

VariaLBD: Approach for Modeling and Implementing
Variability in the Databases Inherent to Software Product

Lines

Nesrine Khalfallah1*, Naoufel Kraiem1,3, Sami Ouali2

1 RIADI Laboratory, National School of Computer Science, Campus of Manouba, Manouba 2010, Tunisia.
2 College of Applied Sciences, lbri, Oman.
3 Computer Science Department, College of Science, SQU, Oman.

* Corresponding author. Tel.: +21695740444; email: khalfallahnesrinee@gmail.com
Manuscript submitted March 1, 2019; accepted June 15, 2019.
doi: 10.17706/jsw.15.1.1-11

Abstract: In software product line engineering, a properly functioning of a software system requires

effective collaboration and synchronization between the application code and the database. The main factor

of the application’s source code evolution is variability management. In fact, the software product lines are

a method of software engineering that proves their effectiveness in variability management. Despite the

database is an integral part of software systems, the software product lines are principally used for the

executable code production. The effects on data management and in particular on database schemas still

imperfectly documented and studied. However, they have many interests for the evolution of the whole

software system. Consequently, the database evolution remains backward relative to that of the code. So, to

ensure the harmony, the reliability and a smooth execution of the overall production process, this evolution

must be parallel to that of the source code in the software product line. This is why it seems necessary to

study this research line. Hence, in the context of this paper, the use of software product lines’ techniques is

proposed as a solution to solve this problem in order to take advantage of their potential for variability

management. To ensure database evolution, this paper proposes an approach called VariaLDB based on the

model driven engineering. Then, it presents an experimentation of VariaLBD on a case study. The

experimentation materials developed especially for the VariaLBD test and an evaluation and a validation of

the experimentation results will be presented in this paper.

Key words: Database schema, Feature, Model transformation, Software product line, Variability.

1. Introduction

Software systems have a major part that is the application code. Another important part which is present

in many software systems is the database. A properly functioning of a software system requires effective

collaboration between these two parts. In the past decades, software systems knew a remarkable evolution

thanks to the continuous evolution of the code part. However, the database (BD) part is neglected and its

evolution remains backward relative to that of the software. The main factor of the application’s source

code evolution is variability management. Indeed, variability [1] plays an important role in tailoring

products to the specific user’s needs, while common needs are present and reuse by all members of the

products family. In fact, the software product lines (SPL) [2]-[4] are a software engineering method that

proves their effectiveness in variability management. It is interested in a group of similar software systems

Journal of Software

1 Volume 15, Number 1, January 2020

mailto:khalfallahnesrinee@gmail.com

sharing a set of identical and different features. Despite the DB is an integral part of software systems, the

SPLs are principally used for the executable code production. The effects on data management and in

particular on DB schemas are still imperfectly documented and studied. However, they have many interests

for the evolution of the whole software system. This is why it seems necessary to study this research line.

Hence, in this paper context, the use of SPLs’ techniques is proposed as a solution to solve this problem in

order to take advantage of their potential for variability management. So, to ensure DB evolution, this paper

inspired from SPL techniques to manage variability by considering all DBs set as a SPL and whose product

is a particular DB variant. Thus, to ensure DB evolution, this paper proposes an approach called VariaLBD

based on the model driven engineering (MDE).

In fact, we present VariaLBD and its details in Section 2. Then, in Section 3 we illustrate the VariaLBD

experimentation on a case study “Smart phone product line”. The experimentation materials developed

especially for the VariaLBD test is presented in the same section too. Moreover, in Section 4 we evaluate the

experimentation results and we validate VariaLBD experimentation. In addition, we quote some existing

related work in Section 5. Finally, we conclude this paper with conclusions and perspectives.

2. VariaLBD Approach

VariaLBD [5], [6] is an approach to model and implement variability in DB schemas inherent to SPLs.

Indeed, in the VariaLBD definition we are inspired by SPLs engineering techniques. So, the main idea of

VariaLBD was to consider a set of DBs as a product line whose product is a particular DB with a variable

schema. In fact, VariaLBD has as inputs a source class diagram and a feature model and as output a

conceptual and variable DB schema inherent to SPL. VariaLBD treats the both levels of the SPL engineering.

The first level is the domain engineering where VariaLBD works on a conceptual level to solve the

variability modeling problem in the DBs. VariaLBD proposes a general meta-model [5], [6] for modeling

variability in DBs inherent to every SPL. Then, we refine the modelization to manage the variability in a

lower level. At this level, there is a passage from a source model to a target model that manages variability

through a model transformation using the MDE. This transformation is performed through the definition of

transformation rules to ensure the transition from a source class diagram to another target one. In addition,

VariaLBD offers two different types of variability based on the location of variability in the diagram

components, which are: attribute variability and class variability. So, for each type of them, we define

specific transformation rules to ensure the variability modeling in the conceptual DB schema. Thus,

VariaLBD propose three new stereotypes to manage variability in the conceptual DB schemas. These

stereotypes classify the diagram’s classes into three principal types. First, we propose the stereotype

<<normal>> for real-world entities in target diagrams. Second, we propose the stereotype <<type>> for each

class designed to contain variability in the target model such as optional or alternative or multiple choice

attributes or classes. Indeed, classes stereotyped <<type>> generate parameterization tables at logical and

physical levels which create and organize the variability in the physical DB schema. Third, we propose the

stereotype <<administrator>> for creating a class that allows the configuration of the DB schema from the

parameterization tables. Since this class produces after normalization a table that manages the different

parameterization tables according to the features chosen by the user. So, the class stereotyped

<<administrator>> must be created in every target class diagram because it has the conductor role by

synchronizing between the different classes stereotyped <<type>>. Consequently, at this level the VariaLBD

contribution is the generation of a conceptual and variable DB schema thanks to the use of these new

proposed stereotypes to model the variability. Then, we obtain logic, relational, and variable DB schema

after the normalization. The second level is the application engineering where configure the logic model

generated in the first level and implement the variable and physical DB schema.

Journal of Software

2 Volume 15, Number 1, January 2020

Thus, every change in the DB can be taken into consideration at the level of the conceptual DB schema in

order to regenerate a new relational, variable, and evolutive schema. Therefore, VariaLBD indirectly

supports the continuous DB evolution in the SPL by variability management. So, VariaLBD guarantees the

DB schema evolution in SPL on the different conceptual, logical, and physical levels. In fact, VariaLBD

manage variability from scratch in DB inherent to SPL because it begins the process by modeling the

conceptual and variable DB schema. Thus, every change in the DB environment must be presented in

advance in the conceptual DB schema to be considered later in the logical and physical schemas. An

illustrative schema of the proposed approach VariaLBD is presented in Fig.1.

Fig. 1. Illustrative schema of the proposed approach VariaLBD [6].

3. Description of VariaLBD Experimentation

This experimentation is elaborated according to the experimental plans proposed in the literature [7]-[12]

for approaches experimentation on confirmatory case studies.

3.1. Experimental Context

The case study proposed in this paper is a smart phone product line (SP). It’s an industrial case study. It is

used to test VariaLBD and evaluate its validity. This experimentation focuses on the modeling of variability

in smart phone product line. Indeed, we must manage variability in the DB schemas inherent to this SPL

during the production of the smart phones family. In this SPL, developers face a lot of DB configuration

problems because of the lack of a variable schema that are automatically adapted to the change of customer

needs. Hence, we proposed the use of VariaLBD as a solution.

3.2. Experimental Design

The experimental design contains the conceptual models used in this experimentation, which are: the

class diagram modeling the studied DB of the case study smart phone product line and the FODA feature

model of this DB. In our case, FODA’s model enables identifying the variability in the various DB’s

constituents and specifying their variability type.

Indeed, these two models constitute the experimentation inputs. Fig. 2 and Fig. 3 show respectively the

SP’s class diagram and the SP’s FODA model. In fact, these two models are the inputs of VariaLBD. The class

diagram shown in Fig. 2 is the diagram that VariaLBD should model its variability.

3.3. Experimental Material

Journal of Software

3 Volume 15, Number 1, January 2020

We proposed a website as a tool support [13] for the execution of VariaLBD which ensures her test on its

case study. Indeed, this website is an open online space that enables users to create variable and relational

DB schema inherent to any SPL. In fact, our tool enables automatic modeling of the source class diagram and

the feature model FODA at the conceptual level. In addition, our tool transforms automatically the source

class diagram to another target and variable one thanks to the implementation of the proposed

transformation rules. Then, it normalizes automatically the passage from the conceptual level to the logical

level.

Fig. 2. SP’s class diagram.

Fig. 3. SP’s FODA model.

Journal of Software

4 Volume 15, Number 1, January 2020

3.4. Preparation and Collection of Data

Data is collected from the real word according to an empirical study to create the class diagram and the

FODA model. Then, after an analysis of these two diagrams, the variability is localized in the class diagram

based on the FODA model. In our case study, the variability resides at the level of the classes. Indeed, the

classes "operating system", "call", "screen", and "GPS" are mandatory classes. Whereas, the "GPS", "flash",

"media", "IOS", "android", "windows phone", "color", "high resolution", "basic", "MP3", "camera", and "radio"

are optional classes, their presence and their absences are the core of the variability in the studied DB of the

SP product line. Thus, thanks to this location we can fix the type of transformation rules to be applied in this

experimentation. Hence, they are the rules related to variability within classes.

3.5. Experimental Procedure and Execution

The execution phase is the core of this experimentation since it allows identifying the different

experimental results and to evaluate the VariaLBD validity. So each task of the experimental procedure must

be executed carefully to achieve the final product which is the variable DB schema. In addition, this phase is

fully automated by the proposed tool support. The tasks in this procedure are explained below one by one.

3.5.1. Data entry

The first task to do is entering the general information about the system’s class diagram which will be

modeled and all the necessary information about its entities, its attributes, its associations, and all their

properties. After entering the class diagram, the user enters the variability data relative to this diagram.

These data are extracted mainly from the FODA features model, like the type of each feature (optional or

mandatory), the definition of alternative groups or/and multiple choice groups, and the definition of

constraints between these features.

In this experimentation, the proposed tool support also offers the possibility of directly entering the

feature model and its dependencies as an input model for VariaLBD.

3.5.2. Transformation

This VariaLBD’s task is automated thanks to the implementation of all necessary rules for transformation

and for normalization in the proposed tool support. Transformation rules are applied to the class diagram

created in the previous task to generate a new class diagram modeling the variability and representing the

conceptual and variable DB schema. This new class diagram allows generating after normalization a

relational and variable DB schema automatically.

3.6. Experimental Results

This experimentation has as a result the transformed class diagram which models variability within the

conceptual DB schema of the SP product line. This class diagram is modeled using the proposed tool

support. Then, the relational and variable DB schema of the SP product line is obtained after automatic

normalization of the conceptual model. Indeed, this schema represents the final result and the VariaLBD

contribution. Moreover, the FODA model of the SP product line is generated automatically from the class

diagram entered by the user at the beginning.

4. Evaluation of the VariaLBD Experimentation

4.1. Qualitative Analysis of Experimental Results

To prove the validity and the reliability of VariaLBD, in this paper we analyze qualitatively the variable DB

schema generated by VariaLBD. The qualitative analysis is purely theoretical. It is based on a theoretical and

bibliographic study of the contribution characteristics of VariaLBD and of each existing approach. The

studied approaches are the most relevant approaches in the literature [14]-[28]. Indeed, this study is

Journal of Software

5 Volume 15, Number 1, January 2020

interested in extracting all data concerning the quality factors of conceptual models and DB schemas

[29]-[31] for each existing approach. Also, for VariaLBD all the quality factors of conceptual models and DB

schemas that may be useful for this analysis is identified throughout its definition. Moreover, this analysis

consists on making a comparison between the DB schema produced by VariaLBD and the DB schema

produced by the existing approaches. In fact, the comparison criteria are the extracted quality factors of

conceptual models and DB schemas during the study which are: completeness, complexity of the schema,

data integrity, flexibility, comprehension, and implementation. Table 1 shows this analysis results.

According to Table 1, we notice that the global schema approach [20], the views approach [15], the

frameworks approach [23], the variable schema approach [16], and VariaLBD guarantee database schema

completeness. Moreover, the variable schema approach [16], the virtual decomposition approach [14], the

approaches based on extended UML diagrams [19], [21], [22], [27], [28], and VariaLBD deal successfully

with the database schema complexity. Table.1 shows that the majority of approaches do not effectively

manage data integrity and variability in the same time. However, VariaLBD treats simultaneously the data

integrity and the variability within the database schema since we considered the integrity constraints in the

database and the dependencies and the cardinalities in the feature model during the VariaLBD definition to

manage variability. In addition, VariaLBD and the tailored DBMS approach [24] favor database schema

flexibility whereas the other approaches neglect working on this factor. We also find that VariaLBD is

comprehensible by the user thanks to its standard formalism that gives it a universal aspect. Then, it is

implementable and it has a tool support unlike the most of other approaches that do not have tools support

or their tools suffer from many insufficiencies.

Table 1. Qualitative Analysis Results

 Quality factors

Approaches

Completeness
Complexity of
the schema

Data
integrity

Flexibility Comprehension Implementation

Global schema [20] ++ - - - -- -
Views [15] ++ -- +/- - - --

Frameworks [23] ++ + - - +/- +/-

Variable schema [16] ++ ++ ++ +/- + +/-
delta-oriented programming
approach [17], [18]

- - - - + ++

Tailored DBMS [24] - + + ++ ++ +/-

Virtual decomposition [14] - ++ -- + ++ +
Approaches based on
extended UML diagrams [19],
[21], [22], [27], [28]

+/- ++ +/- ++ ++ --

Database evolution in SPL
[26]

- +/- ++ - ++ ++

Variable data model [25] -- - -- ++ - --

VariaLBD [5] ++ ++ ++ ++ ++ ++

++ very good, + good, - bad, -- very bad

4.2. Quantitative Analysis of Experimental Results

To evaluate quantitatively our experimentation, we choose the view approach [15] and the variable

schema approach [16] to implement their schemas for the quantitative evaluation as they are the closest

approaches to VariaLBD. Then, we define measurable metrics which are CPU execution time, input/output

cost, operator cost, and used size. We choose this metrics as they are the most pertinent when executing the

DB schema. This evaluation is based on a comparison between metrics obtained from the execution of

VariaLBD’s DB schema and that obtained from the execution of the chosen approaches’ DB schema.

Therefore, in this evaluation we selected the following optional features: android, color, and radio for each

Journal of Software

6 Volume 15, Number 1, January 2020

different schema and extract the metrics values related to this selection query. Table 2, Table 3, and Table 4

show the metrics values related to each selection query of each different feature for each different schema.

Table 2. The Metrics for the Photo Feature Selection Query

 Metrics

Approaches
CPU execution time Input/output cost Operator cost Used size

VariaLBD 0.000199 0.003125 0.003414 46B

View approach 0.0003373 0.003125 0.0089671 53B

Variable schema approach 0. 0003373 0.003125 0.0089671 53B

According to Table 2, Table 3, and Table 4 the estimated values of the metrics CPU execution time,

input/output cost, and operator cost related to the selection query of the features android, color, and radio.

We notice that even changing the selected feature or DB schema that we worked with, the input/output cost

remains the same for any approach. Moreover, the values of the CPU execution time and the estimated

operator cost engendered by VariaLBD are always better than those engendered by the two other

approaches regardless of the change of the selected feature or the DB schema generated by any approach.

Hence, VariaLBD is the best performing thanks to the important time saving when the queries execution.

Table 3. The Metrics for the Product Feature Selection Query

 Metrics

Approaches
CPU execution time Input/output cost Operator cost Used size

VariaLBD 0.000199 0.003125 0.003414 70B

View approach 0.0003345 0.003125 0.0074872 78B

Variable schema approach 0.0003345 0.003125 0.0074872 78B

Table 4. The Metrics for the Contact Feature Selection Query

 Metrics

Approaches
CPU execution time Input/output cost Operator cost Used size

VariaLBD 0.000152 0.003125 0.003476 26B

View approach 0.0003461 0.003125 0.007841 37B

Variable schema approach 0.0003461 0.003125 0.007841 37B

According to Table 2, Table 3, and Table 4, we remark that the metric value is the same for the view

approach and the variable schema approach. Otherwise, VariaLBD generate lower value even if we change

the selected feature and the DB schema. Therefore, VariaLBD shows again her performance since it does not

allow saving only time but also space.

4.3. Validity to Threat

We present in this paper a validity analysis [32] of the VariaLBD experimentation. The validity analysis

enables proving that the experimental results have a satisfying validity for the chosen population of interest.

So, we adapt the validity analysis proposed by [33]. To deduce conclusions, [33] proposed 4 types of threats

to validity which are conclusion, internal, conceptual, and external.

4.3.1. Conclusion validity

VariaLBD evaluation is based on the following measures: the CPU execution time, the input/output cost,

the operator cost, and the used size. We define these measures because they are objective. So, they are

repeatable with the same result. Although these measures are more accurate because they are calculable

but they are still influenced by several factors during the experimentation execution such as : the collected

execution corpus size, the size of the studied SPL, the constraints number and its nature, and website traffic

Journal of Software

7 Volume 15, Number 1, January 2020

to measure and analyze the performance. Thus, creating a dedicated tool support for the VariaLBD

experimentation ensures a reliable processing implementation. The existence of this tool guarantees an

independence between the treatments application and who realize the experimentation or on which it is

realized. Therefore, the implementation of this experimentation is standard as the code does not inflect by

the human judgment. Furthermore, his experimental material can be applied on different subjects and

occasions.

4.3.2. Internal validity

In our experimentation, data stored in our experimentation DB are not all collected from real SP product

lines. Indeed, this does not badly affect the experimental results, but it fakes slightly the results of real data.

That’s why it’s very important to study carefully the DB context to collect relevant data in order to ensure

exact and conform modeling that in turn generates a variable schema tailored the users’ needs.

In addition, in our experimentation there is no risk that the history affects the experimental results, only

an intensional update of the source diagram initially entered by the user can modify the experimental

results.

4.3.3. Conceptual validity

In our experimentation, we apply VariaLBD on simple academic case studies. Therefore, VariaLBD must

be tested on real-world scenarios in the future to handle with more complex SPLs and to ameliorate its

generalizability.

4.3.4. External validity

We define the following measures: CPU execution time, input/output cost, operator cost, and the used

size for quantitative evaluation of VariaLBD experimentation results. Then, we use these measures to

compare VariaLBD with other existing approaches. We note that if the experimental context changes then

other measures can appear or disappear. For example, if the population interested by this experimentation

or the experimental tools are modified, are these evaluation measures still sufficient for the VariaLBD

validation, particularly in this experimentation because used tools are an individual choice?

5. Related Work

In literature, various approaches are proposed to model and implement variability in DBs. In this paper,

we present the most relevant approaches which have the same objective as VariaLBD. Parsons [20]

presented the global schema approach which has many drawbacks in terms of schema complexity, data

integrity, flexibility, comprehension, and implementation. Moreover, it treats only the logical and physical

schema at PSM level. Bolchini et al. [15] presented the view which produces views in addition to the global

schema. This approach inherits the drawbacks of the global schema approach although the data integrity

amelioration. Schäler et al. [16] presented an approach using the superimposition composition mechanism

for generating automatically a variant of a particular information system which has an adapted schema.

This approach improves data integrity, whereas the implementation of the DB schema become more

complex. Besides, Herrmann et al. [26] proposed a tool support DAVE for adapting the schemas versioning

technique to resolve the weaving problem in the DBs, but allowing only manual evolution and DB migration.

Note that the aforementioned approaches treat the variability only at the PSM level and they neglect the

CIM and PIM levels. However some approaches are interested in these issues like the virtual decomposition

technique approach proposed by Siegmund et al. [14] which proposes a virtual annotation of the conceptual

DB schema in terms of features. Unlikely, this approach reduces the model's completeness and the data

integrity and it treats the variability only at the PIM level. Then, Khedri and Khosravi [17], [18] managed the

variability problem in DB schemas by using the delta-oriented programming, first at the logical and physical

level and second at the conceptual level by proposing a meta-model at the CIM level. It’s an evolutive and

Journal of Software

8 Volume 15, Number 1, January 2020

implementable approach in contrast to the virtual decomposition approach [14], but it has various

problems of completeness, flexibility, data integrity, and schema complexity. Moreover, the approaches

based on extended UML diagrams [19], [21], [22], [27], [28] propose meta-models and variable conceptual

models for DBs. Yet, its proposed models have insufficiencies such as they are not flexible enough to

guarantee the DB evolution in SPL and they aren’t implementable to test it in real-world scenarios. Finally,

Abo Zaid and Troyer [25] proposed an approach for modeling data variability in data-intensive SPL. This

approach enables the simplification of the data access process and the optimization of the storage space but

without a tool support for supporting the mapping to the variable data model. So, it’s not yet tested on real

industrial scenarios.

6. Conclusions

In this paper, we present an overview of our contribution which is an approach to model and to

implement variability in DB inherent to SPL (VariaLBD). Then, we experiment it on an industrial case study

“smart phone product line”. And we describe in detail this experimentation. The experimental results

represent the VariaLBD’s contribution which is the variable and relational DB schema. Next, we evaluate

our experimentation. This evaluation consists of qualitative, quantitative, and validity to threat analysis.

Theoretically, we present in this paper two new contributions in software engineering. First, at the level

of the DB evolution problem, VariaLBD proves that the generation of a variable DB schema ensures the DB

evolution in a software system as the variable conceptual DB schema adapts to the features chosen by the

users. Second, at the level of SPL engineering, VariaLBD adapts SPL for the modeling and the

implementation of variability in the DBs. Our approach is inspired by the SPLs techniques for the variability

management in the software systems’ code to manage variability in DB schemas. Indeed, VariaLBD treats

the variability in DBs inherent to SPL by considering a DBs set as SPL whose product is a particular DB.

Hence, VariaLBD generates a variable DB schema adapted to the features desired by the client.

During experimentation, VariaLBD proves its performance. Unfortunately, this experimentation is carried

out on a simple SPL that does not touch the depth of the industrial sector. Thus, more technical and complex

scenarios can be considered to test VariaLBD in the future.

References

[1] Weiss, D. M., & Lai, C. T. R. (1999). Software Product Line Engineering: A Family-based Software

Development Process. Addison-Wesley Professional.

[2] Clements, P., & Northrop, L. (2001). Software Product Lines. Addison-Wesley.

[3] Batory, D., Sarvela, J., & Rauschmayer, A. (2004). Scaling step-wise refinement. Proceedings of the IEEE:

Vol. 30(6).Transactions on Software Engineering (pp. 355-371).

[4] Czarnecki, K., & Eisenecker, U. (2000). Generative programming: methods, tools, and applications.

Addison-Wesley.

[5] Khalfallah, N., Ouali, S., & Kraiem, N. (2016). Managing variability in database context using an MDE

approach. Proceedings of the 4th Int. Conference on Control Engineering & Information Technology (CEIT)

(pp. 1-6). Hammamet, Tunisia.

[6] Khalfallah, N., Ouali, S., & Kraiem, N. (2018). Approach for managing variability in database schema.

Journal of Asian Scientific Research, 8(6), 221-236.

[7] Harris, P. (2002). Designing, and reporting experiments in psychology (2nd ed,). Open University Press:

Buckingham.

[8] Flyvbjerg, B. (2006). Five misunderstandings about case study research. Qualitative Inquiry, 12(2), 219

–245.

Journal of Software

9 Volume 15, Number 1, January 2020

[9] Yin, R. K. (2002). Case study research: design and methods. Sage, Thousand Oaks, CA.

[10] Easterbook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Selecting empirical methods for software

engineering research. Chapter 11 of the book Guide to Advanced Empirical Software Engineering (pp.

285–311).

[11] Jedlitschka, A., Ciolkowski, M., & Pfahl, D. (2008). Reporting experiments in software engineering.

Chapter 8 Of The Book Guide to Advanced Empirical Software Engineering (pp. 201-228).

[12] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2000). Experimentation in

Software Engineering – An Introduction. Kluwer Academic Publishers, Boston, MA.

[13] Khalfallah, N., Ouali, S., & Kraiem, N. (2018). Case tool support for variability managing in database

schemas. Journal of Software, 13(11), 600-612.

[14] Siegmund, N., Kästner, C., Rosenmüller, M., Heidenreich, F., Apel, S., & Saake, G. (2009). Bridging the gap

between variability in client application and database schema. Proceedings of the GI-Fachtagung

Datenbanksysteme für Business, Technologie und Web (pp. 297–306).

[15] Bolchini, C., Quintarelli, E., & Rossato, R. (2007). Relational data tailoring through view composition.

Proceedings of the International Conference on Conceptual Modeling (pp. 149–164). Springer.

[16] Schäler, M., Leich, T., Rosenmüller, M., & Saake, G. (2012). Building information system variants with

tailored database schemas using features. Proceedings of the International Conference CAiSE: Vol. 7328.

Advanced Information Systems Engineering (pp. 597–612). Springer.

[17] Khedri, N., & Khsoravi, R. (2013). Handling database schema variability in software product lines.

Proceedings of the 20th Asia-Pacific Software Engineering Conference (APSEC): Vol. 1. (pp. 331–338).

[18] Khedri, N., &. Khosravi, R. (2015). Incremental variability management in conceptual data models of

software product lines. Proceedings of the Asia-Pacific Software Engineering Conference (APSEC) (pp.

222–229).

[19] Ziadi, T. (2004). Manipulation de lignes de produits en UML. PhD thesis. Université de Rennes. France.

[20] Parsons, J. (2003). Effects of local versus global schema diagrams on verification and communication in

conceptual data modeling. Journal. Manage. Inf. Syst, 19(3), 155-183.

[21] Clauß, M., & Jena, I. (2001). Modeling variability with UML. Proceedings in GCSE Young Researchers

Workshop.

[22] Clauß, M. (2001). Generic modeling using UML extensions for variability. Proceedings in Workshop on

Domain Specific Visual Languages at OOPSLA.

[23] Johnson. R., & Foote, B. (1988). Designing reusable classes. Journal of Object-Oriented Programming,

1(2), 22–35.

[24] Rosenmüller, M., Kästner, C., Siegmund, N., Sunkle, S., Apel, S., Leich, T., et al. (2009). SQL à la carte

toward tailor-made data management. Proceedings of the 13th conference GI-Fachtagung

Datenbanksysteme für Business, Technologie und Web (BTW) (pp. 117-136).

[25] Abo Zaid, L., & De Troyer, O. (2011). Towards modeling data variability in software product lines.

Proceedings of the 12th International Conference Enterprise, Business-Process and Information Systems

Modeling (BPMDS) and Proceedings of the 16th International Conference, EMMSAD, CAiSE (pp. 453-467).

London, UK.

[26] Herrmann, K., Reimann, J., Voigt, H., Demuth, B., Fromm, S., Stelzmann, R., et al. (2015). Database

evolution for software product lines. Proceedings of the 4th International Conference on Data

Management Technologies and Applications (DATA) (pp. 125-133). Colmar, Alsace, France.

[27] Gomaa, H. (2005.). Designing software product lines with UML: from use cases to pattern-based

software architectures. Addison-Wesley.

Journal of Software

10 Volume 15, Number 1, January 2020

[28] Korherr, B., & List, B. A. (2007). UML 2 profile for variability models and their dependency to business

processes. Proceedings in DEXA Workshops (pp. 829 – 834). ISBN: 0769529321, DOI:

10.1109/DEXA.2007.96.

[29] Moody, D. L., & Shanks, G. G. (1994). What makes a good data model? Evaluating the quality of entity

relationship models. Proceedings of the 13th International Conference: Vol. 881. Entity Relationship

Approach (pp. 94–111). Manchester, England.

[30] Moody, D. L.., & Shanks, G. (2003). Improving the quality of data models: empirical validation of a

quality management framework. Journal Information Systems, 28, 619–650.

[31] Khalfallah, N., Ouali, S., & Kraiem, N. (2016). A proposal for a variability management framework.

Proceedings of the 7th International Conference on Sciences of Electronics, Technologies of Information

and Telecommunications (SETIT) (pp. 133-138). Hammamet, Tunisia.

[32] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in

software engineering. London: Springer Heidelberg New York Dordrecht.

[33] Cook T. D., & Campbell, T. D. (1979). Quasi-experimentation: design and analysis issues for field settings.

Houghton Mifflin Company Boston.

Nesrine Khalfallah is a PhD student at RIADI Lab, ENSI, Campus of Manouba, Manouba,

Tunisia. She obtained her maitrise degree in computer science applied to management in

2010 and his research master's in software engineering in 2012 and subscribed in the first

year of thesis in 2014. She is working on this subject: the modeling and implementation of

the variability in the database. She works in the public sector as a teacher and researcher.

Sami Ouali is an assistant professor in the College of Applied Sciences of lbri in Oman. He

is a member of the RIADI labs. His research interests lie in the areas of software

engineering and software product line.

Naoufel Kraïem is a professor in the Department of Computer Science in Sultan Qaboos

University. He is a member of the RIADI labs. His research interests include IT adoption

and usage Information modeling, software engineering, software product lines, method

engineering, web services and CASE tools.

Author’s
formal photo

Journal of Software

11 Volume 15, Number 1, January 2020

