

Algorithm Available for Factoring Big Fermat Numbers

Xingbo Wang1,2,3*

1Department of Mechatronic Engineering, Foshan University, Foshan City, PRC, 528000, China.
2State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of
Sciences, Beijing 100093, China.
3Guangdong Engineering Center of Information Security for Intelligent Manufacturing System, China.

* Corresponding author. Tel.: +86075782988845; email: xbwang@fosu.edu.cn; dr.xbwang@qq.com
Manuscript submitted March 12, 2020; accepted April 19, 2020.
doi: 10.17706/jsw.15.3.86-97

Abstract: The paper proves that an odd composite integer N can be factorized in at most O(0.125u (log2N)2)

searching steps if N has a divisor of the form 2u +1 or 2u-1 with  >1 being a positive integer and u>1

being an odd integer. Theorems and corollaries are proved with detail mathematical reasoning. Algorithms

to factorize the kind of odd composite integers are designed and tested with certain Fermat numbers. The

results in the paper might be helpful to factorize certain big Fermat numbers.

Key words: Algorithm, integer factorization, fermat number, cryptography.

1. Introduction

Fermat numbers are integers of the form = +22 1
m

mF with integer 1m . This kind of integers has been a

research issue ever since they had come into being. Prof. Wilfrid Keller has set up a website to introduce the

progress of the researches on the numbers, as seen in [1]. Factoring a Fermat number like factoring any

other bigger integer is a hard problem in number theory as well as cryptography. Although there are several

algorithms to factorize a composite number, as overviewed in [2] and [3], new and efficient methods are

still in need. It is known that the divisor of a Fermat number is of the form 2 1u + . Accordingly, algorithm

that is able to factorize an odd integer with such forms of divisors is surely worthy of study. Paper [4], a very

recent publication, proved that an odd composite integer N could be factorized in 4
2((log))O N bit

operations if N = pq with = 2 1q u and   +1 2 1p or  ++   −12 1 2 1p , where u is an odd integer and

 is a positive integer. This result might be marvelous for factoring the kind of N. However, the algorithm

designed in the paper [3] is not able to factorize the Fermat numbers because no Fermat number is able to

fit the conditions set for p and q. Hereby, this paper investigates the case    + + ++   −12 1 2 1p with  being

a positive integer to find an algorithm that is available for factoring the Fermat numbers. By mathematical

reasoning, an algorithm is found and it is proved that the algorithm is theoretically able to factorize very

fast any mF with 100000m  . Experiments on certain Fermat numbers with Maple mathematical software

show that the new algorithm is fast indeed.

The contents include five main parts: section 2 presents certain preliminaries, section 3 shows main

results including, theorems and corollaries plus algorithms for each case, section 4 presents numerical

86 Volume 15, Number 3, May 2020

Journal of Software

experiments on factoring the related Fermat numbers, section 5 points out the advantage of the algorithms

and the barrier to apply the algorithms as well as the possible future attempts.

2. Preliminaries

2.1. Definitions and Notations

In this whole paper, the symbol   x denotes the floor function, an integer function of the real number x

such that −    1x x x or equivalently   +       1x x x . Symbol = −   { }x x x is the fractional part of x.

Symbol A B means result B is derived from condition A or A can derive B out. Symbol GCD is to express

the greatest common divisor of integers a and b

2.2. Lemmas

Lemma 1 (see in [5]). Properties of the floor functions with real numbers x, y and integer n

(P1) +  +  + +                   1x y x y x y

(P2) − −  −  −  − +                          1 1x y x y x y x y

(P13)         x y x y

(P14)  =       x n x n .

(P32)   −   +          1 (1);x x x particularly   + −          (1) 1.n x nx n x Taking n=2 yields

      2 2x x  +  2 1x

Lemma 2. (See in [6]). Odd integer N > 1 satisfies +      +   −2 2log log 1
2 1 2 1

N N
N .

3. Main Results

3.1. Math Foundations

Theorem 1. Let =N pq be an odd integer with p and q being odd integers bigger than 1;

suppose = 2 1q u and    + + ++   −12 1 2 1p with  ,  being positive integers and 1u being an odd

integer; then

 + +    22 1 log N

Proof. The conditions 3u and = +2 1q u yield

  



   

 

   




   

 

+ + +

+ + +

= + = + = +

 +   +

    +

 + +   + + + +

 + +    

2 2 1

2 2 1

2 2

2

1
(2 1) 2 2 ()

2

1 1
2 () 2 ()

2 2

1
2 3 2 ()

2

1
2 1 log 2 1 log ()

2

2 1 log

N u p up p u p

u N u

N u

N u

N

Similarly, the conditions 3u and = −2 1q u yield

87 Volume 15, Number 3, May 2020

Journal of Software

  



   

 

   




   

 

+ + +

+ + +

= − = − = −

 −   −

    −

 + +   + + + −

 + +    

2 2 1

2 2 1

2 2

2

1
(2 1) 2 2 ()

2

1 1
2 () 2 ()

2 2

1
2 2 2 ()

2

1
2 1 log 2 1 log ()

2

2 1 log

N u p up p u p

u N u

N u

N u

N

Remark 1. During the reasoning process, the properties list in Lemma 1 are frequently applied, and so

they are with the following reasoning.

Proposition 2. Let =N pq be an odd integer with p q being odd integers bigger than 1;

suppose = 2 1q u and    + + ++   −12 1 2 1p with  ,  being positive integers and 1u being an odd

integer; then


 

 − 
 

2log
1

2

N

Proof. We consider two cases: q p and q p . For the case q p , it follows

     +  
      +   +   

 

2
2

log
2 log

2

N
q p q N p N

Since  1 , it follows

 
   

 −  −   
   

2 2log log
1

2 2

N N

For the case q p , consider the case = +2 1q u ; then







−
     

  −  −

 
  − 

 

2 2 2

2

1
2

3

1 1
log log 3 log 1

2 2

log
1

2

N N
q p q N

u

N N

N

Likewise, the case = −2 1q u yields





+ +
     

  + − = + + −2 2 2 2 2

1 1
2

3

1 1
log (1) log 3 log log (1) log 3

2

N N
q p q N

u

N N
N

Since  + 2

1
0 log (1) 1

N
 and  21.5 log 3 2 , it knows



−  + + − = −

 
  − 

 

2 2 2 2 2

2

1 1 1 1
log 2 log log (1) log 3 log 0.5

2 2 2

log
1

2

N N N
N

N

Remark 2. The case = +2 1q u actually yields 
 

 − 
 

2log
2

2

N
because   − 2 2

1
log log 3

2
N


 

 − 
 

2log
2

2

N
.

88 Volume 15, Number 3, May 2020

Journal of Software

Theorem 2. Let =N pq be an odd integer with p and being odd integers bigger than 1;

suppose = +2 1q u and    + + ++   −12 1 2 1p with  ,  being positive integers and 1u being an odd

integer; then

 + +

−     
  +     

     
2 2

1
1

4 22

u N u

Proof. See the following reasoning process, respectively.

 

         

         

           

   

 



+ + + + + +

+ + + + + +

+ + + + + + + + + +

+ + +

= + = +

 + + +   − + −

 + +  −  − + −

 +  −  + −  +

 +  −  +

 + 

1 1

2 2 1 1

2 2 1 1 2 1 1

2 2 1

(2 1) 2

2 (2 1) (2 1) 2 (2 1) (2 1)

2 2 2 1 2 2 2 2

2 2 1 2 2 2 2 2

1 1
2 () 1 2 ()

2 2

1 1
()

4 2

N u p up p

u N u

u u N u u

u N u u

u N u

u
  

   

 

+ +

+ + + +

+ +

−
 +

−         
  +   +  +         

         

−     
   +     

     

2 2

2 2 2 1

2 2

1 1 1
()

22 2

1 1 1
1

4 4 2 22 2 2

1
1

4 22

N
u

u u N u u

u N u

Theorem 3. Let =N pq be an odd integer with p and q being odd integers bigger than 1; suppose

= −2 1q u and    + + ++   −12 1 2 1p with  ,  being positive integers and 1u being an odd integer;

then

 + +

−     
−       

     
2 2

1
1

4 22

u N u

Proof. See the following reasoning processes.

 

         

         

           

   

 



+ + + + + +

+ + + + + +

+ + + + + + + + +

+ + +

− +

= − = −

 + − −   − − +

 + −  −  − − −

 −  −  − −  −

 −  −  −

 −

1 1

2 1 2 1

2 1 2 1 2 1

2 2 1

1 1

(2 1) 2

2 (2 1) (2 1) 2 (2 1) (2 1)

2 2 2 1 2 2 2 2

2 2 1 2 2 2 2 2

1 1
2 () 1 2 ()

2 2

1 1
(

4 2

N u p up p

u N u

u u N u u

u N u u

u N u

u
  

   

 

− + + +

+ + + +

+ +

−
  −

−         
 −  −   −          

         

−     
 −       

     

1 2 2 1

1 2 2 2

2 2

1 1 1
) ()

22 2

1 1 1
1

4 4 2 22 2 2

1
1

4 22

N
u

u u N u u

u N u

3.2. Algorithms for General Cases

Corollary 1. Let =N pq be an odd integer with  1 q p being odd integers; suppose = +2 1q u and

   + + ++   −12 1 2 1p with >1,  1 being integers and u > 1 being an old integer; then N can be factorized

at most 2
2((log))

8

u
O N searching steps.

89 Volume 15, Number 3, May 2020

Journal of Software

Proof. First, it follows when >1 and  1



  

     

         

   

+ + +

+ + + + + +

+ + +

−
= +  = = −

 −   −

− −
 + −   + −

− −   
 −     

   

2 1 2

2 1 2 1 2 2

2 1 2

1
2

2 2 2

1 1

2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2

1 1
1

2 2

N p N
N up p u

p p

N N
u

N N
u

N N
u

Let

   + + +

− −   
− −   

   
= +

2 2 1

1 1
(1)

2 2
1

2
u

N N

n

Then un is the number of the odd integers that u possibly takes. Since

       + + + + + + +

− − − −       
 −  +       

       
2 1 2 2 1 2 1

1 1 1 1
1

2 2 2 2

N N N N

it holds

   + + + +

− −   
+ +   + +   

   
2 1 2 1

1 1 1 1 1
1 1 1

2 2 22 2
u

N N
n

and thus

   + + + +

− −   
+ −   + +   

   
2 2 2 2

1 1 1
1 2 1

22 2
u

N N
n

That is

   + + + +

− −   
+   +   

   
2 2 2 2

1 1
1 2

2 2
u

N N
n

By Theorem 2,

 + +

−     
  +     

     
2 2

1
1

4 22

u N u

It results in

   
+   +   

   
1 3

4 2
u

u u
n

This finishes proving that there are at most
 

+ 
 

2
4

u
searching steps to find a 0u that fits = +02 1q u

around
 + +

− 
 
 

2 2

1

2

N
. Now consider the ranges of  and  in algorithm design. By Theorem 1 and

Proposition 1,

 + +    22 1 log N and 
 

 − 
 

2log
1

2

N

90 Volume 15, Number 3, May 2020

Journal of Software

It seems that   2log N might be taken to be the maximal value of  + +2 1 . However this does not

work because by Lemma 2

+      +   −2 2log log 1
2 1 2 1

N N
N

which leads to

  

− 
= 

 2log

1
1

2
N

N
, −  

− 
  
 2log 1

1
2 3

2
N

N
, −  

− 
  
 2log 2

1
4 7

2
N

N
and

 



+

−  

− 
  − 
 2

1

log

1
2 2 1

2
N

N

Accordingly, it is suitable to take −  2log 2N to be the maximal value of  + +2 1 and then the

condition that odd integer 1u can be ensured. Consequently, an algorithm is designed as follows

Procedure 1 SearchProc1

1: Comment: Factorization by Calculating GCD
2: Input Parameters: N;
3: Begin

4: Calculate = −  2log 2b N ,
 

= − 
 

2log
1

2

N
a ;

5: for i from b downto 3 do
6: for u from l to r step 2 do
7: for j from 2 to a do

8: Calculate
−

− −   
= − =   
   

1

1 1
1,

2 2i i

N N
l r ;

9: Calculate g = gcd(N, +2 1j u);

10: if (g > 1) then return g;end if
11: end for j;
12: end for u;
13: end for i
14: End proc

Obviously, the number of total searching steps is at most
  
  =      

22

2 2

log
(log) (log)

4 2 8

Nu u
O N O N .

Remark 3. When u is relatively larger, we can choose a smaller b in the procedure by

 



+

−  

− 
  − 
 2

1

log

1
2 2 1

2
N

N

For example, if we can first estimate that 2u , we can choose = −  2logb N . By such means, a lot of

computing time is saved.

Corollary 2. Let =N pq be an odd integer with q p being odd integers; suppose = −2 1q u and

   + + ++   −12 1 2 1p with >1,  1 being integers and 1u being an old integer; then N can be

factorized at most 2
2((log))

8

u
O N searching steps.

Proof. First, it yields when >1 and  1

91 Volume 15, Number 3, May 2020

Journal of Software



  

     

         

   

+ + +

+ + + + + +

+ + +

+
= −  = = +

 +   +

− −
 + +   + +

− −   
   +   

   

2 1 2

2 1 2 1 2 2

2 1 2

1
2

2 2 2

1 1

2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2

1 1
1

2 2

N p N
N up p u

p p

N N
u

N N
u

N N
u

Let

   + + +

− −   
+ −   

   
= +

2 2 1

1 1
1

2 2
1

2
u

N N

n

Then referring to the proof of Corollary 1, it knows

   + + + +

− −   
+   +   

   
2 2 2 2

1 1
1 2

2 2
u

N N
n

By Theorem 3

 + +

−     
−       

     
2 2

1
1

4 22

u N u

Next is referring to the proof of Corollary 1. Accordingly, an algorithm is designed as follows

Procedure 2 SearchProc2

1: Comment: Factorization by Calculating GCD
2: Input Parameters: N;
3: Begin

4: Calculate = −  2log 2b N ,
 

= − 
 

2log
1

2

N
a ;

5: for i from b downto 3 do

6: Calculate
−

− −   
= = +   
   

1

1 1
, 1

2 2i i

N N
l r ;

7: for u from l to r step 2 do
8: for j from 2 to a do

9: Calculate g = gcd(N, −2 1j u);

10: if (g > 1) then return g;end if
11: end for j;
12: end for u;
13: end for i
14: End proc

Referring to the analysis of Corollary 1, it knows Corollary 2 holds.

Theorem 4. Odd composite integer N can be factorized in at most 2

2(0.25 (log))O u N searching steps if N

= pq with q p , p satisfies    + + ++   −12 1 2 1p with  >1, 1 being positive integers and q is of the form

= +2 1q u or = −2 1q u with u >1 being an odd integer.

Proof. By Theorem 2 and Theorem 3, Procedure 1 and Procedure 2 are incorporated into the following

Procedure 3 that can factorize N with divisor q being either = +2 1q u or = −2 1q u .

Procedure 3 SearchProc3

1: Comment: Factorization by Calculating GCD
2: Input Parameters: N;

92 Volume 15, Number 3, May 2020

Journal of Software

3: Begin

4: Calculate = −  2log 2b N ,
 

= − 
 

2log
1

2

N
a ;

5: for i from b downto 3 do

6: Calculate
−

− −   
= − = +   
   

1

1 1
1, 1

2 2i i

N N
l r ;

7: for u from l to r step 2 do
8: for j from 2 to a do

9: Calculate g1 = gcd(N, −2 1j u);

10: Calculate g2 = gcd(N, +2 1j u);

13: if (g1 > 1) then return g1;end if
14: if (g2 > 1) then return g2;end if
15: end for j;
16: end for u;
17: end for i
18: End proc

3.3. Algorithm for Factoring Fermat Numbers

Seen in [1], it is known that every prime divisor of the Fermat number = +22 1
m

mF is of the form

+2 1nu with − 2n m . Assume a Fermat number has two divisors + += +22 1m ip k and + += +22 1m jq l with

,i j being nonnegative integers, 1k and 1l being odd integers (Note: Paper [4] proved that the case

=1k or =1l was easy to factorize.); it follows

+ + + +

+ + + +

+

+ +

+

= = + +

= + + +

− +
 = + 

−
 

− −   
 = +  − = −   

   

2 2

2 4 3

2 4 1

2

2 2
2

(2 1)(2 1)

2 2 (2 2) 1

1 2 2
2 9

2 2

1
2

3

log (1) log (1)
2 log 3 2

2 2

m i m j

m i j m i j

i j
i j

m m

m

N pq k l

kl k l

N k l
kl

N

N N
n m

This is a theoretical upper bound for n. However, from practical point of view, referring to [1], we take

+20m to be the maximal limit of n and design the following procedure.

Procedure 4 FactFermat

1: Comment: Factorization by Calculating GCD
2: Input Parameters: N,  ;

3: Begin

4: Calculate = −  2 2log log (1)n N , = − −  2log (1)b N ;

 = +20a n ;
5: for i from b downto 3 do
6: for j from n+2 to a do

7: Calculate
−

− −   
= − =   
   

1

1 1
1,

2 2i i

N N
l r ;

8: for u from l to r step 2 do

9: Calculate g = gcd(N, +2 1j u);

10: if (g > 1) then return g;end if
11: end do u;
12: end for j;
13: end for i

93 Volume 15, Number 3, May 2020

Journal of Software

14: End proc

Remark 4 The parameter  in the procedure is related with the range of u and is used to limit the

upper bound of b, as mentioned in Remark 2. Referring to [1], it knows that the range of u is predicted with

an upper bound nL and 77 10nL   when 12000n  . This can reduce a lot of search time.

4. Numerical Experiments

We test the designed algorithms in Maple software on a HP personal computer with E5450 CPU and

Windows XP OS. The source codes of the programs are list in the appendix section. Due to the limitation of

the computer, we factorize some Fermat numbers with relatively small u. The computation results are list in

Table 1. It can see that, one divisor is obtained within one second in most cases. The experiments show that,

the algorithms acceptably fast.

Table 1. Factorization of Some Fermat Numbers

Item  Found Divisor   u
Searching

Steps
Searching

time
F5 2 641 7 30 5 3 <5ms
F6 3 274177 8 54 1071 50496 30ms
F9 3 2424833 16 507 37 1462 5ms

F10 3 45592577 12 1011 11131 403468 140ms
F11 3 319489 13 2043 39 1378 5ms
F12 3 114689 14 4093 7 2 <5ms
F15 3 1214251009 21 32759 579 26348 1.2s
F16 3 825753601 19 65526 1575 51261 5.5s
F17 25 31065037602817 19 131047 59251857 12848715 1500s
F18 3 13631489 20 262141 13 5 < 5ms
F19 3 70525124609 21 524273 33629 1606849 1560s
F21 19 4485296422913 23 2097133 534689 5203 9s
F23 2 167772161 25 8388606 5 3 <5ms

5. Conclusion, Discussion & Future Work

5.1. Conclusion

Factoring big integers is both a challenge to and an exploitation of human intelligence. We know that

there are many odd integers that have divisors of the form  2 1u and factorization of such numbers is

still a hard problem in the world. By investigating the intrinsic structures of such odd number, this paper

shows that factorization of them is highly u-related: a small u leads to a rapid factorization. The results in

this paper might be helpful to factorize certain big Fermat Numbers. For example, referring to [1], when n is

bigger than 100001, 20000u . This time it might be easy to factorize Fn.

5.2. Discussion

Seeing from the numerical experiments in section 4, one might be wonder why not to choose some big

Fermat numbers to be experimental samples. This involves with a very upset situation: we have no way to

compute a bigger Fermat number with a daily-work computer even with the help of the tools dealing with

the big integer operations.

We have made experiments by two different means. One is to test with the mathematical software Maple,

and the other is to program with the help of the tools that can deal with operations of big integers, e.g., GMP

library (The GNU Multiple Precision Arithmetic Library)[7], NTL (A Library for doing Number Theory)[8],

MIRACL(Multi-precision Integer and Rational Arithmetic Cryptographic Library) [9] and so on.

Unfortunately, neither means could compute a big Fermat number. In Maple software, it says the

94 Volume 15, Number 3, May 2020

Journal of Software

computation of Fm is out of the range when 23m  while a program that is programmed with the GMP

library fails to work when 23m  . When debugging the GMP-library-program in Visual C/C++ 6.0, I find the

failure occurs at the step where the function mpz_gcd is called. Solving this problem is obviously out of my

capability and I have to hope someone else can solve this problem.

5.3. Future Work

Conflict of Interest

The author declares no conflict of interest.

Author Contributions

Professor Xingbo Wang contributes 100% work to this paper.

Acknowledgment

The research is supported by the Open Project Program of the State Key Lab of CAD&CG (Grant No. A2002)

and by Foshan University and Foshan Bureau of Science and Technology under project that constructs

Guangdong Engineering Center of Information Security for Intelligent Manufacturing System.

Appendix Maple Source Codes and Its Running Results

The following screenshot (see Figure A1) shows the testing results to factorize Fermat numbers. The

meanings of the output data are as follows:

The first one is the calculated 

The second one is the calculated 

The third one is the calculated u

The fourth one is the calculated  +2 1u

The fifth one is the calculated divisor q

The last one is the number of searching steps.

It can see that, F5 takes 3 steps, F12 takes 2 steps, F18 takes 5 steps, F23 takes 3 steps, F9 takes 319 steps,

F11 takes 230 steps, F6, F15, F16 and F21 take less than 10 thousand steps. F17 takes the longest time.

FactFermat := proc (N, x)

local a, b, i, j, u, l, s, r, g, d, r, c, Z;

c:= 1; # a counter to count steps

Z:= N-1+0.1e-1;

b:= floor(log[2](Z))-x;

s:= floor(log[2](log[2](Z)));

95 Volume 15, Number 3, May 2020

Journal of Software

Corollaries 1 and 2 do provide an approach to factorize odd integers with a divisor of the form  2 1u .

However, seeing the reasoning process of this paper, we have to have more researches on the speeding-up

process for a big u, for example, the F7 has q=11650310376464329 + 1 with a big u=116503103764643.

This remains the future work. Actually, in our experiments, we have found that, changing the parameters 

will lead to different searching steps. For example, when factoring F5, it took more than 340 steps when

 =3 while it merely took 3 steps when  =2 . Another example is factoring F21 that has a divisor

4485296422913. When taking  =19 according to Remark 2 it took 5203 steps (9 seconds) to finish the

work while it took 3675387 steps (over 30 minutes) when  =5 . These phenomena indicate that a

speed-up attempt is available. One of our future tasks is trying to solve the problem. And I also hope more

young join and succeed.

a:= s+15;

for i from b by -1 to 3 do

l:= floor((N-1)/2^i)-1;

r := floor((N-1)/2^(i-1));

if mod(l, 2) = 0 then l := l-1 end if;

if mod(r, 2) = 0 then r := r+1 end if;

for j from s+2 to a do

for u from l by 2 to r do

c:= c+1; #counting

d:= 2^j*u+1;

g:= gcd(N, d);

if 1 < g then do

lprint (i, j, u, d, g, c);

return g

end do

end if

end do

end do

end do

end proc

#Test Results

96 Volume 15, Number 3, May 2020

Journal of Software

References

[1] Wilfrid, K., (2020). Prime factors k2n + 1 of Fermat numbers Fm and complete factoring status.

Retrieved from http://www. prothsearch.com /fermat.html

[2] Sonal, S., & Dinesh, G. U. G., (2014). An overview to Integer factorization and RSA in cryptography.

International Journal for Advance Research in Engineering and Technology, 2(9), 21-26

[3] Kharate, S. P. (2016). An overview of cryptography, innovation in IT. 3(1), 8-11

[4] Wang, X. (2020). FAST approach to factorize odd integers with special divisors. Journal of Mathematics

and Statistics, 16(1), 1-9。

[5] Wang, X. (2019). Brief summary of frequently — Used properties of the floor function: Updated 2018.

IOSR J. Math., 15(1), 30-33.

[6] Wang, X. (2018). T3 tree and Its traits in understanding integers. Advances in Pure Mathematics, 8(5),

494-507

[7] GMP library, The GNU multiple precision arithmetic library. Retrieved from https://gmplib.org/

[8] Victor, S. NTL: A library for doing number theory. Retrieved from https://www.shoup.net/ntl/

[9] Miracl Cryptographic SDK. Retrieved from https://github.com/miracl/MIRACL

Xingbo Wang was born in Hubei, China. He got his master and the doctor’s degrees at

National University of Defense Technology of China and had been a staff in charge of

researching and developing CAD/CAM/NC technologies in the university. Since 2010, he has

been a professor in Foshan University with research interests in computer application and

information security. He is now the chief of Guangdong engineering center of information

security for intelligent manufacturing system. Prof. Wang was in charge of more than 40

projects including projects from the National Science Foundation Committee, published 8

books and over 100 papers related with mathematics, computer science and mechatronic engineering, and

invented 30 more patents in the related fields.

Author’s formal
photo

97 Volume 15, Number 3, May 2020

Journal of Software

https://gmplib.org/
https://www.shoup.net/ntl/

