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Abstract: New and innovative techniques to validate software are needed to reduce cost and increase 
software quality. 
This research focuses on the validation of engine electronic control unit software by using expert systems 

(EXs) and dynamic link libraries (dlls) with the aim of checking if this technique performs better than 

traditional ones.  

To do this, a test-case database was built and run by using hardware-in-the-loop (HIL) simulations to 

validate a series of software modules (SMs) by using these techniques: the tester-in-the-loop, automation 

by using a Python script, the model-based testing and EXs combined with dlls with the aim of assessing 

several factors such as: productivity gain, bug detection skills, functional coverage assessment, ease to 

automate test-cases among others.  

Dlls and EXs improve the HIL success rate by 4.8%, 6% and 20% at least, for simple, fairly-complex, and 

highly-complex SMs, respectively. Between 9 and 13 more bugs were found when using the EXs and dlls 

compared with other techniques. Two of the bugs would have required software not initially planned as 

they were linked to environmental policies. The proposed technique can be applied to any types of a SM, 

especially in those cases in which traditional validation techniques fail. 

 

Keywords: Software validation, hardware-in-the-loop simulations enhance, expert system, dynamic-link 

library, performance and code bugs.

 
 

1. Introduction 

1. 1.  Engine ECU Software 

Electronic control units (ECUs) have become essential for the correct operation of a vehicle [1]-[2]1. 

Software validation plays a key role and has two fundamental goals [3]. Firstly, the software must comply 

with the functional specifications set by the design team. Secondly, software validation ensures the 

integration of all software modules (SMs) into the hardware, simultaneously checking that all the elements 

 
1 It is recommended to read Appendix A which explains clearly how the engine ECU operates. 
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present in the network interact properly [4], [5]. The process of software validation of an ECU implies 

significant costs for the companies during a project because of the means necessary to carry out this 

activity [6], [7]. In addition, the cost of correcting bugs, once the software is marketed, is high and it can 

tarnish the brand’s image [8], [9]. Consequently, a balance between costs, deadlines, and quality must be 

reached.  

Powertrain2 control is a system in charge of transforming the driver’s will into an operating point of the 

powertrain according to the performance established for the product [10]. The key element of the control 

system is the engine ECU composed of complex hardware and software. The engine ECU (hardware and 

software) must be validated to assure that engine is properly controlled, the interaction with the rest of the 

ECUs is rightly performed and the passengers’ safety is insured. Thus, one can deduce that the software 

validation process is complex and needs improvements with the aim of reducing costs, increasing 

productivity and reliability in the automotive sector [11], [12].  

This research is focused on the engine ECU software validation and shows solutions to the main 

difficulties associated with traditional software validation techniques by using expert systems (EXs) and 

dynamic-link libraries (dlls) during the hardware-in-theloop (HIL) simulation. The technique proposed in 

this research performs better than traditional techniques and allows improving: ease for automating test-

cases, bug detection skills, functional coverage, difficulties to detect bugs linked to SMs that do many 

calculations and the difficulties to validate the software automatically among others. In addition, it shows 

that the HIL simulation can be automated in an easier way. All these topics are analyzed in-depth in this 

paper.  

1.2.  Related Works 

The code and functional coverage is a real concern when validating a software. Research has been 

conducted on this topic to enhance this parameter [13], [17].  Therefore, test-case generation is a key issue. 

The black-box technique has been used for a long time in the automotive sector, as discussed by Conrad 

[18]. Despite its widespread use, it is true that it has some weak points as discussed by Chundur, Felt, and 

Adenmark [19]. In their dissertation, they consider that test-cases based on the engineers’ experience 

usually imply gaps and test-redundancies. The model-based testing technique is an option to assess the 

code and functional coverage rate. The generation and execution of test-cases based on models have been 

proposed on several occasions. For instance, Skruch and Buchala (DELPHI supplier) proposed a study based 

on models [20]. The tool Automation Desk (dSpace®) was used.  Raffaelli et al presented research focused 

on functional models by using the commercial software Matelo® [21], [22]. 

The HIL simulation should be carried out as quickly as possible and with the highest number of test cases 

executed to ensure the time-frame and quality of the project [23]. Test automation is essential to ensure a 

high code coverage and to improve reliability [24], [26]. There are many ways for automating HIL 

simulation in the market [27], [28]. The automation process is mainly based on black-box techniques such 

as exposed by Lemp, Ko hl and Plo ger: “As a rule, the tests specified by the ECU departments are first 

performed as black box tests on the network system (know-how on software structures is not taken)”.  

The HIL simulation implies that a specific operating point is reached by the engine ECU. This can be 

extremely complicated, requiring a lot of manipulations on the HIL model due to software module (SM) 

interactions. There are three possible ways for executing a given test-case in an HIL simulation. Firstly, 

executing the test-case manually, that is, a technician performs all the necessary actions in the HIL 

simulation to reach the desired operating point. Secondly, the “tester-on-the-loop" concept can be used. 

                                                           
2 Powertrain is composed of the clutch, gearbox, conical group and propeller shaft. 
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Petrenko, Nguena-Timo and Ramesh, reported the main problems and solutions associated with software 

validation in the automotive sector [29]. Their main conclusion was focused on the methodology known as 

“tester-in-the-loop”, in which the test engineer leads the system to a desired operation point, considered as a 

crucial operation point. Once the crucial point is reached, a series of automated actions are executed to 

reach the goals previously established in the test-case. Finally, test-cases can be fully automated. In this 

case, a script controls the whole execution process.  

Some types of bugs are not detected by using some techniques such as the tester-in-the-loop or black-

box, as shown in this research (Fig. 1).  Fig. 1, depicts the obtained result for an output for a variable of a SM 

when executing the software in an HIL simulation (in red) and its expected value (in blue). As one can see, 

the results are different. This error represents an inaccuracy when it comes to calculating the gas speed in 

the exhaust pipe. This error impacts the amount of urea injected to treat NOx. Because this bug does not 

imply the presence of a functional bug, it is impossible to detect it by using the black-box technique. The 

detection of this type of bugs involves the checking and detailed analysis of the software code by running 

additional software. 

 

 
Fig. 1. Bug not detected when using traditional techniques. 

The solution for validating no matter what type of software module (SM) is very far from achieving by 

employing a direct comparison between the HIL results and the expected outputs indicated in the test-

cases. One can encounter some difficulties such as synchronization problems or difficulties to validate the 

software automatically, among others. Table 1 exposes the main issues. 

 
Table 1. Potential Solutions for the Aforementioned Issues 

Consequences Reason Possible solutions 

Difficulties to 

validate the 

software 

automatically 

When the values set in the test-case for the inputs are not reached 

due to SM interactions, then the output values set in the test-case 

may be no longer available. No automatic validation can be 

performed. 

Recalculate the output values that 

the software should provide for the 

specific input values reached after 

the HIL simulation. As a result, an 

automatic validation process can be 

carried out. Dlls can perform this 

task. 

The test-engineer cannot establish the expected outputs before 

performing the test. In some cases, the output values are analog 

trends which depend on many factors (number of kilometers, 

number of regenerations of the diesel particulate filter, values of 

safety module counters, dilution oil rate, EEPROM properly 

initialized, etc). Consequently, the expected output can be set after 
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having performed the HIL simulation. 

Bug performance 

detection 

If input values are different from the ones established in the test-

case, then the software performance3 behavior is unknown  

Synchronization 

problems 

When a test-case is run, the process must compare the current state 

of the engine ECU and the expected outputs. It is not possible to read 

all variables involved in the test-case at the same time due to data 

acquisition software limitations combined with Python scripts. 

Consequently, a desynchronization problem occurs as some 

variables are read at t1, others at t2 etc. 

A data-acquisition can be done 
while the test-case is run. Then, 
when the process is ended, the 
data-acquisition is stopped, and the 
conformity of the results can be 
achieved comparing the HIL results 
with the dll results. 

The fact of having different values stored in EEPROM memories 

keeps the test-engineer from providing accurate screenshot and 

expected results. 

The EEPROM can be initialized 
when building the dll.  

Functional 

coverage 

unknown 

A functional code coverage could be established by analyzing the 

black-box test-cases before the HIL simulation. When reaching 

different values for the inputs after HIL simulations, then the use-

cases4 tested are different from the ones planned.  

Implementing a system that can 

assess whether the software 

performance is as expected or not. 

Considering the number of 

performance rules assessed, the 

functional coverage could be 

established. A performance EX can 

perform this task. 

Difficulties to 

detect bugs 

linked to SMs 

that perform 

many 

calculations. 

The calculations may be performed wrongly but they do not imply 

that the vehicle behaves in such a way that the client could detect 

any abnormality (Fig. 1) 

Implementing a system that can 

check if the software properly 

calculates all software outputs. Dlls 

can perform this task. 

 

The present research proposes how to implement the possible solutions depicted in Table 1 thanks to the 

use of dlls for validating any types of SMs when automating a test-case through the HIL simulation, and 

especially all SMs that cannot be validated by employing traditional techniques. Thanks to dlls, SMs 

responsible for doing a great deal of internal calculations, can be validated. During the HIL simulation, it can 

be checked that all the calculations are properly carried out when the software and hardware are 

integrated. This feature allows finding bugs which cannot be found by traditional techniques. In addition, in 

case the desired operating point set in the test-case is not reached in an automated HIL simulation, owing to 

SM interactions, the dlls can determine the expected output that the software should provide. Thanks to 

rule-based EX, it is possible to verify whether the functional behavior of the software is correct for the 

outputs obtained after the HIL simulation. EXs can carry out a real-time performance validation when 

executing a test-case thanks to dlls.  

This paper is organized as follows. Section 2 describes the method used in this research. Section 3 

 
3 It is essential to clarify the meaning of software performance. Usually, this concept is linked to the software behavior and 
the execution time among other factors. In this case-study, the execution time is not considered as the supplier in charge of 
coding the software must guarantee a CPU charge lower than 80%. When using this concept in this paper, the meaning is that 
the software is properly coded, but it does not behave well due to a design error (specification issue). In other words, for that 
specific case, the engine ECU does not control the vehicle correctly. 
4 In this research, the term use-case is employed in the automotive meaning way. It refers to a specific operating point that 
the driver makes the vehicle operate.  Many bugs in the engine ECU software come from situations (operating points) not 
considered by the design team. 
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presents the results. Section 4 draws the main conclusions. The reader can find different appendices. 

Appendix A analyses the sensitivity of the results obtained in this research. A “threats to conclusion” 

validity section can be found in Appendix B.  

2. Method 

2.1.  Method Used 

2.1.1.  Description 

The engine specifications are composed of Simulink® models. Thus, the dll can be easily built 

considering that Matworks® has implemented different ways to build a dll from a Simulink® model[30].  

The method used in this research are composed of different stages. Firstly, a series of test-cases are 

designed as analyzed in Section 2.1.2. Then, all test-cases are run by using the following techniques: manual 

execution by a technician, automation by employing Python scripts (with and without dlls), the tester-in-

the-loop technique and fully automated process by using a performance EX combined with dlls. The EX 

compiles all rules (software requirements) related to the SM under validation. To conduct the test-cases, an 

HIL simulation is used. The HIL model belongs to the company subjected to this case-study and has been 

validated by its experts. The hypothesis to be proved by following this method is that all issues shown in 

table 1 can be solved thanks to this technique proposed by the authors. 

Some aspects must be assured such as validity of dlls and the EX designed from the SM under validation. 

The process of doing measurements is standardized. 

Several indicators are analyzed such as: evaluation of the success rate of the HIL simulation, main causes 

of failure and success for each of the methodologies when running test-cases, the functional coverage 

obtained, the productivity gain which may take place. The advantages and limitations of using dlls will be 

discussed. EXs will assess the software performance. 

The dll can be implemented by following the steps indicated in many Mathwork® documentation 

available in their site. The only thing that the user really needs is the Simulink® model to be converted into 

a dll.  In this research, this is not a problem as the specifications needed to code the engine ECU software, 

are composed of Simulink® models. The main difficulty is how to call the dll. To do this, as described in 

Matlab® documentation, different programming languages such as C or an m-file can be employed. In this 

research, C language has been chosen. It is important to describe how the HIL simulation is performed 

when using dlls to validate the software. Fig. 2 depicts the process when using an automation script. This 

description is valid for all techniques but the manual execution one (no automation process). A test-case is 

executed through a Python script coded by a test engineer. At this moment, the software Inca® [31], or any 

other software that can read the memory positions of the ECU, performs the data acquisition of all the 

software variables selected by the test engineer. The result of this process is to generate a data-acquisition 

file. During the HIL simulation the script is in charge of performing all the necessary manipulations on the 

driver-ECU interface of the HIL model automatically. If after a certain pre-established time, the values for 

the input set in the test case are not reached, the data acquisition process and the test-case execution are 

stopped by the Python script. Then, a data acquisition file containing all the software variables chosen by 

the test-engineer in the HIL simulation is obtained. A C-file is in charge of decoding the data acquisition file 

and sending, one by one, all the samples of the HIL simulation to the dll as exposed later. Every time a 

sample is sent by the C-file, the dll returns the theoretical value that the software should have delivered. 

Then, the Python scripts checks whether the software outputs are equal to dll outputs every time the dll 

returns a value.  Two key topics must be reminded. Firstly, the outputs of the SM are also available in the 

asci-ii file. Secondly, the engine ECU software is an image of the Simulink® models of the SM under 

validation. 
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2.1.2.  Functions used in the HIL simulation 

The methodology proposed in this study has been tested in three types of functions or SMs chosen 

according to the number of calculations to be done as well as their complexity, number of inputs and/ 

outputs of the SM and the accuracy required for the output results (Table 2). They have been considered as 

representative for this case-study by the authors and the company subjected to this research.  

 
Fig. 2. Use of dlls in an HIL simulation when performing a test-case. 

 

It is important to establish this classification because the validation requirements as well as the 

characteristics of the SM clearly influence the time required to carry out the validation process, as well as 

the additional difficulties that may arise. 5 SMs of each type were selected, based on different criteria such 

as test engineers’ experience, the most problematic SMs in other projects, SMs that require systematic 

validations to ensure the vehicle safety, SMs that require frequent regression validations as well as those 

SMs that have never been implemented in previous projects and, in short, they are a novelty (see Table 2).  

The company under this case-study has a database in which the staff document different bugs found 

throughout the engine project. The main advantage of this process is to guarantee easy mainstreaming 

between projects. Test engineers design test-cases based on different inputs such as this database, 

functional defects found during driving tests, specification requirements, as well as the defects found after 

the engine has been marketed. The goal is to keep the test-case libraries as complete as possible over time.  

Table 3 shows the number of tests considered in this research according to the type of SM. 

 

Journal of Software

270 Volume 14, Number 6, June 2019



Table 2. Types of SM Presented in the ECU Software 
Type of SM Characteristics Validation requirements SM 

 

 

Simple  

 

 

a) A reduced number of input and output 

variables present in the SM and small 

number of calculations to be done. 

Furthermore, they are not complex. 

 

b) High accuracy needed for calculations in 

some cases and e asy to identify the main 

functional characteristics of the SM.  

 

SMs require a few manipulations to 

make the engine ECU reach the 

desired operating point  

 

For instance, the SM in charge of 

detecting whether the accelerator 

pedal is blocked. The engine ECU 

must check a few parameters  

 

Such as: 

 

Temperature 

estimators 

 

Brake pedal 

monitoring 

 

 

Fairly 

complex 

 

a)  High number of input and output variables 

present in the module but moderate 

number of calculations to be performed.  

 

b)  Moderate accuracy needed for 

calculations. However, difficult to identify 

the main functional characteristics of the 

SM. 

SMs require more manipulations to 

make the engine ECU reach the 

desired operating point.  

For instance, SMs related with 

treatment of exhaust gases 

 

Such as: 

 

Treatment of 

exhaust gases 

systems 

 

 

 

Highly 

complex 

 

a) High number of input and output variables 

and number of calculations. 

 

b) Calculation not necessarily complex but 

high number of functional calculations but 

Moderate/low calculation accuracy 

 

SMs   need weeks to reach the 

desired operating point For instance, 

the SM in charge of assessing the 

diesel dilution rate in the engine oil.  

 

Such as: 

 

The SM in charge of 

controlling the oil 

rate diluted into 

diesel 

 

Table 3. Number of Tests Used in This Research 
Type of SM Number of test 

Simple  250 

Fairly complex 1250 

Highly complex 100 

 

Table 4 indicates the methods followed to generate test-cases for each technique. 

 

Table 4. Methods to Generate Test-cases 
Technique Method 

Cause-effect technique A1 

Model-based testing A2 

One EX combined with dlls and Two EXs combined with dlls A3 

A1: A database in which the staff trace different bugs found throughout a project.  

In addition, several test-cases come from the software requirements     

A2: Pseudorandom values generated by Matelo®  to cover a functional model 

A3: Pseudorandom values generated by Python scripts 

 

It is important to analyze what A2 and A3 mean. In A2, Matelo® can generate all necessary test-cases 

with the aim of covering the functional model. In A3, Python scripts also generate test-cases trying to cover 

the functional model. In addition, they generate pseudorandom values trying to reach functional states not 
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implemented in the model as exposed in section 2.2. A functional state not implemented in the model 

involves a use-case not considered by the design team. In other words, a design error. The fact of using fuzzy 

variables, as exposed later, allows increasing the combination of the inputs of the SM under validation. It 

must also be taken into account that the scripts in charge of generating pseudorandom values have to avoid 

impossible combinations such as a vehicle speed at 90 km/h and the first shift engaged.  

Table 5 shows examples of test-cases which could be used to check some functionalities of the software 

by using different techniques. Fuzzy variables are used when using EXs combined with dlls by increasing 

the number of combinations of the inputs provided by the SM under validation. 

 

Table 5. Examples of Test-Cases 
Feature to be 

checked 

Actions to be done Expected results Technique 

Body Control Unit.  

Cyclic Redundancy 

Check invalid 

Set a CRC invalid value of the frame BCM_A1 Check the inhibition 

of adaptive cruise 

control  

Cause-effect 

Model-based 

testing 

Diesel Particulate 

Filter regeneration 

1. Var1_veh_started=TRUE→ Start  the vehicle. 

 

2. Var2_temperature_exhaust_gas= 600ºC. → Do a driving 

cycle and var3_vehicle_speed= 80km/h→ Press the 

brake pedal to reach 40 km/h. Then 

Var4_particulate_filter = 40 g→ Do not overpass 2000 

rpm 

When the RG is 

performing the 

variable var1_out is 

activated. 

 

Model-based 

testing 

 

 

Diesel Particulate 

Filter regeneration 

1. Var1_veh_started=TRUE→ Start  the vehicle and 

var2_temperature_exhaust_ 

gas = High. → Do a driving cycle. Var3_vehicle_speed= 

High→ Press the accelerator pedal to reach low speed 

When the RG is 

performing the 

variable var1_out is 

activated. 

 

EXs combined 

with dlls 

 

2.1.3.  Equipment 

The following equipment was used in this research. 

1) An engine ECU software and hardware designed by the company subjected to this case-study. 

2) The HIL bench used to conduct this research belongs to the manufacturer dSpace®, model dSpace® 

Simulator Full-size [32]. It is a versatile HIL simulator capable of emulating the dynamic vehicle 

behavior. 

3) When it comes to building the model that serves as the driver’s interface,  ControlDesk® version 5.1 

from dSpace® manufacturer is employed [33]. By using this software, it is possible to carry out all 

necessary data exchange between the HIL bench and the engine ECU. This model was designed by the 

company subjected to this case-study and it is validated by the Electronic Validation Powertrain and 

Hybrids service before using it. 

4) Throughout this research, it is necessary to make measurements of different software variables 

stored in the engine ECU memory. To do this, it is imperative to use software that allows reading 

memory locations. In this research, version 7.1.9 of INCA® was used [31].  

5) The automation process can be carried out in different ways: by using Python script or 

AutomationDesk® software [34]. In this research, the Python script was chosen because the staff’s 

skill in AutomationDesk® in the service subjected to this case-study was low.  

6) Matlab® R2013 and Microsoft Visual Studio 2015 were used to create the dlls used in this research. 

7) Matelo®. Software used for validation purposes being able to generate test-cases 
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2.2.  Validity of This Research 

This section describes the validity of the different key elements involved in this research. In addition, 

readers can find Appendix B which contains a “threats to validity” section. 

2.2.1.  Expert system validation 

In this research, the aim of the rule-based EXs is to check whether the software runs properly, carrying 

out an automatic analysis of the HIL simulation results. There is a knowledge base composed of rules 

coming from functional requirements set by experts and designers at the beginning of the project. These 

rules are the base of the expert knowledge. When it comes to the inference engine, it is composed of a 

functional model describing different states that the system can process when applying the rules presented 

in the knowledge base. When a test-case is analyzed by the expert systems, after having applied different 

rules, the inference engine determines in which state the system is. Therefore, the expert systems decide 

whether the outputs provided by the software are coherent for the test-case simulated. At this point, it is 

vital to verify in-depth the inference engine (Fig.3). As one can see, all functional states (S1, S2, S3, S4 and 

S5) are related to a state called S6. This one corresponds to an unexpected or unknown state, which 

represents a use-case not considered by the designers. By using this state, test-engineers can improve the 

expert systems if needed. The state 6 will be analyzed in the result section.  

 

 

Fig. 3. Inference engine in detail. 

 

2.2.2.  Dynamic-link library validity 

The reader may think that the fact of using dlls could keep the validation process from checking the SM 

interactions. This statement is not true for several reasons: 

1) The Simulink® models are the transcription of the functional specifications of the engine ECU and 

must be met independently of the task scheduling, software–hardware integration, etc.   Therefore, 

for a series of given inputs, the outputs provided by the Simulink® models must be equal to the ones 

provided by the engine ECU software when no bug is found. Otherwise, the functional specifications 

are not met.  

2) The software and hardware integration are considered as the inputs processed to the dll are the 

consequence of an HIL simulation. The SM interactions are already considered in the data acquisition 

file. The software must provide the same output values as the Simulink® model (dll). Otherwise, the 

functional specifications are not met. 

2.2.3.  Measurement conditions 

• The information provided by the probes must be equal in all cases (with and without dlls).  
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• The engine ECU memory must contain no errors before starting the HIL simulation.  

• All test-case executions must be conducted on the same HIL bench.  

• If a diagnosis defect appears when validating with dll and not when validating without dlls, or vice 

versa, then the test-case result is rejected.  

2.3.  Limitations 

Simulink® models are not always available in an engine ECU project for all SMs. In this research, only 

approximately 7% of the SMs did not have a Simulink® model. A reader could consider how the conformity 

of dlls is performed. If there is an error design in a Simulink® model, it will also exist in the software. 

Therefore, when doing the validation, there will be no difference between the outputs provided by the 

Simulink® model and the software. EXs can detect this situation. 

3. Results 

3.1.  Ease for Automation Test-Cases 

3.1.1.  Simple software modules 

Simple SMs, as indicated in the previous section, are characterized by handling a small number of 

variables. As a result, it is not difficult to reach the values established in the test-case. The problem 

associated with SM interactions appeared in all SMs considered in this research. For example, by analyzing 

the measurements obtained in the HIL simulation when validating a simple SM, by using MDA® [34], it was 

observed that, when actuating the brake pedal, multiple variables were affected and changed their values. 

When the brake pedal is actuated, the vehicle speed is reduced significantly, even without changing the 

accelerator pedal position. To decrease the vehicle speed, the engine ECU must control the engine 

combustion by modifying the air-diesel mixture rate. This phenomenon is regulated by other SMs which 

were not validated in this process. Therefore, one can conclude that to achieve the values set in the test-

case, multiple SMs must be controlled simultaneously. This fact involves a great deal of complexity to code 

Python scripts. 

One of the most important issues to be analyzed is the consequences of not reaching the values set in the 

test-case. Table 6 shows the results when validating the simple functions by using different techniques. As 

one can see, the tester-in-the-loop technique offers better results than the automated one without using 

dlls, because a technician makes the engine ECU reach a specific operating point during the test-case 

execution. When using dlls, the results are by 4.8% and 14.4% better than the tester-in-the-loop or 

automation results achieved by using a Python script only.  

 

Table 6. Comparisons of Different Techniques for Validating Simple SMs 

Methodology 

Number of cases in which the 

output value set in the test-case 

was no longer valid: 

Error rate after 250 

simulations: 
Success rate  

Automated with a Python script but without 

using a dll. / Model-based testing 
49 19.6% 80.4% 

Tester-in-the-loop 25 10% 90% 

Automated with a Python script and the use of 

dll.  
13 5.2% 94.8% 

 

The Simulink® blocks that, in most cases, prevent reaching the values set in the test-case in this research 
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are shown in Table 7.  

 

Table 7. Most Problematic Simulink Blocks 

 

Interpolator block. In this case, depending on the input values presented to the Simulink®  block, an 

output value is provided by applying an algorithm or an interpolation method. 

 

Simulink®  native comparator block. It has problems in all its versions (greater than, greater than or 

equal to, less than, less than or equal to). In engine ECU software, on many occasions the value of a 

certain physical magnitude (e.g., motor revolutions, vehicle speed) is compared with a calibration 

threshold. 

 

It is important to analyze the root cause of the 5.2% failures. After the analysis of the 13 failures shown in 

table 6, it was verified that the dynamic model used for the HIL simulation failed. Analysis showed that this 

issue came from 2 SMs. These SMs needed a 10 ms-sample period. Owing to imperfections of the HIL model, 

latency times and hardware limitations of the HIL bench, in certain occasions this sample time was not 

respected.  

3.1.2． Fairly-complex and highly-complex software modules 

For fairly-complex and highly complex validation SMs, the number of variables increased up to 80. 

Therefore, the issue of SM interactions is even more present. Fig. 4 shows the total number and types of 

variables of a fairly-complex SM and the difficulty of manipulation to make the variables reach a specific 

value set in a test-case. The graph depicted in Fig. 4 shows that the Boolean variables were easier to be 

manipulated to reach the desired value, especially when they were related to variables directly linked to the 

driver’s interface-model. If they were linked to analogical variables, it was not easy to reach the desired 

value. The triangle obtained for a fairly-complex SM was an isosceles whose height is focused on high 

difficulty. Therefore, the issue about SM interaction arises. On average, after having analyzed 5 SMs it was 

concluded that at least 40 variables were influenced between them. It is important to explain the nuance of 

“at least”. The Boolean variables are simple to manipulate. Nevertheless, some of them have a direct impact 

on making the analogical ones reach the desired value established in the test-case. The HIL simulation 

results are shown in Table 8 in which one can see the number of times the expected output values specified 

in the test-cases are no longer valid when the SM inputs fail to reach the specific values set in the test-case. 

At the same time, the most problematic blocks present in the Simulink® models can also be observed 

(Table 9).  

 

Table 8. Comparisons of Different Techniques for Validating Fairly-complex SMs. 

Methodology 
Number of cases in which the output value 

set in the test-case was no longer valid: 

Error rate after 

1250 simulations: 
Success rate  

Automated with a Python script but 

without using a dll/ model-based testing 
480 38.4% 61.6% 

Tester-in-the-loop 200 16% 84% 

Automated with a Python script and the 

use of dll. 
125 10% 90% 
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Fig. 4. Type of variables present in an average-complexity SM. 

 

Table 9. Most Problematic Simulink Blocks for An Average SM 

 

Interpolator block. In this case, depending on the input values presented in the Simulink®  block, an output value 

is provided by applying an algorithm or interpolation method. 

 

Simulink®  native comparator block. It has problems in all its versions (greater than, greater than or equal to, 

less than, less than or equal to). In engine ECU software, on many occasions the value of a certain physical 

magnitude (e.g., motor revolutions, vehicle speed) is compared with a calibration threshold. 

 

This block sets the output to TRUE while the input In remains TRUE for a certain calibratable time. Otherwise, 

the output is FALSE. As found in this research, when it comes to average and complex functions, it is more 

difficult than in simple functions to succeed by making the input In remain stable. 

 

This block provides a Boolean type TRUE when a falling edge is detected. Otherwise, it remains FALSE. In this 

case, when it comes to average and complex functions, it is difficult in certain cases (for example when validating 

exhaust gas treatment systems) to reach the conditions to generate a falling edge. 

 

This block works as a typical RS flip-flop. As in a falling edge block, when it comes to average and complex 

functions, it is difficult in certain cases (for example when validating exhaust gas treatment systems or oil 

adaptive maintenance function) to reach the conditions when the S-input could be activated. 

 

Table 10. Comparisons of Different Techniques for Validating Highly Complex SMs 

Methodology 

Number of cases in which the output 

value set in the test-case was no 

longer valid: 

Error rate after 100 

simulations: 
Success rate  

Automated with a Python script but 

without using a dll/ Model-based testing 
61 61% 39% 

Tester-in-the-loop 35 35% 65% 

Automated with a Python script and the 

use of dll. 
15 15% 85% 
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When it comes to a highly complex SM, the triangle obtained is closer to that of an isosceles one with a 

lower base. This characteristic indicates a greater presence of variables that are difficult to manipulate in a 

HIL simulation (Fig. 5). In this case, a total of 120 variables that influence the other variables had to be 

handled. The Simulink® blocks that pose the most problems were the same as those shown in Table 8. The 

results after the 100 HIL simulations are shown in Table 10. 

In highly complex SMs, errors that prevent the HIL simulation from succeeding when using dlls were also 

detected. When validating a highly complex SM, a lower success-rate with dlls was obtained because these 

SMs require covering thousands of kilometers (close to 20,000 km in some cases). Thus, the probability of 

failure in the simulator increases. Considering the strong SM interaction, it is unlikely to reach the specific 

values set in the test-case. Thus, the tester-in-the-loop solution offers worse results than when using dlls. 

 

 

 
Fig. 5. Type of variables present in a high-complex SM. 

 

In fairly and highly complex SMs, at any given time, it was observed that several variables were close to 

the values previously set in the test-case as long as other values were quite far. If some manipulations were 

performed to make all the variables closer to the values set in the test-case, then the ones which were far 

from the expected values started to get closer, and the remaining variables started to get further. Thus, it is 

unlikely to be able to reach the input values set in a test case owing to SM interactions in such complex 

software as in an HIL simulation, which was discussed in section 1. Fig. 6 shows how, by increasing the 

error tolerance against the value set in the test-case for the variables that constitute the test-case, the 

number of variables that remained within those tolerance margins increased. However, in any case, it was 

never possible to make all the variables remain within the established tolerance range. This fact happened 

when executing the test-cases manually or automatically. As a result, these results show the great difficulty 

of validating an engine ECU software version by using HIL simulation. 

Fig. 7 summarizes the results obtained when using or not using dlls in an HIL simulation. As shown, dlls 

improve the HIL results in a significant way for all types of SMs, especially for simple and fairly-complex 

functions. It must be reminded that estimator SMs belong mainly to simple functions. That is why one can 

see such a huge difference when comparing the results obtained when activating or not activating dlls in an 

HIL simulation. In fairly and highly complex functions, it must also be noted that the SMs that require 

performing of many calculations belong to this category. Thus, there is also a significant difference when 

using dlls. 
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Fig. 6. Error trend depending on error tolerance of the SM inputs. 

 

 
Fig. 7. Comparison of results obtained when using and not using dlls. 

 

The reader may think that the automation process is not useful when validating the engine ECU software. 

This conclusion is false as there are some SMs, especially those related to electronics, which can be 

successfully automated such as CAN (Controller Area Network) and LIN (Local Interconnect network) bus 

or the basic functionalities of adaptive cruise control with the capacity to stop the vehicle (see Table 11). 

These statements have been proven in this research as shown in Table 12.  

In this research, the SMs listed in Table 10 were used. 

Table 11. List of SMs Used and Tested in This Research 

Functions or SMs tested 
Number of test-cases 

tested 

CAN Bus 600 

Driving aid systems 140 

Pressure and Temperature carburant probe (SENT) 100 

LIN Bus 50 

 

 

0

10

20

30

40

50

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

N
u
m

b
e
r 

o
f 

s
o
ft

w
a
re

 v
a
ri
a
b
le

s

Error

Fairly-complex SMs Highly-complex SMs

0

50

100

Simple Fairly-complex Highly-complex

%
 s

u
c
c
e
s
s
 o

f 
H

IL
 s

im
u
la

ti
o
n

Type of SM

Comparison when simulating with 
and with dlls

With dlls Without dlls

Journal of Software

278 Volume 14, Number 6, June 2019



Table 12. Comparisons of Different Techniques for Validating Functions Depicted in Table 10 

Methodology 

Number of cases in which the output 

value set in the test-case was no 

longer valid: 

Error rate after 1000 

simulations: 
Success rate  

Automated with a Python script but 

without using a dll. 
12 1.2% 98.8% 

Tester-in-the-loop 13 1.3% 98.7% 

 

Table 11 does not show the results for automation with dlls as most of the function did not have a 

Simulink® model as exposed in Section 2. 

3.2.  Functional Coverage 

The functional coverage has been assessed by using equation (1) which is widely employed in the 

automotive sector. Table 13 shows the total number of functional requirements associated with the SMs 

validated in this research (section 2.1.1). 

 

𝐹𝐶 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒  𝑟𝑒𝑞𝑢𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑠 𝑡𝑒𝑠𝑡𝑒𝑑 𝑏𝑦 𝑎 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑑 𝑖𝑛 𝑡𝑎𝑏𝑙𝑒 15
𝑥100                                        (1) 

 

Table 13. Number of Total Functional Requirements 
Type of SM Number of requirements 

Simple 75 

Fairly-complex 400 

Highly-complex 510 

 

Table 14 depicts the results obtained for each technique in this research: 

 

Table 14. Functional Coverage Obtained for Each Research 

 

▪ 3.2.1.  Cause-effect technique and tester-in-the-loop 

All test-cases run in this research by using these techniques are similar to the ones depicted in table 5. It 

must be reminded that the test-cases can be run in a manual way or by employing Python scripts with the 

aim of automating the process. 

The main limitation of the cause-effect technique is test-case redundancy. Many test cases run to validate 

the software were indeed linked to the same software requirements. The main reason behind this issue is 

Technique 

Simple SM Fairly-complex SM Highly-complex SM 

Number of 
rules tested 

Functional 
coverage (%) 

Number of 
rules tested 

Functional 
coverage (%) 

Number of 
rules tested 

Functional 
coverage (%) 

Cause-effect 64 85.3 312 78 357 70 

Model-based testing 64 85.3 312 78 357 70 

Tester-in-the-loop 64 85.3 312 78 357 70 

Performance EX combined 
with dlls 

68 90.7 348 87 445 87.2 
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the lack of a functional model of the SM under validation. When a use-case is not considered initially in the 

software requirements, it cannot be found by the cause-effect technique. In addition, bugs linked to 

calculation errors cannot be detected. 

 3.2.2.  Model-based testing 

When using Matelo®, it is important to expose the problems found. If the test engineer let Matelo® 

generate test-cases, this software will assign specific values for each input of the SM under validation. As a 

consequence, the problems of SM interactions, are identified.  The only way to overcome this issue is to use 

fuzzy values5 combined with dlls. In this case, results are similar to the ones obtained when using a 

performance EX as long as dlls are used. Matelo® can be used also in such a way that Matelo® will not 

generate the test-case but it will control the automation process. In order words, the test engineer must 

code a Python script to generate the test -cases needed and then Matelo® will check the functional states 

covered as the automation is performed.  

In the present research, the test engineer codes Python scripts with the aim of running the same test-

cases as for the manual execution, the tester-in-the-loop and so on. These test-cases are present in the data 

base that is mentioned in Section 2.1.1. Consequently, the results shown in table 9 are the same for the 

cause-effect technique and the model based-testing one. 

 3.2.3.  Performance expert system 

The rule-based EX allows specifying the functional requirements of SMs. The method followed to validate 

the EX was described in section 2.2.1. Two phases are considered: a validation and a test one. On the one 

hand, the former consists of verifying a certain number of test-cases depending on the type of SMs to assess 

the EX performance to be sure that the EXs seem to work properly (Table 15). Table 16 shows the results 

obtained during the first phase in which a 83.3% success rate was obtained.  

Table 15. Number of Test-cases Used to Validate the EXs 

 Number of test-cases used to 

test the EX during the 

verification process 

Number of test-cases used to 

test the EX during the 

acceptance process 

Simple SMs 100 80 

Fairly complex SMs 120 50 

Highly complex SMs 5 2 

 

Table 16. Errors Detected when Validating the EXs 
Type of error Percentage (%) Cases Explanation 

Wrong syntaxes 8.8 20 Because the rules used to design the EXs are extremely 

complex, the programmer made coding errors.  

Incoherence between 

rules 

3.5 8 In some cases of wrong performance of the EX, 

incoherence between rules was found. 

Misunderstanding of 

technical specifications 

3.1 7 Because of innovative evolutions in some parts of the 

engine, some technical specifications were not 

understood properly. 

Rules not coded or 

forgotten 

1.3 3 This error is owing to the same misunderstanding of 

technical specifications. 

 

Once the errors were corrected, the test phase was performed to assure that the EXs would assess the 

software behavior properly. If no error occurred the EX was accepted. 

 
5 Equivalence class is the concept described in Matelo®  documentation to generate values similar to fuzzy values. 
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The main conclusion that can be drawn is all possible use-cases are not checked when no EX is used. 

When it comes to simple and medium-complexity SMs, the number of unchecked functional states is shown 

in Table 17. The number of untested rules in a medium or highly complex function is greater because of the 

large number of use cases involved in this type of SMs.  

 

Table 17. Number of Rules or Functional States not Checked when an EX is not Used 
Type of SM Number of functional states not tested 

without using an EX 

Simple 4 

Fairly-complex 36 

Highly-complex  88 

 

These improvements are mainly based on two reasons: 

1) Dlls allow controlling better the HIL simulation as it is possible to know at any time if the current 

state of the engine ECU is coherent or not as already exposed in this research. 

2) EXs assess the functional coverage easily. The reader can think that a similar result could be 

obtained by using Matelo® combined with dlls. Matelo® generates test-cases off-line. If after the 

HIL simulation, the inputs of SM under validation do not reach the desired operating point, 

Matelo® cannot calculate the expected value for the current state of the engine ECU in-real time. 

To do this, Matelo® must be used in another way as exposed in 3.2.2. 

3) Dlls allow finding bugs linked to calculation errors. 

3.3.  Productivity Gain 

It is essential to check if EXs implementation respects the timeframes of the project by analyzing several 

factors. As shown in Table 18, the gain is positive for fairly and highly-complex SMs when using an EX. This 

gain comes from the automation process which allows testing test-cases quicker. In addition, these test-

cases can be always run thanks to dlls. Consequently, an EX combined with dlls performs better than the 

other techniques. For simple SMs, the result is different as the HIL simulation implies that very simple and 

quick manipulations are conducted on the driver´s interface model. As a result, the time gain is negative and 

the timeframe of the project may not be respected. It must be reminded that several projects are being 

developed at the same time by car manufacturers: diesel or gasoline engines. Between these types of 

engines, one can find considerable differences when it comes to torque structure or after treatment of 

exhaust gas systems. However, when comparing engines of the same groups, they are remarkably similar.  

As a result, an EX designed for a project can be used for another one. Then, only the automation and 

validation phases will be performed. As one can see in these phases, this technique outperforms the other 

ones. The main conclusions which can be drawn is that the proposed technique always meets the project 

planning especially when there are several engines developing at the same time. 

3.4.  Bug Detection 

Fig. 8 shows the bugs found by each technique when running the test-cases as described in section 2. The 

tester-in-the-loop offers a better performance than the automation process as it can make the system reach 

critical states that are not easy to reach when only using a Python script. There are not significant 

differences between manual and tester-in-the-loop techniques when it comes to bug detection as there is a 

technician who participates in the test-case execution, Python scripts detect fewer bugs than the rest of the 

techniques as test-cases are difficult to automate due to SM interactions. As a consequence, when the 

system reaches an operating point close to the one established in the test-cases, the outputs indicated in the 
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test-cases may be no longer valid. To solve these problems, fuzzy values for the SM inputs may be used as 

exposed later in this section.  

 

Table 18. Time Needed to Design Test-cases and Rule-based EXs 
    Simple 

functions 

Fairly 

complex 

function 

Complex 

function 

  Total time for designing test-cases (h) 8 80 120 

T
im

e 
fo

r 
d

es
ig

n
in

g 
an

d
 c

o
d

in
g 

Time for coding, design and validate EXs and Python script for the 

automation process(h) 

4 35 70 

Time for preparing dlls (h) 2 6 10 

Time for coding a Python script (h) 4 32 50 

Time for coding when using the tester-in-the-loop (h) 2 25 35 

Total time for designing and coding when using EXs (h) 14 121 200 

Total time for designing and coding when using Python scripts (h) 12 112 170 

Total time for designing and coding when using the tester-in-the-loop (h) 10 105 155 

Total time for designing when executing a test-case manually (h) 8 80 120 

T
es

t-
ca

se
 e

xe
cu

ti
o

n
 

Time for executing an automated test-case by using EXs (h) 0.32 13 73 

Time for executing an automated test-case (h) 0.25 12.5 72 

Time for executing a test-case by using the tester-in-the-loop (h) 0.46 62 80 

Time for executing a test-case manually (h) 0.5 80 170 

V
al

id
at

io
n

 Time for validating the results with automation (h) (1) 0.00028 0.00347 0.00044 

Time for validating the results without automation (h) (2) 1.67 20.83 2.33 

T
o

ta
l t

im
e 

Total time by using EXs (h) 14.32 134.00 273.00 

Total time with automation by using Python scripts (h) 12.25 124.50 242.00 

Total time when using the tester-in-the-loop (h) 10.46 167.00 235.00 

Total time without automation (h) 10.17 180.83 292.33 

  (1) In this case, the following data have been considered: 50 test-cases for simple functions with an execution time 

of 0.02 s, 250 test-cases for fairly complex functions with an execution time of 0.05 s, and 50 test-cases for complex 

functions with an execution time of 0.08 s. The execution time was measured by using the Python function time 

clock. 

 

The results obtained in this research show that EXs with dlls give better performance and can be used to 

test more functional states and detect more bugs than the other techniques. Basically, this statement is 

based on two main reasons: 

1) The problems coming from the SM interactions are fixed due to dlls. Even though the operating point 

established in the test-case is not reached, dlls can provide the right values expected from the 
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software. Consequently, the test-cases can be successfully run and the automation process can 

validate the HIL simulation results automatically.  

2) The functional coverage is improved due to the existence of the functional model. In addition, this 

model can be covered easily thanks to the automation success by using the dlls. 

It is also important to establish the main types of bugs found for each technique (Table 19). 

3) When the bug is linked to calculation errors (calculation faults) 

4) When no code error occurred but there was unexpected performance software. This issue can come 

from an error design in the SM under validation (performance faults). 

5) When there is a code bug. This means the programmer has made a mistake and coded differently 

from what was indicated in the specifications. 

 

Table 19. Type of Bugs Detected 

  Calculation faults Bugs Performance faults 

Manual validation 0 12 2 

Tester-in-the-loop 0 14 1 

Automation without dlls 0 10 0 

Model-based testing 0 10 5 

EXs and dlls 5 14 4 

 

 
Fig. 8. Bugs found when using different techniques. 

3.5.  Costs 

It is necessary to discuss costs. The first one is associated with the licenses needed to use a specific 

technique (already discussed). The other one is linked to software versions needed to correct bugs detected 

at the end of the project. This can be caused by two things. Firstly, certain SMs (especially those related to 

advanced driver assistance systems) cannot be tested at the beginning of the project. The validation of these 

functions needs very mature software of some ECUs present in the network (electronic stability program 

ECU, body control unit, radars, cameras, gearbox ECU in automatic cars). Secondly, some bugs appear when 

testing some use-cases that were not considered in the validation process. When these bugs are detected, 

the project team must decide whether the bug has a significant functional impact and therefore require 

correction of the software. Otherwise, the bug can be corrected in future engine projects and no correction 
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will be made6. Developing new software versions involves a high cost but also might imply updating the 

ECU of vehicles that have already been marketed. The results showed that EXs combined with dlls detected 

two bugs that would have required corrective software development. These bugs were not detected using 

the cause-effect technique, the model-based testing one, the manual execution or the model-based testing 

one. 

The reader might think that, in case of bugs in the Simulink® model, the software will also contain these 

faults. As a result, no bug will be detected by using the method proposed in this research. This study has 

proven that this statement is true and that is why the performance EX must be used. 

3.6.  Comparison among other Methods 

When performing an HIL simulation, it is not easy to reach the values indicated in the test-case due to SM 

interactions. Fig. 9 shows an example of a histogram displaying speed value. Depending on the value 

reached, the output can be 1 or 0. Consequently, if a test-case indicates that the speed must be 60 km/h, the 

accuracy is a critical factor and the expected output could be no longer valid. 

 

 
Fig. 9. Example of test-case. 

 

A comparison among different techniques is shown in Table 20. 

 

Table 20. Comparison among Techniques 

  
Manual 

validation 
Automation 
without dll 

Model-based 
testing 

EXs and dlls 

Validity of test-cases 
As shown in Fig.9, it is necessary to reach the exact 
value indicated in the test-case. Otherwise, the 
validation process cannot be performed automatically 

Even though the values indicated in the 
test-case are not reached, the validation can 
be performed automatically 

 
6 There are several ways to classify bugs in the automotive sector. Sometimes they are broken into K1, K2, K3 or K4 

depending on the importance. K1 and K2 must be always fixed before the vehicle is marketed. However, K3 and K4 will be 

fixed in future vehicles and the current engine can be marketed without any correction. 
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Accuracy needed 
The test-case output may be no longer valid (Fig.9). 
The test-engineer should check the specification to 
confirm the expected output 

The test-case output may be no longer valid. 
However, dlls can check the expected 
output automatically 

Complexity 
As shown in Fig.9, it is highly complicated to reach the 
specific values indicated in the test-cases (see Table 6, 
Table 8 and Table 10) due to SM interactions 

Even though the HIL simulation does not 
reach the specific values indicated in the 
test-case, the validation process can be 
performed 

Robustness in case of 
failure 

During the HIL simulation, the engine ECU can detect a 
failure (low rail pressure, turbo failure, etc.). In that 
case, the test-case output is no longer valid 

Even though the engine ECU detects a 
failure, the dll can detect the expected 
output in that case 

Reading ECU 
variables in real-time 

INCA software does not allow reading in-real time 
variables by using Python while data acquisition is 
performed. The test-engineer has to analyze the data 
acquisition to check if a bug is present 

The dll can do the validation process 
automatically when using a C-code at the 
same time. 

 

4. Conclusions 

This research, conducted at the second most important European car manufacturer, is focused on the 

software validation of an engine ECU by using dynamic-link libraries (dlls) and an EX (ES). This 

combination allows the detection of software performance and coding bugs. As shown in this research, dlls 

and ES can detect bugs that other techniques such as the black-box or the tester-in-the-loop cannot, 

especially those in temperature estimator SMs and after-treatment of exhaust gases SMs, which require 

accurate calculations. The obtained results show how dlls and the EX can improve the HIL success rate 

compared with the tester-in-the-loop technique and can execute 4.8% of the test-cases in simple validation 

SMs, 6% of the test-cases of fairly complex SMs and 20% of the test-cases of highly complex SMs despite the 

presence of SM interactions. In comparison to the use of a Python script without using a dll, the dlls and the 

EX can improve the HIL and can execute 14.4% of the test-cases in simple validation SMs, 28.4% of the test-

cases of fairly complex SMs and 46% of the test-cases of highly complex SMs. As a result, dlls can overcome 

the issue linked to SM interactions. In addition, between 9 and 13 more bugs were found when using the EX 

and dlls, six of which could not be detected by other techniques. Even though EXs and dlls require more 

time to be implemented, the timeframe of the project was respected.  

Appendix A 

The parameters shown in Table 21 were chosen to analyse the results obtained in this research. 

 

Table 21.  Parameters Considered in the Sensitivity Analysis 
Parameter Meaning 

% error associated with SM inputs 
% Deviation of the SM inputs obtained once the HIL simulation is finished 

with respect to the input values set in the test-case. 

Needed time to code Python scripts 

Trend of coding time according to the staff’s training in Python. This 

parameter influences productivity gain thanks to the automation process by 

using dlls combined with EXs.  

Gain trend versus productivity (measured in 

hours) 

According to the SM type, the relationship between the number of test-cases 

and the productivity gain (measured in hours) versus the manual test-case 

execution 

Fig. A.I. Shows the results obtained after the execution of 120 HIL simulations involving the speed value. 
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Afterwards, the speed values obtained were classified depending on the speed error with respect to the 

value set in the test-case (60 km / h). As shown in Fig.A.I, as the error percentage becomes greater, so does 

the failure of the HIL simulation. In other words, the lower the error is, the greater the probability for the 

HIL simulation to fail without using dlls is, as the output value established in the test-case is no longer valid. 

Reaching errors close to 1% depends on the quality of the scripts and their capacity of controlling not only 

the SM under validation but also other SMs that can influence the final result. 

The calculation performed for simple SMs is extraordinary difficult to perform for fairly and highly 

complex SMs owing to SM interactions. In practice, it is observed that an attempt to make a variable reach a 

specific value set in the test-case distances the other variables from the values established in the test-case. 

Therefore, perform the classifications based on the error (Fig. A.I) for functions containing more than 100 

variables is highly complex. 

 
Fig A.I.  HIL simulation success depending on the input errors with regard to the inputs values set in the 

test-case. 

 
Fig.A.II Hours needed to code the Python scripts 

 

The quality of the scripts depends on the staff’s training in Python. Table 22 and Fig. A.II show how the 

time needed to code Python script evolves, depending on the staff’s skills in Python as well as the type of SM 

to be validated. 

When automating the HIL simulation, the productivity gain (in hours) by using Python, EXs and dlls 

depends on the number of test cases to be conducted. As shown in Fig. A.III, the gain for fairly and highly-

complex SMs is always positive thanks to the improvements introduced by automation and automatic 
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verification of the results obtained in the HIL simulation. Simple SMs give positive gains of 143 test-cases. 

This result indicates that the only way to obtain a positive gain for this type of SMs is:  

a) Using the scripts in all possible engine projects being conducted in a powertrain validation service. 

b) Conducting regression tests every time software is delivered. 

 

 Table 22. Staff’s Training in Python 

Group Experience in coding Python scripts Number of members 

Expert level More than 2 years 10 

Average level Between 1 and 2 years 15 

Low level Less than 1 year 15 

 

 
Fig. A.III Gain trend versus test-cases conducted. 

Appendix B 

As exposed by Feldt and Magazinius, “a conclusion validity is focused on how sure we can be that the 

treatment we used in an experiment really is related to the actual outcome we observed” [35]. Many factors 

can threat the results of a research. For the current paper, the factors depicted in Table 23 were chosen [35]. 

In this section, the actions taken to reduce these threats are exposed. 

 

Table 23. Factors Chosen for the Conclusion Validity Assessment 

Id Factor Factor Description 

1 Low Statistical Power Studies with low power often result in the conclusion that no relationship 

exists when in fact a true relationship exists. Insufficient power most often 

results in using too few participants 

2 Violated Assumptions of 

Statistical Tests 

All statistical tests rely on assumptions. When the assumptions are violated, 

the researcher and consumer may be misled about the probabilities of 

making Type I and Type II errors.  
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3 "Fishing" and Error-Rate 

Problems 

Conducting many statistical tests on a data set without stating specific 

hypotheses. This procedure inappropriately capitalizes on chance events 

and increases the probability of Type I error occurring. 

4 Unreliability of Measures Unreliable measures introduce error variance and obscure the true state of 

affairs. 

5 Restriction of Range The restricted range usually occurs because the instrument measuring the 

variable is not sensitive enough to be measured at the upper limit (ceiling 

effects) or at the lower limit (floor effects). 

6 Unreliability of Treatment 

Implementation 

It is possible for treatments to be delivered or implemented in variety of 

ways.  

7 Extraneous Variance in 

the Experimental Setting 

Any aspect of the experimental setting that leads to variability in responding 

will increase the error variance and obscure a true relationship.  

8 Heterogeneity of Units Differences in experimental unites can often lead to variability in 

responding.  

9 Inaccurate Effect Size 

Estimation 

There are instances when effects detected in studies will be inaccurately 

estimated. Outliers can dramatically affect correlations, for example. 

 

Id factor 1 

The number of people to be considered is limited to the members who composed this service. In this case, 

it was 40 people distributed as follows: 19 engineers and 21 technicians. The main question that may arise 

is if this number is enough to do this research. Considering the data that this company possessed at that 

time, its staff was similar to other manufacturers. In our criteria, the mix ratio between technicians and 

engineers was satisfactory. Of course, each group of experts can have different skills, but this fact was 

considered in the sensitivity analysis (Appendix B). Therefore, the mitigation strategy chosen was to 

perform a sensitivity analysis to be sure how the skills needed to develop the authors’ proposal in a 

validation service may impact. 

 

Table 24. Seniority in the Service 

Number of people Seniority in the service 

7 < one year 

15 Between 1 and 3 years 

11 Between 3 and 5 years 

7 More than 5 years 

 

Id factor 2  

One of the key aspects of this research is the staff’s training. This obvious statement can be a threat to 

validity as if the results are given considering a staff with extensive knowledge and skills needed to 

implement the proposal of this paper, the assessment of productivity gain will not be accurate or even false 

for other scenarios. That is why for this research, technicians and engineers having different levels in coding 

Python or in engine operation knowledge were chosen. This is guaranteed as depicted in table 24. Then the 
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influence of all the aforementioned aspects, was analyzed in the sensitivity analysis which was considered 

as a mitigation strategy again. 

Id factor 3 

The software of an engine ECU is extremely complex as a whole, but it cannot be considered that all SMs 

are equal. It is not possible to draw exactly the same conclusions for a simple SM as for a highly complex 

one. To avoid Id factor 3, the authors decided to classify the SMs present in the engine ECU software as 

follows: simple, fairly-complex and highly complex SMs. This classification was validated by the staff of the 

company considering the feedback coming from other projects. As the reader can see in this research every 

conclusion is focused on a type of SMs and the authors do not generalize for the whole engine ECU software. 

Therefore, the mitigation strategy chosen divided the engine ECU software into several types of SMs 

considering a series of factors as depicted in table 2.  

Id factor 4 

The mitigation strategy chosen to avoid this factor was to assure that the measures were taken in the 

same conditions. To assure this, a procedure was written as the reader can see in section 2.5.2. which 

described when measures can be accepted and when must be rejected it. Therefore, the staff involved in this 

research agreed with this criterium and it was applied during the whole study. In addition, the decision of 

using the same HIL bench aimed to reduce the variance as all measures were implemented by using the 

same probes, wires and HIL hardware. 

It is also important to consider how the conformity of EXs was assured. First, by meetings organized by 

the validation department and the expert of a specific SM with a large experience in design and engine 

projects. Second, by using data coming from many types of real driving tests. Third, by establishing a 

procedure described in section 2.5. All aforementioned constituted the mitigation strategy to assure the EXs 

conformity. In addition, driving tests were carried out at the same time by tuning teams. Their results did 

not contradict the ones obtained in this research. 

Id factor 5 

The probes installed in the HIL bench are designed to provide the measures in the range established by 

the design team. Then, the measure is sent by the CAN bus and record it by using the software INCA®. As a 

result, in this research, the methodology proposed consists of recording the information sent by other 

probes and the HIL bench through the CAN bus. The only factor to be assured is to generate test-cases 

which make the probes work in operating points close to their saturation limits. This conclusion was drawn 

in the test libraries and it was also established as a mitigation strategy for this research. 

In addition, the EXs were validated as exposed for Id factor 4. 

Id factor 6 

The mitigation strategy chosen in this case was aimed to standardize the procedure to perform the HIL 

simulation with the aim of obtaining data which allowed to draw the conclusions of this research. The 

method is described in section 2.1. 

Id factor 7 

The company subjected to this case-study and the authors looked for a variance but under control with 

the aim of assessing the different factors which may impact the results shown in this research. It must be 

considered that the members of the staff of a validation service may change their positions in the company. 

As a result, the department may have more specialized people at a specific moment and vice versa in other 

occasions. Consequently, the company wanted to do this research considering different scenarios depending 

on the staff’s training, for example. The authors proceeded to do a sensitivity analysis as a mitigation 

strategy to justify how the results might change. 

Id factor 8 
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In this research, the heterogeneity is necessary to perform the sensitivity analysis. Different scenarios 

were established considering people very well trained, fairly trained and people who need to enhance their 

skills such as Python script coding. This factor was considered in the sensitivity analysis. As a result, this 

research can be useful for different companies which may have a different level of Python script or 

knowledge of how an engine works in depth. The rest of the data used in this research come from the 

software coded by Robert Bosch. Its units were chosen by the design team when developing the engine. 

Thus, the mitigation strategy was to assure how the results could change considering the heterogeneity 

present in the validation service which may also be present in other manufacturers. 

Id factor 9 

As exposed in Id factor 1, the population size was considered right. It is true that a validation department 

can have more or less staff. It must also be reminded that a validation department is of high cost for 

companies, so they try to limit the number of people who run the service. In addition, the size of this 

department is not linked to the number of vehicles manufactured every year by different manufacturers 

once the software is validated, it is embedded in the ECU and the supplier delivers the ECU the calibration 

and software loaded in. As a result, the authors and the company subjected to this case-study consider that 

by using a sensitivity analysis the trend between different factors is established in the sensitivity analysis 

and can be considered as a guide in case of reducing or increasing the staff members. Therefore, the 

mitigation strategy can be used to assure a heterogeneity in the population and perform a sensitivity 

analysis. 
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