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Abstract: The emergence of edge computing makes up for the limited capacity of devices. By migrating 

intensive computing tasks from them to edge nodes (EN), we can save more energy while still maintaining 

the quality of service. Computing offload decision involves collaboration and complex resource 

management. It should be determined in real time according to dynamic workload and network 

environment. The simulation experiment method is used to maximize the long-term utility by deploying 

deep reinforcement learning agents on IOT devices and edge nodes, and the alliance learning is introduced 

to distribute the deep reinforcement learning agents. First, build the Internet of things system supporting 

edge computing, download the existing model from the edge node for training, and unload the intensive 

computing task to the edge node for training; upload the updated parameters to the edge node, and the 

edge node aggregates the parameters with the The model at the edge node can get a new model; the cloud 

can get a new model at the edge node and aggregate, and can also get updated parameters from the edge 

node to apply to the device. 
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1. Introduction 

Edge computing nodes located in multiple BS are always composed of high-performance servers or 

distributed data centers. BS edge computing nodes are distributed in different geographical areas, and can 

have different service areas, rental costs and available resources to meet the service needs of mobile 

computing nodes. Like thin clients, these computing nodes connect to edge computing nodes through 

mobile networks without accessing the remote cloud. 

Cloud computing servers deploy wireless APS (access points) located in intelligent roadside units, such as 

street lights, intersections, stores or buildings. These nodes provide various local capabilities and services, 

including computing, networking, storage and application, for computing nodes in the coverage area 

through limited transmission coverage communication technology [1]. This type of node in the hierarchical 

edge computing environment is very important because it is closer to the user, has strong computing 

potential, and is well connected through high-speed local communication technology, which is conducive to 

providing low latency computing and rich computing resources [2]. 

Offloading services to edge computing nodes can extend the limited capabilities of intelligent computing 

nodes. BS edge computing node has large-scale coverage and high-performance computing. If applications 

require high computing power, it is more desirable to unload to the BS edge computing node. However, the 
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weakness of BS edge computing node is that users may experience a long waiting time for data exchange 

with corresponding remote nodes through 3G / 4G access network. Long delays can damage interactive 

responses because humans are very sensitive to delays and jitters. For AP edge computing nodes, if too 

many computing nodes access the same wireless network at the same time, the scarce bandwidth may 

affect the application QoS [3]. For real-time applications, it will be more beneficial for users to execute 

services locally on self-organizing computing node nodes to avoid long communication time. Because the 

current computing node service is always complex, including multiple tasks with various requirements, we 

should consider communication delay, computing power and computing node mobility, and make unloading 

decision for each task. 

Traditionally, the decision-making algorithm of unloading depends on human experience. Relevant 

knowledge is extracted by researchers, including system formula, algorithm solution and method 

optimization. However, manual knowledge extraction has three main limitations. First of all, environment 

including edge computing node and access network cannot have a comprehensive accurate, real-time 

evaluation. For example, for the computing node service of heterogeneous nodes, task execution progress is 

always abstracted as a queuing model, which is difficult to solve and ensure fairness; in addition, the goal of 

unloading decision model is almost non convex function, and Lagrange relaxation needs to deal with 

constraints or use some specific heuristic algorithms to find the approximate optimal solution [3]; finally, 

every computing node Edge calculation When the environment changes, the offload decision should be 

recalculated, which leads to more service delays and higher costs. Therefore, it is necessary to find an 

intelligent way to learn knowledge and provide foresight to unload decision. Fortunately, edge computing 

nodes have the advantage that they are deployed with network devices and can capture multidimensional 

data from the environment, including computing node behavior, task information and network status. It is 

feasible to use environmental data to continuously learn decision-making related knowledge and provide 

process policies. 

Deep learning is a hot field of computer vision, speech recognition, natural language processing and 

computer network, and has made some remarkable achievements. It includes DNN (deep neural network), 

CNN (convolution neural network), RNN (regression neural network), RESNET, dense net, etc. [4] These 

different types of neural networks use multi-layer network structure and nonlinear transformation to build 

the underlying features, and formulate abstract and differentiated high-level expressions, so as to perceive 

and express things. 

Service offload decision in edge computing environment is affected by many factors. It can capture 

nonconvex optimization problems through complex objective functions and constraints. The deep learning 

model divides the complex mapping problem into several embedded simple mappings described by 

multiple layers of the model. In the training process, the gradient based iterative optimization minimizes 

the loss function representing the approximation degree. After the supervised learning process based on 

the historical data of human markers or the solution of heuristic algorithm, the deep learning model can 

obtain the approximate optimal solution of the complex mapping problem [5]. When the model is deployed 

in the real word setting after training, the approximate optimal solution can be obtained independently and 

in real time according to the environment  

Considering the change of future environment, deep learning method needs new tag data. Service 

offloading decisions for complex services with different requirements should have the ability of long-term 

programming and continuous learning [6]. Deep reinforcement learning (DRL) combines the perceptual 

ability of deep learning with the decision-making ability of reinforcement learning. Reinforcement learning 

is based on MDP (Markov decision process) theory, but it does not need to make state transition probability.  

KD service unloading decision framework for computing node edge computing provides a unique 
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platform for various services and all controlled computing nodes [8]. It includes the decision-making model 

of DRL algorithm for learning the knowledge of service unloading, and the observation function for 

obtaining the environmental data of computing node mobility and edge computing nodes. Because services 

have a variety of tasks, KD service offload decision framework reserves a basic decision model for each 

service. The basic decision model is trained on a powerful edge computing node (such as BS edge 

computing node), and then distributed to the computing node for the actual service unloading decision. 

After this training, the system learns the long-term optimal decision-making knowledge of data dependent 

tasks in complex services from the experience of historical unloading rewards. Since the DRL model 

includes incentives for each decision, the model can be continuously trained online while the service is 

running. During this process, parameters are sent from the computing node to the BS edge calculation node 

for periodic updating of the basic model. 

The number of accessible edge computing nodes for a computing node is different, and it can change as 

the computing node moves [7]. The observation function sorts the accessible nodes of the three types of 

edge computing nodes according to the computing power, and uses the fixed number of each type of node 

as the candidate unloading destination. 

The heterogeneous resources provided by computing node edge computing nodes are abstracted as 

multiple containers with specific functions and parameters. Multitasking in a complex application is 

modeled as a specific data flow graph and represented by a DAG [8]. Due to differences in edge computing 

nodes, including several cloudlets, BS with computing and storage capabilities, and adjacent computing 

nodes on the road, each task in the service has multiple unloading destinations. We analyze task delay, node 

performance and computing node mobility to determine computing node service delay. Symbols are defined 

in Table 1. (choose where to uninstall by calculating service latency? What's the use of computing service 

delay. What is the observation function? Is it the function to calculate the service delay. 

This paper uses federated learning to train deep reinforcement learning agents, which are used for joint 

allocation of communication and computing resources. The experimental results show that the method is 

better than the centralized training method. 

2. Federal Learning 

When multiple data owners (e.g. enterprises) f_i, I = 1 When n wants to train machine learning model 

with their own data, the traditional way is to integrate the data to one side and use the data d = {Di, I = 1 N} 

After training, we get the model. However, the scheme is usually difficult to implement because of the legal 

issues such as privacy and data security [9]. To solve this problem, we propose federal learning. Federated 

learning means that the data owner can train the model and get the calculation process of the model M ﹤ 

fed without giving his own data d ﹤ I, and can ensure that the gap between the effect V ﹤ fed of the 

model M ﹤ fed and the effect V ﹤ sum of the model M ﹤ sum is small enough, that is, ﹤ V ﹤ fed-v 

﹤ sum ﹤ δ, where δ is a positive value of any small value. 

We will classify federated learning based on the distribution of island data. Considering that there are 

multiple data owners, the data set D ﹣ I held by each data owner can be represented by a matrix. Each 

row of the matrix represents a user, and each column represents a user characteristic. At the same time, 

some data sets may also contain label data. If we want to build a prediction model of user behavior, we must 

have label data. We can call user features X and label features y. For example, in the field of finance, the 

user's credit is the label y that needs to be predicted; in the field of marketing, the label is the user's 

purchase desire y; in the field of education, it is the degree of knowledge that students master, etc. User 

characteristic x and label y constitute complete training data (x, y). However, in reality, it is often 

encountered that the users of each data set are not identical, or the characteristics of users are not identical. 
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Specifically, taking federated learning with two data owners as an example, data distribution can be divided 

into the following three situations: 

User characteristics of two data sets (x1, X2, ...) The overlap is large, while the user (U1, U2 ）The overlap 

is small; Users of two datasets (U1, U2 ）The overlap is large, while the user characteristics (x1, X2,...) The 

overlap is small; Users of two datasets (U1, U2 ）Overlap with user features (x1, X2,...) Some of them are 

relatively small. In order to cope with the above three data distribution, we divide federated learning into 

horizontal federated learning, vertical federated learning and federated transfer learning. 

2.1. Horizontal Federal Learning 

In the case that the user characteristics of two data sets overlap more and the user overlaps less, we 

segment the data set according to the horizontal (i.e. user dimension), and take out the part of data with the 

same user characteristics but different users for training. This method is called horizontal Federation 

learning. For example, there are two banks in different regions, and their user groups come from their 

respective regions, with very small intersection. However, their business is very similar, so the user 

characteristics of the records are the same. At this point, we can use horizontal federated learning to build a 

joint model. In 2017, Google put forward a joint data modling scheme for Android phone model update: 

when a single user uses Android phone, it constantly updates the model parameters locally and uploads the 

parameters to Android cloud, so that each data owner with the same feature dimension can establish a joint 

model. 

2.2. Longitudinal Federal Learning 

In the case of more user overlaps and less user features overlaps in the two data sets, we segment the 

data set according to the vertical (i.e. feature dimension), and take out the part of data with the same user 

and different user features for training. This method is called longitudinal Federation learning. For example, 

there are two different institutions, one is a bank in a certain place, the other is an e-commerce in the same 

place. 

3. Approach 

If you are using Word, use either the Microsoft Equation Editor or the MathType add-on 

(http://www.mathtype.com) for equations in your paper (Insert | Object | Create New | Microsoft Equation 

or MathType Equation). “Float over text” should not be selected.  

3.1. Architecture 

This paper uses the system model with energy collection in the Internet of things environment shown in 

for analysis. In this case, set D = {1,2 Devices in, D} are in set n = {1,2 In the service scope of edge node (EN) 

in n}, edge node provides communication and computing offload. Among them, Internet of things devices 

are information sensing devices that have certain computing power, can collect energy units from edge 

nodes, and can communicate with edge nodes; edge nodes are communication and computing servers that 

are close to users and deployed on the edge of the core network.  

Each device can select an edge node from n to establish communication and unload intensive computing 

tasks, and be allocated w-frequency bandwidth. For quantitative analysis, the time range i is discretised into 

I-index time period with a duration of ζ (unit s). In the aspect of IOT devices, a typical IOT device is taken as 

a representative to illustrate the model. It can collect energy units from edge nodes and store them in an 

energy queue with maximum length Le max for wireless transmission and calculation. At the same time, it 

allows computing tasks to perform specific services, and these tasks form independent and identically 

distributed Bernoulli random variable sequences, with the common parameter γ t ∈ [0,1] in Le max. In 
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addition, there is a local task queue with the maximum length of LT Max in the Internet of things device, 

which can maintain the unprocessed and unsuccessfully processed tasks in the way of first input first 

output (FIFO).  

If a task is generated during I, the device's task arrival indicator is represented as at I = 1 during time 

period I, otherwise at I = 0. Computing tasks are modeled as (D, V), where d (unit byte) and V respectively 

represent the size of transmission data needed to unload tasks and the number of CPU cycles needed to 

process tasks. With regard to computing tasks, you can determine the computing tasks extracted from the 

task queue for local execution or unloading to the edge nodes on the Internet of things devices for 

processing. Back to the Internet of things device, it should make a joint operation (CI, EI) at the beginning of 

each time period I to make a decision: (1) whether the task is processed locally (CI = 0) or unloaded to the 

edge node (CI ∈ n), pay attention to CI ∈ {0} ⋃ n; (2) how many energy units (EI ∈ ℕ +) should be 

allocated from the energy queue storing energy. In this case, when the calculation task is assigned to be 

processed locally in the allowed energy unit EI (if any), i.e. CI = 0, the CPU frequency fi assigned to the task 

can be the maximum limit of the model. 

 

Table 1. Experiment Result 

Latency 

Regular 

Approach(s) 

Federated 

learning(s) 

Iterating 

Times 

1.1 1.5 1000 

2.3 2.6 2000 

1.4 1.9 3000 

1.4 1.5 4000 

2.9 2.7 5000 

 

3.2. Model 

In real-time changing real-world scenarios, energy queues and task queues should be paid special 

attention, because they represent computing resources and workload respectively. In this paper, Le I is used 

to represent the length of the energy queue inside the Internet of things devices at the beginning of time 

period I. Using the available energy unit provided by the energy queue, the achievable task execution delay 

(including communication and calculation) is the focus of the research. In addition to processing delay and 

transmission delay of tasks, handover delay is also considered.  

Specifically, if task execution will be regarded as failure, in two cases, these tasks will remain in the task 

queue until successful execution: (1) IOT devices can not process computing tasks until a period of time has 

ended; (2) IOT devices choose to unload tasks to special Fixed edge node, and long-time transmission 

failure caused by insufficient energy allocation or poor radio channel quality. For the convenience of 

description, the length of the task queue can be dynamically calculated as: lt I + 1 = min {LT I - 1 {0 < Ti < ζ} 

+ at I, lt Max} (9). Of course, if the task queue is full of waiting tasks, the newly generated tasks must be 

deleted, which should be avoided under ideal conditions. Then the number of calculation tasks discarded in 

a time period I is described as follows: ξ I = max {LT I - 1 {0 < Ti < ζ} + at I - LT max, 0} (10). In addition, 

since not every task can be successfully processed in a time period ζ, the unscheduled queuing delay of 

calculation tasks will be generated. The queuing delay in time period I is regarded as the length of internal 

task queue LT I, that is, ε I = LT I - 1 {Ti > 0} (11). Meanwhile, if the calculation task fails to execute, the 

corresponding penalty will be given: σ I = 1 {Ti > ζ} (12). In addition, when the IOT device decides to unload 

its calculation task to the edge node, it should compensate the occupied edge node. Such compensation is 
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weighted by the time taken to receive and process task input data. π∈ℝ + is defined as the price paid per 

unit time. The expression of payment can be written as: φ I = π× (min {Ti, ζ} - HI) × 1 {CI ∈ n} 

(13) 

4. Experiment 

The latency of the computing nodes is calculated according to different reinforcement learning iterating 

times. The results show that reinforcement learning with federated learning can achieve the similar latency 

with regular approach. 

5. Conclusion 

This paper studies the combination of deep reinforcement learning and federated learning in the Internet 

of things environment which supports edge computing. Deep learning in deep reinforcement learning has 

strong perception ability, while reinforcement learning has decision-making ability. At the same time, 

federated learning also guarantees the privacy of data. The computational offload experiment in this paper 

proves the validity of the algorithm offload strategy based on federated learning. In the future, we will use 

non independent and identically distributed data to study whether deep reinforcement learning has model 

compression technology, and how to arrange federated based learning training with more fine-grained. 
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