

Applying Spring Security Framework and OAuth2 To
Protect Microservice Architecture API

Quy Nguyen*, Oras Baker

Southern Institute of Technology, Invercargill, New Zealand.

* Corresponding author: Email: Oras.baker@sit.ac.nz
Manuscript submitted March 1, 2019; accepted May 15, 2019.
doi: 10.17706/jsw.14.6. 257-264

Abstract: Since 2014, Microservice Architecture (MSA) has been widely applied and deployed by big

companies such as Google, Netflix and Twitter. This is a way of architecting software systems in which the

services of a single application are decomposed then deployed and executed separately. This research

examines the possibility of applying Spring Security Framework and OAuth2 to secure microservice APIs

which are built on top of Spring Framework. By developing a Proof of Concept (POC) of an Inventory

Management System using MSA on top of Spring Framework, Spring Security Framework and OAuth2. we

have conducted security tests over the POC using unit testing and manual testing techniques to examine if

there are any vulnerabilities and we were able to show and confirm the effectiveness of the Spring Security

Framework and OAuth2 in securing Spring-based APIs.

Key words: Software architecture, microservice architecture (MSA), oauth2, spring framework, and POC.

1. Introduction

The traditional Monolithic approach of software architecture requires the entire application stack to be

bundled together for each deployment. This concept creates many drawbacks for the application, especially

the inflexible scalability, the high cost of resources and refactoring effort, difficulties of the DevOps between

distributed teams [1]. Microservice Architecture (MSA) is supposed to address these problems by

decomposing the application into separated services; each service takes responsibility for a single business

capability and is deployed and executed independently.

Application communicate with each other via the network communication protocols and the Internet, so

that this architectural style heavily depends on the Application Programming Interfaces (API). Given that,

APIs in a microservice application are required to be appropriately secured to protect the application and

its resources against the threats that deal with API invocations.

The aim of this research is to reduce the knowledge gap on MSA and API security by developing a Proof of

Concept (POC) of an MSA application using Spring Framework, Spring Security, and OAuth2, then performs

security testing using Unit Testing and Manual Testing techniques over the POC.

2. Background and Literature Review

Since the very first assessments by enterprises for the effectiveness and the impact of MSA to enterprises

by 2012 [2], interest in MSA has significantly increased over the recent years according to Google Trends

statistic [3]. MSA are being implemented by big companies to scale their applications in the cloud in an

Journal of Software

257 Volume 14, Number 6, June 2019

efficient way, to reduce complexity, to quickly expand development teams and to achieve agility [4]-[6].

Netflix, Amazon, and SoundCloud are just some of the big firms that have adopted MSA for their enterprise

and web applications and deliver their services to all over the world [7], [8].

Regardless of the vital role of the API security in MSA, the literature review shows that the studies that

focus on MSA at API endpoint level are just a few. There is a study conducted by Salibindla (2018) on

Microservice API security; however, this study focused on security for the communication protocols and did

not provide implementation guide for any specific language. Xie, Han et al. (2017) [10], also performed a

study on the design and implement of Spring Security. Nevertheless, these studies were conducted

separately, and there exists no study that confirms the effectiveness of Spring Framework (SF), Spring

Security Framework (SSF), and OAuth 2.0 (OAuth2) when these technologies are applied to implement

authentication and authorisation for MSA API endpoint.

2.1. Microservice Architecture and Microservice API

In contrary with the traditional monolithic software architecture where the whole application with many

services inside is deployed together within the same application server, MSA refers to the applications

architecture that decomposes an application into a set of narrowly focused, single responsibility,

lightweight and independently deployable services, a.k.a. microservices [10]. These services can

communicate with each other using APIs [9] The two major communication protocols and data exchange

formats for microservice API are Simple Object Access Protocol (SOAP) and Representational State Transfer

(REST). Due to the lightweight nature of REST, this research uses REST for the API implementation and

experiment.

MSA does not make an application any simpler, it only distributes the application logic into multiple

smaller components. Although the decomposition brings many benefits such as the scalability, high

availability, it is, however, resulting in a much more complex network interaction model between

components especially when the application is made of too many services [11], [12]. Fig. 1 presents a

comparison between the monolithic and microservice architectural style of a simple online shopping

system.

Fig. 1. A comparison of monolithic architecture and an MSA.

3. Proof of Concept Development

The POC is built to answer the research questions. Moreover, it should reflect the applications of MSA in a

real business context. Therefore, a POC of an inventory management system is an appropriate experimental

application. As introduced in Fig. 4, OAuth2 not only is applied for the web-based application but also is

applied to the backend services without a web browser and/or user interaction. Thus, the POC should be

designed in a way that supports the security testing for both of these implementation types. Moreover, the

experiment should also examine OAuth 2.0 for both authentication and authorisation purposes. In

Journal of Software

258 Volume 14, Number 6, June 2019

accordant to the experimental requirements, key features and actors are proposed in the next subsections.

3.1. Use Cases

3.1.1 Use cases for authorisation server

The Authorisation Server plays the role of IdP in OAuth2 workflow. The prototype provides the

fundamental use cases of the Authorisation Server as shown in Fig. 2. The two actors who interact with the

Authorisation Server are:

 Resource Owner: The resource owner in OAuth2 workflow.

 Client Apps: Is the client application that is registered with the authorisation server.

Fig. 2. Authorisation server use cases.

3.1.2 Use cases for resource servers

The POC implements two microservices which take responsible for managing the mobile phone and

jewellery respectively. The microservices play the role of the RPs in the OAuth workflow. Use cases of the

resource servers are depicted in Fig. 3.

Fig. 3. Resource server use cases.

4. High Level Architecture

Fig. 4 introduces the High-Level Architecture (HLA) of the Proof of Concept. This HLA presents the core

Journal of Software

259 Volume 14, Number 6, June 2019

modules and dependencies at the framework level that involves in the implementation of the POC.

Fig. 4. Application high level architecture.

a) Client requests authorisation for the resource owner. As shown in the above Fig. 4, the request is

directly made to the resource owner.

b) The client receives an authorisation grant (described later) as the credentials representing

authorisation from resource owner.

c) Client requests for an access token by presenting own authentication information and

authorisation grant given by resource owner to the authorisation server.

d) Authorisation server authenticates the client and confirms the validity of the authorization grant. It

issues the access token if the authorisation grant is valid.

e) Client requests to the resource protected on the resource server and authenticates with the issued

access token.

f) Resource server checks the validity of access token and accepts the request if it is valid.

5. POC Development

5.1. Authentication Service

The function of the Authentication Service is to request information from an authenticating user or client

and validate it against the configured identity repository using the SSF implementation.

5.2. Security Configuration

The application security configuration extends the built-in WebSecurityConfigurationAdaper of Spring

Security Framework, the application security configuration provides the key features below:

a) userDetailsService: look up user details from the database for authentication purpose

b) BCryptPasswordEncoder ensure that password is encrypted using BCrypt cryptographic.

c) The session attribute “_csrf” protect the application from CSRF attack.

d) Http request is required to be authenticated.

5.3. OAuth2 Authorisation Configuration

OAuth configuration extends the built-in AuthorizationServerConfigurerAdapter of Spring Security

Framework with the additional implementation for OAuth2 authorisation support, the OAuth2

configuration provides the key features below:

a) oauthDataSource: looks up client detail from the database for the authorisation process

b) TokenStore: the access tokens are also stored in the database and accessed using Java Database

Connectivity (JDBC) technique.

c) ApprovalStore: approval information is stored in the database and accessed using JDBC technique.

Journal of Software

260 Volume 14, Number 6, June 2019

d) AuthorizationCodeServices: similar to the ApprovalStore, authorisation codes are stored in DB.

e) configure(ClientDetailsServiceConfigurer clients): Configure the ClientDetailsService, declaring

individual clients and their properties.

f) void configure(AuthorizationServerEndpointsConfigurer endpoints): Configure of the

Authorisation Server endpoints such as a token store, authentication code service, token

customisations, user approvals and grant types.

5.4. Account Service

Account service takes responsibility for returning user information from a given a token.

6. Experiments and Findings

6.1. Experiments

This section presents the conducted experiments over the POC including CSRF attack, XSS attack, and

Brute Force attack at the API endpoints. We used Spring Mock MVC test library to simulate the real

attacking parameters and allows for repetition if needed.

6.1.1. Experiment 1 — CSRF attack

CSRF Attack Test 1 – CSRF Protection is disabled in WebSecurityConfig

In this experiment, Spring Security CSRF Protection is disabled so that the API is not protected from CSRF

attack, and an authorised client tries to create a new mobile phone without providing CSRF token.

CSRF Attack Test 2 – CSRF Protection is disabled in WebSecurityConfig

In this experiment, the CSRF is disabled in the WebSecurityConfig. As such, the API is not protected by

Spring Security CSRF Protection. Follow the CSRF configuration; this research experiments with the case an

unauthorised client tries to create a new mobile phone without providing CSRF token.

CSRF Attack Test 3 – CSRF Protection is enabled in WebSecurityConfig

In this experiment, CSRF configuration is enabled by the default configuration of the SF. With this

configuration, the experiment simulates the case an authorised client tries to create a new mobile phone

without providing CSRF token.

CSRF Attack Test 4 – CSRF Protection is enabled in WebSecurityConfig

In this experiment, CSRF configuration is enabled by the SF default configuration. After that, the

experiment simulates the case of an authorised client tries to create a new mobile phone without a valid

CSRF token. Data set up and the HTTP status code recorded are shown in Table 1.

Table 1. CSRF Attack Test 4 — CSRF Enabled – Authorised Client – Valid CSRF Token

Experiment 3c Parameter Name Value

Input Parameters WebSecurityConfig – csrf

enabled

True – CSRF is enabled

Username john

Password 123

Csrf token Is randomly generated by the

Spring Security Framework

Collected Data Http status code 201 - CREATED

6.1.2. Experiment 2 – XSS attack

In this experiment, the client initiates a POST request to create new product and examines if the response

is XSS protection enabled. Data set up and the response headers recorded as shown in Table 2.

Journal of Software

261 Volume 14, Number 6, June 2019

Table 2. XSS Protection Experiment Setup

Experiment 2a Parameter Name Value

Input

Parameters

Service Endpoint

http://localhost:8081/product

HTTP Verb POST

Product Info Name: LG Phone, SKU: 5897

Collected Data Response Header:

X-XSS-Protection

1

Response Header:

mode

block

6.1.3. Experiment 3 – Brute force attack

In this experiment, this research uses Spring MVC Test framework to simulate the case attacker using

password dictionary to perform Brute Force Attack. Data set up and the response headers recorded. The

Unit Test for Brute Force attack is implemented.

Brute Force Attack Test 1 – Normal failure login – No Brute Force detected.

In this test, this research performs two continuous login failures, which is still in the threshold of

maximum attempt allowed and simulates a normal case of user forgot username and password.

Brute Force Attack Test 2 – Continuous Login Failure that exceeds the maximum attempt allowed

In this test, this research performs three continuous login failures, which exceeds the maximum login

attempt allowed, and simulates a normal case of Brute Force attack detected.

7. Findings

In the experimental process, this research focuses on testing the POC against the common vulnerabilities

that are related to microservice API endpoints. These vulnerabilities include CSRF attack, XSS Attack, and

Brute Force attack. There are four testing scenarios performed to reflect the attacks described by OWASP. In

all scenario, security implementation and configuration in the POC has successfully protected the API

Endpoints from the attack with 100% test cases passed. In case of Brute Force attack detected, the client

account is disabled to prevent further attacking using password dictionary. This finding is the evidence to

confirm that the combination of SSF and OAuth2 protects SF-based API endpoint from common API

vulnerabilities as shown in Table 3.

Table 3. Summary of Hacking and Penetration Experiment
Hacking and Penetration Test
Scenario

Test case Passed (Yes/No)

CSRF Protection Disabled

Access with a valid credential Yes
Access with an invalid credential Yes

CSRF Protection Enabled

Access with a valid credential, invalid
CSRF token

Yes

Access with an valid credential, invalid
CSRF token

Yes

XSS Attack Validate a response header with XSS
attack protection

Yes

Brute Force Attack Normal Login Failure Yes

Brute Force Attack Detected Yes
Total Pass Rate 100%

Finally, we were able to design and develop the recommended software architecture together with the

implementation guide for the POC in Section 4 Even though the POC is just a simplified version of an

Journal of Software

262 Volume 14, Number 6, June 2019

Inventory Management System, it still covers the essential features of a typical MSA application with

OAuth2 authorisation standard.

8. Conclusion and Future Work

In an MSA application, microservices communicate with each other through the service API endpoints. In

other words, an API endpoint is a location where the services can access and attain the resources they need

to perform their function. The API endpoint plays a vital role in guaranteeing the correct functioning of the

services and systems that interact with it and is the interface where the data are exchanged between

services. Thus, security for API endpoint is one of the key security factors in an MSA application. The

review of existing literature and related works found that there exists no experimental result to confirm the

effectiveness of SF, SSF, and OAuth2 when these frameworks and security standard are used to secure the

API endpoints in an MSA architecture. Therefore, this research implemented a POC of an inventory

management system using MSA as an experimental system to examine the integration between the

technologies. The experimental results show that the POC successfully protected the resources from the

CSRF attack, XSS attack and Brute Force attack. Moreover, the POC disabled the user’s account in case of

Brute Force attack detected. Thus, it is evident that SSF and OAuth2 protects SF-based API endpoint from

common API vulnerabilities. As a continuation of this research, in the future, the researcher wishes to

extend the research to cover the security for the whole API implementations, including the security for

other application layers such as business layer, data access layer. As such, suggest a more comprehensive

API security solution for the Java-based microservice application.

References

[1] A., K., Torkura, I.H., M., Sukmana, & Meinel, C. (2017). Integrating continuous security assessments in

microservices and cloud native applications. Proceedings of the10th International Conference on Utility

and Cloud Computing (pp. 171-180). Austin, Texas, USA: ACM. doi:10.1145/3147213.3147229

[2] ThoughtWorks. (2014). Microservices. Retrieved August 21, 20018, from Technology Radar:

https://www.thoughtworks.com/radar/techniques/microservices

[3] Google. (2018, Aug 01). Google Trends - Web Search interest: Microservices. Retrieved August 21, 20018

from Google Trends: https://www.google.com/trends/explore?hl=en#q=microservices

[4] Villamizar, M., Garce s, O., Castro, H., Verano, M., Salamanca, L., Casallas, R., & Gil, S. (2015). Evaluating

the monolithic and the microservice architecture pattern to deploy web applications in the cloud.

Proceedings of the 2015 10th Computing Colombian Conference.

[5] Kritikos, K., & Massonet, P. (2016). An integrated meta-model for cloud application security modelling.

Procedia Computer Science, 84-93.

[6] Taibi, D., Lenarduzzi, V., & Pahl, C. (2017). Processes, motivations and Issues for migrating to

microservices architectures: An empirical investigation. IEEE Cloud Computing, 4(5), 22-32.

[7] Alshuqayran, N., Ali, N., & Evans, R. (2016). A systematic mapping study in microservice architecture.

Proceedings of the 2016 IEEE 9th International Conference Service-Oriented Computing and Applications

(SOCA) (pp. 44-51).

[8] Harms, H., Rogowski, C., & Iacono, L. L. (2017). Guidelines for adopting frontend architectures and

patterns in microservices-based systems. Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering (pp. 902-907). Paderborn, Germany: ACM.

[9] Salibindla, J. (2018). Microservices API security. International Journal of Engineering Research &

Technology, 7(1), 277-281.

[10] Xie, L., Han, L., Li, M.-H., & Dong, X.-L. (2017). Design and implement of spring security-based T-RBAC.

Journal of Software

263 Volume 14, Number 6, June 2019

Proceedings of the 2017 International Conference on Wireless Communications, Networking and

Applications (pp. 183-188). Shenzhen, China: ACM.

[11] Sun, Y., Nanda, S., & Jaeger, T. (2015). Security-as-a-service for microservices-based cloud applications.

Proceedings of the 2015 IEEE 7th International Conference Cloud Computing Technology and Science (pp.

50-57).

[12] Syed, M. H., & Fernandez, E. B. (2017). The container manager pattern. Proceedings of the 22nd

European Conference on Pattern Languages of Programs (pp. 1-9). Irsee, Germany: ACM.

doi:10.1145/3147704.3147735

Oras Baker received his PhD in artificial intelligence from the University of Malaya in

2009. He is currently the head of School of Computing and the programme manager for

postgraduate studies and master of IT at the Southern Institute of Technology,

Invercargill, New Zealand. His research interests include artificial intelligence, web

intelligence, virtual and augmented reality techniques, data mining, IOT, and energy

efficiency.

Journal of Software

264 Volume 14, Number 6, June 2019

