
  

Parallel Strategy to Factorize Fermat Numbers with 
Implementation in Maple Software 

 

Jianhui Li*, Manlan Liu 

Foshan Polytechnic, Foshan City, PRC, 528000, China. 
 
* Corresponding author. Tel.: +86075787263015; email: joe863@163.com 
Manuscript submitted October 08, 2020; accepted December 11, 2020. 
doi: 10.17706/jsw.16.4.167-173 
 

Abstract: In accordance with the traits of parallel computing, the paper proposes a parallel algorithm to 

factorize the Fermat numbers through parallelization of a sequential algorithm. The kernel work to  

parallelize a sequential algorithm is presented by subdividing the computing interval into subintervals that 

are assigned to the parallel processes to perform the parallel computing. Maple experiments show that the 

parallelization increases the computational efficiency of factoring the Fermat numbers, especially to the 

Fermat number with big divisors. 

 
Key words: Integer factorization, fermat number, parallel computing, algorithm. 

 

1. Introduction 

Factorization of big integer has been a hard problem and has been paid attention to in mathematics and 

cryptography. Any factoring algorithm is both scientifically valuable and practically applicable, as stated in 

[1]. Historically, factorization of big integer always took huge computing resources and involved in parallel 

computing. For example, it took half a year and 80 4-cored CPUs of AMD Opteron @ 2.2GHz to factorize 

RSA768 [2]. Actually, Brent R P began to study the possibility of parallel computing early in 1990 since 

Pollard Rho algorithm came into being [3]. And then parallel approaches for the elliptic curve method 

(ECM), continued fraction, quadric sieve (QS) and number field sieve (NFS) were developed respectively 

[4]-[7]. Now the NFS has been regarded to be the most efficient method. However, the method is popularly 

regarded to consume huge computing resource in the factorization. Anuja A Sonalker showed in his master 

thesis [8], it would need 240M memory for factor base, 10GB memory for sieve and 160G for matrix to 

factorize an objective of 768 binary digits, and the number of memory will be 7.5G, 256GB and 10T for an 

objective of 1024 binary digits. It was reported that, Bruce Schneier spent 4000 core-years, using Intel Xeon 

Gold 6130 CPUs as a reference (2.1GHz), on factoring the RSA240.  

The Fermat number 22 1
m

mF = +  is a kind of eyeball catching numbers. It becomes very big with the 

increment of m. When 10m  , its number of binary digits is over 1024. Accordingly, factorization of the 

Fermat numbers has been focused in computing science. Nowadays, grid computing plays the major role in 

factoring the kind of numbers. Volunteers all over the world contribute the work, as seen in the website 

hosted and maintained by professor Wilfrid Keller [9], [10]. 

A recent paper [11] published on Journal of Software (JSW) put forward an algorithm to factorize the 

Fermat numbers. The algorithm was said to be a new one and available for factoring big Fermat 

number mF ( 100001m  ). The paper [11] list mere a sequential algorithm with experiments in Maple 

Journal of Software

167 Volume 16, Number 4, July 2021



  

software. With a detail analysis on the algorithm and based on our experience in parallel computing [12], 

we found the algorithm could be parallelized. This paper accordingly gives a parallel algorithm. 

2. Foundation of Algorithm 

2.1. Analysis of the Algorithm 

According to proposition 2 in [11]，for an odd integer =N pq  with divisors = +2 1q u  and p satisfying 

   + + ++   −12 1 2 1p , it holds 

   + + +

− −   
−     

   
2 1 2

1 1
1

2 2

N N
u  

 + +    22 1 log N
 


 

 − 
 

2log
2

2

N
 

where   and  are positive integers, 1u is an odd integer. 

Let 

   + + +

− −   
− −   

   
= +

2 2 1

1 1
( 1)

2 2
1

2
u

N N

n
 

then 

   
+   +   

   
1 3

4 2
u

u u
n  

Since the Fermat numbers are of the form
22 1

m

mF = +  and have divisors of the form 2 1n u +  with 

2n m + , a searching algorithm can be designed to find out u, and then find out a divisor of mF by 

computing the greatest common divisor between mF  and 2 1j u + （1 j   ）. Article [11] accordingly 

designed an algorithm that can find a divisor within 
2

2(0.25 (log ) )O u N searching steps. 

It can see that, the designed algorithm is suitable and efficient in sequential computing for the cases 

when u is small. For a big u, for example, one u in F7 is 116503103764643, will take a long searching time. 

With the development of multi-core computers, parallel computing is going to be popular. With a parallel 

computing, it is sure to decrease the searching time. Since a parallel computing requires a subdivision of the 

computing task into small scale, we introduce a plan for the parallel factorization of the Fermat number 

next.  

2.2. Subdivision of U Interval 

Suppose u is in an odd interval U (odd interval: an interval [a, b] contains odd integers with odd integers 

a and b being respectively the lower bound and upper bound); let L be the length of U, namely, the number 

of odd integers contained in the interval, 
1pm n= +

 be the number of total processes taking a part into 

the parallel computing ; then there are integers 0s   and 
0 pr n 

, such that  

pL sn r= +  

If 0s = , it means the number of odd integers (terms) contained in U is no more than the number of total 

Journal of Software

168 Volume 16, Number 4, July 2021



  

processes in computing, and thus it is not necessary to apply parallel computing. Accordingly, we next 

assume 1s   and subdivide U into m subintervals, among which pn
 contains s  terms and another one 

contains r  terms. For convenience, let 0 1 2 1, ,..., ,m mI I I I− − be the subdivided m subintervals, among which 

0I  contains r terms and each of the other ones contains s terms. Assume 0I  is the leftmost one, the 

subdivision is illustrated in Fig. 1. 

 

     I0    I1     I2     I3               Im-3    Im-2    Im-1 

                       m-1 equal-length intervals 

m subintervals 

 
 

Fig. 1. U interval subdivision. 
 

 
Let [ , ]l rU u u= , 0 1 0, 2lu u u u r= = + ; then 

0 0 0

1 1

[ , 2( 1)],

[ 2( 1) , 2 2], 1,2,..., 1j

I u u r

I u j s u js j m

= + −

= + − + − = −
 

form the subdivision of the U interval. For example, [13,169]uI = , 8 7 1m = = + ; then 

169 13
1 79

2
L

−
= + =

and 

thus 11, 2s r= = ， 0 13u = ， 1 13 2 2 17u = +  = . The subdivision of uI
is as follows. 

0

1

2

3

4

5

6

[13,15]

[17,17 2 1 11 2] [17,37]

[17 2 1 11,17 2 2 11 2] [39,59]

[17 2 2 11,17 2 3 11 2] [61,81]

[17 2 3 11,17 2 4 11 2] [83,103]

[17 2 4 11,17 2 5 11 2] [105,125]

[17 2 5 11,17 2 6 11

I

I

I

I

I

I

I

=

= +   − =

= +   +   − =

= +   +   − =

= +   +   − =

= +   +   − =

= +   +   −

7

2] [127,147]

[17 2 6 11,17 2 7 11 2] [149,169]I

=

= +   +   − =

 

3. Algorithm Design and Experiments 
This section presents a parallel algorithm in accordance with the analysis and the U interval subdivision 

plan stated in previous section. Experiments in Maple software are also shown. 

3.1. The Algorithm  

Subdivision of the U interval lays a foundation for the parallel computing. Let 
1pm n= +

be the number 

of total processes that take a part into the computation, and the U interval be subdivided as planed, then 

each subinterval is assigned to a process to realize the parallel computing. By this means, there must be a 

process that can reach the goal of the computing. The following Algorithm 1 is the designed parallel 

algorithm. In the algorithm, the procedure OnInterval is executed on each subinterval by a process to find 

the greatest common divisor between N and each term contained in the subinterval. The input parameter n 

means the index of the Fermat number nF ,  is the same as that in [11]. 

 

Journal of Software

169 Volume 16, Number 4, July 2021



  

Algorithm 1: Parallel Algorithm to Facorize Fn 

1: Inputs: n,  ; 

2: Begin 

3: Calculte = −2nb ; = +13a n ; 
2

2 1
n

N = + ; 

4: P= the number of total process to join the computation; 

5: for i from b downto 3 do 

6:   for j from n+2 to a do 

7:   Compute − − += − = +2 2 12 1, 2 1
n ni i

l ru u , 2 12 2
n jL − −= + ; 

8: Compute , ( 1)
1

L
s r L s P

P

 
= = − − − 

； 

9: Initialize interval U: = = +0 1 0, 2lu u u u r ; 

10: Host process perform OnInterval on 0 1[ , 2]u u − ; if success then 

stop the whole computation; 

11: for k from 1 to P-1 do 

12: Process k perform OnInterval on 1 1[ 2( 1) , 2 2]u k s u ks+ − + − ; 

if successes then tells the other process to stop and then stop 

itself; 

13: end for j; 

14: end for i 

15: END proc 

 

Procedure OnInterval 

1: Inputs: N,j, ul,ur; # searching inteval [ul,ur] 

2: for u from ul to ur step 2 do 

3:  Compute g=gcd(N,2ju+1); 

4:  if (g > 1) then return g;end if 

5: end do u 

6: return 1; 

7: END proc 

 

3.2. Maple Experiments 

Based on the previous parallel algorithm, experiments were made on a personal computer with 8-cored 

CPU of E5410 @2.33GHz, 8G memories. We chose Maple-18 software as the software platform. With Maple 

script programs and 7 cores, the parallel experiments were established to find the small divisor of the 

Fermat numbers. The results are list in Table 1. In the table, the values of the parameter  are taken from 

[11], the column ‘Core ID’ means the coding number of the process that find the computing result, the 

columns ‘Parallel searching steps’ and ‘Sequential searching steps’ are computing steps respectively with 

parallel and sequential computing to find out the result, the column ‘Promoting ratio’ is calculated by 

Journal of Software

170 Volume 16, Number 4, July 2021



  

Parallel searching Steps
Promoting ratio

Sequentialsearching Steps
=  

It is mandatory to point out that, due to the limitation of memory in the given computing environment, 

Maple-18 is not able to compute F30 and a larger Fermat number in sequential computing, neither to 

compute F29 because it has ‘not enough memory to allocate ’. Seen from the results in Table 1, the 

computational efficiency was promoted a lot when factoring a Fermat number that has a big ‘small divisor’, 

namely, the small divisor of the Fermat number is big. For example, in finding the divisor factoring 

31065037602817 of F17, the sequential computing takes 12848717 steps while the parallel computing 

takes 1663905 steps. The promoting ratio is 7.7. The promoting ratio of the whole computing is shown with 

Fig. 2.  

 
Table 1. Comparison of Sequential Computation vs. Parallel Computation 

Fermat 
Numers 

 Found Divisor Core ID 
Parallel 

searching Steps 

Sequential 
searching 

Steps 

Promoting 
ratio 

F5 2 641 0 5 5 1 
F6 10 274177 1 28 28 1 
F9 5 2424833 2 24 102 4.25 

F10 13 45592577 3 108 1474 13.6 
F11 5 319489 2 5 8 1.6 
F12 2 114689 1 5 6 1.2 
F13 25 2710954639361 2 3905732 20682950 5.3 
F15 9 1214251009 1 214 1074 5.0 
F16 10 825753601 4 111 795 5.30 
F17 25 31065037602817 5 1663905 12848717 7.7 
F18 3 13631489 4 4 7 1.75 
F19 15 70525124609 1 435 435 1 
F21 19 4485296422913 1 5205 5205 1 
F23 2 167772161 0 5 6 1.2 
F25 15 25991531462657 3 7829 40601 5.2 
F26 17 76861124116481 1 16975 71590 4.2 
F27 17 151413703311361 1 15900 70515 4.4 
F29 20 2405286912458753 / / 35741 / 

 

Promoting ratio

0

2

4

6

8

10

12

14

16

F5 F6 F9 F1
0

F1
1

F1
2

F1
3

F1
5

F1
6

F1
7

F1
8

F1
9

F2
1

F2
3

F2
5

F2
6

F2
7

 
Fig. 2. Promoting ratio of parallel computing vs. sequential computing. 

 

4 Conclusion and Expectation 

Journal of Software

171 Volume 16, Number 4, July 2021



  

With the development of multi-core computer, parallel computing is going to be popular and widely 

applied. Parallelization of sequential algorithms is going into the daily work of algorithm designers and 

programmers. Through the parallelization of the sequential algorithm, we demonstrate the kernel work of 

parallelization: to subdivide the computing task into subtasks. Maple experiments show that, our work did 

increase the computational efficiency. We hope the work can be a reference to the algorithm designers and 

more valuable algorithms can be shown.  

Conflict of Interest 

The author declares that there is no conflict of interests regarding the publication of this article. 

Author Contributions 

Professor Jianhui LI contributes the most research work of the paper. 

Master Manlan LIU contributes the data processing and algorithm parameter adjustment work of the 

paper. 

Acknowledgment 

The research is supported by special projects in key areas of ordinary universities in Guangdong Province 

(new generation of information technology) under no. 2020ZDZX3104 

References  

[1] Carl, P. (1996) A tale of two sieves. Notices of the AMS, 43(12), 1473-1485. 

[2] Aoki K. (2010) Advances in integer factoring technique: The way to factor RSA-768. Ipsj Magazine, 

51,1030-1038. 

[3] Brent, R P. (1990) Vector and parallel algorithms for integer factorization. Proceeding of The Third 

Australian Supercomputer Conference (pp. 1-22). Australian: Sydney. 

[4] Wolski, E., Filho, J. G. S., & Dantas, M. A. R. (2001). Parallel implementation of elliptic curve method for 

integer factorization using message-passing interface. Retrieved from: 

http://www.lbd.dcc.ufmg.br/colecoes/sbac-pad/ 2001/007.pdf. 

[5] Mcmath, S. S. (2005) Parallel integer factorization using quadratic forms. U.S.N.A-trident Scholar 

Project Report (Report No.339). Annapolis: US Naval Academy. 

[6] Mcmath, S., Crabbe, F., & Joyner, D. (2006) Continued fractions and parallel SQUFOF. Mathematics, 1, 

19-38. 

[7] Sameh, D., & Ibrahim, G. (2014). A parallel line sieve for the GNFS algorithm. International Journal of 

Advanced Computer Science and Applications, 5(7), 178-185. 

[8] Anuja, A. S. (2002) Asymmetric key distribution. Graduate Faculty of North Carolina State University. 

[9] Wilfrid, K. (2020). Prime factors k2n + 1 of Fermat numbers Fm and complete factoring status, 

Retrieved from: http://www. prothsearch.com /fermat.html. 

[10] Wilfrid, K. (2020). Distributed search for fermat number divisors. Retrieved from: 

http://www.fermatsearch.org/ 

[11] Wang, X. (2020). Algorithm available for factoring big fermat numbers. Journal of Software, 15(3), 

86-97. 

[12] Li, J. H. (2018). A parallel probabilistic approach to factorize a semi-prime. American Journal of 

Computational Mathematics, 8, 175-183. 

[13] Wang, X. (2017) Strategy for algorithm design in factoring RSA numbers. IOSR Journal of Computer 

Engineering, 19(3), 1-7. 

Journal of Software

172 Volume 16, Number 4, July 2021



  

Copyright ©  2021 by the authors. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, 

provided the original work is properly cited (CC BY 4.0) 

 

Jianhui Li was born in Hunan, China. He received his Ph.D. from Hunan Agriculture 

University. Since 2010, he had been a staff in charge of researching and developing network 

security technologies in the Neusoft Institute of Guangdong. Now he has been a professor in 

Foshan Polytechnic. Professor Li holds the title of high-level talent awarded by Foshan City 

and is a scientific research partner of China Sunway TaihuLight Supercomputing Center. Up 

to now, he has presided over more than 10 scientific research projects, published more than 

20 papers related to information security and network, and obtained 20 authorized patents. His research 

interests are information security and Block chain development.  

 

Manlan Liu was born in Hunan, China. She received her mater from Nanchang Hangkong 

University. Since 2018, she had been a staff in charge of bigdata management and application 

in the Neusoft institute of Guangdong. Now she has been a lecturer in Foshan Polytechnic. 

Her research interests are information security and big data management and application.  

Journal of Software

173 Volume 16, Number 4, July 2021

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/



