

Cross Site Scripting Vulnerabilities in JAX-RS: A Security
Approach

John Velandia*, Jessica Ortiz , Julian Sierra, Roger Guzma n

Faculty of Engineering, Universidad Cato lica de Colombia, Bogota , Colombia.

* Corresponding author. Tel.: 573208538533; email: javelandia@ucatolica.edu.co
Manuscript submitted April 10, 2018; accepted October 1, 2019.
doi: 10.17706/jsw.14.11.530-547

Abstract: Restful services are concerned with the integration of software systems using HTTP as base.

Research studies addressing security assessments over JAX-RS are scarce, even more in Cross Site Scripting

(XSS), which is a sort of attack that consists of stealing data or phishing. Thus, the aim of this paper is to

present an assessment of the vulnerabilities over JAX-RS implementations when a XSS attack is involved.

The assessment comprises: (1) selection of attack methods, (2) programming and assessing of attacks

throughout dynamic programming and recursive methods; (3) identifying the vulnerabilities by means of a

mathematical model, which determines the level of security of implementations. As a proof of concept, a

prototype is implemented to demonstrate how the guideline is applied. Additionally, controls are proposed

for every vulnerability identified.

Key words: JAX-RS, Restful services, vulnerability, security, cross site scripting, dynamic programming,

apache CXF, RestEasy, Jersey, Restlet.

1. Introduction

Software vulnerability is defined as a bug in software systems which causes an invalid output or to behave

unintended way. The proliferation of restful services to integrate software systems around the world demand

the constant assessment of security in restful services to guarantee the availability of services and the

confidentiality of data.

Architectural styles have been used to integrate software systems. Representational Style Transfer (REST)

is one way to develop an integration. It is visible in different contexts, specially, during financial transactions

along different Web sites [1]. For instance, Amazon, during the process of purchasing a product, restful

services are called to obtain the products due to sell. Thanks to the sturdiness of performance in REST,

millions of financial transactions are possible in these sort of web sites.

In addition to performance, the security issue it is also important to address, in order to guarantee the

users’ trust and data confidence in RESTful services. However, the security breaches are present in all the

architectures, for smaller that these are. Restful services are also vulnerable to Cross Site Scripting Attacks

(XSS) [2], which are manners of steal data or phishing base on HTML tags or source code[3], [4].

Research studies addressing security assessments over JAX-RS are scarce, even more in Cross Site Scripting

(XSS) [5], [6], thus the aim of this paper is to present a guideline that assesses the vulnerabilities and controls

over JAX-RS implementations, specifically when a XSS attack is involved. In addition, the following research

question is set out: Current implementations base on JAX-RS consider controls to mitigate Cross Site Scripting

530 Volume 14, Number 11, November 2019

Journal of Software

attacks or on the contrary, restful services based on JAX-RS are vulnerable to XSS attacks?

1) The principal novelties of this research comprise:

2) The selection of possible attacks methods over restful services, since not all the existing methods are

eligible.

3) The programming of the selected methods using dynamic programming and recursively to assess

vulnerabilities in the following JAX-RS implementations: that RestEasy, Restlet, Apache CXF and

Jersey.

4) Mathematical model is proposed to evaluate the level of security base on the founded vulnerabilities.

5) A software prototype is deployed on Internet in order to simulate the selected attacks methods over

any JAX-RS implementation.

2. Fundamentals

Detection of software vulnerabilities are performed throughout different analysis techniques, however the

most used are the static and dynamic technique. Static technique encompasses the analysis of the source code

without executing it, only analyzing source code it could determine if exist a vulnerability. Dynamic technique

consists of running the detection of vulnerabilities at run time to confirm if it is vulnerable; if a vulnerability

is found at this case a denial of service could arise.

2.1. REST

Representational State Transfer (REST). It is a style of architecture implemented over HTTP. It is concerned

with the integration of software systems. Java API for RESTful Web Services (JAX-RS) is a specification

framework that defines how plain Java objects are bound to URIs and HTTP operations using Java

annotations[7]. This framework is important since this establishes a standard way to handle incoming and

outgoing server requests and how information flows from one restful service to another, consequently JAX-

RS facilitates and simplifies restful service implementation. Providers have been risen to implement JAX-RS,

supporting the REST principles: Addressability, uniform interface, content representation, stateless interaction

and hypermedia. In addition, quality attributes such as security, thread-save, concurrency and performance

are offered by providers. However, there is not yet research studies regarding which implementation is better

than other in terms of these quality attributes. Considering that exist a wide range of quality attributes and

each of them is composed of metrics and methodologies to evaluate them, the objective of this paper is to

assess only the performance of the following implementations: Jersey, Resteasy, Restlet and CXF, because

according to [8] they are the most used it for integrating information systems.

2.2. JAX-RS Implementations

JAX-RS is the acronym for Java API for RESTful Web Services, and it serves as specification for projects

dedicate to develop implementations such as Jersey, RESTlet, RESTlet Apache CXF, among others. These

implementations facilitate the development of web services in Java, because of its lightweight infrastructure

that allows services to be built with minimal tooling (Oracle 2014). Moreover, the aim of these

implementations is to integrate systems and applications using restful Web services over HTTP.

Implementations are connected to Plain Old Java Objects (POJOs) through runtime annotations, in this way

resources and its actions are defined. For example, @Path annotation is used to locate the Java class that

represents a resource. @GET annotation processes HTTP GET requests.

2.3. Cross Site Scripting – XSS

The Cross-Site Scripting attacks are a type of malicious code injection attacks, which it gets any kind of

sensitive data stored in a trusted RESTful Service, allowing attackers extract data. XSS attacks are of three

531 Volume 14, Number 11, November 2019

Journal of Software

types:

Store Cross Site Scripting: is a direct attack, in which the code injection occurs through the use of HTML

labels, JavaScript or Flash, the principal characteristic of this attack is the data theft and storage in one or

more servers, where the malicious scripts are stored that contains data of users controlled by the attacker,

known as the most common and dangerous attack.

Reflected Cross-Site Scripting: is a direct attack, occurs through victims’ Web browser, likewise using the

client’s side to obtain the data input while the data is catcher, it's immediately used by the server Web.

DOM-based Cross-Site Scripting: is the less common attack, however, in this case, the attack is executed

on the client side, the user page duplicate itself, given the data to other less trusted services.

3. The Assessment Methodology

The proposed methodology encompasses three phases:

Selection of attack methods. A review of the existing methods on HTTP ought to perform at this phase. The

set of collected methods are selected based on cutting edge security sources.

1) Programming and assessing of attacks throughout dynamic programming and recursive methods;

2) Identifying the vulnerabilities by means of a mathematical model, which determines the level of

security of implementations. Additionally, controls are proposed for every vulnerability identified.

4. Selection of Attack Methods

The selection of the attacks methods is useful to identify vulnerabilities and to determine the type of XSS

attack to implement having clarified the similarities and differences between the XSS attack types.

4.1. Identification of Sources

Before the selection process begins, it is important to define the sources of information that are up to date

and cutting edge of security attacks. Hence, the following sources are considered as a reference to gather the

attacks methods: The Open Web Application Security Project (OWASP), The MITRE corporation, The

Computing Technology Industry Association (CompTIA) and the International Information System Security

Certification Consortium (ISC²). These sources have international reputation for technical excellence and

innovation in the area of security.

4.2. Classification Criteria

The XSS attack methods are uncountable if they are analyzed from the perspectives of programming

language, attack objective and the attacker profile. Thus, the criterion to select the appropriate methods are

listed:

Impact on REST. XSS attacks are normally deployed on Web sites, however none research studies present

results about which XSS attacks fit restful services implementations. In such way, these criteria prevail over

the rest of criterion. The possible values are yes and no. if the attack is yes meaning that the XSS attack apply

for restful services implementations, on the contrary, the XSS attack does not apply.

1) Availability. It refers to the availability of the restful service after the XSS attack is executed. The

possible values are yes and no. In case the value is yes, it means that the restful service is available

despite XSS attack is performed. On the contrary, it means that the restful service is down.

2) Difficulty of implementation. It refers to the level of knowledge The implement difficulty for the

attacker, including the script encoding and the strategy made to implement the attack and it is

successful.

3) The knowledge level of the users and attackers necessary to prevent and do the attack

532 Volume 14, Number 11, November 2019

Journal of Software

Finally, the using the defined a scale measure showed in Fig. 1 for each of these criteria, the methods are

classified according to the difficulty level, from the least to the highest [18], [24], [25].

Fig. 1. Comparison methods attacks.

Fig. 2. BMPN attack N1 diagram.

The next step to find the vulnerabilities was to implement a prototype that represents weaknesses in

RESTful services using a specific attack. The following are the implemented attacks: Improper Restriction of

Excessive Authentication Attempts using Brute force Case 382:[9] and External Entity Attack (XXE) [10].

These attacks were selected because they are common attacks methods APEC [11] and common weaknesses

on Internet CWE [12]. In addition, over 97% of the attacks founded it were not implemented because they do

not affect the Restful architecture and because it needs web browsers to run, using several resources like

cookies, headers of external resources.

5. Programming and Assessing the Attacks

5.1. Improper Restriction of Excessive Authentication Attempts using Brute force

The first vulnerability founded was focused in the number of authentications allowed to the users which is

not defined just regulated by the server capacity [9].

To show how the attack works in the prototype in general and detailed terms the following code

533 Volume 14, Number 11, November 2019

Journal of Software

implementation image and BMPN (Business Process Model and Notation) were added.

An brute force attack works using an alphabet with 27 characters , obtaining all possible combinations

given by the password length [13], [14], trying to find out the users password. Using an alphabet with 10

characters, alphabet a to j, the ASCII table [15], the attack try to find out the users password, obtaining all

possible permutations is the specified range 𝑟 given by the password length 𝑙 [13], [14].

𝑟 = (
𝑎

𝑓

𝑏

𝑔

𝑐

ℎ

𝑑

𝑖

𝑒

𝑗
) 𝑙 = (5 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠)

The brute force algorithm has a time complexity of:

𝑇(𝑛) =
1

𝑛!
 ∑𝑟

𝑛

𝑟=1

𝑇(𝑛) =
𝑛! + 1

2

𝑇(𝑛) = 𝑂(𝑛!)

Therefore, the time complexity [16] is NP (not polynomial)[17], in consequence the program will do

(10!) = 30240 iterations in 𝑡 = 91 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 to obtain one password. According to Bellman (1962) [18]a

NP problem like TSP (Traveling Salesman Problem) using dynamic programming is 𝑂(2𝑛𝑛2).

In order to reduce this complexity, and optimize the algorithm a new approach is gave trying to obtain

better results like in the TPS case, the algorithm is re-implemented using Dynamic Programming principles

[19].

1) Characterize a structure of an optimal solution

2) Recursively define the value of an optimal solution

3) Compute the value of an optimal solution (decision making)

4) Construct an optimal solution for computed information

The following 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑎𝑡𝑡𝑎𝑐𝑘𝑅𝐸𝑆𝑇()

1) validate = false;

2) response = Failed Attack;

3) attack(base, length)

4) if (lenght = 0)

5) return false;

6) for (Range ∶= InitialRange to FinalRange)

7) newBase ∶= base + ASCII;

8) if (check(newBase) ∶= true)

9) response ∶= NewBase;

10) validate ∶= true;

11) if(validate:= false)

12) return attack(newBase, length − 1,Maxlength);

Algorithm check(result)

1) rd ∶= RESTful Service HTTP response;

2) line ∶= "";

534 Volume 14, Number 11, November 2019

Journal of Software

3) while (rd ≠ NULL)

4) if(line ≠ ERROR)

5) return(true);

6) if(line = ERROR)

7) return(false)

Algorithm 1, was implement in the prototype; the complete code is added in the Appendix.

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑎𝑡𝑡𝑎𝑐𝑘𝑅𝐸𝑆𝑇()

1) 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 = 𝑓𝑎𝑙𝑠𝑒;

2) 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝐹𝑎𝑖𝑙𝑒𝑑 𝐴𝑡𝑡𝑎𝑐𝑘;

3) 𝒂𝒕𝒕𝒂𝒄𝒌(𝑏𝑎𝑠𝑒, 𝑙𝑒𝑛𝑔𝑡ℎ)

4) 𝒊𝒇 (lenght = 0)

5) 𝑟𝑒𝑡𝑢𝑟𝑛 𝑓𝑎𝑙𝑠𝑒;

6) 𝒇𝒐𝒓 (𝑅𝑎𝑛𝑔𝑒 ∶= 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑎𝑛𝑔𝑒 𝑡𝑜 𝐹𝑖𝑛𝑎𝑙𝑅𝑎𝑛𝑔𝑒)

7) 𝑛𝑒𝑤𝐵𝑎𝑠𝑒 ∶= 𝑏𝑎𝑠𝑒 + 𝐴𝑆𝐶𝐼𝐼;

8) 𝒊𝒇 (𝑐ℎ𝑒𝑐𝑘(𝑛𝑒𝑤𝐵𝑎𝑠𝑒) ∶= 𝑡𝑟𝑢𝑒)

9) 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ∶= 𝑁𝑒𝑤𝐵𝑎𝑠𝑒;

10) 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 ∶= 𝑡𝑟𝑢𝑒;

11) 𝒊𝒇(𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒: = 𝑓𝑎𝑙𝑠𝑒)

12) 𝑟𝑒𝑡𝑢𝑟𝑛 𝒂𝒕𝒕𝒂𝒄𝒌(𝑛𝑒𝑤𝐵𝑎𝑠𝑒, 𝑙𝑒𝑛𝑔𝑡ℎ − 1,𝑀𝑎𝑥𝑙𝑒𝑛𝑔𝑡ℎ);

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝒄𝒉𝒆𝒄𝒌(𝑟𝑒𝑠𝑢𝑙𝑡)

1) 𝑟𝑑 ∶= 𝑅𝐸𝑆𝑇𝑓𝑢𝑙 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 HTTP 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒;

2) 𝑙𝑖𝑛𝑒 ∶= "";

3) 𝒘𝒉𝒊𝒍𝒆 (𝑟𝑑 ≠ 𝑁𝑈𝐿𝐿)

4) 𝒊𝒇(𝑙𝑖𝑛𝑒 ≠ 𝐸𝑅𝑅𝑂𝑅)

5) 𝒓𝒆𝒕𝒖𝒓𝒏(𝑡𝑟𝑢𝑒);

6) 𝒊𝒇(𝑙𝑖𝑛𝑒 = 𝐸𝑅𝑅𝑂𝑅)

7) 𝒓𝒆𝒕𝒖𝒓𝒏(𝑓𝑎𝑙𝑠𝑒)

Algorithm 1: Attack Improper Authentication Attempts using Brute force

The 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑎𝑡𝑡𝑎𝑐𝑘𝑅𝐸𝑆𝑇()

1) 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 = false;

2) 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = Failed Attack;

3) 𝑎𝑡𝑡𝑎𝑐𝑘(base, length)

4) if (lenght = 0)

5) return false;

6) for (𝑅𝑎𝑛𝑔𝑒 ∶= InitialRange to FinalRange)

7) 𝑛𝑒𝑤𝐵𝑎𝑠𝑒 ∶= base + ASCII;

8) if (𝑐ℎ𝑒𝑐𝑘(newBase) ∶= true)

9) 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ∶= NewBase;

10) 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 ∶= true;

11) if(𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒: = false)

12) return attack(newBase, length − 1,Maxlength);

535 Volume 14, Number 11, November 2019

Journal of Software

Algorithm check(result)
1) rd ∶= RESTful Service HTTP response;

2) line ∶= "";

3) while (rd ≠ NULL)

4) if(line ≠ ERROR)

5) return(true);

6) if(line = ERROR)

7) return(false)

Algorithm 1 works with the recursion used for dynamic programming [20]-[22] but not oriented to this

by the same nature and behavior of the brute force attack [14], [23]. With initial parameters like the length

of the password, an dictionary which is delimited of a set ASCII symbols [15], characters or numbers that can

be part of password , in this case letters from a to j.

According to the victim’s profile having in count the length; as you see in the Line 1 and Line 2 the initial

values are false, also the Length are defined again

In the other hand, using threads the newBase will increase one by one until get the Range according to the

Base and the ASCII delimited symbols until all the possible combinations are test, this newBase is Checked

Line 8, if the result is true, returns like response “Failed Attack” at same case if the length is 0, because the

character was not found in the alphabet defined.

But if the results is false the function Attack take the values moving a space to the right and starts to combine

the possible combinations, starting with a again, Line 3 to 12 and finally when the length of the password is

evaluated, returns a response to the petition send by the Class check.

The time complexity for this algorithm is obtained first calculating the complexity time of the function

check which is an algorithm called by the algorithm attack, affecting the computational time complexity:

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝒄𝒉𝒆𝒄𝒌(𝑟𝑒𝑠𝑢𝑙𝑡)

1) 𝐶1 = 1

2) 𝐶2 = 1

3) 𝐶3 = n + 1

4) 𝐶4 = n

5) 𝐶5 = n

6) 𝐶6 = n

7) 𝐶7 = n

𝑇(𝑛) = 𝐶1 + 𝐶2 + 𝐶3(𝑛 + 1) + 𝐶4 + 𝐶5 + 𝐶6 + 𝑛𝐶7
𝑇(𝑛) = 𝑐 + 𝑏𝑛

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑎𝑡𝑡𝑎𝑐𝑘𝑅𝐸𝑆𝑇()

1) 𝐶1 = 1

2) 𝐶2 = 1

3) 𝐶3 = 1

4) 𝐶4 = 1

5) 𝐶5 = 1

6) 𝐶6 = n

7) 𝐶7 = n

8) 𝐶8 = n

9) 𝐶9 = n

10) 𝐶10 = n

536 Volume 14, Number 11, November 2019

Journal of Software

11) 𝐶11 = n

12) 𝐶12 = n

For the better and worst case:

𝑇(𝑛) = 0 𝑖𝑓 𝑛 = 0
𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑎

In that way the cost is defined by:

𝑇(𝑛) =

{

0 𝑖𝑓 𝑛 = 0

∑ 𝑇(𝑛) + 𝑑𝑛

𝐹𝑖𝑛𝑎𝑙𝑅𝑎𝑛𝑘

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑎𝑛𝑘

The summation obtained for the complexity time of the new algorithm takes to a cubic or quadratic order

with is better than a factorial order. By that reason the response time will be better than the time take before.

It is important add, the limited scope which the testing of this attack was done, given by the password length

of 5 characters. The execution time for passwords with more characters takes an exponential time depending

on the server capacity. Also the attack was tested obtaining login to the

URL :(http://35.161.145.31:8080/Prototipo/faces/inicio.xhtml) these results:

Fig. 3. Attack N1 testing using GET or POST.

The user chooses one of (4) RESTful services and the method, the service also giving like response the user

password abcde (burnet in the source code):

Fig. 4. Attack N1 response from GET/POST HTTP method.

537 Volume 14, Number 11, November 2019

Journal of Software

http://35.161.145.31:8080/Prototipo/faces/inicio.xhtml

In this case the runtime to break a password with a length of 5 letters was 9 minutes, 540 s approximately

(10) times faster than the brute force algorithm standard. The runtime was the same for both transactions,

in the case of the other (3) libraries the results were the same. However, according with the iterative nature

of the brute force attack for long passwords the time increases in an exponential complexity to response a

petition with a password of more than 6 characters or denying the service by the low server capacity.

These observations lead conclude the inefficiency of this attack implementation according to the

exponential time complexity of the algorithm.

5.2. Extern Entity Attack (XXE)

The second vulnerability founded allows send malicious codes hidden in variable to extract server side

sensitive data [10], [41]. The attack works using a customized variable which has inside XML content and

then deceive the server and obtain the sensitive or confidential data saved in the server side [10], in this case

throws a file system with content with the IP and networks allowed by Windows [25] with the root

C:/Windows/System32/drivers/etc/hosts.

Fig. 5. BPNM attack N2 diagram.

The following source code was implemented in the prototype.

1. 𝑋𝑀𝐿 = < ! 𝐷𝑂𝐶𝑇𝑌𝑃𝐸 𝑟𝑜𝑜𝑡 [< ! 𝐸𝐿𝐸𝑀𝐸𝑁𝑇 𝑟𝑜𝑜𝑡 𝐴𝑁𝑌 >
2. < !𝐸𝑁𝑇𝐼𝑇𝑌 𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑓𝑖𝑙𝑒 𝑆𝑌𝑆𝑇𝐸𝑀
3. file:///Text Plain File Path >] >
4. < 𝑟𝑜𝑜𝑡 > < 𝑖𝑛𝑓𝑜 > < 𝑏𝑜𝑜𝑡 > &𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑓𝑖𝑙𝑒; </𝑏𝑜𝑜𝑡 > </𝑖𝑛𝑓𝑜 ></𝑟𝑜𝑜𝑡 >
5. 𝑟𝑒𝑠𝑢𝑙𝑡 = "" ;
6. 𝑏𝑢𝑓𝑓𝑒𝑟𝑅𝑒𝑎𝑑𝑒𝑟 𝑟𝑑 = 𝑟𝑒𝑠𝑡𝑓𝑢𝑙 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐻𝑇𝑇𝑃 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒;
7. 𝑙𝑖𝑛𝑒 = "" ;
8. 𝑙𝑖𝑛𝑒 = 𝑟𝑑 𝐿𝑖𝑛𝑒𝑅𝑒𝑎𝑑𝑒𝑟;
9. 𝒘𝒉𝒊𝒍𝒆 (𝑙𝑖𝑛𝑒 ≠ 𝑁𝑈𝐿𝐿)
10. 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 + 𝑙𝑖𝑛𝑒;
11. 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞
12. 𝒓𝒆𝒕𝒖𝒓𝒏 𝑟𝑒𝑠𝑢𝑙𝑡;

Algorithm 2. External entity attack (XEE).

The Algorithm 2 works identifying the path location of a text plain file with system sensitive data Line 3,

using &windowsfile URI Line 4 to extract with XML commands the file content, while the content is store in

the variable result before the server reads and translate the HTTP petition Line 5 to Line 10, until there is

not more lines to read Line 9 to 11,returns the content in the result variable Line 12.

538 Volume 14, Number 11, November 2019

Journal of Software

Fig. 6. Attack N2 response from GET or POST.

6. Evaluation of the Vulnerabilities

To decrease the risk and keep the user trust are the principal objectives of the security, the attacks are

made to exploit a set of vulnerabilities that represents a weakness in the software [26], [27], founded in the

source code, where the code injection is allowed and be executed. Taking in count the service, the user

approach, the type of attack [28] ,the severity of the attack over REST and the impact [29], are the

principal variables to analyze, find and evaluate all the possible risks , their probability, and how mitigate

it.

The result obtained of this process is a residual risk to control it [4], [19], [30], using the different

security policies and controls given by JAX-RS, these control mechanism [31] are included in the source code,

to provide a warrantee for transaction done by the client and the server. To how obtain a score or number

that gives basic information about the effectiveness of these controls, and know which controls apply for a

specific weakness are necessary a security metric[32] and a documental review in the JAX-RS libraries

documentation.

6.1. The Security Metric

This metric is applied to measure the security in a software product, in this case, a RESTful Service[33] .

Where:

𝑆𝑀(𝑠) = ∑(𝑃𝑛 × 𝑊𝑛)

𝑚

𝑛=1

 (1)

 𝑠: is the software product the Web Service in this case

 𝑊𝑛: the severity of a set of representstive weakness in the Web Service

 𝑃𝑛: a set of risk identified in the Web Service related with the weakness

The weakness severity 𝑊𝑛 is defined by a quantitative score values 𝑉𝑛 obtained from a CVSS Common

Vulnerability Scoring System base scores, for this analysis is used a tool which measure the scope and

impact of these weaknesses, and 𝑘 are the number of vulnerabilities which applied.

𝑊𝑛 =
∑ 𝑉𝑖
𝑘
𝑖=1

𝑘
 (2)

𝑃𝑛(𝑖 = 1,2…𝑛)

539 Volume 14, Number 11, November 2019

Journal of Software

𝑃𝑛 =
𝑅

∑ 𝑅𝑖
𝑚
𝑖=1

 (3)

Knowing 𝑅 like the frequency of the risk 𝑅𝑛, in the same way obtaining the value of 𝑅𝑛 from

𝑅𝑛 =
𝑘

𝑀
 (4)

where 𝑘 is the number of vulnerabilities and 𝑀 is the number of months having the following result:

∑𝑃𝑛 = 1 (5)

𝑚

𝑛=1

Taking in count the steps given by the security metric [33], from (2),the conclusion founded is:

𝐶𝑛 =
∑ 𝐶𝑖
𝑛
𝑖=1

𝑘
 (6)

where:

 𝐶𝑖: Are the security controls gived by a library to mitigate 𝑊𝑛

 𝑘: The number of security controls founded to mitigate 𝑊𝑛

The security controls 𝐶𝑛 given by any JAX-RS library studied in this document is proportional or close to

the severity vulnerability and Weakness, that it has over the RESTful Service , in order to be mitigated

successfully by the set of available controls 𝐶𝑛.

Fig. 7. CVSS vulnerabilities calculator.

6.2. The Weakness and the Vulnerabilities

A weakness depends of a set vulnerabilities which have based score(s), these are calculated in this punctual

case with a software tool [34] provided and developed for CVSS [35] (Common Vulnerabilities Scoring

System), which allows calculate the based scored in a scale from 1 to 10 according the metrics that allows

calculate the based scores 𝑉𝑛 , applied to the (2) implemented attacks. The metrics used by Common

Vulnerabilities Scoring System Version 3.0 Calculator are:

Access Vector (AV): This metric reflects the context by which vulnerability exploitation is possible.

Attack Complexity (AC) This metric describes the conditions beyond the attacker’s control that must exist

in order to exploit the vulnerability. Such conditions may require the collection of more information about

the target, the presence of certain system configuration settings, or computational exceptions.

540 Volume 14, Number 11, November 2019

Journal of Software

Privileges Required (PR) This metric describes the level of privileges an attacker must possess before

successfully exploiting the vulnerability. This Base Score increases as fewer privileges are required.

User Interaction (UI) This metric captures the requirement for a user, other than the attacker, to

participate in the successful compromise the vulnerable component.

Scope (S) Does a successful attack affect a component other than the vulnerable component? If so, the Base

Score increases and the Confidentiality, Integrity and Authentication metrics should be scored relative to the

impacted component.

Confidentiality (C) This metric measures the impact to the confidentiality of the information resources

managed by a software component due to a successfully exploited vulnerability. Confidentiality refers to

limiting information access and disclosure to only authorized users, as well as preventing access by, or

disclosure to, unauthorized ones.

Integrity (I) This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity

refers to the trustworthiness and veracity of information.

Availability (A) This metric measures the impact to the availability of the impacted component resulting

from a successfully exploited vulnerability. It refers to the loss of availability of the impacted component itself.

Having 𝑊𝑛a set of weakness found, and 𝐿𝑛 the set of JAX-RS libraries to test

𝑊𝑛 = {𝑊1,𝑊2}
where

𝑊1 = 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑓𝑎𝑖𝑙𝑒𝑑 𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 𝑤𝑒𝑎𝑘𝑛𝑒𝑠𝑠
𝑊2 = 𝑋𝑀𝐿 𝑑𝑎𝑡𝑎 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

And 𝐿𝑛 = {𝐿1, 𝐿2, 𝐿3, 𝐿4}

Where

𝐿1 = 𝐽𝑒𝑟𝑠𝑒𝑦 𝐿𝑖𝑏𝑟𝑎𝑟𝑦

𝐿2 = 𝑅𝑒𝑠𝑡𝑙𝑒𝑡 𝐿𝑖𝑏𝑟𝑎𝑟𝑦
𝐿3 = 𝑅𝑒𝑠𝑡𝐸𝑎𝑠𝑦 𝐿𝑖𝑏𝑟𝑎𝑟𝑦
𝐿4 = 𝐴𝑝𝑎𝑐ℎ𝑒 𝐶𝑋𝐹 𝐿𝑖𝑏𝑟𝑎𝑟𝑦

As was mentioned in the weakness applies for all the libraries, boating like result:

𝑊𝑛 ∪ 𝐿𝑛 = |
𝑊1𝐿1 𝑊1𝐿2
𝑊2𝐿1 𝑊2𝐿2

𝑊1𝐿3 𝑊1𝐿4
𝑊2𝐿3 𝑊2𝐿4

|

𝑊𝑛 ∀ 𝐿𝑛

7. Results

For the Attack N1, implemented in the prototype the obtained results using the calculator v. 3.0 were:

𝑉1 = 6.5
Considered like a mid-vulnerability defined for the metrics used by the CVSS, this s vulnerability with a

residual risk easy to control it.

Appling 𝑉1to 𝑊1 result is:

𝑊1 =
∑ 𝑉𝑖
𝑘
𝑖=1

𝑘
 =

6,5

2
= 3,25

𝑊1 = 3.25

For the Attack Nº2, implemented in the prototype, the results are:

541 Volume 14, Number 11, November 2019

Journal of Software

𝑉2 = 5.3
Appling 𝑉2result to obtain 𝑊2

𝑊2 =
∑ 𝑉𝑖
𝑘
𝑖=1

𝑘
 =

5,3

2
= 2,28

𝑊2 = 2,28

8. Security Analysis Libraries

Giving the attack, the libraries and security control libraries relationship is possible identity which controls

works to stop the attacks and mitigate the vulnerabilities. Thought additional parameters like the weakness

identified and the vulnerability to exploit, the number of knowing parameters and number of mechanism of

control implemented for each weakness exploited by each one of the JAX-RS libraries, were used for classified

the controls, to calculate a score using the equation (6) defined the next tables and graphics are obtained:

Table 1. Security Controls Parameters Scores Attack Nº1

Table 2. Attack Nº1 Final Scores

Graph N 1. Attack Nº1 final scores.

542 Volume 14, Number 11, November 2019

Journal of Software

Table 3. Attack Nº2 Security Controls Scores Classification

Table 4．Attack Nº2 Security Controls Final Scores

Graph 3. Attack Nº2 security controls final scores.

The following table shows the security controls found to shield the XML documents that contains server

side sensitive data, also were added frameworks clasess and anotations used to restric the use of parameters.

Formats like JSON are actually used to avoid data injections and abstractions, promiving the simplicity and

clarity in the source code, but was not included in this classifcation because are not directled XML warentes

or security controls.

Finally to obtain the security level of libraries, both attacks were deployed in each RESTful Service and

know which are the libraries the behavior of in front of the attack.

543 Volume 14, Number 11, November 2019

Journal of Software

Table 5. Attacks Runtimes

Attacks

Runtime (s)

Improper Restriction

of Excessive
Authentication

Attempts

540

Extern Entity Attack 2,25

Graph N 4. Comparing attack runtimes.

Comparing the runtimes, of all the RESTful Services were compiled and deployed the attacks in the same

time. Considering this the Attack Nº1: Improper restriction of excessive authentication using a Brute

force takes 2,4 𝑥102 times more time to be successful than the Attack Nº2: Extern Entity Attack. This

allows conclude is easier to exploit the XML vulnerability.

Table 6. Weakness Scores vs Security Controls Scores Comparing

Graph N 4. Weakness severity vs. security control comparing scores

544 Volume 14, Number 11, November 2019

Journal of Software

Based in the previously comparison and the graph obtained for the weakness score 𝑊𝑛 and the 𝐶𝑛

libraries control score calculated for each RESTful Service. Obtaining a score not less than 5 for the controls,

which means the libraries have the security controls to mitigated and control these vulnerabilities, so Why is

it possible to do this attacks? . The human mistake, in this case the developers experience, knowledge, the

lack of documentation review, the bad application of the controls in the source code are residual risks that

explain this cases.

Table 7. Final Scored Results Resume Table

The level of security given by these libraries taking in count all the variables and preview analysis are:

Apache CXF with a score of 10 and 8,3 for the two weakness, followed by RestEasy and Jersey with a scores of

7.5 - 10 and 7.9 - 8.3, and RestLet with scores of 7.1 – 5.0.

9. Conclusions

The 97% of the Cross-site Scripting attacks (XSS) found it are focus in a code injection through tags, using

the user interface and the Web Browser to steal data. These attacks do not have directly the REST architecture,

and are not successful to implement to exploit the vulnerabilities found it.

The 99% of the attacks found, were mitigated by the APIS so actually do not work, in the international

classifications CWE, MITRE, APEC, the analysis and controls are available to implement by the developer.

The two attacks successfully implemented, sends the attack parameters by URL confusing the server to

obtain confidentiality data, this may conclude the sending of parameters injected is maybe the only way to

attack the RESTful service and then extends the attacks scope lately. While, The brute force attack

implemented improved with the dynamic programming takes 9 minutes to give a response 540 seconds, 10

times less than the brute force standard algorithm, with a lower complexity runtime but still is inefficient.

The Billion laughs attack implemented in Jersey RESTful service, allows identify a mechanism of control

provided by the Java structure, which the RESTful Web was, build. In that way the RESTful service mitigates

the attack, in the moment when library reads the XML and then interpret it, using like a control a maximum

limit of entity extensions of 64000, controlling the attack and avoiding the denial of service. The test of the

attack using the Unix Shell was, based on those tests we conclude this vulnerability is completely covered.

According with the vulnerabilities found it and the testing done, the weakness severity that represents a

directly impact on the RESTful Service are low but representative and dangerous if it is not identified and

measured.

Having in count the scores obtained in the security analysis done the libraries, which gives more security

controls, are Apache CXF and RestEasy, in that order can be considered the more secure and useful to

implement to mitigate the weaknesses found in this work follow by Jersey and RESLET.

Like shows the calculated scores for the library’s security controls the (4) libraries have enough controls

to mitigate the exploited vulnerabilities, the controls offered by each one are similar, but the attacks still

running, because the residual risk commonly the human resource are not correctly controlled.

545 Volume 14, Number 11, November 2019

Journal of Software

References

[1] Adamczyk, P., Smith, P. H., Johnson, R. E., & Hafiz, M. (2011). REST: From Research to Practice.

[2] Cross-site scripting. The Open Web Application Security Project.

[3] Shema, M. (2010). Cross-site scripting. Seven Deadliest Web Appl. Attacks, 1–26.

[4] Fogie, S., Grossman, J., Hansen, R. R., & Petkov, P. D. (2007). XSS attacks: Cross site scripting exploits and

defense.

[5] Serme, G., Oliveira, A. S. D., Massiera, J., & Roudier, Y. (2012). Enabling message security for RESTful

services. Proceedings of the 2012 IEEE 19th Int. Conf. Web Serv. ICWS 2012 (pp. 114–121).

[6] Wang, X., Jhi, Y., Zhu, S., & Liu, P. (2008). Protecting web services from remote exploit code: A static

analysis approach. Proceedings of the 17th Int. Conf. World Wide Web (pp. 1139–1140).

[7] Burke, B. (2013). RESTful Java with JAX-RS 2.0.

[8] Velandia, J., Rios, S., Bolivar, H., Vanzina, J., & Almanzar, N. JAX-RS implementations: A performance

comparison. 10(1), 139–144.

[9] CWE. CWE 382 vulnerability case.

[10] The open web application security project. XML external entity.

[11] MITRE. APEC common parttern attacks enumeration and classification.

[12] XML external entity.

[13] Schneier, B. (1996). Applied cryptography: Protocols, algorithm, and source code in C. Gov. Inf. Q., 13(3),

336.

[14]Fellows, M. R., Rosamond, F. A., Fomin, F. V., Lokshtanov, D., Saurabh, S., & Villanger, Y. (1988). Local search:

Is brute-force avoidable. 486–491.

[15] Probability, C., et al., A. the ASCII code 1.

[16] Reyna, J. A. D., & Lune, J. V. D. (2014). Algorithms for determining integer complexity.

[17] Trakhtenbrot, B. A. (1984). A survey of Russian approaches to perebor algorithms. Ann. Hist. Comput.,

6(4), 384–400.

[18] Stanford encyclopedia of philosophy.

[19] Nunan, A. E., Souto, E., Santos, E. M. D., & Feitosa, E. (2012). Automatic classification of cross-site scripting

in web pages using document-based and URL-based features. Proceedings of the IEEE Symp. Comput.

Commun (pp. 000702–000707),

[20] Harel, D., Tiuryn, J., & Kozen, D. (1984). Dynamic logic. Handb. Philos. Log., 497–604.

[21] GitHub. Recursion and dynamic programming.

[22] Jupiter. Programming-and-bayesian-methods-for-hackers.

[23] Choi, J. H., Choi, C., Ko, B. K., & Kim, P. K. (2012). Detection of cross site scripting attack in wireless

networks using n-Gram and SVM. Mob. Inf. Syst., 8(3), 275–286.

[24] Controls, I. S. InfoSec reading room.

[25] Windows documentation host.

[26] Saiedian, H., & Broyle, D. (2011). Security vulnerabilities in the same-origin policy: Implications and

alternatives. Computer (Long. Beach. Calif), 44(9), 29–36.

[27] Venkat, T., Rao, N., Tejaswini, V., & Preethi, K. (2012). Defending against web vulnerabilities and cross-

site scripting. J. Glob. Res. Comput. Sci., 3(5), 61–64.

[28] Hydara, I., Sultan, A. B. M., Zulzalil, H., & Admodisastro, N. (2015). Current state of research on cross-site

scripting (XSS) - A systematic literature review. Inf. Softw. Technol., 58, 170–186.

[29] Hanley, D., & Hatch, A. (2014). Deloitte Tech Trends 2014: Inspiring Disruption. Deloitte Univ. Press.

[30] Masood, A., & Java, J. (2015). Static analysis for web service security - Tools amp; techniques for a secure

development life cycle. Technol. Homel. Secur.

546 Volume 14, Number 11, November 2019

Journal of Software

[31] Mead, N. R., & Stehney, T. (2005). Security quality requirements engineering (SQUARE) methodology.

ACM SIGSOFT Softw. Eng. Notes.

[32] Software engineering institute.

[33] Wang, J. A., Wang, H., Guo, M., & Xia, M. (2009). Security metrics for software systems. ACM Southeast Reg.

Conf.

[34] CSVSS vulnerabilities software calculator v 3.0.

[35] Common vulnerability scoring system.

John Velandia holds a MSc. from Stuttgart University (Germany). He has been leader of IT projects in the

industry, in sectors such as education, food an automotive. He manages his projects based on PMI, TOGAF and

ITIL. Moreover, He teaches software architecture and guide bachelor thesis at the Catholic University. He is

responsible of a research junior group named GINOSKO. The fields of research area are web technologies,

business intelligence and IT frameworks.

547 Volume 14, Number 11, November 2019

Journal of Software

