C., & Visser, J. (2010). Deriving metric thresholds from benchmark data. Proceedings of

the 2010 IEEE International Conference on Software Maintenance (pp. 1–10).

[29] Boucher, A., & Badri, M. (2017). Predicting fault-prone classes in object-oriented software: An adaptation

of an unsupervised hybrid SOM algorithm. Proceedings of the 2017 IEEE International Conference on

Software Quality, Reliability and Security.

[30] Abaei, G., Selamat, A., & Fujita, H. (2015). An empirical study based on semi-supervised hybrid self-

organizing map for software fault prediction. Knowledge-Based Systems, 74, 28–39.

[31] Hong, E. (2017). Software fault-proneness prediction using module severity metrics. International

Journal of Applied Engineering Research, 12(9), 2038–2043.

[32] Shatnawi, R., & Li, W. (2008). The effectiveness of software metrics in identifying error-prone classes in

post-release software evolution process. Journal of systems and Software, 81(11), 1868–1882.

[33] Singh, Y., Kaur, A., & Malhotra, R. (2010). Empirical validation of object-oriented metrics for predicting

fault proneness models. Software Quality Journal, 18(1), 3.

[34] Chen, X. L., Jiang, J. H., Zhang, W., & Xia, X. Z. (2020). Fault diagnosis for open source software based on

dynamic tracking. Proceedings of the 2020 7th International Conference on Dependable Systems and Their

Applications (DSA).

[35] Yucalar, F., Ozcift, A., Borandag, E., & Kilinc, D. (2020). Multiple-classifiers in software quality engineering:

Combining predictors to improve software fault prediction ability. Engineering Science and Technology,

an International Journal, 23(4), 938–950.

[36] Ali, A., & Gravino, C. (2020). Bio-inspired algorithms in software fault prediction: A systematic literature

review. Proceedings of the 2020 14th International Conference on Open Source Systems and Technologies

(ICOSST).

[37] Kumar, A., & Bansal, A. (2019). Software fault proneness prediction using genetic based machine learning

techniques. Proceedings of the 2019 4th International Conference on Internet of Things: Smart Innovation

and Usages.

[38] Jin, C. (2021). Software defect prediction model based on distance metric learning. Soft Computing, 25(1),

447–461.

[39] Jureczko, M. (2011). Significance of different software metrics in defect prediction. Software Engineering:

An International Journal, 1(1), 86–95.

[40] Jureczko, M., & Madeyski, L. (2010). Towards identifying software project clusters with regard to defect

prediction. Proceedings of the 6th International Conference on Predictive Models in Software Engineering.

[41] Malhotra, R., & Bansal, A. J. (2015). Fault prediction considering threshold effects of object-oriented

metrics. Expert Systems, 32(2), 203–219.

[42] Yu, L. G. (2012). Using negative binomial regression analysis to predict software faults: A study of apache

ant.

[43] McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering, 4, 308–320.

[44] Basili, V. R., Briand, L. C., & Melo. W. L. (1996). A validation of object-oriented design metrics as quality

indicators. IEEE Transactions on Software Engineering, 22(10), 751–761.

18 Volume 17, Number 1, January 2022

Journal of Software

[45] Jureczko, M., & Spinellis, D. (2010). Using object-oriented design metrics to predict software defects.

Models and Methods of System Dependability. Oficyna Wydawnicza Politechniki Wrocławskiej, 69–81.

[46] Yourdon, E., & Constantine., L. L. (1979). Structured Design: Fundamentals of A Discipline of Computer

Program and Systems Design (1st ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[47] Briand, L. C., Wust, J., & Lounis, H. (1999). Using coupling measurement for impact analysis in object-

oriented systems. Proceedings of the IEEE International Conference on Software Maintenance (pp. 475–

482).

[48] Martin, R. (1994). OO design quality metrics. An Analysis of Dependencies, 12, 151–170.

[49] Henry, S., & Kafura, D. (1981). Software structure metrics based on information flow. IEEE transactions

on Software Engineering, 5, 510–518.

[50] Rosenberg, L. H., Stapko, R., & Gallo, A. (1999). Risk-based object oriented testing. 24th SWE. NASA,

Greenbelt, MD, USA.

[51] Booch, G. (1991). Object-oriented design with applications, Redwood City, CA, enj armnCummings.

[52] Shatnawi, R. (2012). Improving software fault-prediction for imbalanced data. Proceedings of the 2012

International Conference on In Innovations in Information Technology.

[53] Risk, O., & Bernoulli. D. (1954). Exposition of a new theory on the measurement. Econometrica, 22(1),

23–36.

[54] Briand, L. C., Wu st, J., Daly, J. W., & Porter, D. V. (2000). Exploring the relationships between design

measures and software quality in object-oriented systems. Journal of Systems and Software, 51(3), 245–

273.

[55] Gyimothy, T., Ferenc, R., & Siket, I. (2005). Empirical validation of object-oriented metrics on open source

software for fault prediction. IEEE Transactions on Software Engineering, 31(10), 897–910.

[56] Iliev, M., Karasneh, B., Chaudron, M. R., & Essenius. E. (2012). Automated prediction of defect severity

based on codifying design knowledge using ontologies. Proceedings of the 2012 First International

Workshop on Realizing Artificial Intelligence Synergies in Software Engineering.

[57] Bearden, W. O., & Netemeyer, R. G. (1999). Handbook of marketing scales: Multi-item measures for

marketing and consumer behavior research.

[58] Catal, C., & Diri, B. (2007). Software fault prediction with object-oriented metrics based artificial immune

recognition system. Proceedings of the International Conference on Product Focused Software Process

Improvement.

[59] Olson, D. L., & Delen, D. (2008). Advanced data mining techniques. Springer Science & Business Media.

[60] Refaat, M. (2010). Data preparation for data mining using SAS.

[61] Singh, S., & Kahlon, K. S. (2014). Object oriented software metrics threshold values at quantitative

acceptable risk level. CSI Transactions on ICT, 2(3), 191–205.

[62] Wendland, M. F., Kranz, M., & Schieferdecker, I. (2012). A systematic approach to risk-based testing using

risk-annotated requirements models. Proceeding of the Seventh International Conference on Software

Engineering Advances.

[63] Khoshgoftaar, T. M., Seiffert, C., Hulse, J. V., Napolitano, A., & Folleco, A. (2007). Learning with limited

minority class data. Proceeding of the Sixth International Conference on Machine Learning and

Applications.

[64] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining

software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.

[65] Kaur. A., & Kaur, K. (2014). Performance analysis of ensemble learning for predicting defects in open

source software. Proceeding of the 2014 International Conference on Advances in Computing,

Communications and Informatics.

19 Volume 17, Number 1, January 2022

Journal of Software

[66] Christopher, K. I. W. (2006). Gaussian Processes Formachine Learning, Taylor & Francis Group.

[67] Goyal, R., Chandra, P., & Singh, Y. (2014). Suitability of KNN regression in the development of interaction

based software fault prediction models. IERI Procedia, 15–21.

[68] Torrado, N., Wiper, M. P., & Rosa, E. L. (2012). Software reliability modeling with software metrics data

via Gaussian processes. IEEE Transactions on Software Engineering, 39(8), 1179–1186.

[69] Keim, D. A. (2002). Information visualization and visual data mining. IEEE transactions on Visualization

and Computer Graphics, 8(1), 1–8.

[70] Malhotra, R., & Jain, A. (2012). Fault prediction using statistical and machine learning methods for

improving software quality. Journal of Information Processing Systems, 8(2), 241–262.

[71] Sun, Y. M., Kamel, M. S., & Wang, Y. (2006). Boosting for learning multiple classes with imbalanced class

distribution. Proceeding of the Sixth International Conference on Data Mining.

[72] Shatnawi, R. (2017). The application of ROC analysis in threshold identification, data imbalance and

metrics selection for software fault prediction. Innovations in Systems and Software Engineering, 13(2-3),

201–217.

[73] Hosmer, D. W., & Lemeshow. S. (2000). Special topics. Applied Logistic Regression, 260–351.

[74] Chawla, N. V., Bowyer, K. W., Hall., L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-

sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.

[75] Catal, C., & Diri, B. (2008). A fault prediction model with limited fault data to improve test process.

Proceeding of the International Conference on Product Focused Software Process Improvement.

[76] Seiffert, C., Khoshgoftaar, T. M., Hulse, J. V., & Napolitano, A. (2008). Building useful models from

imbalanced data with sampling and boosting. Proceeding of the Florida Artificial Intelligence Research

Society Conference.

[77] J. V., Hulse, Khoshgoftaar, T. M., & Napolitano, A. (2007). Experimental perspectives on learning from

imbalanced data. Proceedings of the 24th International Conference on Machine Learning.

Copyright © 2022 by the authors. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited (CC BY 4.0)

Mourad Badri is a full professor of computer science at the Department of Mathematics

and Computer Science of the University of Quebec at Trois-Rivie res (Canada). He holds

a PhD in computer science (software engineering) from the National Institute of

Applied Sciences in Lyon, France. His main areas of interest include object and aspect-

oriented software engineering, software quality attributes, software testing,

refactoring, software evolution and application of machine learning in software

engineering.

20 Volume 17, Number 1, January 2022

Journal of Software

Salim Moudache is a graduate student (master - applied mathematics and computer

science) from the Department of Mathematics and Computer Science of the University

of Que bec at Trois-Rivie res (Canada). His main research fields are software engineering,

data science, application of machine learning in software engineering and artificial

intelligence.

https://creativecommons.org/licenses/by/4.0/

