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Abstract: Software defect prediction model is trained using code metrics and historical defect information 

to identify probable software defects. The accuracy and performance of a prediction model largely depend 

on the training dataset. In order to provide proper training dataset, it is required to make the dataset 

clustered with less variabilities using clustering algorithms. However, clustering process is hampered due 

to multiple attributes of dataset such as Coupling between Objects, Response for Class, Lines of Code, etc. 

This research will aim to predict software defects through reducing code metrics dimensions to two latent 

variables. It will finally help the clustering algorithms to group data properly for the defect prediction 

model. In this paper, the dataset similarities are analyzed by reducing code metrics’ attributes into two 

latent variables based on their impacts to defects. Their impacts to defects can be analyzed using 

regression analysis because it identifies the relationship among a set of dependent and independent 

variables. Then, the code metrics are merged into two variables - PosImpactValue and NegImpactValue 

based on their positive or negative impact, respectively. As a result, multi-dimensional dataset is mapped 

into two-dimensional dataset. Plotting those dimensions reduced datasets enable distance-based 

clustering algorithms to group those datasets based on their similarities. Experiments have been 

performed on 18 releases of 6 open source software datasets such as jEdit, Ant, Xalan, Synapse, Tomcat 

and Camel. For comparative analysis, one of the most commonly used dimension reduction techniques 

named Principle Component Analysis (PCA) and two popular clustering techniques in defect prediction – 

DBSCAN and WHERE have been used in the experiment. First, the dimensions of the experimental datasets 

have been reduced using the proposed technique and PCA separately. Then, the reduced datasets have 

been clustered using DBSCAN and WHERE independently for identifying number of defects accurately. 

The comparative result analysis shows that the defect prediction models based on the clustering 

algorithms are more accurate for the dataset reduced by the proposed technique than PCA. 

 

Key words: Software defect prediction, principal component analysis, DBSCAN, WHERE clustering, code 
metrics’ dimension reduction technique, dataset pre-processing. 

 
 

1. Introduction 

Software Defect Prediction (SDP) model identifies probable software defects using code metrics and 
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knowledge from previous projects [1]. Moreover, it helps practitioners to assess their current project 

status, and to reduce software development cost by identifying faultiness in advance [2]. To predict defects, 

many researches have been conducted using different techniques such as Neural Network, Naive Bayes, 

Regression modelling, Decision tree, etc. [1], [3], [4]. Most of these techniques are trained using the whole 

software dataset, which contains the entire system’s code metrics and historical defect information [1]. 

Usually, the dataset contains lots of attributes in each row such as Coupling Between Objects (CBO), 

Number of Public Methods (NPM), Response for a Class (RFC), Weighted Method of a Class (WMC), etc. [5]. 

The number of those attributes are actually called the dimensions of the dataset. Apart from that, the 

dataset also contains lots of variabilities because there exists heterogeneity among these attributes. It 

eventually results in a poor fit for the SDP model.  

Researches show that the effectiveness of an SDP model depends on the learning procedure, because 

better learning increases the performance and accuracy of a model [5]-[8]. Usually, heterogeneity among 

the code metrics in software datasets [9] hinder the learning procedure of a model. To resolve this, the 

training datasets can be clustered based on less variability. However, existing clustering techniques suffer 

when dimensionality of dataset is high. To reduce the dimensionality, several works have been found in 

the literature based on Principal Component Analysis (PCA) [10] and Factor Analysis [6], [11]. 

Zimmermenn et al. performed an experiment for predicting defects, which used network analysis of 

dependency graphs among various pieces of codes [12]. For that purpose, it used PCA to select the best 

set of attributes by reducing the multicollinearity [11] among the datasets. As PCA sometimes causes loss 

of information, the failure of PCA might decrease the performance of the technique. Menzies et al. used 

PCA to reduce the multicollinearity of the dataset for the SDP model [6], [7]. It plotted the dataset 

considering the greatest variability component in the X-axis and the next component in the Y-axis. It then 

applied the WHERE clustering [6], [7] algorithm to find similar objects from the dataset. Although, it used 

only two most significant PCA components for plotting the dataset, it did not clarify whether only two 

components could describe all the variances of the dataset or not. All these techniques perform well when 

the dataset is linear. However, these techniques suffer when the dataset is non-linear, which leads the 

following research question:  

How to reduce the dimensionality of software engineering dataset which is usually non-linear? 

This paper proposes a source code similarity analysis technique named SARCM to reduce the 

dimensionality of software defect dataset. If dimensionality defined by the attributes of software defect 

dataset (such as CBO, RFC, LCOM, etc. [13]) are considered as the independent variables and the number 

of defects is the dependent variable, the technique reduces the dimensions based on the regression 

coefficient value of the independent variables to the dependent variable. To identify the relationship 

between the independent and dependent variables, the regression analysis is applied to the available 

dataset and the coefficient values are calculated. The values determine whether the independent variables 

are positively or negatively related to the dependent variable. Next, the proportionate impact of each 

independent variable on the dependent variable is calculated by multiplying the coefficient value to the 

corresponding independent variable value. Then, the independent variables will be grouped based on 

their positive or negative impacts on the dependent variable. Finally, positively related values to the 

dependent variable are summed and assigned to one variable named as PosImpactValue and negatively 

related values are summed to another variable named as NegImpactValue. Now, the similarity score 

between two objects can be measured by the distance where PosImpactValue and NegImpactValue are 

considered as X and Y axis, respectively. This makes the dataset plottable to a two-dimensional plane. As 

the dimension of the dataset is reduced based on the relation of independent variables to the dependent 

variable, the defective classes get the higher value of PosImpactValue and lower value of NegImpactValue. 
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And similarly, the non-defective classes get the low value of PosImpactValue and high value of 

NegImpactValue. Thus, the technique transforms N-dimensional dataset into 2D plane by placing similar 

objects closer to each other.  

To assess the proposed technique, an experiment has been performed on different versions of six 

renowned open source software which are jEdit, Ant, Xalan, Camel, Synapse, and Tomcat from the Promise 

Repository [9]. The technique reduces the dimensions of the dataset into two dimensions which helps 

distance-based clustering algorithms. The clustering algorithms such as DBSCAN [14] and WHERE 

clustering [6], [7] have been applied to the dimension reduced dataset because WHERE has already been 

used in software defect prediction [6], [7] DBSCAN has been used here because it is yet to implement in 

software defect prediction. Then, the linear regression model has been applied to each cluster to find 

predicted defects. To compare the results of the dimension reduction approach, these two clustering 

approaches were also applied to dimension reduced dataset by PCA. Finally, the results are compared to 

show how the dimension reduction technique influences the clustering, and the clustering effects the 

defect prediction model.  

Results show that the proposed dimension reduction technique can successfully assign new values to 

each entry based on the significance of the independent variables to the dependent variable. As a result, 

both DBSCAN [14] and WHERE clustering techniques  [6], [7]. using SARCM performs better than PCA 

based DBSCAN and WHERE in the defect prediction, because PCA may lose information. Experimental 

results show that the used SDP model outperforms the existing technique in 14 datasets out of 18, 

clustered by the DBSCAN [14] and WHERE [6] clustering techniques where dimensions are reduced by 

SARCM. 

2. Related Work 

Training the prediction model by similar dataset improves its performance and accuracy [1]. The 

similarity of the dataset can be obtained by applying clustering algorithms on it. It is found that 

dimensions of the dataset hamper the clustering process. Many researchers suggest to reduce dimensions 

for clustering algorithms [6]-[8]. In this section, the widely used dimension reduction techniques along 

with clustering techniques in SDP are described.  

2.1. Dimension Reduction in Software Defect Prediction  

Dimension Reduction techniques reduce unimportant and insignificant features from a dataset. 

Although, the dataset having more features contains lots of information, it is difficult to extract desired 

information from more features. As a result, the machine learning or statistical models cannot draw 

conclusions from more features. So, it is needed to reduce the dimensions of the dataset by preserving all 

the variances for the machine learning or statistical models. Many researches in software defect prediction 

have used Dimension Reduction techniques. Some of those important researches are outlined below. 

Nagappan et al. proposed a failure prediction model by investigating the relationship between failure-

prone software entities and their complexity measures [11], [15]. It used linear regression analysis as the 

prediction model for identifying failure prone components. It performed an empirical study on five 

Microsoft software systems. It showed that multicollinearity existed among the complexity metrics and 

there was no single set of metrics that could act as the best defect predictor. To overcome the 

multicollinearity problem, it used PCA to select minimum numbers of metrics for which the cumulative 

variance was greater than 96%. After selecting the best set of metrics, it used these to identify the 

relationship between complexity metrics and failure-proneness. Results showed that the complexity 

metrics can predict post release defects. Although, the prediction model using PCA worked well, but this 

technique might select lots of features until the cumulative frequencies was greater than 96%, which might 
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hinder the training process. 

Zimmermen et al. proposed a defect prediction model using network analysis of dependency graphs 

among various pieces of code [12]. It used multiple linear regression analysis as the prediction model for 

predicting the critical binaries. It used PCA to reduce the multicollinearity [11] and selected only those 

principal components, for which the cumulative variance was greater than 95%. To show the effectiveness 

of the proposed method, it performed an experiment on Windows Server 2003, and the results showed 

that complexity metrics and network measures could predict 30% and 60% of these critical binaries, 

respectively. As it used PCA, it might lose a small amount of information and might select a set of metrics 

for which the cumulative variance was greater than 95%.  

Ceylan et al. proposed a defect prediction model using Decision Tree, Multi-Layer Perceptron and radial 

basis functions to predict the number of defects per module or function [16]. To remove multicollinearity 

by eliminating the correlations among the attributes, it used PCA to the dataset. The experiment had been 

carried out on some real-life software projects collected from three big software companies in Turkey. 

Results showed that the proposed prediction model improved the performance approximately 32.61% for 

Company-A and 60% for the other two companies. As it used PCA, it also inherited the same problems 

mentioned above. 

Menzies et al. proposed a software defect prediction model that learnt from software clusters with 

similar characteristics to resolve the variabilities [6], [7]. It performed clustering of the source code using 

WHERE clustering technique that considered only the code metrics and learning treatment using pairs of 

neighboring clusters. To perform the WHERE clustering in the dataset, the dimensions of the dataset were 

needed to be reduced. It used PCA to reduce the dimensions of the dataset. It plotted the dataset 

considering the most variability component in X-axis and the next component in Y-axis. Then, it applied 

the WHERE clustering to find similar objects. The downside was the consideration of only two PCA's 

components to plot the dataset without taking into account others. It did not also mention that whether 

these two components could describe all the variances or not. As a result, the clustering algorithms 

considering only two PCA's components might not group the dataset based on their similarity properly. 

For the software defect prediction, sometimes the dataset needs to be divided into multiple clusters 

based on their similarity to train the SDP model properly. As the dataset contains multiple dimensions [5]-

[8], the distance-based clustering cannot perform well until the dimension is reduced. The existing 

dimension reduction techniques such as PCA can reduce the dimensions, but taking two components into 

account for plotting into two-dimensional plane by avoiding others might cause a great loss of information. 

So, further researches are needed to represent the whole dataset in a meaningful way. 

2.2. Used Clustering Techniques in Defect Prediction 

The clustering algorithm in defect prediction divides the whole software dataset into clusters based on 

its different properties, so that the prediction model can get more accurate dataset for training purposes. 

The software engineering datasets always contain lots of variability such as heterogeneity among the code 

metrics [1], [3]. These variabilities cause the poor fit of machine learning algorithms or statistical 

inferences to the dataset [1]. If the variabilities among the datasets can be minimized, it will increase the 

probability of fitting the data to SDP models.  

Zimmermann et al. proposed a technique to predict defect at the design time by considering call 

dependencies, data dependencies and Windows specific dependencies such as shared registry entries [17]. 

It used Support Vector Machine (SVM) to predict the post release defects at design time. To perform the 

experiments, it collected the dependencies of all binaries such as executable files, for example, COM, EXE, 

etc. and dynamic-link files such as DLL for Windows Server 2003. It concluded that the software defect 
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proneness could be predicted using the dependencies among all binaries.  

To resolve the variabilities among the dataset, Menzies et al. proposed a software defect prediction 

model that learnt from software clusters with similar characteristics [6], [7]. It showed learning from 

clusters was better than learning from the entire system because it might falsify the data used by the 

prediction model. It performed clustering using WHERE technique that considered the code metrics and 

learning treatment using pairs of neighboring clusters. It advised that empirical software engineering 

should focus on ways to find the best local lessons for groups of related projects because global context 

was often obsolete for particular local contexts in the defect prediction. This premise also showed the 

importance of using the clustering to provide the accurate dataset for training SDP model.  

Scaniello et al. [5] proposed a defect prediction model to predict defects using Step-Wise Linear 

Regression (SWLR) that used clustering of the source code rather than the entire system. It considered 

references between methods and attributes to form clusters among the related classes using BorderFlow 

algorithm. The BorderFlow clustering algorithm performed clustering by maximizing the flow from the 

border to center and minimizing the flow from border to outside of the cluster. Then, it applied the SWLR 

model on each cluster and produced better results than other models that perform prediction considering 

the entire system. It focused on clustering using source code whereas Menzies et al. [6], [7] focused on 

clustering using code metrics. It formed clusters considering only related classes which meant it used 

coupling information among the classes to form clusters. So, the other code metrics' impacts were needed 

to analyze for defect prediction.  

Rayhanul et al. proposed a defect prediction model for Java based software to predict defects, where 

clustering was performed using package information of a project, named as Package Based Clustering 

(PBC) technique [18], [19]. PBC used package information because thousands of related classes and 

interfaces are organized by placing these into packages in Java based software. As a result, PBC produces 

clusters based on the related classes and interfaces that eventually improves the performance of the SDP 

model. It then validated the clusters using the number of selected code metrics before applying prediction 

model. It used linear regression model as the prediction model, and performed an experiment on jEdit-3.2 

to evaluate the proposed PBC. Results showed that it outperformed the entire system and BorderFlow 

algorithm in some cases.  

In a nutshell, a general overview of defect prediction using clustering emphasizes on the clustering of 

source code to improve the training process. All of the above discussed clustering algorithms use software 

code metrics, source code dependencies or code similarities, etc. to group source codes. Some approaches 

use PCA to reduce the dimension of the dataset before applying the different clustering algorithms [5]-[7]. 

However, none of those methods work perfectly in all Promise Repository's datasets [9].  

3. Proposed Methodology 

The existing literature supports that there exists a relationship between software code metrics and 

defect proneness [1]-[3]. The appropriate software code metrics for defect prediction are CBO, LCOM, RFC, 

WMC, DIT, LOC, NOC and NPM [13]. Those are also considered as the dimension of the dataset and 

independent variables for the SDP model. So, if the dimension reduction technique reduces the 

dimensions based on the coefficient values of the independent variables, the produced latent variable will 

be based on the independent variables' significance to the dependent variables [1], [19].   

The coefficient value of one independent variable to the dependent variable can be measured using 

regression analysis, because it estimates the relationships among variables [19]. In this context, if CBO, 

LCOM, DIT, RFC, WMC, LOC, NPM and NOC are considered as the independent variables, and defect as 

dependent variable, the regression equation will be as follows- 
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𝑌 = 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 + 𝑏5𝑥5 + 𝑏6𝑥6 + 𝑏7𝑥7 + 𝑏8𝑥8 + 𝑐   (1) 

Here, 

● Y is the number of defects in an Object Oriented class 

● 𝑥1… 𝑥𝑛 are the independent variables, which are CBO, LCOM, DIT, RFC, WMC, LOC, NPM and NOC 

● 𝑏1… 𝑏𝑛 are the coefficient values of independent variables respectively 

● c is the value of Y when all independent variables are 0. 

The coefficient values ( 𝑏1… 𝑏𝑛 ) represent the linear association between the independent and 

dependent variables [19]. The coefficient values can be positive or negative based on the impact of the 

independent variables to the dependent variable [19]. A coefficient value – 

● greater than 0 indicates that two variables are positively related. 

● less than 0 indicates that two variables are negatively related. 

● 0 indicates that there is no linear relationship between the two variables. 

 

Table 1. The Coefficient Values of the Selected Independent Variables for Ant-1.6 

Independent variable Coefficient value 

 

Latent Variable 

 

CBO -0.0004216989  

NegImpactValue 

 
DIT -0.0568333506 

WMC -0.0722705159 

LOC 0.0004402161  

 

PosImpactValue 
NPM 0.0527224790 

LCOM 0.0002719006 

RFC 0.0256817433 

NOC 0.0025542023 

 

To reduce the dimension of the dataset, the coefficient values are then multiplied to the corresponding 

variable values. Now the software engineering dataset’s attributes have positive and negative values which 

represent their impacts to defects. Then the positive and negative values are summed to produce two 

latent variables, named as PosImpactValue and NegImpactValue respectively for each row in the dataset. 

The PosImpactValue and NegImpactValue are calculated using Equation (2) and (3) respectively. As a result, 

the final dataset contains only two values for each entry. As an example, the impact analysis of code metrics 

to software defects for Ant-1.6 is given in Table 1. This table shows that CBO, DIT and WMC have negative 

coefficients and produce NegImpactValue, and the remaining code metrics have positive coefficients and 

produce PosImpactValue. It is needed to mention that the impact of code metrics may change from dataset 

to dataset. Although, CBO, DIT and WMC have negative impacts in Ant-1.6, those may have positive impacts 

in other projects and this is also true for the other code metrics. The whole procedure to reduce the 

dimensions of a dataset is given in Algorithm 1. 

 

𝑃𝑜𝑠𝐼𝑚𝑝𝑎𝑐𝑡𝑉𝑎𝑙𝑢𝑒 = ∑ 𝑏𝑖𝑥𝑖      (2) 

Here, bi is positive. 

 

𝑁𝑒𝑔𝐼𝑚𝑝𝑎𝑐𝑡𝑉𝑎𝑙𝑢𝑒 = ∑ 𝑏𝑖𝑥𝑖                       (3) 

 

Here, bi is negative.  
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In the very beginning of Algorithm 1, a regression equation such as Equation (1) is selected and applied 

to the existing available dataset. It finds the regression coefficients bi using Lines 1-3. These regression 

coefficient values might be positive or negative depending on their impacts to the dependent variable. This 

algorithm produces the new value for each entry based on these significances. For that purpose, it 

traverses each row and selects each variable in the row. Then it multiplies the variable value with its 

coefficient value using Lines 4-9. The used dataset now contains only positive and negative values which 

actually mean their impacts to the number of defects. 

Algorithm 1: Dimension Reduction Algorithm 

Require: dataset D, Coefficient Value b, Independent Variable Value x, Number of software defects Y, 

PosImpactValue P and NegImpactValue N 

1: Select a linear regression equation,  𝑌 = 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 +

𝑏4𝑥4 + 𝑏5𝑥5 + 𝑏6𝑥6 + 𝑏7𝑥7 + 𝑏8𝑥8 + 𝑐 

2: Apply the selected equation on the available D 

3: Compute b for each independent variable, 𝑥𝑖. 

4: for each  𝑥𝑖  row in D do 

5:      for each in row do 

6:          Select b for the selected 𝑥𝑖 

7:           𝑥𝑖 ←  𝑏𝑖 ∗  𝑥𝑖 

8:      end for 

9: end for 

10: For each row in D do 

11:       Set value for P=0, N=0 

12:       for each xi in a row do 

13:             if xi > 0 then 

14:                    𝑃 ←   𝑃 + 𝑥𝑖 

15:            else 

16:                   N=N+ 𝑥𝑖 

17:                   N=N*(-1) 

18:           end if  

19:      end for 

20: end for 

21: Set value P, N for the selected entry. 

 

After getting some positive and negative significance, this algorithm combines those values into 

PosImpactValue and NegImpactValue. To do so, it first initializes PosImpactValue and NegImpactValue to 0 

using Line 11. Then, it iterates again the dataset and selects each variable in the dataset’s row. After that, 

it identifies their significance using Line 13. If the value is greater than 0, it adds this variable to the 

PosImpactValue using Line 14. Otherwise, it adds to NegImpactValue applying Line 16. To remove negative 

sign from NegImpactValue, it is then multiplied by -1 using Line 17. Finally, it assigns PosImpactValue and 

NegImpactValue values to the corresponding dataset’s row. 

4. Experimental Setup 
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In this section, the focus will be kept on how the proposed SARCM is performed in comparison with the 

PCA in the context of software defect prediction, including the implementation details, code metrics 

selection and data collection.  

4.1. Code Metrics Selection  

The software code metric is a quantitative measure to define the quality of software. These metrics are 

used in software defect prediction to improve software qualities. Among all the metrics, the method level 

metric is widely used in structured and Object-Oriented Programing (OOP), and the class level code metric 

is only used for OOP [1], [3]. According to some research work [1], [13] all of the above metrics' properties 

are not influential for defect prediction. Furthermore, these studies also show the following eight code 

metrics which are influential in software defect prediction [1], [13]. Those selected code metrics are 

Weighted Methods per Classes (WMC), Depth of Inheritance Tree (DIT), Number of Children (NoC), 

Coupling between Objects (CBO), Response for Classes (RFC), Lack of Cohesion in Methods (LCOM), 

Number of Public Method (NPM) and Lines of Code (LOC). 

4.2. Dataset Collection  

The proposed dimension reduction technique for software defect prediction has been experimented on 

different versions of six open source software projects. These datasets are Ant 1.3-1.7, jEdit 4.2-4.3, Xalan 

2.4-2.7, Camel 1.0-1.7, Synapse 1.2, and Tomcat.  All of these defect datasets have been collected from the 

Promise Repository [9]. These datasets contain the corresponding software code metrics and defect 

information which are usually used by the prediction model to predict the defect for future releases [3].  

4.3.  Measuring the Similarity of Objects 

 

 

Fig. 1. The distribution of OO classes in the dimension reduced dataset by SARCM for Ant-1.6. 

 

To measure the similarity among the objects based on their defectiveness, the dimension reduced 

dataset is plotted considering the PosImpactValue as X-axis and NegImpactValue as Y-axis. In the plane, 

similar classes become adjacent and dissimilar classes become farther from each other because 

PosImpactValue is high for defective objects and NegImpactValue is high for low defective objects. So, the 

similarity among the objects can be analyzed using their Cartesian distances in the two-dimensional plane.  

As an example, the distribution of defective and non-defective objects of the dimension reduced dataset 

for Ant-1.6 project is shown in Fig. 1. However, the detailed results for all the experimental datasets have 

been described in Section V. In Fig. 1, the defective and non-defective objects are represented by the red 

and blue circle, respectively. Here, the density of the red circle is high in the area, nearest to X-axis, because 

high defective objects usually have high value of CBO, WMC, etc. That makes the high value of 

PosImpactValue and low value of NegImpactValue for those objects. Contrary, non-defective objects have 
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low value of PosImpactValue and high value of NegImpactValue. It is now clear that the position of each 

object in Fig. 1 corroborates the assumption that the similar objects get closer values in the dimension 

reduced dataset, and objects are distributed based on their defects. 

In terms of OOP objects distribution, there exists a significant difference between Fig. 1 and Fig. 2. In 

Fig. 1, different Object Oriented (OO) classes create cumulative straight line because SARCM technique 

reduces the dimension based on the cumulative impact of the independent variables to the dependent 

variable. On the contrary, in Fig. 2, all OO classes form a line, parallel to the X-axis because the values of 

the most significant principal component are closer to each other.  

 

 

Fig. 2. The distribution of OO classes in the dimension reduced dataset by PCA for Ant-1.6. 

 

As the new dimension reduced dataset contains closer value for similar objects, it can be divided into 

clusters considering distance measure. For that purpose, the density-based clustering algorithms such as 

DBSCAN and WHERE clustering can be better options [6]. It is also necessary to mention that DBSCAN is 

not the only solution to perform clustering. Any distance-based clustering algorithm, for example, k-means, 

can be applied to find clusters from the dimension reduced dataset. 

4.4. Validation of the SDP 

As the success of the linear regression model depends on the training dataset, after reducing the 

dimensions, the total dataset is divided into two sets such as trainset and testset. In this paper, like Juban 

et al. [20], 80% of data is used to train the prediction model and the remaining is used to assess its 

performance and accuracy. 

To evaluate the quality of the SDP model, the Mean (M), Median (Md) and Standard Deviation (StD) of 

Absolute Residuals (AR) are computed. The AR value, widely used in the performance measure of the 

linear regression model [5], is the difference between predicted defects and actual defects of a particular 

OO class. It shows that the smaller the AR value is, the better the SDP model will be [5].  

To compare SARCM with PCA in terms of defect prediction accuracy, the error is computed using 

Equation (4) [5]. The error value, in between -1 and +1, shows whether SARCM is better or worse in the 

context of software defect prediction [5]. For a software release, negative value of error indicates SARCM 

outperforms PCA technique, whereas a positive value indicates the opposite [5]. 

 

𝑒𝑟𝑟𝑜𝑟 =
𝑀𝐴𝑅(𝑆𝐴𝑅𝐶𝑀)−𝑀𝐴𝑅(𝑃𝐶𝐴)

𝑆𝑡𝐷𝐴𝑅(𝑃𝐶𝐴)
       (4) 

where  

● MAR(SARCM) is the mean value of the AR using SARCM 

● MAR(PCA) is the mean value the AR using PCA 

● StDAR(PCA) is the standard deviation of the AR using PCA 
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5. Result Analysis 

The results of the selected SDP model using different clustering approaches are compared using the 

MAR, MdAR and StDAR of the Absolute Residuals (AR). To evaluate the performance of SARCM compared 

to PCA, two clustering techniques which are DBSCAN and WHERE are applied separately to the dimension 

reduced dataset. For each dimension reduced dataset by SARCM, those clustering techniques divide the 

whole dataset into clusters based on the similarity of the OO classes, because SARCM reduces the 

dimensions in a way where the similar objects get closer. For the dimension reduced dataset by PCA, the 

above-mentioned clustering methods also divide the dataset into multiple clusters based on the variances 

among elements, because PCA reduces the dimensions in such a way so that the selected principal 

components can describe all variances. Then, the SDP model uses those clusters of datasets for training 

purposes to increase the accuracy and performance. Finally, the accuracy and performance of the SDP 

model are measured by taking the residual value of predicted and actual defects. 

The whole analysis is divided into two phases. In phase I, the comparison of AR values is analyzed by 

computing the MAR, MdAR and StDAR values. In phase II, the error values are calculated to determine 

which technique performs well in software defect prediction. 

Phase I: The Comparison of Absolute Residual Values 

The Absolute Residual is the difference between actual and predicted defects. It determines how better 

the SDP model is. Usually, the low value of AR shows the high performance and accuracy of the SDP model, 

and on the contrary, the high value determines the low performance and accuracy [5]. In this paper, the 

descriptive statistics of the ARs are summarized in Table 2 to compare the impact of the proposed SARCM 

technique on the SDP model. This table illustrates the comparison of MAR, MdAR, StDAR values of DBSCAN 

and WHERE clustering techniques using the dimension reduced dataset by SARCM and the PCA, 

respectively. The descriptions of DBSCAN using SARCM (S-DBSCAN) vs. DBSCAN using PCA (P-DBSCAN), 

and WHERE using SARCM (S-WHERE) vs. WHERE using PCA (P-WHERE) are given in Table 2.  

S-DBSCAN vs. P-DBSCAN 

In Table 2, the second and third column represent the AR values of S-DBSCAN and P-DBSCAN, 

respectively. It shows that MAR values are minimum for S-DBSCAN compared to P-DBSCAN. It means that 

the SDP model considering S-DBSCAN produces smaller AR values compared to P-DBSCAN. Which 

indicates that the SDP model considering S-DBSCAN has better performance and accuracy than P-DBSCAN. 

The SDP has poor performance in Ant-1.7, Synapse-1.2 and Xalan-2.4 because DBSCAN clustering 

algorithm cannot divide those datasets properly. The detail inspection in those datasets shows that those 

contain low number of objects that lead small number of objects in a cluster. As a result, SARCM cannot 

perform well in those datasets, and finally that results low prediction accuracy in the SDP model. In a 

nutshell, the SDP model considering S-DBSCAN outperforms P-DBSCAN in 15 datasets out of 18, 

illustrated in Figure 3, which indicates that S-DBSCAN is better than P-DBSCAN in software defect 

prediction. 

S-WHERE vs. P-WHERE: 

The comparison of WHERE clustering method is illustrated in Table 2 using column S-WHERE and P-

WHERE. It shows that the mean value of AR is also minimum in S-WHERE compared to P-WHERE. Figure 

4 shows S-WHERE performs better than P-WHERE in 14 datasets out of 17, which is an indication of better 

prediction accuracy of SDP model when SARCM is taken into account in WHERE clustering approach.  

This proposed technique has poor performance in Ant-1.4, jEdit-4.2, jEdit-3.2 and Xalan-2.5. Among 

these, the MAR value is high for Ant-1.4 which means that it largely has low performance in this dataset. 

The detail inspection in those dataset gives that those contain low number of objects. As a result, SARCM 

cannot perform well, which results in inappropriate clustering of the dataset, and finally affects the 
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accuracy and performance of the SDP model. In essence, it can be concluded that the SDP model 

considering S-WHERE outperforms P-WHERE in 14 datasets out of 17 datasets, listed in Table 2.  

Phase 2: The Comparison of Error Values 

The error values show how much better or worse the SDP model is, compared to others. It is calculated 

from MAR and StDAR values using Equation (4). Usually, the negative value shows high accuracy and 

positive value shows low accuracy of the SDP model [5]. The error values of DBSCAN are calculated 

considering S-DBSCAN and P-DBSCAN by applying Equation (4). In the same way and using the same 

equation, the error values for WHERE clustering are also calculated considering S-WHERE and P-WHERE. 

Table 3 summarizes all error values for the DBSCAN and WHERE clustering techniques. 

Figure 5 summarizes the error values considering DBSCAN. In this figure, all points under the horizontal 

line represent the software releases, for those the SDP model considering S-DBSCAN has better prediction 

accuracy. Here, 14 software releases have negative error values, so the SDP model has better accuracy in 

those datasets. In this figure, only 3 datasets which are Ant-1.7, Xalan-2.4 and Synapse-1.2 have positive 

error values, so the model considering S-DBSCAN has poor performance in those datasets because of the 

inappropriate reachability distance measure for DBSCAN. As a result, the DBSCAN cannot properly group 

the software dataset which actually results low prediction accuracy of the SDP model. Finally, it can be 

concluded that S-DBSCAN works well in 14 datasets. 

 

 
Fig. 3. The AR mean values of S-DBSCAN and P-DBSCAN. 

 
Fig. 4. The AR mean values of S-WHERE and P-WHERE. 

In the same way, the error values considering the WHERE clustering technique are summarized in Fig. 

6. In this Fig. 14 software releases reside below the horizontal line. As said earlier, the points below the 

line represent better prediction performance and accuracy, so SDP model using S-WHERE has better 

accuracy in 14 datasets compared to P-WHERE. Here, only 3 datasets reside above the horizontal line. So, 

Journal of Software

157 Volume 15, Number 6, November 2020



 

 

the WHERE clustering algorithm considering SARCM performs better than PCA in the 14 datasets. It has 

poor performance in Ant-1.4, because it contains lower number of objects, as a result, clustering technique 

produces clusters with small number of objects which actually results in low prediction accuracy of the 

SDP model. For Xalan-2.5 and jEdit-4.2, the error values are close to zero, so it can be negligible. Eventually, 

it is coherent that the SDP model using S-WHERE performs better than P-WHERE. 

 

 
Fig. 5. The distribution of error values for DBSCAN. 

 

 
Fig. 6. The distribution of error values for WHERE. 

Table 2.  The Mean, Median and Standard Deviation Value of AR 

Dataset S-DBSCAN P-DBSCAN S-WHERE P-WHERE 
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MAR MdAR StDev MAR MdAR StDev MAR MdAR StDev MAR MdAR StDev 

Ant-1.7  0.46 0.24 0.54 0.37 0.18 0.54 0.65 0.48 0.60 0.71 0.30 1.07 

Ant-1.6 0.48 0.29 0.59 0.76 0.27 1.48 0.99 1.02 0.70 0.99 0.63 0.98 

Ant-1.5 0.13 0.10 0.12 0.13 0.08 0.14 0.30 0.05 0.67 0.40 0.14 0.47 

Ant-1.4 0.27 0.19 0.22 0.32 0.29 0.18 2.85 0.17 7.68 0.64 0.45 0.57 

Ant-1.3 0.25 0.15 0.31 0.31 0.08 0.49 0.39 0.17 0.50 1.06 0.26 2.82 

Xalan-2.7 0.664 0.57 0.40 1.11 0.37 3.6 0.38 0.26 0.37 0.62 0.62 0.45 

Xalan-2.6 0.72 0.57 0.54 0.87 0.62 0.88 1.14 0.94 0.93 1.52 0.89 1.85 

Xalan-2.5 0.62 0.53 0.51 0.78 0.61 0.87 0.83 0.56 0.88 0.80 0.51 0.81 

Xalan-2.4 0.28 0.12 0.45 0.25 0.13 0.33 0.30 0.16 0.44 0.33 0.15 0.47 

Synapse-1.2 0.67 0.37 0.69 0.55 0.46 0.45 0.61 0.38 0.62 1.0 0.86 0.86 

jEdit-4.3 0.02 0.02 0.02 0.04 0.01 0.12 0.10 0.04 0.15 0.16 0.08 0.19 

jEdit-4.2 0.21 0.158 0.202 0.349 0.313 0.415 0.397 0.288 0.35 0.28 0.13 0.41 

jEdit-3.2 3.01 1.97 4.34 6.53 2.23 10.02 2.15 1.34 3.23 1.94 1.33 2.04 

Camel-1.6 0.748 0.322 1.035 1.549 0.49 7.064 1.065 0.403 1.34 1.23 0.64 1.5 

Camel-1.4 0.69 0.27 1.34 0.86 0.51 0.90 0.71 0.23 1.33 1.45 0.42 2.58 

Camel-1.2 1.11 0.53 1.27 1.20 0.62 2.21 1.34 0.70 1.41 1.50 1.00 1.73 

Camel-1.0 0.089 0.034 0.200 0.145 0.023 0.313 0.149 0.041 0.303 0.198 0.183 0.327 

Tomcat 0.149 0.046 0.241 0.290 0.093 0.406 0.189 0.033 0.303 0.189 0.126 0.274 

 

Table 3. The Error Values of all Datasets for DBSCAN and WHERE 

Dataset Error Dataset Error 

DBSCAN WHERE DBSCAN WHERE 

Ant-1.7 16% -6% Synapse-2.2 26.5% -44.63% 

Ant-1.6 -18.87% 0.135% jEdit-4.3 -13.23% -29.27% 

Ant-1.5 -0.576% -20.58% jEdit-4.2 -32.85% 26.82% 

Ant-1.4 -31.31% 383% Camel-1.6 -11.3% -11.55% 

Ant-1.3 -12.38% -23.4% Camel-1.4 -18.72% -28.546% 

Xalan-2.7 -12.52% -52.23% Camel-1.2 -4.42% -8.82% 

Xalan-2.6 -17.40% -20.29% Camel-1.0 -17.76% -14.8% 

Xalan-2.5 -18.65% 4.7% Tomcat -34.7% -0.25% 

Xalan-2.4 8.6% -6.7%    

 

The SDP model has better prediction accuracy when the clustering algorithms use the dimension 

reduced dataset by SARCM, because it reduces the dimension based on the significance of different 

software metrics (such as CBO, RFC, LCOM, WMC, DIT, NPM, LOC and NOC) to the number of software 

defects. As a result, the dimension reduced dataset gets closer value for similar objects and SDP model 
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gets similar dataset for learning procedure. In principle, it can be stated that SARCM can significantly 

improve the accuracy of SDP model which results lower AR values compared to PCA. 

6. Conclusions 

In this paper a technique has been proposed for reducing code metrics' attributes for software 

engineering dataset through the relationship of code metrics to defects. It analyzes the relationship of 

code metrics such as CBO, RFC, LCOM, WMC, etc. to defect by applying regression analysis on the available 

datasets. Then, the dimensions of dataset are reduced to two variables which are PosImpactValue and 

NegImpactValue, based on those positive and negative impacts, respectively. This dimension reduced 

dataset is plotted on the two-dimensional plane considering PosImpactValue as X-axis and 

NegImpactValue as Y-axis for the distance-based clustering approaches. It has been observed, in the two-

dimensional plane, the similar objects situate adjacent to each other and dissimilar objects reside far from 

each other. 

 For the experimental analysis, the DBSCAN and WHERE clustering techniques have been applied to 

dimension reduced dataset to group those into clusters based on their distance measure. Finally, the SDP 

model has been applied to 18 releases of 6 open source software systems. During the experiment, the SDP 

model learnt from the clusters of the dataset by DBSCAN and WHERE clustering techniques where 

dimensions were reduced by SARCM. Then, the same SDP model was inherited and implemented on those 

datasets, dimensions reduced by PCA. Eventually, results are compared based on the absolute residual 

values, and the results show that the SDP model performs well in the 14 datasets out of 17 datasets when 

dimensions were reduced by SARCM. In future, a software tool will be developed based on SARCM along 

with different popular clustering techniques to predict software defects easily.  
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