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Abstract: Many defects may arise during software product lines such as inconsistency, incorrectness and 

ambiguity. In our work, we are interested in a specific defect, which is duplication in features since it has 

received little attention in literature. In previous work, we proposed a conceptual framework that describes 

the different processes to follow in order to produce duplication-free feature models. We also implemented 

a tool support called FDDetector based on this framework with the aim of detecting and correcting 

duplication introduced in feature models by new product line evolutions. To evaluate this tool, we have 

adopted a CRM product line as a case study. In this paper, we explain the motivations behind choosing a case 

study from the CRM field, and we present the results of a test performed on an evolution related to this 

product line. 
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1. Introduction 

Duplication is among many other defects (e.g. inconsistency [1]-[3], ambiguity [4], unsafety [5], 

incorrectness [6]) that may occur in software product lines during their evolution [7]. This defect consists 

of having the same element repeated many times in a software artefact. In software product lines, 

duplication can appear in code level or in feature level. Many studies in literature have addressed the 

problem of code duplication (code cloning) [8]-[10], while the problem of feature duplication has not 

received big interest. To deal with feature duplication, we proposed in previous work, a framework that 

aims at detecting and correcting this defect in evolving software product lines [11], [12]. We have also 

implemented a tool support called FDDetector based on this framework [13], [14]. By correcting 

duplication at the stage of features, we ensure that this defect does not propagate to other artefacts, which 

helps reduce the development and maintenance cost and enhances the product line quality. 

At the purpose of evaluating the accuracy of FDDetector, we have adopted a CRM software product line as 

a case study. In fact, duplication can easily happen in a CRM because this type of software needs to change 

constantly and rapidly to overcome several challenges. The objectives of this paper are thus to: i) explain 

the main reasons behind choosing a case study from the CRM field, ii) give an overview of the main 

functionality of this product line, iii) perform a test on a specific evolution related to a derived application, 

iv) expose the results achieved, and v) present the measures used to evaluate the tool accuracy. 

The rest of the paper is structured as follows. Section 2 introduces the concept of duplication in Software 

product lines and explains the reasons behind the choice of a CRM product line as a case study. Section 3 

gives an insight into the framework and the tool support proposed to detect and correct feature duplication 

in software product lines. Section 4 presents the adopted case study and the results of the test performed 
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on it using FDDetector. In Section 5, we conclude and outline future work. 

2. Background and Motivation 

In [7], we carried out a systematic review about model defects that may appear in software product lines 

during their evolution. As a result of this review, we listed the different model defects addressed in 

literature, such as inconsistency [1]-[3], incorrectness [6], ambiguity [4], and unsafety [5]. A 

complementary study based on field experience helped us decide to focus on a specific defect, which is 

feature duplication. 

2.1. Duplication in Software Product Lines 

According to [15], duplication is the fact of having the same thing expressed in two or more places. 

Duplication may occur in specifications, processes or programs. In this work, we are specifically interested 

to duplication in software product lines, which can affect many artefacts especially requirements and code. 

In literature, many studies have dealt with code duplication (or code cloning) [8]-[10], [16]. This problem 

was considered at the beginning as a problem of maintenance [17] because first, every modification of a 

code fragment implies the modification of all the related clones, and second, duplication increases the 

program size and consequently the effort spent in all maintenance activities. Other than that, duplication of 

source code can be the cause of other kinds of problems and leads to incorrect and unexpected system 

behaviors [18], [19]. However, source code is caused generally by a duplication that happens earlier in the 

project lifecycle, during the design or the requirement analysis activities. Indeed, as product lines are 

systems that last for a long time, they are subject to several changes, such as the modification of existing 

functions, the addition of new features or the correction of functional or non-functional defects. Before 

implementing these changes, an analysis of the new requirements must be performed, which triggers a 

number of decisions [20], [21] : i) If the demanded feature is already supported by the product line, it 

should only be derived from the domain model, ii) If the demanded feature is a new feature that belongs to 

the product line scope, it must be added to the product line platform, iii) If the feature is new but can’t be 

implemented because of some environment, infrastructure or technical constraints, this feature could be 

deleted or replaced after discussion with the client, vi) If the feature is new in a particular application, a 

specific development should be considered. In large scale product lines that support an important number 

of features and include several stakeholders synchronizing between them, the requirement analysis 

becomes a complex and a time-consuming task and the project managers could decide to skip it sometimes, 

and that’s how feature duplication happens.  

According to an IBM study [22], it is one hundred times more expensive to correct a defect after the 

product is released. That is why we focus on our work on the detection and correction of duplication in the 

feature level to prevent the duplications from propagating to other artefacts, which guarantees high quality 

from the first beginning of a product and reduces the development and maintenance time and cost [23]. 

2.2. Motivating Example 

The CRM or Customer Relationship Management is a strategy whose main objective is to manage and 

optimize interactions between a company and its customers. It also aims at enhancing productivity, 

increasing the company return and reducing the costs. A CRM system centralizes the company data centers 

used by the managers to have a visibility of customers’ information and take the rights decisions. It can be 

adopted by big companies as well as small businesses since both need to manage their clients. During its 

lifetime, a CRM faces several challenges that cause its evolution. With the instable market of today, clients’ 

needs are constantly changing and a CRM should necessarily be flexible to satisfy and retain its customers. 

Moreover, not all customers have the same preferences in terms of products and services. In the contrary, 
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they have different profiles, habits and needs. A CRM must take into account these differences by proposing 

customized services that satisfy the needs of every client and prospect. It must also offer a competitive 

advantage by optimizing the relationship with the clients and by anticipating or even creating new needs. In 

addition, with the continuous evolution of technology, CRMs have to evolve to keep up with new 

technologies. For example, communication with customers was limited in the past to direct contact or 

phone calls, while now other channels have emerged such us SMSs, emails, the Web or mobile applications. 

In this instable context, different model defects and specifically feature duplication can arise in the 

system. In order to take profit of the several advantages offered by a CRM and to optimize its evolution, we 

decided to start by applying our deduplication tool on a CRM product line at the aim of detecting and 

correcting feature duplications introduced by the new evolutions. This solution allows the CRM not only to 

respond to new customers’ needs but also to be as reactive as possible, to support new evolutions with low 

costs and to ensure high product quality despites the rapid change. In the next sections, we recall our 

proposed approach and the deduplication tool, we present the adopted CRM product line, and then we 

explain the details and results of the test performed on a specific evolution of this CRM. 

3. The Proposed Approach for Feature Deduplication 

At the aim of detecting and correcting duplication in software product lines, we first proposed a 

conceptual framework [11], [12] then implemented a support tool based on this framework which we 

called FDDetector (Feature Duplication Detector) [13], [14]. In this section, we give an overview of both the 

framework and the support tool. 

3.1. The Deduplication Framework 

The framework of feature deduplication is composed of three main processes: Inputs transformation, 

duplication detection and duplication correction [12]. 

The first process is responsible for transforming the feature models and the natural language 

specification related to evolutions into a more formal representation. The transformation of models is 

performed in two steps. First, we generate the XML source of the feature model using FeatureIDE [24], and 

then we use some mapping rules to create a variability-based tree structure. As regard specifications, we 

adopt an approach based on natural language processing by analyzing syntactically and semantically the 

specification sentences in order to extract the potential variation points and variants [25]. The repository of 

variants created from the product line general specification must be constantly updated by new evolutions 

to improve the activity of variant detection. The second process consists of detecting duplications 

introduced into a software product line during a new evolution. To achieve this, a number of algorithms 

have been proposed. The first algorithm has the objective of detecting duplications inside each of the 

framework inputs (models or specifications), which we call internal duplication, while the second algorithm 

aims at detecting duplication between feature models and specifications, which we call external duplication 

[12]. The output of this process consists of a list of all the potential duplications detected. The purpose of 

the third process of the framework is to correct the detected duplications and to generate a duplication-free 

specification or feature model. The analyst plays an important role in this process because the system relies 

on his decisions to generate the correct outputs. 

3.2. FDDetector 

FDDetector is a thick-client Java-based application built on Eclipse. Fig. 1 depicts the different tools used 

in the implementation of FDDetector.  
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Fig. 1. FDDetector architecture. 
  

In order to create feature models and to generate the XML source, we use FeatureIDE [24]. This 

open-source framework is based on Eclipse and supports several functions such as requirements analysis, 

domain implementation, and software generation. The HMI of our tool is created using SWT [26], which is 

an open source widget toolkit for Java that uses the user-interface facilities of the operating systems on 

which it is implemented. The analysis of natural language specifications is performed using Apache 

OpenNLP Library [27], which is a machine learning based toolkit that includes many NLP tasks, such as 

tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, and 

parsing. In order to visualize the graph related to the analyzed specifications, we opt for Prefuse [28]. It is a 

Java-based open source toolkit that supports a rich set of features for data modeling, visualization, and 

interaction. 

The content of the repository is stored using MongoDB [29]. It is an open source noSQL 

document-oriented database that makes data management easier and more flexible by storing data in 

JSON-like documents then mapping document models to the objects of the application. In addition, 

MongoDB is a distributed database that is capable of centralizing data retrieved from different places 

without requiring a predefined schema. In our database are stored all the features of the product line 

domain, the variants extracted from new evolutions, and the content of the dictionary. The mapping 

between the system classes and the data from the tables is conducted using the Java MongoDB Driver [30]. 

This driver provides both synchronous and asynchronous interaction with MongoDB and manipulates the 

data with Java.  

Finally, the algorithms of duplication detection and the transformation of inputs to the new tree-like 

structure are all implemented using Java code. 

4. Case Study: CRM Product Line 

In this section, we first present the domain and application models of our CRM and the specification of an 

evolution. Then, we explain the test performed on this evolution using FDDetector and we present the 
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achieved results. 

4.1. The CRM Presentation 

The inputs of our test are the domain model, the application model and the specification of a new 

evolution. 

4.1.1. Domain model 

The domain model of the CRM presented in Fig. 2 contains 37 features that cover four main functions, 

namely sales force management, marketing, customer support and other additional services. The first 

function includes sales monitoring, customer management, the management of visits to the stores buying 

the company products and services, the management of sector headers’ schedules, and the generation of 

reports used by managers to make business decisions. The sub-functions related to marketing are the 

prospection of new customers, the retention of the existing customers, advertising and the management of 

commercial operations. As for customer support, the sub-functions supported by the CRM are request 

management as well as pre-sales and after-sales services. The product line provides also additional 

functions that are used by the other functions. These functions are store management, offer management 

(an offer is a product or a service provided by the company), training management (training for the 

company sales force), and finally actor and profile management (to manage the users and their 

habilitations). 

4.1.2. Application models 

Based on the domain model, we can derive a variety of customized applications to respond to different 

customers’ needs. In Fig. 3, we present two derived applications. 

- Application 1: The client who demanded this application provides its services in stores. There are 

two kinds of stores managed by this client : i) the stores that belong to the company and buys 

exclusively its products and services, ii) the stores that are not part of the company and thus buys 

also the products and services of other companies. To access the application, users don’t need an 

Internet connection. The application gives the possibility to sector headers to manage their visits to 

stores by helping them preparing their visits before they go and writing their reports after they 

finish. It also allows the management of visit schedules. Regarding prospection, the application 

facilitates the collection of potential customers’ information via an internal database, by contacting 

them by phone directly, or by scheduling an appointment. As part of customer support, the system 

includes request management and after-sales service. Other functionality supported by the 

application is the management of existing and potential customers and also the management of 

commercial actions and advertisements. 

- Application 2: The company that uses this application does not have stores. It provides its products 

and services via a website. All the sales are then made online. The application allows customer 

management and meeting scheduling. It also supports the management of commercial actions and 

customer prospection. Collecting information about potential customers can be done by accessing 

an external database, or by contacting the clients directly by telephone or by email. As for customer 

support, it is limited to the activity of request management. 

 

Journal of Software

34 Volume 15, Number 1, January 2020



  

 

Fig. 2. The CRM domain model 
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Fig. 3. The configurations of the two applications 
 

4.1.3. Evolution specification 

As we notice in the second application, many features from the domain model are absent. The objective of 

this evolution is to enrich the application by adding features from the domain model and other new features 

that are not covered by the current version of the product line. For this, we considered the textual 

specification depicted in Fig. 4. 

The specification

The new application must support stores management. The stores can 

belong to the company itself or to another chain. The sales of the 

company include both sales on the company's website and stores' sales. 

The visits to stores must be managed by allowing the sector header to 

produce visits reports. The sector header is also able to manage his 

planning of visits and meetings, and to generate summary reports in Excel 

and Business Object. As part of prospecting, the customers can be 

contacted by telephone or email, or by setting up an appointment. In 

addition, activities of customers' retention must be taken into account. 

Regarding Customer support, the system has to support the new activity 

of pre-sales service. Another new need concerns the addition of a module 

that deals with internal and external training. The reporting module will 

be responsible for the extraction of summaries to Excel and BO. The new 

version of the application must also handle customer loyalty as part of 

Marketing activities.

 

Fig. 4. The specification of the new evolution 
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4.2. Test and Results 

The aim of our test is to detect the internal duplications inside the specification of the new evolution and 

the external duplications between this specification and the existing feature models. 

4.2.1. Model verification 

In order to upload the XML file corresponding to the domain model, we use the option « Open Domain 

Model » of FDDetector main interface. Fig. 5 presents the uploaded model. The displayed interface gives also 

the possibility to load the model features into the repository if it is not already done. To detect internal 

duplications in the domain model, we use the function « Get potential inner duplications ». The output of 

this operation is a log file that contains the list of duplicate features and that has the same format as the log 

fileof Fig. 8. To add the application model shown at the right of Fig. 3, we use the option « Open Application 

Model » of the main interface. This option enables to upload the configuration file related to this application 

in the .txt format. In our test, both the domain and application models do not contain duplications. 

 

Fig. 5. The domain model loading 
 

4.2.2. Specification verification 

The second input of our test is the specification of the new evolution in question. As explained earlier, we 

have introduced in the specification some requirements that represent the same functions. In addition, 

some functions demanded in the specification are already implemented in the system. To load the 

specification, we use the option « Load the specification » of the main interface. The result is shown in Fig. 6.  

Journal of Software

37 Volume 15, Number 1, January 2020



  

 

Fig. 6. The specification loading 
 

After choosing the evolving application, we use the function « Process » that triggers the specification 

analysis to extract the inner features and to generate the tree-like structure. Fig. 7 presents the graph 

constructed from the extracted features. This presentation facilitates the visualization of the different 

features introduced by the specification as well as the identification of duplicated features by displaying 

them in a different color (red). In this test, three internal duplications were detected as shown in the 

upper-left corner of the window. In addition, the graph helps identifying the new variants added by the 

specification by associating them to the node « unbound variants », which enables the user to link them 

with existing variation points from the repository. 

 

Fig. 7. The graph generated for the specification 
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This interface provides also other functions, namely: generating the XML file corresponding to the new 

specification, re-processing the specification after the modification of the repository, refreshing the 

repository after linking new features, and generating duplication logs. The log generated in our test is 

depicted in Fig. 8. It displays the total number of variants existing in the specification and the number of the 

detected duplicates. It also contains the sentences of the specification where the duplications were 

detected. 

 

Fig. 8. The log of duplications detected in the specification 
 

4.2.3. Duplication detection 

At the aim of comparing the new features introduced by the specification with the existing features in the 

domain and application models, we use the function « Compare to feature models ». The output of this 

operation is the list of detected duplications against the two models. The potential duplications that should 

be detected are presented in Table 1. 

Table 1. The List of Duplicated Features and New features 

Feature Variation Point Variant 1 Variant 2 Variant 3 

The new application must support 
stores management. The stores 
can belong to the company itself 
or to another chain. 

DOM.Store DOM.Exclusive 
DOM. 
NonExclusive 

  

The sales of the company include 
both sales on the company's 
website and stores' sales. 

APP.Sales APP.OnLineSales 
DOM. 
OffLineSales 

  

The visits to stores must be 
managed by allowing the sector 
header to produce visits reports. 

DOM. 
VisitManagement 

DOM.ReportMgmt     

The sector header is also able to 
manage his planning of visits and 
meetings 

APP.Planning APP.Meeting DOM.StoreVisit   

The customers can be contacted 
by telephone or email, or by 
setting up an appointment.  

APP. 
ContactCustomers 

APP.Tel APP.Email DOM.RDV 
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Activities of customers' retention 
must be taken into account 

APP.Marketing 
NEW. 
CustomerRetention 

    

Regarding Customer support, the 
system has to support the new 
activity of pre-sales service 

APP. 
CustomerSupport 

NEW. 
PreSalesService 

    

The addition of a module that 
deals with internal and external 
training 

NEW.Training 
NEW. 
InternalTraining 

NEW. 
ExternalTraining 

  

The reporting module will be 
responsible for the extraction of 
summaries to Excel and BO 

NEW.Reporting NEW.ExcelReport NEW.BOReport   

 

The table cells that are blue correspond to the duplicated features against the domain model. The orange 

cells consist of the duplications against the application model. The green cells represent the new features. 

 

 

Fig. 9. The results of external duplication detection. 
 

The table of Fig. 9 is displayed by the tool and shows the test results. In our case, six duplications were 

detected against the domain model and four duplications against the application model. For the first 

category, the features can be implemented by deriving them directly from the domain model. For the second 

category, features should not be implemented because they already exist in the application in question. The 

table presents also the duplication percentage for each model. These percentages are calculated as follows: 

•  

•  

The log of duplications can be generated via the link « Generate log ». The comparison table and the 

generated log are used by the analyst to take the right decisions concerning the duplicate features, namely 

deleting the new features, replacing the existing features by new ones, or the modification of the new 

features. 

4.2.4. Evaluation 

In order to evaluate the efficiency and precision of FDDetector, we use three metrics: the recall, the 

precision [31], and the F-measure [32]. 

- Recall: The ratio of the number of relevant duplications detected by the tool to the number of all 

the duplications that really exist and that must be detected by the tool. Thus, the recall is high if the 

tool is capable of detecting a large number of relevant duplications comparing to what it must 

detect. 
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- Precision: The ratio of the number of relevant duplications detected by the tool to the number of all 

the duplications detected by the tool (relevant and irrelevant). Thus, the precision is high if a large 

number of duplications detected by the tool are relevant.  

 

 

- F-Mesure: The harmonic mean of the recall and the precision. The best value of this measure is 1 

(achieved when the precision and the recall are both perfect). The worst value is 0 (achieved when 

both the precision and the recall are poor). 

 
 

The three metrics can be calculated for the two types of duplications (internal and external) and for 

duplications against domain and application models. 

4.2.5. Example: Internal duplication in a specification 

If the specification contains 5 duplications and the tool detects 3 duplications (two relevant duplications 

and one irrelevant duplication), then: 

 

 

 
 

In this case, the tool is said to have an accuracy of 50%. 

4.2.6. Application on the CRM case study  

Concerning our case study, we detected 3 duplications in the specification, 4 duplications between the 

specification and the application model, and 6 duplications between the specification and the domain 

model. The test has been performed in several iterations. In each iteration, we considered new annotations 

of the product line general specifications, we added more information and descriptions to the domain 

features, and we filled the dictionary with new entries. This helped us detect all the duplications introduced 

by the new evolution and to achieve a high degree of accuracy (F-Measure=1). 

Through this use case, we could prove that our solution is capable of detecting internal duplication inside 

specifications and external duplication between the specification and the models. However, the CRM 

adopted in this test does not contain a large number of features and the number of duplications introduced 

by the evolution is not very significant. Therefore, to evaluate the tool scalability, we need a large scale CRM 

with high number of features and big evolutions. We can also consider a quantitative study to measure the 

gain in time and cost related to the use of FDDetector. 

5. Conclusion 
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Among the several model defects that may occur in software product lines, we focus in our work on 

feature duplication. In this vein, we proposed in previous papers a conceptual framework that describes the 

different processes to follow to detect and correct duplications in product lines. We have also developed a 

tool support called FDDetector based on this framework for the same purpose. To test and evaluate our tool, 

we have opted for a case study from the CRM field. In this paper, we explained the reasons behind choosing 

a CRM product line, we detailed the different steps performed in our test and we provided the results 

achieved. We also presented the metrics used to evaluate the tool accuracy. As the adopted CRM contains 

limited number of features, we intend, in future work, to apply our solution on a large-scale product line to 

prove the effectiveness and scalability of our tool. We also plan to develop other versions of the tool that 

support new functionality. 
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