

Resource Scheduling Based on Reinforcement Learning
Based on Federated Learning

Yabin Wang*, Jing Yu

The Information System Engineering Important Laboratory, China.

* Corresponding author. Tel.: 15850770993; email: 517129269@qq.com
Manuscript submitted July 10, 2020; accepted October 18, 2020.
doi: 10.17706/jsw.16.1.39-45

Abstract: The emergence of edge computing makes up for the limited capacity of devices. By migrating

intensive computing tasks from them to edge nodes (EN), we can save more energy while still maintaining

the quality of service. Computing offload decision involves collaboration and complex resource

management. It should be determined in real time according to dynamic workload and network

environment. The simulation experiment method is used to maximize the long-term utility by deploying

deep reinforcement learning agents on IOT devices and edge nodes, and the alliance learning is introduced

to distribute the deep reinforcement learning agents. First, build the Internet of things system supporting

edge computing, download the existing model from the edge node for training, and unload the intensive

computing task to the edge node for training; upload the updated parameters to the edge node, and the

edge node aggregates the parameters with the The model at the edge node can get a new model; the cloud

can get a new model at the edge node and aggregate, and can also get updated parameters from the edge

node to apply to the device.

Key words: Edge computing, resource scheduling, federated learning, reinforcement learning, distributed
learning.

1. Introduction

Edge computing nodes located in multiple BS are always composed of high-performance servers or

distributed data centers. BS edge computing nodes are distributed in different geographical areas, and can

have different service areas, rental costs and available resources to meet the service needs of mobile

computing nodes. Like thin clients, these computing nodes connect to edge computing nodes through

mobile networks without accessing the remote cloud.

Cloud computing servers deploy wireless APS (access points) located in intelligent roadside units, such as

street lights, intersections, stores or buildings. These nodes provide various local capabilities and services,

including computing, networking, storage and application, for computing nodes in the coverage area

through limited transmission coverage communication technology [1]. This type of node in the hierarchical

edge computing environment is very important because it is closer to the user, has strong computing

potential, and is well connected through high-speed local communication technology, which is conducive to

providing low latency computing and rich computing resources [2].

Offloading services to edge computing nodes can extend the limited capabilities of intelligent computing

nodes. BS edge computing node has large-scale coverage and high-performance computing. If applications

require high computing power, it is more desirable to unload to the BS edge computing node. However, the

39 Volume 16, Number 1, January 2021

Journal of Software

mailto:517129269@qq.com

weakness of BS edge computing node is that users may experience a long waiting time for data exchange

with corresponding remote nodes through 3G / 4G access network. Long delays can damage interactive

responses because humans are very sensitive to delays and jitters. For AP edge computing nodes, if too

many computing nodes access the same wireless network at the same time, the scarce bandwidth may

affect the application QoS [3]. For real-time applications, it will be more beneficial for users to execute

services locally on self-organizing computing node nodes to avoid long communication time. Because the

current computing node service is always complex, including multiple tasks with various requirements, we

should consider communication delay, computing power and computing node mobility, and make unloading

decision for each task.

Traditionally, the decision-making algorithm of unloading depends on human experience. Relevant

knowledge is extracted by researchers, including system formula, algorithm solution and method

optimization. However, manual knowledge extraction has three main limitations. First of all, environment

including edge computing node and access network cannot have a comprehensive accurate, real-time

evaluation. For example, for the computing node service of heterogeneous nodes, task execution progress is

always abstracted as a queuing model, which is difficult to solve and ensure fairness; in addition, the goal of

unloading decision model is almost non convex function, and Lagrange relaxation needs to deal with

constraints or use some specific heuristic algorithms to find the approximate optimal solution [3]; finally,

every computing node Edge calculation When the environment changes, the offload decision should be

recalculated, which leads to more service delays and higher costs. Therefore, it is necessary to find an

intelligent way to learn knowledge and provide foresight to unload decision. Fortunately, edge computing

nodes have the advantage that they are deployed with network devices and can capture multidimensional

data from the environment, including computing node behavior, task information and network status. It is

feasible to use environmental data to continuously learn decision-making related knowledge and provide

process policies.

Deep learning is a hot field of computer vision, speech recognition, natural language processing and

computer network, and has made some remarkable achievements. It includes DNN (deep neural network),

CNN (convolution neural network), RNN (regression neural network), RESNET, dense net, etc. [4] These

different types of neural networks use multi-layer network structure and nonlinear transformation to build

the underlying features, and formulate abstract and differentiated high-level expressions, so as to perceive

and express things.

Service offload decision in edge computing environment is affected by many factors. It can capture

nonconvex optimization problems through complex objective functions and constraints. The deep learning

model divides the complex mapping problem into several embedded simple mappings described by

multiple layers of the model. In the training process, the gradient based iterative optimization minimizes

the loss function representing the approximation degree. After the supervised learning process based on

the historical data of human markers or the solution of heuristic algorithm, the deep learning model can

obtain the approximate optimal solution of the complex mapping problem [5]. When the model is deployed

in the real word setting after training, the approximate optimal solution can be obtained independently and

in real time according to the environment

Considering the change of future environment, deep learning method needs new tag data. Service

offloading decisions for complex services with different requirements should have the ability of long-term

programming and continuous learning [6]. Deep reinforcement learning (DRL) combines the perceptual

ability of deep learning with the decision-making ability of reinforcement learning. Reinforcement learning

is based on MDP (Markov decision process) theory, but it does not need to make state transition probability.

KD service unloading decision framework for computing node edge computing provides a unique

40 Volume 16, Number 1, January 2021

Journal of Software

platform for various services and all controlled computing nodes [8]. It includes the decision-making model

of DRL algorithm for learning the knowledge of service unloading, and the observation function for

obtaining the environmental data of computing node mobility and edge computing nodes. Because services

have a variety of tasks, KD service offload decision framework reserves a basic decision model for each

service. The basic decision model is trained on a powerful edge computing node (such as BS edge

computing node), and then distributed to the computing node for the actual service unloading decision.

After this training, the system learns the long-term optimal decision-making knowledge of data dependent

tasks in complex services from the experience of historical unloading rewards. Since the DRL model

includes incentives for each decision, the model can be continuously trained online while the service is

running. During this process, parameters are sent from the computing node to the BS edge calculation node

for periodic updating of the basic model.

The number of accessible edge computing nodes for a computing node is different, and it can change as

the computing node moves [7]. The observation function sorts the accessible nodes of the three types of

edge computing nodes according to the computing power, and uses the fixed number of each type of node

as the candidate unloading destination.

The heterogeneous resources provided by computing node edge computing nodes are abstracted as

multiple containers with specific functions and parameters. Multitasking in a complex application is

modeled as a specific data flow graph and represented by a DAG [8]. Due to differences in edge computing

nodes, including several cloudlets, BS with computing and storage capabilities, and adjacent computing

nodes on the road, each task in the service has multiple unloading destinations. We analyze task delay, node

performance and computing node mobility to determine computing node service delay. Symbols are defined

in Table 1. (choose where to uninstall by calculating service latency? What's the use of computing service

delay. What is the observation function? Is it the function to calculate the service delay.

This paper uses federated learning to train deep reinforcement learning agents, which are used for joint

allocation of communication and computing resources. The experimental results show that the method is

better than the centralized training method.

2. Federal Learning

When multiple data owners (e.g. enterprises) f_i, I = 1 When n wants to train machine learning model

with their own data, the traditional way is to integrate the data to one side and use the data d = {Di, I = 1 N}

After training, we get the model. However, the scheme is usually difficult to implement because of the legal

issues such as privacy and data security [9]. To solve this problem, we propose federal learning. Federated

learning means that the data owner can train the model and get the calculation process of the model M ﹤

fed without giving his own data d ﹤ I, and can ensure that the gap between the effect V ﹤ fed of the

model M ﹤ fed and the effect V ﹤ sum of the model M ﹤ sum is small enough, that is, ﹤ V ﹤ fed-v

﹤ sum ﹤ δ, where δ is a positive value of any small value.

We will classify federated learning based on the distribution of island data. Considering that there are

multiple data owners, the data set D ﹣ I held by each data owner can be represented by a matrix. Each

row of the matrix represents a user, and each column represents a user characteristic. At the same time,

some data sets may also contain label data. If we want to build a prediction model of user behavior, we must

have label data. We can call user features X and label features y. For example, in the field of finance, the

user's credit is the label y that needs to be predicted; in the field of marketing, the label is the user's

purchase desire y; in the field of education, it is the degree of knowledge that students master, etc. User

characteristic x and label y constitute complete training data (x, y). However, in reality, it is often

encountered that the users of each data set are not identical, or the characteristics of users are not identical.

41 Volume 16, Number 1, January 2021

Journal of Software

Specifically, taking federated learning with two data owners as an example, data distribution can be divided

into the following three situations:

User characteristics of two data sets (x1, X2, ...) The overlap is large, while the user (U1, U2 ）The overlap

is small; Users of two datasets (U1, U2 ）The overlap is large, while the user characteristics (x1, X2,...) The

overlap is small; Users of two datasets (U1, U2 ）Overlap with user features (x1, X2,...) Some of them are

relatively small. In order to cope with the above three data distribution, we divide federated learning into

horizontal federated learning, vertical federated learning and federated transfer learning.

2.1. Horizontal Federal Learning

In the case that the user characteristics of two data sets overlap more and the user overlaps less, we

segment the data set according to the horizontal (i.e. user dimension), and take out the part of data with the

same user characteristics but different users for training. This method is called horizontal Federation

learning. For example, there are two banks in different regions, and their user groups come from their

respective regions, with very small intersection. However, their business is very similar, so the user

characteristics of the records are the same. At this point, we can use horizontal federated learning to build a

joint model. In 2017, Google put forward a joint data modling scheme for Android phone model update:

when a single user uses Android phone, it constantly updates the model parameters locally and uploads the

parameters to Android cloud, so that each data owner with the same feature dimension can establish a joint

model.

2.2. Longitudinal Federal Learning

In the case of more user overlaps and less user features overlaps in the two data sets, we segment the

data set according to the vertical (i.e. feature dimension), and take out the part of data with the same user

and different user features for training. This method is called longitudinal Federation learning. For example,

there are two different institutions, one is a bank in a certain place, the other is an e-commerce in the same

place.

3. Approach

If you are using Word, use either the Microsoft Equation Editor or the MathType add-on

(http://www.mathtype.com) for equations in your paper (Insert | Object | Create New | Microsoft Equation

or MathType Equation). “Float over text” should not be selected.

3.1. Architecture

This paper uses the system model with energy collection in the Internet of things environment shown in

for analysis. In this case, set D = {1,2 Devices in, D} are in set n = {1,2 In the service scope of edge node (EN)

in n}, edge node provides communication and computing offload. Among them, Internet of things devices

are information sensing devices that have certain computing power, can collect energy units from edge

nodes, and can communicate with edge nodes; edge nodes are communication and computing servers that

are close to users and deployed on the edge of the core network.

Each device can select an edge node from n to establish communication and unload intensive computing

tasks, and be allocated w-frequency bandwidth. For quantitative analysis, the time range i is discretised into

I-index time period with a duration of ζ (unit s). In the aspect of IOT devices, a typical IOT device is taken as

a representative to illustrate the model. It can collect energy units from edge nodes and store them in an

energy queue with maximum length Le max for wireless transmission and calculation. At the same time, it

allows computing tasks to perform specific services, and these tasks form independent and identically

distributed Bernoulli random variable sequences, with the common parameter γ t ∈ [0,1] in Le max. In

42 Volume 16, Number 1, January 2021

Journal of Software

addition, there is a local task queue with the maximum length of LT Max in the Internet of things device,

which can maintain the unprocessed and unsuccessfully processed tasks in the way of first input first

output (FIFO).

If a task is generated during I, the device's task arrival indicator is represented as at I = 1 during time

period I, otherwise at I = 0. Computing tasks are modeled as (D, V), where d (unit byte) and V respectively

represent the size of transmission data needed to unload tasks and the number of CPU cycles needed to

process tasks. With regard to computing tasks, you can determine the computing tasks extracted from the

task queue for local execution or unloading to the edge nodes on the Internet of things devices for

processing. Back to the Internet of things device, it should make a joint operation (CI, EI) at the beginning of

each time period I to make a decision: (1) whether the task is processed locally (CI = 0) or unloaded to the

edge node (CI ∈ n), pay attention to CI ∈ {0} ⋃ n; (2) how many energy units (EI ∈ ℕ +) should be

allocated from the energy queue storing energy. In this case, when the calculation task is assigned to be

processed locally in the allowed energy unit EI (if any), i.e. CI = 0, the CPU frequency fi assigned to the task

can be the maximum limit of the model.

Table 1. Experiment Result

Latency

Regular

Approach(s)

Federated

learning(s)

Iterating

Times

1.1 1.5 1000

2.3 2.6 2000

1.4 1.9 3000

1.4 1.5 4000

2.9 2.7 5000

3.2. Model

In real-time changing real-world scenarios, energy queues and task queues should be paid special

attention, because they represent computing resources and workload respectively. In this paper, Le I is used

to represent the length of the energy queue inside the Internet of things devices at the beginning of time

period I. Using the available energy unit provided by the energy queue, the achievable task execution delay

(including communication and calculation) is the focus of the research. In addition to processing delay and

transmission delay of tasks, handover delay is also considered.

Specifically, if task execution will be regarded as failure, in two cases, these tasks will remain in the task

queue until successful execution: (1) IOT devices can not process computing tasks until a period of time has

ended; (2) IOT devices choose to unload tasks to special Fixed edge node, and long-time transmission

failure caused by insufficient energy allocation or poor radio channel quality. For the convenience of

description, the length of the task queue can be dynamically calculated as: lt I + 1 = min {LT I - 1 {0 < Ti < ζ}

+ at I, lt Max} (9). Of course, if the task queue is full of waiting tasks, the newly generated tasks must be

deleted, which should be avoided under ideal conditions. Then the number of calculation tasks discarded in

a time period I is described as follows: ξ I = max {LT I - 1 {0 < Ti < ζ} + at I - LT max, 0} (10). In addition,

since not every task can be successfully processed in a time period ζ, the unscheduled queuing delay of

calculation tasks will be generated. The queuing delay in time period I is regarded as the length of internal

task queue LT I, that is, ε I = LT I - 1 {Ti > 0} (11). Meanwhile, if the calculation task fails to execute, the

corresponding penalty will be given: σ I = 1 {Ti > ζ} (12). In addition, when the IOT device decides to unload

its calculation task to the edge node, it should compensate the occupied edge node. Such compensation is

43 Volume 16, Number 1, January 2021

Journal of Software

weighted by the time taken to receive and process task input data. π∈ℝ + is defined as the price paid per

unit time. The expression of payment can be written as: φ I = π× (min {Ti, ζ} - HI) × 1 {CI ∈ n}

(13)

4. Experiment

The latency of the computing nodes is calculated according to different reinforcement learning iterating

times. The results show that reinforcement learning with federated learning can achieve the similar latency

with regular approach.

5. Conclusion

This paper studies the combination of deep reinforcement learning and federated learning in the Internet

of things environment which supports edge computing. Deep learning in deep reinforcement learning has

strong perception ability, while reinforcement learning has decision-making ability. At the same time,

federated learning also guarantees the privacy of data. The computational offload experiment in this paper

proves the validity of the algorithm offload strategy based on federated learning. In the future, we will use

non independent and identically distributed data to study whether deep reinforcement learning has model

compression technology, and how to arrange federated based learning training with more fine-grained.

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

Yabin Wang conducted the research, analyzed the data and wrote the paper. Chenhao Guo and Jing Yu

approved the final version of the paper.

References

[1] Qiu, T., Zheng, K., Han, M., et al. (2017). A data-emergency-aware scheduling scheme for Internet of

things in smart cities. IEEE Transactions on Industrial Informatics, 14(5), 2042-2051.

[2] Chen, X., Zhang, H., Wu C., et al. (2019). Optimized computation offloading performance in virtual edge

computing systems via deep reinforcement learning. IEEE Internet of Things Journal, 6(3), 4005-4018.

[3] Zhao, Y., Li, M., Lai, L., et al. (2018). Federated learning with nonIID data.

[4] Valerio, L., Conti, M., & Passarella, A. (2018). Energy efficient distributed analytics at the edge of the

network for IoT environments. Pervasive and Mobile Computing, 51, 27-42.

[5] Li, X., Wang, X., Wan, P. J., et al. (2018). Hierarchical edge caching in device-to-device aided mobile

networks: modeling, optimization, and design. IEEE Journal on Selected Areas in Communications, 36(8),

1768-1785.

[6] Chen, X., Jiao, L., Li, W., et al. (2015). Efficient multi-user computation offloading for mobile-edge cloud

computing. IEEE/ ACM Transactions on Networking, 24(5), 2795-2808.

[7] Van, H. H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double Q-learning.

Proceedings of the 30th AAAI Conference on Artificial Intelligence.

[8] Mnih, V., Kavukcuoglu, K., Silver, D. et al. (2015). Human-level control through deep reinforcement

learning. Nature, 518(7540), 529-533.

[9] Burd, T. D., & Brodersen, R. W. (1996). Processor design for portable systems. Journal of VLSI Signal

Processing Systems for Signal, 203-221.

44 Volume 16, Number 1, January 2021

Journal of Software

Copyright © 2021 by the authors. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited (CC BY 4.0)

Yabin Wang is a PhD graduate student from Nanjing University. His interest is cloud

computing and edge computing. His research results on software test optimization were

employed and reported by sere 2012. He was visited University of Dallas, visit and

cooperate in papers and contribute to JSS. He cooperates with Baidu company to develop

automation testing tools and obtain patents. He develops software performance testing

platform for Jiangsu software product quality supervision and inspection center.

45 Volume 16, Number 1, January 2021

Journal of Software

https://creativecommons.org/licenses/by/4.0/

