

Object Metrics for Green Software

Mourad Chabane Oussalah*, Romain Brohan, Ossama Moustafa

LS2N, University of Nantes - Faculty of Science and Technology (FST) Building 34. 2 Chemin de la Hous-
sinie re, BP 92208, 44322 Nantes Cedex 3, Loire-Atlantique, France.

*Corresponding author. Tel.: +33 2 51 12 58 47; email: mourad.oussalah@univ-nantes.fr
Manuscript submitted January 10, 2021; accepted March 8, 2021.
doi: 10.17706/jsw.16.6.285-305

Abstract: Today, the energy consumption of computers represents a significant part of the overall consump-

tion. The purpose of this article is to apply object and architectural metrics to observe the impact on applica-

tion consumption. This article focuses on the most common object applications to date, and their architec-

tures that are already useful to optimize the reusability, composability or dynamicity of these applications.

To do this, consumption must be evaluated and compared according to the variations of object and architec-

tural metrics. These observations help to determine how effective these metrics could be.

Key words: Metrics, software consumption, object application, software architecture.

1. Introduction

In today's world, the need to think about ecology is more and more present. Technological development

raises new questions about the impact of new technologies on the ecosystem [1], with the deployment of

more and more data centers [2], different tools and applications. To give an idea, if the Internet were a country,

it would be the 7th largest emitter of CO2 in the world [3]. Reducing the power consumption of these data

centers requires an optimization of the software concerned.

In this article, we present an approach to help address the problem of reducing the consumption of devices

and data centers in general, by focusing on the code and architecture [4] of the applications used by machines.

We measure the energy consumption of an application, first without applying any metrics to it, then by ap-

plying them, to show that the use of object metrics in the field of object-oriented programming (chosen for

its widespread use [5]) and the right choice of architecture lead to a reduction in application consumption

and therefore a reduction in CO2 emissions from devices and data centers.

Several studies have already been carried out in this field, notably within the framework of the TEEC pro-

ject [6] whose aim is to develop a complete software consumption measurement tool, or the previous work

of our team [7] on the state of the art of Green Software. Other projects have also focused on comparing

consumption between different programming languages [8].

In the rest of this article we look at the work already existing on the subject. This section will present dif-

ferent object and architectural metrics, followed by tools for measuring object metrics and software architec-

ture tools, and finally a presentation of several consumption measurement tools. In the second section enti-

tled Conceptual Framework, we get to the heart of the matter by presenting in more detail our equipment

285 Volume 16, Number 6, November 2021

Journal of Software

mailto:mourad.oussalah@univ-nantes.fr

and the path planned for carrying out the experiments. This part will also consist in selecting first the differ-

ent object and then architectural metrics that we will use from the one discovered in the Related Works part,

followed by the same selection for the object, architectural and software consumption measurement tools.

Then finally, we will present our experiments, in order to prove our hypotheses, which will be followed by a

synthesis reviewing the purpose of this article. Finally, we will end with the practical framework and experi-

mental evaluation part in which we will first carry out experiments on the different selected metrics using

the chosen tools, followed by a discussion on each of the experiments carried out, and we will conclude.

2. Related Works

First of all, we are interested in existing metrics. Metrics [9] are used to evaluate the quality of an applica-

tion in different aspects: for example, to assess its maintainability, comprehension, or performance. Several

studies [10]-[13] have proposed these metrics so that they can be applied to all types of applications, which

allows, for example, to compare several versions of the same application, in order to know which is the best

one according to the chosen aspects. Here, we want to know if these metrics can also influence the consump-

tion of an application and which are the most relevant.

To carry out our research, we must first choose and implement different criteria for the different points of

interest to us, namely selecting the best criteria to have a good object code, and a quality software architecture,

because it already allows to optimize other domains: indeed, there are object type metrics for the source code,

and architectural metrics, which will have an impact on the application structure. These criteria allow us to

compare the different metrics, in order to find those that would be most interesting for our case. Our goal is

to observe the variation in consumption according to these metrics.

2.1. Object Metrics

Let's start with the criteria for classifying metrics. Our research has led us to several classifications already

suggested in the works [14], [15], which complement each other. We therefore summarize here the criteria

found:

● Package: Metrics performing measurements at the package level.

● Class: Metrics performing measurements on classes.

● Method: Metrics measuring everything related to methods.

● Relationship: Metrics measuring the coupling relationships and relationships between classes.

● Inheritance: Metrics measuring inheritance relationships.

These criteria give us a good overview of the concepts of object-oriented programming.

Following the work already done [16], here is what we have retained (the numbers in brackets indicate the

number of quotations from the original paper of the metric):

● Weighted method per class (WMC) /McCabe Cyclomatic Complexity (6394/ 2196): The score of this

metric corresponds to the sum of the complexities of the methods in a class.

● Depth Inheritance Tree (DIT) (6394): Indicates the depth of a class in its inheritance tree.

● Number Of Children (NOC) (6394): Indicates the number of direct children in a class.

● Response for a class (RFC) (6394): gives the number of methods that can be executed in response to

a message received by an object in the class concerned by this score.

● Coupling Between Objects(CBO) (6394) : Gives a coupling score between two classes. Calculated by

counting the other classes that use the methods and attributes of the class, plus the number of classes

used by the class in question (via method or attribute).

● Lack of Coherence of Methods (LCOM or LOCOM) (6394): Gives a cohesion score per method of a

class.

● Instability(I) (291): Allows to measure the relative susceptibility of the class to changes.

286 Volume 16, Number 6, November 2021

Journal of Software

● Number Of Packages(NoP): counts the number of packages used by the selected element.

A large part of these metrics come from well-known metric sets: Chidamber & Kemerer in 1991 and Robert

Martin in 1994.

2.2. Object Metric Tools

In order to carry out our tests successfully, we are looking for, in addition to metrics, a tool that allows us

to measure the future selected metrics. To do this, we establish several criteria based on Kayarvizhy's re-

search in 2016[17] :

● Maintained tool: if the tool is still maintained, then it can be assumed that it is up to date and func-

tional.

● Metric coverage: Ideally, the tool should calculate several metrics. In Table 1, the Coverage column

gives the number of metrics covered by the tool. We consider that a tool has a good coverage from

20 metrics, between 10 and 20 it is considered as average and below 10 its coverage is not enough

to be interesting. The choice will also depend on the relevance and effectiveness of the measured

metrics, as discussed later.

Table 1. List of Tools for Measuring Object Metrics (Based on Kayarvizhy's Work)

NA: No Response Received from the Scientific Community

Tool

name
Language Automatic Free Validation Coverage Author/Team Location Date

SD Metrics

[18]
UML yes no NA 131 Jürgen Wüst Allemagne 2012

RSM [19]
C++, Java,

C#
yes no NA 100

M Square Tech-

nologies
Floride 1998

JHawk [20] Java yes no 25+ 115
Virtual Machin-

ery
Ireland 1999

QMOOD++

[21]
C++ yes yes None 30+ OO met-

rics

Jagdish Bansiya

and Carl Davis

[27]

Alabama 1997

Ckjm [22] Java no yes 25+ 8
Diomidis Spinel-

lis
Grèce 2005

JMT [23] Java yes yes 5 19 Ingo Patett Allemagne 2002

JDepend

[24]
Java no yes 25+ 7 Mark Clark France 2008

Eclipse Met-

rics [25]
Java yes yes 25+ 29 State Of Flow Angleterre 2006

287 Volume 16, Number 6, November 2021

Journal of Software

Test-

Well CMT-

Java [26]

Java yes no NA 20 Testwell Oy Finlande 2012

CodeMR

[27]

Java, C++,

Scala
yes

Yes

and no
NA 40 CodeMR Team Angleterre 2018

● Language: Language supported by the tool. Important if the user is subject to constraints on the pro-

gramming language.

● Automatic: do you need any special handling to install and use the tool? The difficulty of getting

started is an important criterion for a tool, if it is not affordable by everyone, it will not be used much.

● Free: is the tool free or not? Important depending on the user's budget.

● Validation: has the tool been validated by the scientific community? This criterion is interesting for

determining the reliability of the tool. In Table 1, NA means that there was no response from the

scientific community on the tool, while 25+ indicates that there were more than 25 responses re-

garding the validity of the tool.

● Author: Person who created the tool (informative criterion)

● Location: Region where the tool was developed (informative criterion)

● Date : Date de réalisation de l’outil (critère informatif)

Some more recent tools were then added to complete the list, such as CodeMR [9] for example. [See Table

1]

2.3. Architectural Metrics

There are various architectural metrics [28], useful for assessing the architectural quality of software. In a

previous work [29], we developed different architectural metrics, including loose coupling, abstraction of

communications, expressive power, evolutionary power, proprietary responsibility, and package depth,

which we detail below.

The loose coupling metric [30] evaluates the independence of classes, because the more a class is coupled,

the more it depends on other classes. The explicit architecture metric evaluates the clarity of the application

structure: i.e. the names assigned to the classes/packages, so that it is more understandable. The communi-

cation abstraction metric allows to evaluate the simplification of complex communication channels, in order

to better understand a conversion system, or a heterogeneous system. For the power metrics, expressive and

evolutionary, they respectively assess the ability of the paradigm to create an understandable concept, and

the possibility of updating or improving this system under good conditions. In the long term, scalability can

also have an impact on the consumption of application maintenance, which is different from the end-user

consumption we see here: a better architecture will require less effort from developers when updating the

application, knowing that the latter represent a considerable part of the work [31] of IT companies, and

therefore of their consumption. Finally, the property liability metric aims to observe the freedom granted to

the user by the developer: the more the end user has the possibility of modulating the application as he

wishes, the higher the metric will be; and the package depth metric observes the package hierarchy: the

deeper the child subpackages are, the more the metric will evaluate a good architecture structure.

All metrics can be grouped into three viewpoints, but with different weights depending on the viewpoint

288 Volume 16, Number 6, November 2021

Journal of Software

used. These three points of view are used to evaluate an architecture: reusability (object architecture), com-

posability (component architecture), and dynamicity (service architecture).

Table 2. Architectural Metrics and Extraction Tools

Architectural

metrics

Concerns the rela-

tionships between

classes

Is observable

through the

structure

Can be evaluated to

compare

Will reduce consump-

tion during mainte-

nance

Loose coupling Yes, in proportion to

the number of cou-

plings.

Yes, the coupling

is represented by

a link.

Yes, the more coupling

there is, the lower the

value decreases.

Yes, less coupling facili-

tates replacement and

composability

Abstraction of

communication

Yes, simplification of

communication rela-

tionships.

Yes, abstract com-

munication is

simplified in the

structure.

Yes, the more complex

the communications

are, the more the met-

ric decreases.

Yes, allows the devel-

oper to spend less time

on communications

Expressive power No No No Yes, allows you to un-

derstand the architec-

ture more quickly

Evolutionary

power

Yes, reducing the

number of relation-

ships facilitates evo-

lution.

No Yes, the more possibili-

ties there are to replace

or improve compo-

nents, the more the

metric increases.

Yes, allows components

to be easily upgraded

rather than creating

new ones

Owner's respon-

sibility

No Yes, the parts that

can be adjusted

by the end user

must be distin-

guishable.

Yes, the more freedom

the user has, the more

the metric increases.

No, giving more free-

dom to the user may re-

quire more work from

developers

Depth of pack-

ages

No Yes, the package

encapsulation is

visible in the

structure.

Yes, the greater the av-

erage depth of the

packages, the greater

the value increases.

Yes, a better structure

directs the developers'

choices

In order to compare these metrics [Table 2], seeing if they imply relationships between classes, if they are

seen in the structure of the application, and if it applies a value (if not, it only lists their variety).

We have to find out if a metric has an influence on consumption by the end user, for example the expressive

power only serves to explain the architecture from the developer's point of view (class names, package

names...), so it cannot have any directly in the short term by the end user; however, it can have an influence

on another energy consumption: that by the developers, who will work less when maintaining the application

if it has good expressive power. We must not only take coupling metrics, but we must diversify our tests in

289 Volume 16, Number 6, November 2021

Journal of Software

order to better explore this field. And we need a valuation from the metric, otherwise comparisons would be

impossible.

Some of these architectural metrics can be observed through the application architecture. However, there

may be several possible architectures for the same application, and the architecture of an application may be

non-existent or eroded. This is why we are then interested in architecture extraction, in order to obtain a new

architecture from an application. Our goal is to find a link between this extraction and some of the architec-

tural metrics discussed in this section.

2.4. Architectural Tools

We have a choice of three types [32] of extraction tools: by correspondence, by groupings, or by conciliation.

Correspondence means corresponding the structure of the application to a created conceptual architecture,

grouping means forming groups of classes according to their relationships, in order to form groups with

strong cohesion with weak coupling between the groups; finally, conciliation consists in first grouping and

then reconciling these groups to a conceptual architecture. We then compare these categories according to

the metrics mentioned [Table 3].

An example of a grouping tool is Bunch, developed by Mitchell [33], [34]. The latter can use three clustering

algorithms: optimal, sub-optimal, or genetic. The optimal algorithm has the problem that it does not scale up,

the sub-optimal algorithm has a local optimum problem, while the genetic algorithm does not have these

problems. This tool then makes it possible to concretize a process of groupings, and to apply it to the source

code of an application in order to extract an architecture. Basically, the Bunch tool performs groupings ac-

cording to the cohesion/coupling criterion, but it is possible to modify these criteria, based on other metrics,

which would be more interesting for our project.

An example of a mapping tool is the Reflexion Model [35], which compares the source model with the con-

ceptual architecture. It was developed in 1995 by Murphy, Notkin and Sullivan in the United States. It has

already proven itself on large-scale applications, such as a Unix operating system, or Microsoft Excel. It then

displays all the differences: the parts that exist in the source model but not in the conceptual architecture,

and vice versa. This tool exists both as a full-fledged application, and as an eclipse plug-in [36].

An example of a conciliation tool is the extension of KNIME, by Mira Abboud [37]. It applies only to Java

code, and allows the architect to choose the number of groups to be produced. It is based on KDD[38] (Data

Extraction from Knowledge), specializing it: the extracted data is the final architecture, and the knowledge is

both the source of the application and the high level knowledge of the architect; this tool starts by extracting

the source model, and performs groupings according to its entities, as well as the relationships between them.

It is not simply a grouping process, because it takes into account the architect's knowledge, which can influ-

ence the final architecture: for example, on the number of groups that must be obtained.

Table 3. Architecture Tool Criteria

Tool Metric
Groupings

(example: Bunch)

Correspondence

(example: Reflexion

Model)

Conciliation

(example: Knime)

Coupling
Yes, minimizes coupling

between groups.

If the architect decides to

group in such a way as to

reduce the coupling.

Yes, minimizes coupling

between groups.

290 Volume 16, Number 6, November 2021

Journal of Software

Abstraction of com-

munication No

If the architect decides to

simplify a complex com-

munication protocol.

If the architect decides to

simplify a complex com-

munication protocol.

Expressive power
No

Depending on the name

chosen by the architect.

Depending on the name

chosen by the architect.

Evolutionary power
Yes, make the groups

independent.

If the architect independ-

ence of the groups that will

need to evolve.

Yes, make the groups

independent.

Owner's responsibil-

ity
No

If the architect gives the

user freedom.

If the architect gives the

user freedom.

Depth of packages Yes, encapsulates groups

with strong internal cohe-

sion.

According to the hierarchy

of packages chosen by the

architect.

Yes, encapsulates groups

with strong internal cohe-

sion.

2.5. Consumption Measurement Tools

In order to measure the consumption of the applications running, we are looking for a tool that can meas-

ure the power consumption of software in real time. To do this, we once again choose selection criteria, which

are in fact the same as those used in a previous work of our team, which we felt were relevant. We add to this

the current state of development of the tool, which gives us the following criteria:

● Granularity: Indicates the lowest level measurable by the application. This is useful if we want to

apply our measures to a particular level of application.

● Coverage: Indicates which elements of the physical machine are covered by the energy consumption

measurement. Important if you want a tool that can measure with high accuracy or not, or only the

CPU or memory for example.

● Development: Location of the development site of the tool (informative criterion).

● Year: Gives the year of publication of the tool, useful if you are looking for a recent tool.

● Industry/Research: Informs whether the tool comes from the research field or from the industrial

field.

● Dev status: Current status of tool development: is it complete? maintained? private?

We thus present the list of the following tools (see [Table 4]).

Table 4. List of Software Consumption Measurement Tools

Name

Granular-

ity Coverage Development Year

Industry/

Research Dev status

jRAPL[39]

Source

Code CPU-RAM-"Uncore" USA/Brazil 2015 Research Completed

TEEC[40]

Source

Code

CPU, RAM, disque, ré-

seau France 2015 Research

On Go-

ing/private

291 Volume 16, Number 6, November 2021

Journal of Software

PowerAPI[41] Software CPU France 2012 Research

On Go-

ing/private

Greenspector

[42]

Source

Code Application Mobile Nantes 2011 Industry

On Go-

ing/private

Jalen[43]

Source

Code CPU, Disque, network Lille

2013-

2014 Research Completed

3. Conceptual Framework

3.1. Metrics and Target Element

During these experiments we try to cover all aspects of object programming, based on the criteria an-

nounced in the Related Work section. We therefore target the following object elements: Package, Class,

Method, Relationship and Inheritance.

Then, we have to select the metrics we will use from those we will record. For this purpose we establish

several criteria:

a complete coverage of the different aspects of object-oriented programming via the chosen metrics: These

different aspects are: Package, Class, Method, Relationship and Inheritance. Each selected metric measures

at least one of these aspects.

Metrics whose measurements are relevant to our research: i.e. metrics that impact the effort of the code

when applied, such as time complexity, or the number of operations performed by the application.

The popularity of metrics: This criterion is based on the fact that if metrics are known, then they are used

and accepted by the scientific community. For this purpose we use the number of citations of the original

paper of the metric, we consider that the metric is recognized and strongly used when its paper exceeds 6000

citations.

We now use these criteria to select the metrics whose application has demonstrated the final quality of

the code:

● Weighted method per class (WMC) / McCabe Cyclomatic Complexity: This is exactly what we are

looking for since these metrics allow us to detect abnormal values of complexity in certain methods

and classes.

● Depth Inheritance Tree (DIT): Allows the analysis of the complexity of the application architecture.

● Response for a class (RFC): The impact of a call can affect consumption if, for example, the call of a

method results in very high successive calls of methods, therefore relevant metrics.

● Coupling Between Objects (CBO): Coupling can be a source of complexity.

● Package Depth (PD): Determines the quality of the architecture structure according to the average

depth of the packages. The greater the depth, the more well structured the architecture is considered.

Quoted as such, the metrics are estimated on an equal footing in terms of impact on consumption. How-

ever, it is possible that several metrics may prove to have a greater impact than others once a certain thresh-

old is reached by the metric. We can therefore determine for some metrics, an optimal weight and threshold:

Optimal threshold: The threshold would correspond to the optimal value of the metric (obtained by meas-

urement with a tool or by hand) for which the application's consumption is the lowest. If this criterion is

feasible, it will be very useful for programmers to choose which metric they intend to influence, for example

if the optimal threshold of one metric cannot be reached for them for particular reasons, they may seek to fall

back on another metric whose optimal threshold is less distant. This criterion also provides a "goal to

292 Volume 16, Number 6, November 2021

Journal of Software

achieve" for programmers who want their application to consume as little as possible.

Weight: Represents the degree of influence and impact of the metric on the variation in consumption of the

application. This criterion, if feasible, would allow a classification of the most influential object-oriented met-

rics in the energy field, which would help programmers make the right choices for consumption.

To observe architectures, we use an architecture extraction tool, which is the Bunch tool[44], because it

allows us to evaluate the coupling, and to minimize it: it allows us to group classes so that groups have a

strong internal cohesion and a weak inter-class coupling. This tool is useful to us because it uses interesting

architectural metrics. The goal is to find an architecture of the application with as little coupling as possible.

Another possible architectural target is the depth of the packages: through our observations through the tool,

we must prioritize the application's packages.

Below (see [Table 5]) is represented the coverage of all the selected metrics in relation to our chosen cri-

teria. We can see that all criteria are covered by the selected metrics.

Table 5. Metrics Coverage Table Chosen by Metric Category:

* estimable weight ** estimable threshold

Measured item

Name of the metric

Package Class Method Relation Heritage

Depth Inheritance Tree* ** X X

Weighted Methods per Class* ** X X

Response for a Class* ** X X

Coupling Between Objects* ** X X X

McCabe Cyclomatic Complexity** X

Package Depth* ** X X

After these measurements, the next step is to combine architectural metrics and objects. Depending on the

results, optimizations should accumulate. For each new version of the application, the consumption must be

re-measured, to observe if a change has occurred. Combinations are then possible between architectural and

object metrics, but also with metrics that are both architectural and object.

3.2. Selected Object Metric Tool

In order to monitor the variation of the metric values we must now choose the tool we will use. To do this,

we review the criteria used and the tools found during our research, and we analyze the list to see which tools

best meet our needs.

Overall, all the tools found have a large metric coverage, except ckjm which only measures Chidamber and

Kemerer metrics, and JDepend which does not measure any metrics in the source code[45], so we leave them

out. Then, we are looking for an ideally free tool, so we can remove TestWell CMTJava, SD Metric, JHawk and

RSM. So we still have QMOOD+++, Eclipse Metrics and CodeMR. We can already remove QMOOD+++ since it

does not cover Java. Eclipse Metrics and CodeMR respect all the conditions and are in addition easy to access

293 Volume 16, Number 6, November 2021

Journal of Software

since they can be integrated into Eclipse. We are therefore mainly interested in these two tools.

To separate these two tools and choose which one we will use, we decide to compare them according to the

established criteria. To do this, we compare the metrics they measure with the ones we have selected. Eclipse

Metrics covers WMC, LCOM, DIT, NOC, Instability and Number of Package. CodeMR covers WMC, LCOM, DIT,

NOC, Instability, Number of Package and the last two that interest us, namely RFC and CBO. As a result,

CodeMR covers all the criteria we have selected, which makes it the most interesting tool for us and it is the

one we will use later.

3.3. Selected Architectural Tool

With regard to low coupling architectural metrics, the extraction of architecture by grouping is interesting

to us: the common goal is to reduce to a minimum the relationships between the different groups, which

constitute packages. This also makes it possible to observe groups with very strong cohesions, which could

be reunited, or on the contrary, groups with weak cohesion, which should be split.

Unlike correspondence and conciliation tools, which use a conceptual architecture, handmade by the ar-

chitect. These cannot automate any metrics, and require full control of the architecture over the choices con-

sidered.

A tool for extracting by architecture that we find is Bunch : it allows different ways to find these groups, by

exhaustiveness (tests all possible combinations), or by genetic algorithm (tests a population, and performs

mutations). First of all, use the Chava tool[46], which allows you to extract an mdg file. Then, you must give

this file to the Bunch software, then choose a grouping method. Once the grouping is complete, Bunch outputs

a dot file, representing the groupings made in diagram form. We choose this tool because it allows us to eval-

uate the weak coupling of an architecture, which is one of the metrics we have listed.

3.4. Selected Consumption Tool

As we can see from the results of our research, several tools have a wider coverage of measured compo-

nents than the others, it is first of all towards them that we will go. Among them we have jRAPL, Tool to

Estimate Energy Consumption and Jalen. Unfortunately, Jalen has not been maintained since 2014, so there

is no evidence of its functioning, and TEEC [47], the tool that seems most interesting, is developed privately

and not distributed. This leaves jRAPL, a tool that works at the source code level, which allows you to frame

the part of the code you want to measure with two tags. It is a precise tool that can be used in conjunction

with another tool to compare the consistency and reliability of results.

This leaves PowerAPI, GreenSpector and PeTRa [48]. Unfortunately, again, we are mainly looking for a tool

that can measure an application locally, but PeTRa and GreenSpector focus on mobile applications, which

limits their usefulness in our case. Finally, although PowerAPI only measures the processor, it is known that

the majority of an application's consumption comes from this element, and the tool is relatively widespread

and used by several groups. However, despite its use, the results it provides are variable, which requires sev-

eral measurements and an average to obtain a result. We have therefore been led in parallel to take a more

precise tool which is jRAPL.

4. Practical Framework and Experimental Evaluation

4.1. Experimentation

For our experiments, we implement the following methodology: starting from an object-oriented applica-

tion, we first create a non-optimized version of the code by adding the score of the metric we want to test. We

then measure the consumption of this version. Then we create an optimized version of this code, always

based on the score of the measured metric. We then measure this second version, and finally compare the

294 Volume 16, Number 6, November 2021

Journal of Software

two measurements with each other.

To highlight the impact of the metrics on consumption, we started looking for a test set that was repre-

sentative and close to real conditions. This test game is an application implementing a Tower Defense game,

made during the Cobresun Fall Game Jam 2017[49], [50]. The goal of the game is to protect the White House

from terrorists who approach along a specific route, hidden among tourists. As the experiments progress, we

modify this application by adding classes and/or complexity in the form of method calls and adding complex

calculations to vary the metric scores. We measure the application's consumption before and after the modi-

fication. We remind you that to measure the values of the metrics we use CodeMR, and that the consumption

used is an average of several dozen measurements of the same test, measurements that are performed by

PowerAPI and jRAPL, for more accuracy. The results shown are rounded to the nearest ten Ws, given the

uncertainty imposed by the instability of the measurements. All these measurements were performed on the

same machine (equipped with an i7-6500u processor), in order to compare the results. In the application,

the characters arrive in waves, and in order to homogenize all our tests, we apply them all on the first wave.

Also to structure our tests, we removed the random variables from the application and then identified the

part of the code that would be most interesting to modify. We mainly modify the move() method of the Citizen

class, which allows characters to move forward, since the latter is the most used method of the application,

which allows us to observe the impact of metrics on the application's performance. It is also important when

carrying out the test sets that they are comparable with each other and produce the same result. Here, we

will ensure that each test set performs the same number of times each a precise and complex calculation. We

put this calculation a little complex mainly to force the application to make an effort and facilitate the obser-

vation of the results.

For the variations in the scores of the metrics measured on the different test sets, we use the thresholds

already established by CodeMR, i.e. we compare two versions of the code each time:

● A version with a low metric score

● A version with a high metric score, based on the thresholds estimated by CodeMR

In order to observe the impact of applying several metrics, we start by measuring with a single metric,

then with two metrics, then three and finally four. Note that we have made measurements on each of the

metrics individually but that we will only show here the most relevant in terms of consumption, namely

WMC. We use several different combinations of metrics to maximize results.

4.1.1. Experimentation: WMC

To carry out this experiment, we tried to increase the score of the application's WMC metric. To do this, we

add 1000 methods in the class that contains the move() method and modify the code so that each move()’s

call causes the 1000 methods to be called one after the other. We implement them in the same class as move()

to increase only the complexity and not the coupling between the classes, in order to have precise results,

without interference from another metric.

We choose to implement 1,000 of them for two reasons: the first is due to the threshold of the WMC metric

according to CodeMR. Beyond a WMC of 120, the class is considered much too complex, and with 1,000 meth-

ods we far exceed this threshold. The second reason comes from the results of our other internal tests, 100

methods were not enough to observe a difference on our processor, so we go to 1,000 for this test.

Each method then performs the same complex calculation as the others. We therefore have 1,000 times the

same calculation performed per consecutive method call for each call of the move() method. To be able to

compare the results [Table 6] with a less complex code, we perform another test set, in which we replace the

1000 method calls located in the move() method by a for loop of 1,000 iterations, which performs the same

complex calculation as the methods at each loop, which again makes 1,000 times the same calculation with

295 Volume 16, Number 6, November 2021

Journal of Software

one for per move() execution. A single for loop does not increase the WMC score or only slightly.

Table 6. Results of Experiments on WMC

Test set version :

WMC

1,000 calculations as a consecutive call

of methods

(WMC: 1000 in Citizen)

1,000 calculations with a for

(WMC: 20)

Consumption

jRAPL: 140 Ws

PowerAPI: 200 Ws

jRAPL: 120 Ws

PowerAPI: 160 Ws

4.1.2. Experimentation: WMC & CBO

To complete our previous experiments, we now combine two metrics which are CBO and WMC. To do this,

we carry out four test sets based on those already carried out. In any case, the test set [Table 7] contains 1030

classes, with 1,000 classes coupled to each other, and 1,000 methods implemented in the Citizen class which

contains the move() method. Here is the more precise definition of the four sets used (see [Table 7]):

● Without WMC metrics and CBOs: The program is not supervised by the metrics at all, so this game is

the worst case. We have here 1,000 method calls in the move() method to raise the WMC score, and

each method calls the d.coupling1000.method() method which is the method that causes the cou-

pling chain. The last method in the chain then performs the same complex calculation as used in

previous experiments. There are therefore 1000 calculations performed by move execution, via high

complexity and high coupling.

● Without WMC metric and with CBO: Here we apply the coupling metric, so we reduce the coupling of

the program, but we keep the complexity high. To do this, we simply use the same test set as before

but the methods perform the calculation directly, instead of doing it through the coupling string using

the d.coupling1000.method() method.

● With WMC metric and without CBO: This time, we apply the WMC metric, so we reduce complexity

by replacing the 1,000 method declarations and calls by a for loop placed in the move() method. How-

ever, we leave a strong coupling, so the for executes the method d.coupling1000.method() at each

iteration, which makes 1,000 calculations per move() again.

● With metric WMC and with CBO: Finally, for the last set, we apply both metrics, WMC and Coupling.

We reduce their score by merging the two techniques seen above: the 1,000 methods are replaced

by a for at 1000 iterations in move(), and instead of calling the d.coupling1000.method() method to

perform the complex calculation, the loop does the complex calculation directly at each iteration,

without going through a method call. This avoids complexity and strong coupling.

The columns and rows "Without metrics" therefore correspond to a raw version, without supervision of

the values of the program's metrics. The "With metric" columns and rows correspond to a more optimized

version of the code.

4.1.3 Experimentation: WMC & DIT

For this experiment we created a test set mixing high complexity and large heritage tree. To do this, we

have 20 mother classes in the Citizen class inheritance tree, to raise its DIT to 21, and we have declared the

1000 methods used to increase WMC in the Heritage1 class, which is the highest class placed in the created

inheritance tree. This allows us to make sure that the 20 classes added to the tree are taken into account and

that java does not jump directly to Citizen by skipping the first 20 empty classes of the tree. The 1000 methods

296 Volume 16, Number 6, November 2021

Journal of Software

are then called in the move() method of the Citizen class. We compare this test set with the version without

depth or complexity, which corresponds to a for of 1000 iterations in the move() method. Both the for and the

1000 methods perform the same complex calculation as the other tests. The results of this test can be ob-

served in [Table 8].

Table 7. Results of Experiments on CBO and WMC

Metrics Objects

Complexity & Coupling

1000 classes

Without CBO metric With CBO metric

Without WMC metric

Number of coupled classes:

1000/1000

1000 method calls

JRAPL: 160 Ws

PowerAPI: 230 Ws

Number of coupled classes:

30/1000

1000 method calls

JRAPL: 150 Ws

PowerAPI: 220 Ws

With WMC metric

Number of linked classes: 1000/1000

1000 calls per loop for

JRAPL: 150 Ws

PowerAPI: 220 Ws

Number of coupled classes:

30/1000

1,000 calls per loop for

JRAPL: 120 Ws

PowerAPI: 160 Ws

Table 8. Results of the Experiments on WMC and DIT

Test set version:

WMC & DIT

1,000 calculations in the form of consecutive method

calls

(WMC: 1000 in Citizen

Citizen's DIT: 21)

1,000 calculations with a for

(WMC: 20

Citizen's DIT: 1)

Consumption
jRAPL : 140 Ws

PowerAPI : 210 Ws

jRAPL : 120 Ws

PowerAPI : 160 Ws

4.1.4. Experimentation: WMC & PD

In order to test a purely object metric (WMC) with a purely architectural metric (PD), we then combine the

latter two. We then start from the basic application, with a high WMC value, and a low PD value. Then we

apply [Table 9] apart from the two metrics, in order to lower the WMC value, and increase the PD value. Then,

finally, we combine these two metric applications.

Table 9. Results of the Experiments on WMC and PD

Test set version:

WMC & PD

1,000 calculations in the form of con-

secutive method calls

(WMC: 1000 in Citizen)

1,000 calculations with a for

(WMC: 20)

297 Volume 16, Number 6, November 2021

Journal of Software

Without PD

metric

(Average PD: 1)

jRAPL: 140 Ws

PowerAPI: 200 Ws

jRAPL: 120 Ws

PowerAPI: 160 Ws

With PD metric

(Average PD: 4)

jRAPL: 140 Ws

PowerAPI: 200 Ws

jRAPL: 120 Ws

PowerAPI: 160 Ws

4.1.5. Experimentation: WMC & CBO & DIT

For this experiment we have combined the three metrics WMC, CBO and DIT. To do this, we have resumed

the previous test set and added 20 mother classes to the Citizen class, which places it at a depth of 21 in its

inheritance tree. We chose to add 20 classes because the threshold indicated in CodeMR indicates a very high

metric score above 20 in depth. The second version with a low inheritance score is again made with a for, so

it is the same version as for previous tests. You will find the results of our tests in the table below (see [Table

10]).

Table 10. Results of Experiments on WMC, CBO and DIT

Test set version:

WMC & CBO & DIT

1,000 calculations in the form of consecutive method

calls

(WMC: 1000 in Citizen

CBO: 1000 coupled classes

Citizen's DIT: 21)

1,000 calculations with a for

(WMC: 20

CBO: 30 coupled classes

Citizen's DIT: 1)

Consumption
jRAPL: 160 Ws

PowerAPI: 210 Ws

jRAPL: 120 Ws

PowerAPI: 160 Ws

4.1.6. Experimentation: WMC & CBO & DIT & PD

In order to add a fourth metric, we then add the PD metric: Package Depth; that is, the depth of the packages,

which is an architectural metric. The application having a very shallow average depth of the packages, we

then apply this metric to increase this average. Basically, the application has an average depth of 1, because

all packages are combined at the same level. This practice is bad for large applications in the long term when

developers update it, because too many packages at the same level makes the task more complicated for those

who have to maintain it, and therefore will make them consume more energy. While if the package depth is

higher, it will simplify future evolutions of this application. Here is the result of the application of this metric

in [Table 11].

Among the selected metrics, another metric that interested us is RFC. We have made several combinations

of this metric with the others, but the results obtained were not convincing enough and we do not consider

it necessary to treat them here.

4.2. Discussions

We will now discuss the results obtained during the previous experiments. To do this, we will mainly ob-

serve the difference in consumption between the tests and not the difference in consumption within the same

298 Volume 16, Number 6, November 2021

Journal of Software

test between jRAPL and PowerAPI. Indeed, it seems that PowerAPI and jRAPL do not measure consumption

in the same way, which creates a difference in the result between the two tools for an identical test set. How-

ever, we observe that, even if the results for a test set are different, the variation between the tests remains

the same: if the consumption of jRAPL increases from one test to another, so will that of PowerAPI. During

these discussions we will take the jRAPL measurements as the main reference since it is the most accurate

tool, and we will indicate the PowerAPI measurements in brackets.

Table 11. Results of Experiments on WMC, CBO, DIT and PD

Test set version:

WMC & CBO

& DIT & PD

1,000 calculations in form

Consecutive call of methods

(WMC: 1000 in Citizen

CBO: 1000 coupled classes

DIT of Citizen: 21

Average PD: 1)

1,000 calculations with a for

(WMC: 20

CBO: 30 linked classes

DIT from Citizen: 1

Average PD: 4)

Consumption

jRAPL: 160 Ws

PowerAPI: 210 Ws

jRAPL: 120 Ws

PowerAPI: 160 Ws

4.2.1. WMC: Discussion of results

Let's move on to the complexity test on the WMC metric. Comparing the two test sets, we notice that ac-

cording to jRAPL, the implementation with the 1000 methods consumes 10 Watts-second (40 Ws for Power-

API) more than the version with the for. The two measures taken with the two tools are consistent and it can

be deduced that the version with the highest complexity consumes more than the version with the lowest

complexity.

4.2.2. WMC & CBO: Discussion of results

Let us now turn to the analysis of the two metrics CBO and WMC, applied together to the program. If no

metrics are applied, the program consumes 160 Watts-seconds according to jRAPL (230 PowerAPI). If we

now apply only the WMC metric (thus reducing complexity), the consumption drops to 150 Watts-second for

jRAPL (220 Watts-second PowerAPI). This result shows that reducing the complexity of the program as we

did has led to a reduction in consumption. If, instead of applying the complexity metric, the coupling metric

is now applied, we obtain 150 Watts-second according to jRAPL (220 Watts-second PowerAPI). Again, con-

sumption decreased as a result of the application of the coupling metric, but less than as a result of the appli-

cation of WMC. We can therefore deduce that a strong coupling has an impact on consumption, but that it

299 Volume 16, Number 6, November 2021

Journal of Software

remains less important than that induced by a high complexity.

Finally, the last case includes the application of both metrics. jRAPL announces a consumption of 120

Watts-second (160 Watts-second PowerAPI). Consumption is even lower than when applying a single metric.

We can therefore deduce that the reduction in consumption due to the application of each metric adds up,

and that it is good to apply both a low coupling and a low complexity for a better consumption of the appli-

cation.

4.2.3. WMC & DIT: Discussion of the results

From the results of the test combining WMC & DIT metrics, we can see that the application of the metrics

decreases the software consumption from 140 Watt-second (210 Watt-second for PowerAPI) to 120 Watt-

second (160 Watt-second for PowerAPI). This reduction is greater than when applying WMC or DIT alone, so

there is an additional reduction when applying these two metrics at the same time.

4.2.4. WMC & PD: Discussion of the results

As we can see from these results, they are identical to the WMC test set. Indeed, the application of the PD

metric, whether alone or in combination with WMC, did not change the consumption values. We can then

think that the PD metric does not seem to have a direct influence on energy consumption.

4.2.5. WMC & CBO & DIT: Discussion of results

During this test set, the version with high coupling, complexity and inheritance depth consumes 160 Watts

per second (210 Watts per second PowerAPI) according to jRAPL. This represents 40 Watt-second (50 Watt-

second PowerAPI) more than the version of the test set performed with a for, but as many Watts-second

according to jRAPL as the previous test. From what we can see here, adding depth and increasing the DIT

score does not seem to affect the consumption of the program.

4.2.6. WMC & CBO & DIT & PD: Discussion of results

Observing this experiment then gives us a stagnation of the results: by applying these metrics, the con-

sumption drops to 120 Watt-second for jRAPL, and 160 Watt-second for PowerAPI, which was already the

case without applying the package depth metric. We therefore deduce from this that this 4th metric is archi-

tectural and does not affect consumption in these cases. However, it should be remembered that it affects

consumption in the long term, during future maintenance of this application.

Finally, here is a table (see [Table 12]) summarizing our results, which shows the percentage reduction in

consumption when applying one or more metrics, depending on the combinations we have made and the

number of metrics applied. We also have the [Figure 1] which allows us to visualize the difference in execution

time according to the application or not of the metrics. Here we present a screenshot of PowerAPI on the four

metrics test set (WMC, CBO, DIT, and PD), since powerAPI offers a good graphical representation of consump-

tion in real time. Although we mainly use jRAPL values as indicated earlier, the percentage difference in con-

sumption according to powerAPI gives the same result to the nearest percent, i. e. a 25% reduction in con-

sumption[see Table 11 and 12].

300 Volume 16, Number 6, November 2021

Journal of Software

Ordinate: Consumption in mW; Abscissa: time

Ordinate: Consumption in mW; Abscissa: time

Fig. 1. Comparison of powerAPI results.

First Graph: Without Metric (3 Minutes 20 Seconds)

Second graph: with metrics WMC/CBO (3 minutes)

301 Volume 16, Number 6, November 2021

Journal of Software

Table 12. Maximum Reduction of the Program's Consumption in Percentage According to jRAPL and

PowerAPI When Applying Metrics, Depending on the Combination of Metrics and the Number of Metrics

Applied

number of applied

metrics one metric two metrics three metrics four metrics

metrics name WMC

WMC &

CBO

WMC &

DIT WMC & PD

WMC & CBO &

DIT

WMC & CBO & DIT &

PD

jRAPL -15% -25% -15% -15% -25% -25%

PowerAPI -20% -31% -24% -20% -24% -24%

4.3. Conclusion

Our initial conjecture based on the fact that the quality of an object-oriented program, and therefore re-

specting the recommended metrics, could reduce its energy consumption. Our experiments have confirmed

this hypothesis, to the point where this reduction in energy consumption could be around 30%. This experi-

mentation can be continued by performing tests on metrics that have not yet been tested. By considering all

the metrics, and by giving weight to each of them, this would make it possible to offer a guide to good behavior

to be observed by any developer wishing to optimize the consumption of his programs.

If there is therefore one result to remember when developing a program, like the 5 fruits and vegetables in

the field of health, it is to respect and apply at least one metric among the 4 RFC, WMW, DIT and CBO metrics

(in decreasing order of impact), better yet combining 2 or 3 of them can then lead to a 28% reduction in

energy consumption.

From these results, we can draw some recommendation to reduce application consumption:

● It is preferable to reduce the number of methods (executed) within a single class (RFC)

● It is also advisable to avoid coupling (CBO) between classes when possible, to reduce the complexity

of writing a method (WMC) and to reduce the depth of an inheritance graph (DIT). .

● It is recommended to apply the combination of 2 or 3 metrics which would significantly reduce

energy consumption

● Finally, as an application evolves, adhering to these rules would also reduce long-term energy

consumption.

In conclusion, the use of these "good programming practices" dictated by object-oriented and architectural

metrics would significantly affect the power consumption of applications.

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

Mourad Chabane Oussalah conducted the research; Romain Brohan, Ossama Mostafa analyzed the data; Romain

Brohan, Ossama Mostafa and Mourad Chabane Oussalah wrote the paper; all authors had approved the final ver-

sion.

References

[1] Fabrice, F., Michelle, D., & Marion, M. (2014). La face cache e du nume rique. L'impact environnemental

des nouvelles technologies, Montreuil, L'E chappe e, coll. Pour En finir Avec.

[2] Roger, C. (2017). 8,6 millions de datacenters dans le monde en 2017. Hébergement-et-Infrastructure.

302 Volume 16, Number 6, November 2021

Journal of Software

[3] Gerald, T. (2018). Impact e nerge tique des Data Center. Retrieved from: http://www.influen-

ceursduweb.org/impact-energetique-des-datacenters/

[4] Wikipedia. (2019). Software architecture. Retrieved from: https://en.wikipedia.org/wiki/Software_ar-

chitecture

[5] Wikipedia. (2019). Object-oriented programming. Retrieved from: https://en.wikipedia.org/wiki/Ob-

ject-oriented_programming#History

[6] Hayri, A., Gu lfem, A., Jean, P. G., & Parisa, G. (Sep 2016). TEEC: Improving power consumption estimation

of software. EnviroInfo 2016, Berlin, Germany. Hal-01496262.

[7] Araya, M. C., & Be gaudeau, S. B. (2017). Green software. Sujet de Capstone 2017.

[8] Rui, P., Marco, C., Francisco, R., Rui, R., Ja come, C., Joa o, P. F., & Joa o, S. (2017). Energy efficiency across

programming languages. Proceedings of the SLE’17.

[9] Wikipedia. (2017). Me trique (logiciel). Retrieved from: https://fr.wikipe-

dia.org/wiki/M%C3%A9trique_(logiciel)

[10] Riad, B. (2014). Contribution a l’automatisation et a l’e valuation des architectures logicielles ouvertes.

Génie Logiciel, Universite de Nantes.

[11] Chidamber, S. R., & Kemerer, C. (1991). A metric suite for object oriented design, du livre. A Metrics Suite

for Object Oriented Design.

[12] Thomas, J. M. C. (1976). A complexity measure. EEE Transactions on Software Engineering, 2(4).

[13] Robert, M. (1994). OO design quality metrics an analysis of dependencies. Proceedings of the Workshop

Pragmatic and Theoretical Directions in Object-Oriented Software Metrics.

[14] Mark, S. (1999). A practical guide to object-oriented metrics. IT Professional.

[15] Tahvildari., et al. (2000). Categorization of object-oriented software metrics. Proceedings of the 2000 Ca-

nadian Conference on Electrical and Computer Engineering. Conference Proceedings. Navigating to a New

Era.

[16] Fernando, B. A. W. M.(1996). Evaluating the Impact of Object-Oriented Design on Software Quality.

[17] Kayarvizhy, N. (2016). Systematic review of object oriented metric tools. International Journal of Com-

puter Applications, Foundation of Computer Science (FCS), NY, USA.

[18] Ju rgen, W. (2012-2019). SD Metrics. metrics.

[19] Squared, M. (1998). List of measured metrics. Retrieved from: https://msquaredtechnologies.com/in-

dex.html

[20] Virtual machinery. (1999). Jhawk. Retrieved from: http://www.virtualmachinery.com/jhawkprod.htm

[21] Jagdish, B., et al. (1997). Automated metrics and object-oriented development. Retrieved from:

http://www.drdobbs.com

[22] Spinellis, D. D., (2005). Ckjm chidamber and kemerer metrics Software, technical report. AthensUni-

versity of Economics and Business.

[23] Ingo, P. (2002). Java measurement tool. Retrieved from: https://www2.informatik.hu-ber-

lin.de/swt/intkoop/jcse/tools/jmt.html#list%20metrics

[24] Mark, C. (2008). Metrics list of JDepend. JDepend. Retrieved from: http://www-igm.univ-

mlv.fr/~dr/XPOSE2005/JDepend/presentation.php

[25] Eclipse metrics. Retrieved from: https://github.com/qxo/eclipse-metrics-plugin

[26] Testwel, O. (2012) .TestWell CMTJava, metrics ’list. Retrieved from http://www.testwell.fi/cmtjdesc.html

[27] CodeMR Team. (2018). Retrieved from: https://www.codemr.co.uk

[28] The o, C., Maxence, D., William, M., & Fabio, P. (2019). Software architecture metrics: A literature review.

Retrieved from: https://arxiv.org/abs/1901.09050

[29] Jagdish, B., et al. (1997). Automated metrics and object-oriented development. Retrieved from:

303 Volume 16, Number 6, November 2021

Journal of Software

http://www.drdobbs.com

[30] Offutt, A. J. (1992). Investigations of the software testing coupling effect. ACM Transactions on Software

Engineering and Methodology (TOSEM), 1(1), 5-20.

[31] Wikipedia. (2019). Software maintenance. Retrieved from: https://en.wikipedia.org/wiki/Soft-

ware_maintenance

[32] Mourad, O. (2014). Software Architecture. Wiley Iste

[33] Mitchell, B. S., & Mancoridis, S. (2006). On the automatic modularization of software systems using the

bunch tool. IEEE Transactions on Software Engineering.

[34] Mitchell, B. S., & Mancoridis, S. (2007). On the evaluation of the bunch search-based software modulari-

zation algorithm. Soft Computing - A Fusion of Foundations, Methodologies and Applications.

[35] Murphy, G. C., Notkhin, D., & Sullivan, K. (1995). Software reflexion models: Bridging the gap between

source and high-level models. ACM SIGSOFT Software Engineering Notes (Software Eng Notes).

[36] Eclipse, F. (2019) Eclipse. Retrieved from: https://www.eclipse.org/

[37] Mira, A. (2017). Software architecture extraction: Meta-model, model and tool. Génie Logiciel. Universite

de Nantes.

[38] Usama, F., Gregory, P. S., & Padhraic, S. (1996). From data mining to knowledge discovery in databases.

AI Magazine.

[39] Kenan, L., Gustavo, P., & Yu, D. L. (2015). jRAPL. Retrieved from: http://kliu20.github.io/jRAPL/

[40] Hayri, A., Gu lfem, A., Jean, P. G., & Parisa, G. (Sep 2016). TEEC: Improving power consumption estimation

of software. EnviroInfo 2016, Berlin, Germany. Hal-01496262.

[41] PowerAPI. Retrieved from: https://github.com/powerapi-ng/powerapi-scala

[42] Greenspector. (2011). Retrieved from: https://greenspector.com/fr/

[43] Adel, N. (2013-2014). Jalen. Retrieved from: https://github.com/adelnoureddine/jalen

[44] Bunch. Retrieved from: https://github.com/ArchitectingSoftware/Bunch

[45] Mark, C. (2008). Metrics list of JDepend. JDepend. Retrieved from: http://www-igm.univ-

mlv.fr/~dr/XPOSE2005/JDepend/conclusion.php#limitations

[46] Korn, J., Chen, Y. F., & Koutsofios, E. (1999) Chava: Reverse engineering and tracking of Java applets. Sixth

Working Conference on Reverse Engineering (Cat. No.PR00303).

[47] Hayri, A., Gu lfem, A., Gelas, J. P., & Parisa, G. (2016). TEEC: Improving power consumption estimation of

software. EnviroInfo 2016, Sep 2016, Berlin, Germany.

[48] Di, N., Dario; Palomba, Fabio; Prota, Antonio; Panichella, Annibale; Zaidman, Andy; De Lucia, Andrea.

(2017). PETrA: A software-based tool for estimating the energy profile of android applications. Figshare.

Dataset.

[49] Cole, A. (2017). Protect the president. Cobresun Fall Game Jam 2017. Retrieved from

https://github.com/cole-adams/protect-the-president

[50] Kiyoshi, S., Kosuke, K., Yu, M., et al. (2021). Advances in computer entertainment. Localizing Global Game

Jam: Designing Game Development for Collaborative Learning in the Social Contex.

Copyright © 2021 by the authors. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited (CC BY 4.0)

304 Volume 16, Number 6, November 2021

Journal of Software

https://creativecommons.org/licenses/by/4.0/

Mourad Chabane Oussalah received the B.Sc. degree in mathematics in 1983, and Habili-

tation thesis of computer science from the University of Montpellier- France- in 1992. He

is currently a full professor of computer science at the University of Nantes – France- and

the chief of the software architecture modeling Team. His research concerns software ar-

chitecture, object architecture and their evolution. He worked on several European projects.

He is (and was) the leader of national project (France-Telecom,Bouygues-telecom, Aker-

STX,...), and was member of more than 200 PC.

Romain Brohan received the master of computer science degree from the Faculty of

Scences of Nantes, France in 2019. He is currently developer / solution builder for Sopra

Steria company in Nantes.

Ossama Moustafa received the master of computer science degree from the Faculty of

Sciences of Nantes, France in 2019. He is currently developer / solution builder for Savoye

company in Nantes. France.

305 Volume 16, Number 6, November 2021

Journal of Software

