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Abstract: Efficient performance prediction at source code level is essential in reducing the turnaround time 

of software development, particularly when the source code is subject to changes due to modification of 

problem specification. In this paper, we investigate and compare five performance prediction models from 

practical standpoint to determine the usefulness of these models. To verify the effectiveness of these models, 

we select a set of functions from PHY DSP Benchmark and TIC64 DSP processor for experiment. Comparing 

the predicted performance to the actual measured execution time, we observed that the relative prediction 

error generated from two of the five models are low and can thus be used for practical purposes.  
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1. Introduction 

Performance prediction is an essential phase of DSP software development. It can be carried out at either 

the source code or lower level. Prediction at source level is much faster because it does not require the code 

to be compiled and executed. Thus, performance prediction at source code level helps reduce the turnaround 

time of software development especially when the source code must be modified due to changes in problem 

specification [1]-[20].  

Over the past few years, we have separately investigated and developed five different models to estimate 

the execution time of DSP software at source code level. The formulations of these models are presented in 

section 2. To determine the effectiveness of these models in practice, we need to compute the predicted 

execution time of practical DSP application software and compare the computed result with experimentally 

measured data. 

To this end, we have chosen eight most frequently used functions from the Long Term Evolution or LTE 

Uplink Receiver, a major part of the PHY benchmark [10] as the testing set of samples. PHY is an open-source 

benchmark developed by Chalmers University of Technology of Sweden and Ericson. It provides a realistic 

implementation of the baseband processing for an LTE mobile base station. Its source code is written in C and 

can be freely downloaded from [19]. In choosing the set of samples for the testing set, we used gprof, a popular 

profiling tool in UNIX, to make sure that the selected set is indeed the most frequently executed kernel 

functions in the PHY benchmark. 

In Section 2 below, we provide a summary description of our five prediction models. Section 3 discusses 

the experimental procedures including how experimental results are gathered and organized. Section 4 
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discusses how the experimental results are used as a basis to predict the performance of whole system, i.e., 

the entire PHY benchmark application. Sections 5 presents related work reported by others. Sections 6 

discusses the factors that affect the effectiveness of the five models. 

2. Prediction Models  

In this section, we discuss our five source code level prediction models presented in this paper, which 

includes a simple analytical model, an enhanced version of the simple analytical model, a precise analytical 

model taking into consideration the hardware-specific features, a statistical model using linear regression, 

and a comprehensive model combining both analytical and statistical models.  

All five models focus on predicting the execution time of loops because loop execution alone predominates 

the total execution time of the entire DSP application. In fact, as reported in [13], loop execution takes up 70% 

execution time of the selectable mode vocoder application. 

2.1.   Simple Analytical Model 

The simple analytical model is based on our earlier work on DSP processor [12]. We use a simple formula 

to calculate the loop execution time in terms of the clock cycles. Considering a two-level nested loops, the 

predicted execution time or PET can be expressed as follows: 

 

PET = Nouter * (Louter + Ninner*Linner)                  (1) 

 

where Ninner and Nouter are the numbers of iterations of the inner and outer loops; Linner and Louter are the 

numbers of statements in the inner loop and the outer loop, respectively.     

2.2.   Enhanced Analytical Model 

Compared to the measured values, we observed that the simple analytical model tends to under-predict 

the performance for most of the samples being investigated. The major reason is that the inner loops of those 

samples make calls to some small complex functions which incur extra execution time not fully accounted for 

in the simple analytic model. If the assembly code of a simple sample is known, we can find the ratio of its 

inner loop body length in assembly code to the length of the source code. This ratio can then be used to adjust 

the predicted time of those under-predicted testing samples. For example, in our experiment we select a 

simple loop from sample #31 cholsolve_4xX_complex and find the ratio equals 3. We then multiply Linner by 3 

in (1) to compute the PET or predicted execution time of those testing samples that under-predict the 

performance. 

2.3.   Precise Analytical Model  

Based on our earlier work on source level loop optimization [11] we proposed a precise analytical model 

for performance prediction, which is machine-dependent and needs detailed hardware information such as 

the resource limitation of parallel function units and the latencies of instructions. With the understanding 

that the source code is written in C, the algorithm of the model is listed below: 

1) Decomposing C statements in the innermost loop to DSP operations. 

2) Building the data dependency graph DDG of DSP operations under the limitation of resources and 

instruction latencies. 

3) Optimizing the inner loop body based on DDG with list scheduling or source level software pipelining 

[11]. 
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4) Using the length of optimized loop body to replace Linner in simple analytical model to calculate the 

predicted execution time. 

Fig. 1 presents an example of TI C64 DSP processor. The latencies of its memory load, multiply, and branch 

instructions are 5, 2, and 6 clock cycles respectively; the rest of instructions executes in one clock cycle. Fig. 

1(a) shows the source code of a simple loop in chest function of PHY, Fig. 1(b) and (c) show the DSP operations 

inside the loop body from the C statements and the result of list scheduling. Fig. 1(d) is the result after source 

level software pipelining in which Linner = 1. 

 

 
Fig. 1. Example of precise analytical model. 

 

2.4.  Statistic Model   

Our statistical model uses the popular statistic tool IBM SPSS-23 to perform multiple linear regression [5]. 

SPSS-23 generates (2) below to predict the execution time for each testing sample.  

 PET   = b0+ ∑ 𝑏
𝑝
𝑗=1 jXj                                (2) 

where PET, the predicted execution time is the dependent variable; X1, X2, ... Xp are independent variables 

representing attributes of the corresponding testing sample; and b0, b1, b2, … bp are coefficients generated 

from attributes of the training samples by SPSS. The attributes of all training samples are listed in Table 1. 

We take all five functions with different input data from the tele-communication group of EEMBC [18] and 

all eight functions of SMV benchmarks [4] as the samples of training set. EEMBC benchmark is an industry 

standard for embedded processors and software developed by the Embedded Microprocessor Benchmark 

Consortium, a non-profit organization [18]. SMV benchmark is developed by us in 2006 which consists of 

eight kernels chosen from the Selectable Mode Vocoder (SMV) application program for 3G wireless 

communications. The testing set contains eight samples from PHY same as we use for analytical models. 

We gather 17 static attributes from the source code of the training and testing sets as shown in Table 1.  
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Table 1. Attributes of Training and Testing Samples 
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1 Autocorrelation - Data1 5 8 12 3 2 1 2 100 0 3 0 0 2 1 16 8 200 509

2 Autocorrelation - Data2 5 16 1017 3 2 1 2 16272 0 3 0 0 2 1 1024 16 32544 49193

3 Autocorrelation - Data3 5 32 485 3 2 1 2 15520 0 3 0 0 2 1 500 32 31040 47297

4 Convolutional Encoder - Data1 13 1024 5 5 3 2 3 5120 0 5 0 1 5 1 512 512 15360 42014

5 Convolutional Encoder - Data2 13 1024 4 5 3 2 3 4096 0 5 0 1 5 1 512 512 12288 41501

6 Convolutional Encoder - Data3 13 1024 3 5 3 2 3 3072 0 5 0 1 5 1 512 512 9216 40297

7 Fixed-point Bit Alloc. - Data2 17 80 256 4 11 1 2 20480 0 7 0 3 6 1 256 256 225280 159448

8 Fixed-point Bit Alloc. - Data3 17 70 20 4 11 1 2 1400 0 7 0 3 6 1 20 20 15400 20968

9 Fixed Point Bit Alloc. - Data6 17 130 100 4 11 1 2 13000 0 7 0 3 6 1 100 100 143000 114856

10 FFT/IFFT - Data1 22 8 128 5 14 3 3 1024 0 5 0 0 2 2 2048 5500 14336 45218

11 FFT/IFFT - Data2 22 8 128 5 14 3 3 1024 0 5 0 0 2 2 2525 5635 14336 45218

12 FFT/IFFT - Data3 22 8 128 5 14 3 3 1024 0 5 0 0 2 2 2717 3549 14336 45218

13 Viterbi Decoder - Data1 167 42 128 9 48 2 2 5376 0 17 8 3 1 1 1196 1196 258048 233467

14 Viterbi Decoder - Data2 167 42 128 9 48 2 2 5376 0 17 8 3 1 1 2109 2109 258048 233478

15 Viterbi Decoder - Data3 167 42 128 9 48 2 2 5376 0 17 8 3 1 1 2034 2034 258048 233483

16 Viterbi Decoder - Data4 167 42 128 9 48 2 2 5376 0 17 8 3 1 1 2395 2395 258048 233483

17 FLT_filterAP_fx 11 170 9 8 3 1 2 1530 0 3 0 0 4 2 724 4 4590 3197

18 LPC_Chebps_fx 16 1 3 8 7 1 1 3 0 1 0 0 3 1 16 2 21 56

19 LPC_autocorrelation_fx 9 17 240 3 7 1 2 4080 0 4 2 0 5 1 622 34 28560 7965

20 FCS_Excit_Enhance_fx 31 80 20 1 6 3 2 1600 0 12 1 0 8 1 398 340 9600 12857

21 LSF_Q_New_ML_search_fx 30 1152 10 14 4 5 3 11520 0 32 0 3 11 3 2900 380 46080 45729

22 c_fft_fx 34 6 128 4 16 3 3 768 0 15 0 1 3 1 512 256 12288 10565

23 FCB_add_sub_contrib_phi 19 1 8 9 10 1 1 8 0 6 0 2 9 1 3458 4 80 243

24 PIT_LT_Corr_Rmax_fx 45 68 80 31 2 3 3 5440 0 10 0 0 7 3 848 8 10880 21079

31 cholsolve_4xX_complex 34 2 3 5 23 2 3 6 3 11 8 0 3 1 128 64 138 702

25 mf 10 1 1200 0 9 2 1 1200 2 3 1 0 5 1 9600 4800 10800 70431

26 soft_demap 18 43200 6 1 14 1 2 259200 2 8 2 1 5 1 4800 4800 3628800 10374917

27 ifft 40 10 700 17 17 1 3 7000 2 5 0 0 3 1 2400 2400 119000 110922

28 chest 10 3 300 0 6 2 1 900 10 4 0 0 5 1 4800 4800 5400 3423

29 fft 38 10 700 17 17 1 3 7000 4 5 0 0 3 1 2400 2400 119000 109975

30 ant_comb 29 1 1200 0 29 1 1 1200 1 8 7 0 4 1 4800 4800 34800 479246

32 matrix_a_a_herminte_plus_b 60 3 3 1 50 3 1 9 8 21 11 0 5 1 128 64 450 3143

33 matrix_mult_4xX_complex 27 3 3 1 26 1 2 9 3 8 7 0 4 1 128 64 234 1569
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Below is the list and description of those attributes. 

1) Number of statements in a sample. 

2) Number of statements in the inner loops.  

3) Number of statements in the outer loop, which excludes the statements in the inner loops. 

4) Number of iterations of the inner loops. 

5) Number of iterations of the outer loop. 

6) Number of loops, which includes all loops in the sample. 

7) Number of levels of nested loop. 

8) Number of total iterations, which equals the number of iterations of the outer loop * the number of 

iterations of inner loop.  

9) Number of complex variables of inner loop. 

10) CC*, a new metric we defined in 2006 [4] to measure code complexity based on Cyclomatic 

Complexity CC. A program can be graphically depicted by a control-flow graph. In a control-flow 

graph, CC = e-nn+np+1, where e, nn and np denote the number of edges, nodes, and connected 

components, respectively. We extended the definition of CC by taking into consideration of 

instruction level parallelism of the complex nested levels of loops and conditional branches. The 
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modified cyclomatic complexity CC* equals the sum of numbers of loops and branches in the 

program, plus the number of nested levels of loops and branches. 

11) Total number of function calls inside a sample. 

12) Total number of branches inside a sample. 

13) Total number of input variables of a sample. 

14) Total number of output variables of a sample. 

15) Total data size of all input variables measured in bytes. 

16) Total data size of all output variables measured in bytes. 

17) Ninner * Linner, the major parameter used to predict performance in analytical models.  

2.5.  Comprehensive Prediction Model 

We proposed an approach [5], which is referred to as the comprehensive model in this paper. The model 

combines the statistical model with the analytical model described in sections 2.4 and 2.1, respectively, and 

it uses some heuristics, as described below:  

1) Adding to the model a new independent variable Repeating Times RT as an additional attribute. Table 

1 shows that the execution time of some samples, such as samples 1, 18, and 23, in the training set is 

very small relative to that of other samples. By repeating RT times, the wide range of variation among 

samples’ execution time can be reduced. An iterative algorithm has been designed to determine the 

best value of RT for the training set [5]. With this new attribute, SPSS generates (3) which can be used 

to predict the execution time of testing samples.  

 

 APETk=(b0+ ∑ 𝑏
𝑝
𝑗=1 jXjk)+bRTRTk            (3) 

 

where APETk is the adjusted predict execution time of testing samplek generated by SPSS, Xjk is the value of 

jth-attribute in that sample. The value of Ninner * Linner from analytical model are used as the values for RTk to 

determine the execution time of the kth sample of the testing set by using (4) below. 

 PETk  = APETk/RTk            (4) 

 From the source code and assembly code of PHY kernel functions we notice that their kernel functions are 

quite different from the typical DSP functions in EEMBC and SMV, e.g. there is no complex variables in EEMBC 

and SMV functions. For this reason, we select a typical PHY kernel function, sample #31 with three complex 

variables, as a new member of the training set. 

2) From the analytical model, we realize that some function calls and some optimization technique such 

as software pipelining can have large impact on execution time. To compensate these factors, we have 

designed and employed two heuristics to adjust RTk. 

3. Experiments 

We use TI C64 DSP processor as the hardware platform for our experiments. All samples in the training 

and testing sets are compiled by TIC64 compiler and run on TIC64 simulator. The execution time as the 

performance metric is gathered from that simulator in terms of number of CPU clock cycles. We use relative 

errors RE and average absolute relative error ARE to describe the prediction accuracy. RE and ARE are defined 

as follows: 
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Table 2. Experiment Results of Five Models 

Name No.
simple 

analytic

enhanced 

analytic

precise 

analytic
statistic

compre-

hensive

mf 25 -71.0% -37.0% -18.2% -37.8% -34.5%

soft_demap 26 -63.8% 6.2% 15.8% -75.9% -9.4%

ifft 27 7.3% 7.3% 23.9% -51.3% 5.5%

chest 28 57.8% 57.8% -3.0% 689% -22.4%

fft 29 8.2% 8.2% 25.0% -52.8% 7.9%

ant_comb 30 -92.7% -78.2% -47.7% -99.8% 0.0%

matrix_a_a_herminte_ 32 -83.4% -50.2% -34.8% -1617% -28.3%

matrix_mult_4xX_com 33 -79.9% -40.1% -7.1% -1897% -25.5%

58.0% 35.6% 21.9% 565% 16.7%ARE

Prediction ModlesTesting Sample

 
 

RE = [(Predicted – Actual)/Actual] × 100%                   (5) 

ARE = (∑ |𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟𝑀
𝑖=1 i|)/M                     (6)  

In (5) and (6), the actual values are measured in experiments and M is the total number of testing samples, 

which equals 8. Table 2 presents the experimental results in terms of RE and ARE of all five models.  

4. Predict the Performance of Whole System with Gprof 

We use gprof, a popular UNIX profiling tool, for our experiments. In order to use gprof, we need to enable 

profiling while compile our programs, and then execute the programs on the host computer to produce the 

profiling data. Finally run gprof on the profiling data file to produce the analysis information, which includes 

function call graph and an overview of the execution time for all the functions. We use the called times of the 

major functions generated by gprof and the predicted clock cycles for these functions to compute the 

predicted performance of the whole system. Equation (7) shows how the predicted execution time of all 

major functions is computed. Comparing it with the actual measured system execution time, we can calculate 

the relative prediction errors for all five models. The results for both the predicted execution time of all major 

functions and the relative prediction errors for all five models are presented in Table 3.  

The predicted execution time of all major functions  

    =        ∑ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑛
𝑖=1 i*called timesi                (7) 

where called timesi is the number of time the ith function gets called.  

5. Related Work 

 Reference [6] uses analytical modeling to predict the execution times of parallel programs. Reference [21] 

builds DDGs of basic blocks of DSP assembly code generated from C statements, uses list scheduling to 

determine their clock cycles, and then multiplies the number of execution time of those C statements collected 

by a host computer to predict the performance of a DSP processor. Based on programs ran on many different 

machines, [16] gathers program characteristics such as instruction mix, distribution of operands, and basic 

block size, then makes use of the squared Euclidean distance to identify the similarities among programs and 
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uses the result to predict the performance of these programs on different hardware. Reference [3] collects 

certain static and dynamic microarchitecture-independent characteristics including instruction mix and 

cache miss rate from SPEC 2000 benchmark programs and uses their similarity to predict program 

performance on different hardware using three different analytical models. 

Many articles use various statistical approaches to predict the performance of software on target computers. For example, 

[20] uses various types of instructions as attributes for multiple linear regression, [17] uses a regression-tree-based 

modeling, and [1] uses a nonlinear regression model. References [10] and [8] use various machine training approaches 

to predict software performance on multi-core processors. Reference [7] uses both static attributes such as numbers of 

different types of instructions and dynamic attributes such as number of cache misses for regression. Reference [2] 

proposes cross-architecture performance prediction. It is a machine training based technique using both static and 

dynamic attributes from many programs from some/different benchmarks.  They use R package to implement the 

regression and predict the execution time on a GPU from a single thread CPU with an average error of 26.9%. Using a 

constrained locally sparse linear regression algorithm, [15] proposes a training-based analytical cross-platform 

performance prediction.  

 

Table 3.  Performance Prediction of Whole System 

Actual 

execution 

t ime

called  

t imes  

from 

gpro f

To tal 

execution 

t ime
1

pred icted  

execution 

t ime

To tal 

execution 

t ime in 

who le 

sys tem

pred icted  

execution 

t ime

To tal 

execution 

t ime in who le 

sys tem

pred icted  

execution 

t ime

To tal 

execution 

t ime in 

who le 

sys tem

pred icted  

execution 

t ime

To tal 

execution 

t ime in 

who le 

sys tem

mf 70 ,431 24 1,690 ,344 20 ,400 489 ,600 44 ,400 1,065,600 57,620 1,382 ,880 46 ,122 1,106 ,917

so ft_demap 10 ,374 ,917 1 10 ,374 ,917 3 ,758 ,484 3 ,758 ,484 11,016 ,252 11,016 ,252 12 ,009 ,870 12 ,009 ,870 9 ,399 ,476 9 ,399 ,476

ifft 110 ,922 60 6 ,655,320 119 ,000 7,140 ,000 119 ,000 7,140 ,000 137,486 8 ,249 ,160 117,073 7,024 ,391

ches t 3 ,423 24 82 ,152 5,400 129 ,600 5,400 129 ,600 3 ,322 79 ,728 2 ,656 63 ,749

fft 109 ,975 24 2 ,639 ,400 119 ,000 2 ,856 ,000 119 ,000 2 ,856 ,000 137,480 3 ,299 ,520 118 ,700 2 ,848 ,802

ant_comb 479 ,246 36 17,252 ,856 34 ,803 1,252 ,908 104 ,403 3 ,758 ,508 250 ,806 9 ,029 ,016 479 ,124 17,248 ,473

matrix_a_a_herminte_ ... 3 ,143 2 ,400 7,543 ,200 522 1,252 ,800 1,566 3 ,758 ,400 2 ,048 4 ,915,200 2 ,253 5,406 ,724

matrix_mult_4xX_com... 1,569 2 ,400 3 ,765,600 316 758 ,400 940 2 ,256 ,000 1,458 3 ,499 ,200 1,169 2 ,806 ,475

to tal 50 ,003 ,789 17,637,792 31,980 ,360 42 ,464 ,574 45,905,008

Relat ive p red ict ion erro r comparing  with to tal 8  functions -64 .73% -36 .04% -15.08% -8 .20%

Relative p red ict ion erro r comparing  with who le PHY sys tem -67.50% -41.70% -21.75% -15.41%

note:1  To tal measured   CK o f 8  kernel funcitons  = 50 ,003 ,789 .   Actual execution t ime o f who le PHY = 54 ,266 ,642 . 

Function

Actual measured  values Simple anlytic model Ad jus ted  analytic  model Precise analytic  model Comprehensive  model

 
 

6. Discussion 

1) Table 2 summarizes the experimental results of all five models investigated in this paper. From it we 

observe that the simple analytical model has large under-prediction errors, which is caused by large 

overhead in assembler code especially when those samples involve many function calls. However, we 

also observe that some samples have over-prediction problem. This is due to the shortened inner loop 

body of assembly code generated by the loop optimization of compiler. The enhanced analytical model 

can reduce the under-prediction errors if we can get the length ratio between Linner of assembly code 

and source code.  

2) To further improve the accuracy of performance prediction, even the precise analytical model needs 

detailed information of hardware. Nevertheless, its predicted errors, as shown in Tables 2 and 3, is 

much improved to reach the acceptable level.  
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3) Table 2 shows that the prediction errors of the statistical model are very large because the number of 

training samples used in the paper is small. Also, the values of attributes among different samples vary 

over a wide range.  

4) The comprehensive model combines statistical and analytical approaches; it also adds some sample 

from PHY to the training set. As shown in Table 3, its prediction error becomes reasonably small to be 

in practice to predict the performance of the entire PHY system; this is shown in Table 3. It is the best 

among the five models investigated in this paper for predicting the DSP performance at source level. 

5)    Both the precise analytical and the comprehensive models can be combined with other works [14] to 

predict the performance of source code running on different hardware. 

6) Currently we are working on a project using machine learning techniques to predict DSP performance 

at source code level. 
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