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Abstract: Agent Oriented Storage and Retrieval (AOSR) WMS planner algorithm is a part of the general 

Agent Oriented Smart Factory (AOSF) framework, which provides a comprehensive Supply Chain (SC) 

architecture to help bridge the gap between Industry 4.0 standards and SME-oriented setups. This paper 

provides validation of AOSR algorithm with respect to time efficiency on top of substantially improved 

performance efficiency in SME-oriented warehousing operations. This article, which is a part of a series of 

recent contributions, explains the efficiency of AOSR WMS planner algorithm in scenario-based test cases 

with experimentation in certain WMS Key Performance Indicators (KPIs). 
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1. Introduction 

The inception of the concept of Industry 4.0 [1] is revolutionising recent industrial setups. In the 

fast-paced progression of Industry 4.0 implementation, Small to Medium Size Enterprises (SMEs) are not 

getting the expected benefits [2]. In order to help bridge this gap, the novel approach of the Agent Oriented 

Smart Factory (AOSF) framework presents a moderate-level semi-autonomous system for SMEs to apply a 

comprehensive SC framework under the umbrella of Industry 4.0 [3]. This article is part of an episodic 

series of a broad contribution of the AOSF framework and its associated Agent Oriented Storage and 

Retrieval (AOSR) Warehouse Management System (WMS) strategy, which includes a general high-level 

AOSF framework [3]; its extended visualisation as a Cyber Physical System (CPS) [4]; problem and domain 

definitions to build the baseline model for AOSR [5]; AOSR’s 6-Feature Strategy and general work-flow [6]; 

and a thorough performance validation of AOSR in comparison with standard WMS strategies [7] including 

multiple warehousing and product placement/retrieval mechanisms, e.g. Zoning Logic, FIFO Logic and Pick 

from/Put to the Fewest Logic [8]. 

This article includes validation test cases and scenarios applied to the AOSF recommended WMS strategy, 

AOSR 2.0, to affirm the validity of the overall system with respect to time efficiency. It includes test 

scenarios within the supply chain of a firm and relates it with different possible cases of information 

exchange from the front-end customer side (CRM) and back-end supplier side (SCM). Detailed results from 

prototyping the hybrid-logic-based AOSR algorithm are included, which combines not only all the 

aforementioned logic schemes but also the `Pick from/Put to the Nearest logic', in order to reduce the 

overall activity-time within the shop-floor. This article also includes discussion about how the 6-Feature 
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Strategy recommended by the AOSR system helps in bringing improvement and pro-activeness within a 

warehouse. 

2. Discussing Time Efficiency of AOSR 2.0 

AOSR algorithm provides a simple but overarching solution to the problems of scheduling products and 

their slotting and re-slotting within an SME-oriented warehouse. It focuses on the main reasons that cause 

major problems in warehouse management by, for example, attempting to reduce the number of products in 

receiving areas (RAs) and expedition areas (EAs) and maximising the number of products within the 

defined racks [8]. Based on percepts from the environment and descriptive initial states of the system, 

AOSR generates a comprehensive placement plan, utilising predefined sets of actions. The proactive nature 

of AOSR strategy provides help in managing the space within the warehouse to cater to upcoming products 

and its hybrid strategy supports the efficient slotting and re-slotting of products between different locations 

within the shop-floor. In our previous work [6] we discussed the 6-Feature Strategy and hybrid logic 

selection as proposed by AOSR heuristics [7]. 

AOSR algorithm is based on the classical BDI agent model structure [9] and follows the constructs and 

agent classification of AOSF framework [3], which shapes it into a dynamic solution in order to support 

operational flexibilities in the future. AOSR Planner Agent (PA) utilises Information-Sets (as discussed in 

our other work [10]) related to different classification of products, racks, and their characteristics, which 

serve as the Belief Base for PA, while information related to current stock levels and system states serves as 

the Knowledge Base for it, which may be further updated by actuators. For PA, three main segments play the 

role of actuators: (i) Placement Generator, (ii) Extract Placement, (iii) Search Rack. These actuators sense 

the percepts coming from the environment and update the Belief Builder and Knowledge Builder in the 

general architecture of the AOSR system (details about all these segments are included in our previous 

work, discussing the heuristics of AOSR 2.0 [7]). 

All the heuristics of AOSR 2.0 have been implemented in JADE [11], which provides simplicity with the 

flexibility to design multiple agents along with the facility of sniffer agent interfaces to monitor the overall 

agents' activity. Constraint-based tests have been applied to acquire results by applying AOSR 2.0 strategy in 

contrast to the standard WMS approach (discussed in detail in our previous work [7]) to see if the issues in 

warehouse management can be reduced by employing a moderate level semi-autonomous AOSR solution. 

The prototype to validate AOSR strategy utilizes comprehensive test datasets extracted from online 

sources provided by DGI Global [12] and Eurosped [13] warehousing and logistics companies as detailed in 

our other work [10]. This comprehensive data set consists of the information of several characteristics of 

products e.g. SKUs, quantity and products classes, from several different industrial sectors e.g., electronics 

industry, medical industry, textile firms, paint and glass industry. The 6-Feature Strategy of AOSR [6] 

attempts to provide a solution to SMEs' problems in warehousing, such as wandering items/picking lists 

[14], [15], inaccurate stock value at runtime [16], unmanaged receiving and expedition areas [17], 

unmanaged storage capacity [18] and inappropriate retrieval scheduling [19]. 

While validating the technical solutions, execution time is always an important factor to be considered. In 

order to evaluate the time efficiency of AOSR strategy, several test cases are applied. These test cases and 

scenarios are categorised as below: 

• Gradually Reducing Search Space; 

• Gradual Change in Product Characteristics; and 

• Random Cases. 

For all these scenarios, the results are acquired from both sides of the general AOSF recommended SC 

architecture: Enterprise Central Unit (ECU) side and Customer Relationship Management (CRM) side. These 
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results with their implications are discussed in the following Sections. 

2.1. Scenario of Gradually Reducing Search Space 

In literature, several other researchers have computed the standard computation times on Pentium series 

computers for similar heuristics-based scenarios but in a different context of location-allocation for 

vehicle-routing problems, and the average CPU time lies between 0.52s to 8.57s [20], [21] or 0.62s to 10.21s 

[22] with different approaches. Research suggests that, on average, less than or equal to one second (=< 1s) 

is considered a standard CPU processing time for inbound logistics [23], regardless of hardware 

configuration. 

AOSR maintains a balanced execution time to produce results as shown in Fig. 1; all of the transactions, 

performed on an Intel (R) Core (TM) i5 computer, having 3.7 GHz clock rate and 64-bit Mac Operating 

System (OS), took less than 0.02s, which reflects its efficiency with respect to time as well. This execution 

time is comparable with the other standard approaches validated and tested by Waris et al. [18], on a 

similar hardware configuration (Intel Core i5 with 64-bit OS), where the average execution time for parsing 

information, in a similar scenario, is 0.021s (This article does not include explicit test cases for validating 

the execution time for other existing approaches). 

 

 
Fig. 1. Efficiency of ECU side of AOSR algorithm with gradual reducing search space. 

 

A closer look at Fig. 1 can explain that, with the reduction in search space, it takes less time to compute 

and generate results. The ECU component utilises Percept-Builder (as detailed in heuristics of AOSR 2.0 [7]), 

which employs caching techniques for finding an appropriate rack for the upcoming products. AOSR 

algorithm takes less time when it is in the same iteration and when it switches the iteration the time taken 

increases abruptly (but not more than 0.02s) and then again reduces gradually in the same iteration. This 

phenomenon can be observed at iterations 9 and 18. 

 

 

Fig. 2. Efficiency of CRM side of AOSR algorithm with gradual reducing search space. 
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Similarly, the CRM side of AOSR algorithm also takes the same strategy and almost the same trend in 

execution time as reflected in Fig. 2. The time taken to execute CRM side transactions is a bit higher than the 

transaction time on the ECU side as it utilises a double iterative strategy, in order to update the inventory as 

well as the capacity in the stock. Even after performing almost double the number of tasks as its partner 

side, only one iteration took over 0.04s (in iteration 6) with most of them taking around 0.02s. Also, the 

reduction in search space reduces the execution time as well, which can be seen between iteration 5 to 13, 

14 to 22 and 23 to 30. 

2.2. Scenario of Gradual Change in Product Characteristics 

The test cases to validate the AOSR strategy include 20 different classifications of products as detailed in 

our other work [10], so a gradual change in characteristics results in a gradual decrease in execution-time.  

The results taken after applying the test case with a gradual change in product characteristics are 

represented in Figure [3]. Percept Builder() attempts to find the local optimal for every product 

characteristic and, in case of a change in characteristics, it exits the loop and attempts to build a new cache 

and starts searching for the optimal value again. 

 

 
Fig. 3. Efficiency of ECU side of AOSR algorithm with gradual change in characteristics. 

 

As reflected in Fig. 3, all the iterations take less than 0.01s which is a great execution time for an 

algorithm like AOSR, which interacts with the environment and computes the plan for the whole warehouse 

shop-floor. A closer look can explain that even at iterations 5, 14 and 23, when the characteristics change, it 

still took less than 0.01s and all the corresponding iterations were completed within about 0.005s. 

Similarly, while executing the test case on the CRM side, as represented in Fig. 4, the gradual change in 

characteristics reduces the execution time but leaving an iteration and initiating new caching memory takes 

a bit more time because of its double iterative strategy. Even when building a new memory base, even the 

first iteration takes less than 0.06s, with all other iterations where the characteristics change having an 

execution time around 0.03s. All the other iterations take less than 0.02s, which demonstrates the 

consistency of the overall AOSR strategy. 

 
Fig. 4. Efficiency of CRM side of AOSR algorithm with gradual change in characteristics. 
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2.3. Scenario of Random Cases 

For a complete validation, a set of 25 random test cases (with non-sequential product characteristics) is 

applied to AOSR and performance is seen to be consistent. These test cases include the random data from 

an already existing industrial data set (as used in cases mentioned above) to ensure the non-sequentiality of 

iterations. The extracted results for the ECU side are shown in Fig. 5, where the maximum time taken to 

extract the right information and activate the actuator is 0.022s. This demonstrates the efficiency and 

consistency of AOSR, even in random test cases. The least time taken is 0.006s, when the system must find 

and allocate space to a product where there is no product already stored, so the process remains quite 

simple and quick. On average all transactions took about 0.013s to compute the comprehensive product 

placement plan. 

 

 
Fig. 5. Time taken AOSR with random test cases. 

 

Similarly, the results extracted from the CRM side by applying the random test cases are reflected in Fig. 6. 

In the case of unavailability of space for a certain product, the AOSR utilises its re-slotting strategy where 

computation is then performed three times (to pool the information from Advance Shipment and Delivery 

Notice (ASN/ADN), re-slotting and then slotting the products if needed) by defined algorithmic heuristics to 

check and manage if there is a need to re-slot the products.   

 

 
Fig. 6. Time taken AOSR with random test cases on CRM side. 

 

In order to manage the space with efficiency, the CRM side of AOSR algorithm takes more time than the 

ECU side because it includes searching and updating both the racks and the inventory level. The maximum 
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time taken by the CRM side of AOSR was 0.09s, which is not a very high computation time for the algorithm 

to build, extract and perform transactional and analytical information, as presented by the study conducted 

in [21]. On the CRM side, when the required product is in the nearest rack with available matching quantity, 

the time taken is less than 0.02s as shown at iteration 20 in the graph. On average, the CRM side of AOSR 

took 0.047s to perform the task to satisfy requirements. The computation time taken by AOSR strategy falls 

well inside the time limits (between 0.52s to 8.57s [19] or 0.62s to 10.21s [20]) tested by several different 

studies such as presented in [19], [20], [21]. Thus, the efficiency and hybrid approach of AOSR makes it 

suitable for the industry where agility and customisation are the main metrics of success. 

3. Conclusion 

In this article, we have discussed results from different types of test cases to thoroughly validate the AOSR 

Planner Algorithm with respect to time efficiency. The test cases analysed the products stored in racks, in 

EA and in RA, each with respect to two different system sides: Enterprise Central Unit (ECU) and Customer 

Relationship Management (CRM) side. The successful and positive results, from all the scenarios and test 

cases, highlight the overall performance efficiency of AOSR algorithm in association with its parent AOSF 

framework. In future, the AOSF/AOSR strategy will be subjected to an incremental development in other 

open areas of supply chain e.g. Plant Maintenance, Procurement Automation and Product Requirement 

Scheduling. Also, other state of the art technologies e.g. Big Data and IoT can be armed with this framework 

to provide more robust features. Improvisation on the cloud side could also be an interesting future work in 

this regard. For WMS strategy some other features can be incorporated, such as the movement of forklifts 

within the shop-floor or to train the placement generator algorithm to be self-configured based on past 

event and historic data. 
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