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Abstract: In software product line engineering, a properly functioning of a software system requires 

effective collaboration and synchronization between the application code and the database. The main factor 

of the application’s source code evolution is variability management. In fact, the software product lines are 

a method of software engineering that proves their effectiveness in variability management. Despite the 

database is an integral part of software systems, the software product lines are principally used for the 

executable code production. The effects on data management and in particular on database schemas still 

imperfectly documented and studied. However, they have many interests for the evolution of the whole 

software system. Consequently, the database evolution remains backward relative to that of the code. So, to 

ensure the harmony, the reliability and a smooth execution of the overall production process, this evolution 

must be parallel to that of the source code in the software product line. This is why it seems necessary to 

study this research line. Hence, in the context of this paper, the use of software product lines’ techniques is 

proposed as a solution to solve this problem in order to take advantage of their potential for variability 

management. To ensure database evolution, this paper proposes an approach called VariaLDB based on the 

model driven engineering. Then, it presents an experimentation of VariaLBD on a case study. The 

experimentation materials developed especially for the VariaLBD test and an evaluation and a validation of 

the experimentation results will be presented in this paper.  
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1. Introduction 

Software systems have a major part that is the application code. Another important part which is present 

in many software systems is the database. A properly functioning of a software system requires effective 

collaboration between these two parts. In the past decades, software systems knew a remarkable evolution 

thanks to the continuous evolution of the code part. However, the database (BD) part is neglected and its 

evolution remains backward relative to that of the software. The main factor of the application’s source 

code evolution is variability management. Indeed, variability [1] plays an important role in tailoring 

products to the specific user’s needs, while common needs are present and reuse by all members of the 

products family. In fact, the software product lines (SPL) [2]-[4] are a software engineering method that 

proves their effectiveness in variability management. It is interested in a group of similar software systems 
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sharing a set of identical and different features. Despite the DB is an integral part of software systems, the 

SPLs are principally used for the executable code production. The effects on data management and in 

particular on DB schemas are still imperfectly documented and studied. However, they have many interests 

for the evolution of the whole software system. This is why it seems necessary to study this research line. 

Hence, in this paper context, the use of SPLs’ techniques is proposed as a solution to solve this problem in 

order to take advantage of their potential for variability management. So, to ensure DB evolution, this paper 

inspired from SPL techniques to manage variability by considering all DBs set as a SPL and whose product 

is a particular DB variant. Thus, to ensure DB evolution, this paper proposes an approach called VariaLBD 

based on the model driven engineering (MDE).  

In fact, we present VariaLBD and its details in Section 2. Then, in Section 3 we illustrate the VariaLBD 

experimentation on a case study “Smart phone product line”. The experimentation materials developed 

especially for the VariaLBD test is presented in the same section too. Moreover, in Section 4 we evaluate the 

experimentation results and we validate VariaLBD experimentation. In addition, we quote some existing 

related work in Section 5. Finally, we conclude this paper with conclusions and perspectives. 

2. VariaLBD Approach 

VariaLBD [5], [6] is an approach to model and implement variability in DB schemas inherent to SPLs. 

Indeed, in the VariaLBD definition we are inspired by SPLs engineering techniques. So, the main idea of 

VariaLBD was to consider a set of DBs as a product line whose product is a particular DB with a variable 

schema. In fact, VariaLBD has as inputs a source class diagram and a feature model and as output a 

conceptual and variable DB schema inherent to SPL. VariaLBD treats the both levels of the SPL engineering. 

The first level is the domain engineering where VariaLBD works on a conceptual level to solve the 

variability modeling problem in the DBs. VariaLBD proposes a general meta-model [5], [6] for modeling 

variability in DBs inherent to every SPL. Then, we refine the modelization to manage the variability in a 

lower level. At this level, there is a passage from a source model to a target model that manages variability 

through a model transformation using the MDE. This transformation is performed through the definition of 

transformation rules to ensure the transition from a source class diagram to another target one. In addition, 

VariaLBD offers two different types of variability based on the location of variability in the diagram 

components, which are: attribute variability and class variability. So, for each type of them, we define 

specific transformation rules to ensure the variability modeling in the conceptual DB schema. Thus, 

VariaLBD propose three new stereotypes to manage variability in the conceptual DB schemas. These 

stereotypes classify the diagram’s classes into three principal types. First, we propose the stereotype 

<<normal>> for real-world entities in target diagrams. Second, we propose the stereotype <<type>> for each 

class designed to contain variability in the target model such as optional or alternative or multiple choice 

attributes or classes. Indeed, classes stereotyped <<type>> generate parameterization tables at logical and 

physical levels which create and organize the variability in the physical DB schema. Third, we propose the 

stereotype <<administrator>> for creating a class that allows the configuration of the DB schema from the 

parameterization tables. Since this class produces after normalization a table that manages the different 

parameterization tables according to the features chosen by the user. So, the class stereotyped 

<<administrator>> must be created in every target class diagram because it has the conductor role by 

synchronizing between the different classes stereotyped <<type>>. Consequently, at this level the VariaLBD 

contribution is the generation of a conceptual and variable DB schema thanks to the use of these new 

proposed stereotypes to model the variability. Then, we obtain logic, relational, and variable DB schema 

after the normalization. The second level is the application engineering where configure the logic model 

generated in the first level and implement the variable and physical DB schema.  
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Thus, every change in the DB can be taken into consideration at the level of the conceptual DB schema in 

order to regenerate a new relational, variable, and evolutive schema. Therefore, VariaLBD indirectly 

supports the continuous DB evolution in the SPL by variability management. So, VariaLBD guarantees the 

DB schema evolution in SPL on the different conceptual, logical, and physical levels. In fact, VariaLBD 

manage variability from scratch in DB inherent to SPL because it begins the process by modeling the 

conceptual and variable DB schema. Thus, every change in the DB environment must be presented in 

advance in the conceptual DB schema to be considered later in the logical and physical schemas. An 

illustrative schema of the proposed approach VariaLBD is presented in Fig.1.  

 

 
Fig. 1. Illustrative schema of the proposed approach VariaLBD [6]. 

 

3. Description of VariaLBD Experimentation 

This experimentation is elaborated according to the experimental plans proposed in the literature [7]-[12] 

for approaches experimentation on confirmatory case studies. 

3.1. Experimental Context 

The case study proposed in this paper is a smart phone product line (SP). It’s an industrial case study. It is 

used to test VariaLBD and evaluate its validity. This experimentation focuses on the modeling of variability 

in smart phone product line. Indeed, we must manage variability in the DB schemas inherent to this SPL 

during the production of the smart phones family. In this SPL, developers face a lot of DB configuration 

problems because of the lack of a variable schema that are automatically adapted to the change of customer 

needs. Hence, we proposed the use of VariaLBD as a solution. 

3.2. Experimental Design 

The experimental design contains the conceptual models used in this experimentation, which are: the 

class diagram modeling the studied DB of the case study smart phone product line and the FODA feature 

model of this DB. In our case, FODA’s model enables identifying the variability in the various DB’s 

constituents and specifying their variability type. 

Indeed, these two models constitute the experimentation inputs. Fig. 2 and Fig. 3 show respectively the 

SP’s class diagram and the SP’s FODA model. In fact, these two models are the inputs of VariaLBD. The class 

diagram shown in Fig. 2 is the diagram that VariaLBD should model its variability. 

3.3. Experimental Material 
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We proposed a website as a tool support [13] for the execution of VariaLBD which ensures her test on its 

case study. Indeed, this website is an open online space that enables users to create variable and relational 

DB schema inherent to any SPL. In fact, our tool enables automatic modeling of the source class diagram and 

the feature model FODA at the conceptual level. In addition, our tool transforms automatically the source 

class diagram to another target and variable one thanks to the implementation of the proposed 

transformation rules. Then, it normalizes automatically the passage from the conceptual level to the logical 

level. 

 
Fig. 2. SP’s class diagram. 

 

 
Fig. 3. SP’s FODA model. 
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3.4. Preparation and Collection of Data 

Data is collected from the real word according to an empirical study to create the class diagram and the 

FODA model. Then, after an analysis of these two diagrams, the variability is localized in the class diagram 

based on the FODA model. In our case study, the variability resides at the level of the classes. Indeed, the 

classes "operating system", "call", "screen", and "GPS" are mandatory classes. Whereas, the "GPS", "flash", 

"media", "IOS", "android", "windows phone", "color", "high resolution", "basic", "MP3", "camera", and "radio" 

are optional classes, their presence and their absences are the core of the variability in the studied DB of the 

SP product line. Thus, thanks to this location we can fix the type of transformation rules to be applied in this 

experimentation. Hence, they are the rules related to variability within classes. 

3.5. Experimental Procedure and Execution 

The execution phase is the core of this experimentation since it allows identifying the different 

experimental results and to evaluate the VariaLBD validity. So each task of the experimental procedure must 

be executed carefully to achieve the final product which is the variable DB schema. In addition, this phase is 

fully automated by the proposed tool support. The tasks in this procedure are explained below one by one. 

3.5.1. Data entry 

The first task to do is entering the general information about the system’s class diagram which will be 

modeled and all the necessary information about its entities, its attributes, its associations, and all their 

properties. After entering the class diagram, the user enters the variability data relative to this diagram. 

These data are extracted mainly from the FODA features model, like the type of each feature (optional or 

mandatory), the definition of alternative groups or/and multiple choice groups, and the definition of 

constraints between these features. 

In this experimentation, the proposed tool support also offers the possibility of directly entering the 

feature model and its dependencies as an input model for VariaLBD. 

3.5.2. Transformation 

This VariaLBD’s task is automated thanks to the implementation of all necessary rules for transformation 

and for normalization in the proposed tool support. Transformation rules are applied to the class diagram 

created in the previous task to generate a new class diagram modeling the variability and representing the 

conceptual and variable DB schema. This new class diagram allows generating after normalization a 

relational and variable DB schema automatically. 

3.6. Experimental Results 

This experimentation has as a result the transformed class diagram which models variability within the 

conceptual DB schema of the SP product line. This class diagram is modeled using the proposed tool 

support. Then, the relational and variable DB schema of the SP product line is obtained after automatic 

normalization of the conceptual model. Indeed, this schema represents the final result and the VariaLBD 

contribution. Moreover, the FODA model of the SP product line is generated automatically from the class 

diagram entered by the user at the beginning. 

4. Evaluation of the VariaLBD Experimentation 

4.1. Qualitative Analysis of Experimental Results 

To prove the validity and the reliability of VariaLBD, in this paper we analyze qualitatively the variable DB 

schema generated by VariaLBD. The qualitative analysis is purely theoretical. It is based on a theoretical and 

bibliographic study of the contribution characteristics of VariaLBD and of each existing approach. The 

studied approaches are the most relevant approaches in the literature [14]-[28]. Indeed, this study is 
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interested in extracting all data concerning the quality factors of conceptual models and DB schemas 

[29]-[31] for each existing approach. Also, for VariaLBD all the quality factors of conceptual models and DB 

schemas that may be useful for this analysis is identified throughout its definition. Moreover, this analysis 

consists on making a comparison between the DB schema produced by VariaLBD and the DB schema 

produced by the existing approaches. In fact, the comparison criteria are the extracted quality factors of 

conceptual models and DB schemas during the study which are: completeness, complexity of the schema, 

data integrity, flexibility, comprehension, and implementation. Table 1 shows this analysis results. 

According to Table 1, we notice that the global schema approach [20], the views approach [15], the 

frameworks approach [23], the variable schema approach [16], and VariaLBD guarantee database schema 

completeness. Moreover, the variable schema approach [16], the virtual decomposition approach [14], the 

approaches based on extended UML diagrams [19], [21], [22], [27], [28], and VariaLBD deal successfully 

with the database schema complexity. Table.1 shows that the majority of approaches do not effectively 

manage data integrity and variability in the same time. However, VariaLBD treats simultaneously the data 

integrity and the variability within the database schema since we considered the integrity constraints in the 

database and the dependencies and the cardinalities in the feature model during the VariaLBD definition to 

manage variability. In addition, VariaLBD and the tailored DBMS approach [24] favor database schema 

flexibility whereas the other approaches neglect working on this factor. We also find that VariaLBD is 

comprehensible by the user thanks to its standard formalism that gives it a universal aspect. Then, it is 

implementable and it has a tool support unlike the most of other approaches that do not have tools support 

or their tools suffer from many insufficiencies. 

 
Table 1. Qualitative Analysis Results 

     Quality factors 
 
Approaches 

Completeness 
Complexity of 
the schema 

Data 
integrity 

Flexibility Comprehension Implementation 

Global schema [20] ++ - - - -- - 
Views [15] ++ -- +/- - - -- 

Frameworks [23] ++ + - - +/- +/- 

Variable schema [16] ++ ++ ++ +/- + +/- 
delta-oriented programming 
approach [17], [18] 

- - - - + ++ 

Tailored DBMS [24] - + + ++ ++ +/- 

Virtual decomposition [14] - ++ -- + ++ + 
Approaches based on 
extended UML diagrams [19], 
[21], [22], [27], [28] 

+/- ++ +/- ++ ++ -- 

Database evolution in SPL 
[26] 

- +/- ++ - ++ ++ 

Variable data model [25] -- - -- ++ - -- 

VariaLBD [5] ++ ++ ++ ++ ++ ++ 

++ very good, + good, - bad, -- very bad 

 

4.2. Quantitative Analysis of Experimental Results 

To evaluate quantitatively our experimentation, we choose the view approach [15] and the variable 

schema approach [16] to implement their schemas for the quantitative evaluation as they are the closest 

approaches to VariaLBD. Then, we define measurable metrics which are CPU execution time, input/output 

cost, operator cost, and used size. We choose this metrics as they are the most pertinent when executing the 

DB schema. This evaluation is based on a comparison between metrics obtained from the execution of 

VariaLBD’s DB schema and that obtained from the execution of the chosen approaches’ DB schema. 

Therefore, in this evaluation we selected the following optional features: android, color, and radio for each 
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different schema and extract the metrics values related to this selection query. Table 2, Table 3, and Table 4 

show the metrics values related to each selection query of each different feature for each different schema.  

 

Table 2. The Metrics for the Photo Feature Selection Query 

            Metrics 

Approaches 
CPU execution time Input/output cost Operator cost Used size 

VariaLBD 0.000199 0.003125 0.003414 46B 

View approach 0.0003373 0.003125 0.0089671 53B 

Variable schema approach 0. 0003373 0.003125 0.0089671 53B 

 
According to Table 2, Table 3, and Table 4 the estimated values of the metrics CPU execution time, 

input/output cost, and operator cost related to the selection query of the features android, color, and radio. 

We notice that even changing the selected feature or DB schema that we worked with, the input/output cost 

remains the same for any approach. Moreover, the values of the CPU execution time and the estimated 

operator cost engendered by VariaLBD are always better than those engendered by the two other 

approaches regardless of the change of the selected feature or the DB schema generated by any approach. 

Hence, VariaLBD is the best performing thanks to the important time saving when the queries execution. 

 

Table 3. The Metrics for the Product Feature Selection Query 

            Metrics 

Approaches 
CPU execution time Input/output cost Operator cost Used size 

VariaLBD 0.000199 0.003125 0.003414 70B 

View approach 0.0003345 0.003125 0.0074872 78B 

Variable schema approach 0.0003345 0.003125 0.0074872 78B 

 

Table 4. The Metrics for the Contact Feature Selection Query 

            Metrics 

Approaches 
CPU execution time Input/output cost Operator cost Used size 

VariaLBD 0.000152 0.003125 0.003476 26B 

View approach 0.0003461 0.003125 0.007841 37B 

Variable schema approach 0.0003461 0.003125 0.007841 37B 

 

According to Table 2, Table 3, and Table 4, we remark that the metric value is the same for the view 

approach and the variable schema approach. Otherwise, VariaLBD generate lower value even if we change 

the selected feature and the DB schema. Therefore, VariaLBD shows again her performance since it does not 

allow saving only time but also space. 

4.3. Validity to Threat 

We present in this paper a validity analysis [32] of the VariaLBD experimentation. The validity analysis 

enables proving that the experimental results have a satisfying validity for the chosen population of interest. 

So, we adapt the validity analysis proposed by [33]. To deduce conclusions, [33] proposed 4 types of threats 

to validity which are conclusion, internal, conceptual, and external. 

4.3.1. Conclusion validity 

VariaLBD evaluation is based on the following measures: the CPU execution time, the input/output cost, 

the operator cost, and the used size. We define these measures because they are objective. So, they are 

repeatable with the same result. Although these measures are more accurate because they are calculable 

but they are still influenced by several factors during the experimentation execution such as : the collected 

execution corpus size, the size of the studied SPL, the constraints number and its nature, and website traffic 
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to measure and analyze the performance. Thus, creating a dedicated tool support for the VariaLBD 

experimentation ensures a reliable processing implementation. The existence of this tool guarantees an 

independence between the treatments application and who realize the experimentation or on which it is 

realized. Therefore, the implementation of this experimentation is standard as the code does not inflect by 

the human judgment. Furthermore, his experimental material can be applied on different subjects and 

occasions. 

4.3.2. Internal validity 

In our experimentation, data stored in our experimentation DB are not all collected from real SP product 

lines. Indeed, this does not badly affect the experimental results, but it fakes slightly the results of real data. 

That’s why it’s very important to study carefully the DB context to collect relevant data in order to ensure 

exact and conform modeling that in turn generates a variable schema tailored the users’ needs. 

In addition, in our experimentation there is no risk that the history affects the experimental results, only 

an intensional update of the source diagram initially entered by the user can modify the experimental 

results. 

4.3.3. Conceptual validity 

In our experimentation, we apply VariaLBD on simple academic case studies. Therefore, VariaLBD must 

be tested on real-world scenarios in the future to handle with more complex SPLs and to ameliorate its 

generalizability. 

4.3.4. External validity 

We define the following measures: CPU execution time, input/output cost, operator cost, and the used 

size for quantitative evaluation of VariaLBD experimentation results. Then, we use these measures to 

compare VariaLBD with other existing approaches. We note that if the experimental context changes then 

other measures can appear or disappear. For example, if the population interested by this experimentation 

or the experimental tools are modified, are these evaluation measures still sufficient for the VariaLBD 

validation, particularly in this experimentation because used tools are an individual choice? 

5. Related Work 

In literature, various approaches are proposed to model and implement variability in DBs. In this paper, 

we present the most relevant approaches which have the same objective as VariaLBD. Parsons [20] 

presented the global schema approach which has many drawbacks in terms of schema complexity, data 

integrity, flexibility, comprehension, and implementation. Moreover, it treats only the logical and physical 

schema at PSM level. Bolchini et al. [15] presented the view which produces views in addition to the global 

schema. This approach inherits the drawbacks of the global schema approach although the data integrity 

amelioration. Schäler et al. [16] presented an approach using the superimposition composition mechanism 

for generating automatically a variant of a particular information system which has an adapted schema. 

This approach improves data integrity, whereas the implementation of the DB schema become more 

complex. Besides, Herrmann et al. [26] proposed a tool support DAVE for adapting the schemas versioning 

technique to resolve the weaving problem in the DBs, but allowing only manual evolution and DB migration.  

Note that the aforementioned approaches treat the variability only at the PSM level and they neglect the 

CIM and PIM levels. However some approaches are interested in these issues like the virtual decomposition 

technique approach proposed by Siegmund et al. [14] which proposes a virtual annotation of the conceptual 

DB schema in terms of features. Unlikely, this approach reduces the model's completeness and the data 

integrity and it treats the variability only at the PIM level. Then, Khedri and Khosravi [17], [18] managed the 

variability problem in DB schemas by using the delta-oriented programming, first at the logical and physical 

level and second at the conceptual level by proposing a meta-model at the CIM level. It’s an evolutive and 
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implementable approach in contrast to the virtual decomposition approach [14], but it has various 

problems of completeness, flexibility, data integrity, and schema complexity. Moreover, the approaches 

based on extended UML diagrams [19], [21], [22], [27], [28] propose meta-models and variable conceptual 

models for DBs. Yet, its proposed models have insufficiencies such as they are not flexible enough to 

guarantee the DB evolution in SPL and they aren’t implementable to test it in real-world scenarios. Finally, 

Abo Zaid and Troyer [25] proposed an approach for modeling data variability in data-intensive SPL. This 

approach enables the simplification of the data access process and the optimization of the storage space but 

without a tool support for supporting the mapping to the variable data model. So, it’s not yet tested on real 

industrial scenarios. 

6. Conclusions 

In this paper, we present an overview of our contribution which is an approach to model and to 

implement variability in DB inherent to SPL (VariaLBD). Then, we experiment it on an industrial case study 

“smart phone product line”. And we describe in detail this experimentation. The experimental results 

represent the VariaLBD’s contribution which is the variable and relational DB schema. Next, we evaluate 

our experimentation. This evaluation consists of qualitative, quantitative, and validity to threat analysis. 

Theoretically, we present in this paper two new contributions in software engineering. First, at the level 

of the DB evolution problem, VariaLBD proves that the generation of a variable DB schema ensures the DB 

evolution in a software system as the variable conceptual DB schema adapts to the features chosen by the 

users. Second, at the level of SPL engineering, VariaLBD adapts SPL for the modeling and the 

implementation of variability in the DBs. Our approach is inspired by the SPLs techniques for the variability 

management in the software systems’ code to manage variability in DB schemas. Indeed, VariaLBD treats 

the variability in DBs inherent to SPL by considering a DBs set as SPL whose product is a particular DB. 

Hence, VariaLBD generates a variable DB schema adapted to the features desired by the client. 

During experimentation, VariaLBD proves its performance. Unfortunately, this experimentation is carried 

out on a simple SPL that does not touch the depth of the industrial sector. Thus, more technical and complex 

scenarios can be considered to test VariaLBD in the future. 
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