
Comparing DSP Software Performance Prediction Models
at Source Code Level — From Analytical to Statistical

Erh-Wen Hu1, Weihua Liu1, Bogong Su1*, Jian Wang2

1 Dept. of Computer Science, William Paterson University, Wayne, NJ, USA
2 Mobile Broadband Software Design, Ericsson, Ottawa, ON, Canada

*Corresponding author: Tel: 1 973 720 2979; email: sub@wpunj.edu
Manuscript submitted September 25, 2018; accepted January 23, 2019.
doi: 10.17706/jsw.14.6. 247-256

Abstract: Efficient performance prediction at source code level is essential in reducing the turnaround time

of software development, particularly when the source code is subject to changes due to modification of

problem specification. In this paper, we investigate and compare five performance prediction models from

practical standpoint to determine the usefulness of these models. To verify the effectiveness of these models,

we select a set of functions from PHY DSP Benchmark and TIC64 DSP processor for experiment. Comparing

the predicted performance to the actual measured execution time, we observed that the relative prediction

error generated from two of the five models are low and can thus be used for practical purposes.

Key words: Performance prediction, source code level, analytical model, statistic model.

1. Introduction

Performance prediction is an essential phase of DSP software development. It can be carried out at either

the source code or lower level. Prediction at source level is much faster because it does not require the code

to be compiled and executed. Thus, performance prediction at source code level helps reduce the turnaround

time of software development especially when the source code must be modified due to changes in problem

specification [1]-[20].

Over the past few years, we have separately investigated and developed five different models to estimate

the execution time of DSP software at source code level. The formulations of these models are presented in

section 2. To determine the effectiveness of these models in practice, we need to compute the predicted

execution time of practical DSP application software and compare the computed result with experimentally

measured data.

To this end, we have chosen eight most frequently used functions from the Long Term Evolution or LTE

Uplink Receiver, a major part of the PHY benchmark [10] as the testing set of samples. PHY is an open-source

benchmark developed by Chalmers University of Technology of Sweden and Ericson. It provides a realistic

implementation of the baseband processing for an LTE mobile base station. Its source code is written in C and

can be freely downloaded from [19]. In choosing the set of samples for the testing set, we used gprof, a popular

profiling tool in UNIX, to make sure that the selected set is indeed the most frequently executed kernel

functions in the PHY benchmark.

In Section 2 below, we provide a summary description of our five prediction models. Section 3 discusses

the experimental procedures including how experimental results are gathered and organized. Section 4

Journal of Software

247 Volume 14, Number 6, June 2019

discusses how the experimental results are used as a basis to predict the performance of whole system, i.e.,

the entire PHY benchmark application. Sections 5 presents related work reported by others. Sections 6

discusses the factors that affect the effectiveness of the five models.

2. Prediction Models

In this section, we discuss our five source code level prediction models presented in this paper, which

includes a simple analytical model, an enhanced version of the simple analytical model, a precise analytical

model taking into consideration the hardware-specific features, a statistical model using linear regression,

and a comprehensive model combining both analytical and statistical models.

All five models focus on predicting the execution time of loops because loop execution alone predominates

the total execution time of the entire DSP application. In fact, as reported in [13], loop execution takes up 70%

execution time of the selectable mode vocoder application.

2.1. Simple Analytical Model

The simple analytical model is based on our earlier work on DSP processor [12]. We use a simple formula

to calculate the loop execution time in terms of the clock cycles. Considering a two-level nested loops, the

predicted execution time or PET can be expressed as follows:

PET = Nouter * (Louter + Ninner*Linner) (1)

where Ninner and Nouter are the numbers of iterations of the inner and outer loops; Linner and Louter are the

numbers of statements in the inner loop and the outer loop, respectively.

2.2. Enhanced Analytical Model

Compared to the measured values, we observed that the simple analytical model tends to under-predict

the performance for most of the samples being investigated. The major reason is that the inner loops of those

samples make calls to some small complex functions which incur extra execution time not fully accounted for

in the simple analytic model. If the assembly code of a simple sample is known, we can find the ratio of its

inner loop body length in assembly code to the length of the source code. This ratio can then be used to adjust

the predicted time of those under-predicted testing samples. For example, in our experiment we select a

simple loop from sample #31 cholsolve_4xX_complex and find the ratio equals 3. We then multiply Linner by 3

in (1) to compute the PET or predicted execution time of those testing samples that under-predict the

performance.

2.3. Precise Analytical Model

Based on our earlier work on source level loop optimization [11] we proposed a precise analytical model

for performance prediction, which is machine-dependent and needs detailed hardware information such as

the resource limitation of parallel function units and the latencies of instructions. With the understanding

that the source code is written in C, the algorithm of the model is listed below:

1) Decomposing C statements in the innermost loop to DSP operations.

2) Building the data dependency graph DDG of DSP operations under the limitation of resources and

instruction latencies.

3) Optimizing the inner loop body based on DDG with list scheduling or source level software pipelining

[11].

Journal of Software

248 Volume 14, Number 6, June 2019

4) Using the length of optimized loop body to replace Linner in simple analytical model to calculate the

predicted execution time.

Fig. 1 presents an example of TI C64 DSP processor. The latencies of its memory load, multiply, and branch

instructions are 5, 2, and 6 clock cycles respectively; the rest of instructions executes in one clock cycle. Fig.

1(a) shows the source code of a simple loop in chest function of PHY, Fig. 1(b) and (c) show the DSP operations

inside the loop body from the C statements and the result of list scheduling. Fig. 1(d) is the result after source

level software pipelining in which Linner = 1.

Fig. 1. Example of precise analytical model.

2.4. Statistic Model

Our statistical model uses the popular statistic tool IBM SPSS-23 to perform multiple linear regression [5].

SPSS-23 generates (2) below to predict the execution time for each testing sample.

 PET = b0+ ∑ 𝑏
𝑝
𝑗=1 jXj (2)

where PET, the predicted execution time is the dependent variable; X1, X2, ... Xp are independent variables

representing attributes of the corresponding testing sample; and b0, b1, b2, … bp are coefficients generated

from attributes of the training samples by SPSS. The attributes of all training samples are listed in Table 1.

We take all five functions with different input data from the tele-communication group of EEMBC [18] and

all eight functions of SMV benchmarks [4] as the samples of training set. EEMBC benchmark is an industry

standard for embedded processors and software developed by the Embedded Microprocessor Benchmark

Consortium, a non-profit organization [18]. SMV benchmark is developed by us in 2006 which consists of

eight kernels chosen from the Selectable Mode Vocoder (SMV) application program for 3G wireless

communications. The testing set contains eight samples from PHY same as we use for analytical models.

We gather 17 static attributes from the source code of the training and testing sets as shown in Table 1.

Journal of Software

249 Volume 14, Number 6, June 2019

Table 1. Attributes of Training and Testing Samples

1)

N
o.

 o
f s

ta
te

m
en

ts

N
o.

 o
f i

te
ra

ti
on

s
in

ou
te

r

N
o.

of
 it

er
at

io
ns

 in
 in

ne
r

N
o.

 o
f s

ta
te

m
en

ts
 in

N
o.

 o
f s

ta
te

m
en

ts
 in

N
o.

 o
f l

oo
ps

le
ve

ls
 o

f n
es

te
d

lo
op

s

to
ta

l i
te

ra
ti

on
s

N
o.

 o
f C

om
pl

ex
 V

ar

C
C

*

fu
nc

ti
on

 c
al

ls

br
an

ch
es

N
o.

 o
f i

np
ut

s

N
o.

 o
f o

ut
pu

ts
Si

ze
s

of
 in

pu
t d

at
a

(b
yt

e)
Si

ze
s

of
 o

ut
pu

t d
at

a

(b
yt

e)

N
in

ne
r *

 L
in

ne
r

1 Autocorrelation - Data1 5 8 12 3 2 1 2 100 0 3 0 0 2 1 16 8 200 509

2 Autocorrelation - Data2 5 16 1017 3 2 1 2 16272 0 3 0 0 2 1 1024 16 32544 49193

3 Autocorrelation - Data3 5 32 485 3 2 1 2 15520 0 3 0 0 2 1 500 32 31040 47297

4 Convolutional Encoder - Data1 13 1024 5 5 3 2 3 5120 0 5 0 1 5 1 512 512 15360 42014

5 Convolutional Encoder - Data2 13 1024 4 5 3 2 3 4096 0 5 0 1 5 1 512 512 12288 41501

6 Convolutional Encoder - Data3 13 1024 3 5 3 2 3 3072 0 5 0 1 5 1 512 512 9216 40297

7 Fixed-point Bit Alloc. - Data2 17 80 256 4 11 1 2 20480 0 7 0 3 6 1 256 256 225280 159448

8 Fixed-point Bit Alloc. - Data3 17 70 20 4 11 1 2 1400 0 7 0 3 6 1 20 20 15400 20968

9 Fixed Point Bit Alloc. - Data6 17 130 100 4 11 1 2 13000 0 7 0 3 6 1 100 100 143000 114856

10 FFT/IFFT - Data1 22 8 128 5 14 3 3 1024 0 5 0 0 2 2 2048 5500 14336 45218

11 FFT/IFFT - Data2 22 8 128 5 14 3 3 1024 0 5 0 0 2 2 2525 5635 14336 45218

12 FFT/IFFT - Data3 22 8 128 5 14 3 3 1024 0 5 0 0 2 2 2717 3549 14336 45218

13 Viterbi Decoder - Data1 167 42 128 9 48 2 2 5376 0 17 8 3 1 1 1196 1196 258048 233467

14 Viterbi Decoder - Data2 167 42 128 9 48 2 2 5376 0 17 8 3 1 1 2109 2109 258048 233478

15 Viterbi Decoder - Data3 167 42 128 9 48 2 2 5376 0 17 8 3 1 1 2034 2034 258048 233483

16 Viterbi Decoder - Data4 167 42 128 9 48 2 2 5376 0 17 8 3 1 1 2395 2395 258048 233483

17 FLT_filterAP_fx 11 170 9 8 3 1 2 1530 0 3 0 0 4 2 724 4 4590 3197

18 LPC_Chebps_fx 16 1 3 8 7 1 1 3 0 1 0 0 3 1 16 2 21 56

19 LPC_autocorrelation_fx 9 17 240 3 7 1 2 4080 0 4 2 0 5 1 622 34 28560 7965

20 FCS_Excit_Enhance_fx 31 80 20 1 6 3 2 1600 0 12 1 0 8 1 398 340 9600 12857

21 LSF_Q_New_ML_search_fx 30 1152 10 14 4 5 3 11520 0 32 0 3 11 3 2900 380 46080 45729

22 c_fft_fx 34 6 128 4 16 3 3 768 0 15 0 1 3 1 512 256 12288 10565

23 FCB_add_sub_contrib_phi 19 1 8 9 10 1 1 8 0 6 0 2 9 1 3458 4 80 243

24 PIT_LT_Corr_Rmax_fx 45 68 80 31 2 3 3 5440 0 10 0 0 7 3 848 8 10880 21079

31 cholsolve_4xX_complex 34 2 3 5 23 2 3 6 3 11 8 0 3 1 128 64 138 702

25 mf 10 1 1200 0 9 2 1 1200 2 3 1 0 5 1 9600 4800 10800 70431

26 soft_demap 18 43200 6 1 14 1 2 259200 2 8 2 1 5 1 4800 4800 3628800 10374917

27 ifft 40 10 700 17 17 1 3 7000 2 5 0 0 3 1 2400 2400 119000 110922

28 chest 10 3 300 0 6 2 1 900 10 4 0 0 5 1 4800 4800 5400 3423

29 fft 38 10 700 17 17 1 3 7000 4 5 0 0 3 1 2400 2400 119000 109975

30 ant_comb 29 1 1200 0 29 1 1 1200 1 8 7 0 4 1 4800 4800 34800 479246

32 matrix_a_a_herminte_plus_b 60 3 3 1 50 3 1 9 8 21 11 0 5 1 128 64 450 3143

33 matrix_mult_4xX_complex 27 3 3 1 26 1 2 9 3 8 7 0 4 1 128 64 234 1569

T
es

tin
g

se
t

PH
Y

No.

E
xe

cu
ti

on
 T

im
e

Attriburtes

B
en

ch
m

ar
k

Function name

T
ra

in
in

g
se

t

EE
M

BC
SM

V

Below is the list and description of those attributes.

1) Number of statements in a sample.

2) Number of statements in the inner loops.

3) Number of statements in the outer loop, which excludes the statements in the inner loops.

4) Number of iterations of the inner loops.

5) Number of iterations of the outer loop.

6) Number of loops, which includes all loops in the sample.

7) Number of levels of nested loop.

8) Number of total iterations, which equals the number of iterations of the outer loop * the number of

iterations of inner loop.

9) Number of complex variables of inner loop.

10) CC*, a new metric we defined in 2006 [4] to measure code complexity based on Cyclomatic

Complexity CC. A program can be graphically depicted by a control-flow graph. In a control-flow

graph, CC = e-nn+np+1, where e, nn and np denote the number of edges, nodes, and connected

components, respectively. We extended the definition of CC by taking into consideration of

instruction level parallelism of the complex nested levels of loops and conditional branches. The

Journal of Software

250 Volume 14, Number 6, June 2019

modified cyclomatic complexity CC* equals the sum of numbers of loops and branches in the

program, plus the number of nested levels of loops and branches.

11) Total number of function calls inside a sample.

12) Total number of branches inside a sample.

13) Total number of input variables of a sample.

14) Total number of output variables of a sample.

15) Total data size of all input variables measured in bytes.

16) Total data size of all output variables measured in bytes.

17) Ninner * Linner, the major parameter used to predict performance in analytical models.

2.5. Comprehensive Prediction Model

We proposed an approach [5], which is referred to as the comprehensive model in this paper. The model

combines the statistical model with the analytical model described in sections 2.4 and 2.1, respectively, and

it uses some heuristics, as described below:

1) Adding to the model a new independent variable Repeating Times RT as an additional attribute. Table

1 shows that the execution time of some samples, such as samples 1, 18, and 23, in the training set is

very small relative to that of other samples. By repeating RT times, the wide range of variation among

samples’ execution time can be reduced. An iterative algorithm has been designed to determine the

best value of RT for the training set [5]. With this new attribute, SPSS generates (3) which can be used

to predict the execution time of testing samples.

 APETk=(b0+ ∑ 𝑏
𝑝
𝑗=1 jXjk)+bRTRTk (3)

where APETk is the adjusted predict execution time of testing samplek generated by SPSS, Xjk is the value of

jth-attribute in that sample. The value of Ninner * Linner from analytical model are used as the values for RTk to

determine the execution time of the kth sample of the testing set by using (4) below.

 PETk = APETk/RTk (4)

 From the source code and assembly code of PHY kernel functions we notice that their kernel functions are

quite different from the typical DSP functions in EEMBC and SMV, e.g. there is no complex variables in EEMBC

and SMV functions. For this reason, we select a typical PHY kernel function, sample #31 with three complex

variables, as a new member of the training set.

2) From the analytical model, we realize that some function calls and some optimization technique such

as software pipelining can have large impact on execution time. To compensate these factors, we have

designed and employed two heuristics to adjust RTk.

3. Experiments

We use TI C64 DSP processor as the hardware platform for our experiments. All samples in the training

and testing sets are compiled by TIC64 compiler and run on TIC64 simulator. The execution time as the

performance metric is gathered from that simulator in terms of number of CPU clock cycles. We use relative

errors RE and average absolute relative error ARE to describe the prediction accuracy. RE and ARE are defined

as follows:

Journal of Software

251 Volume 14, Number 6, June 2019

Table 2. Experiment Results of Five Models

Name No.
simple

analytic

enhanced

analytic

precise

analytic
statistic

compre-

hensive

mf 25 -71.0% -37.0% -18.2% -37.8% -34.5%

soft_demap 26 -63.8% 6.2% 15.8% -75.9% -9.4%

ifft 27 7.3% 7.3% 23.9% -51.3% 5.5%

chest 28 57.8% 57.8% -3.0% 689% -22.4%

fft 29 8.2% 8.2% 25.0% -52.8% 7.9%

ant_comb 30 -92.7% -78.2% -47.7% -99.8% 0.0%

matrix_a_a_herminte_ 32 -83.4% -50.2% -34.8% -1617% -28.3%

matrix_mult_4xX_com 33 -79.9% -40.1% -7.1% -1897% -25.5%

58.0% 35.6% 21.9% 565% 16.7%ARE

Prediction ModlesTesting Sample

RE = [(Predicted – Actual)/Actual] × 100% (5)

ARE = (∑ |𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟𝑀
𝑖=1 i|)/M (6)

In (5) and (6), the actual values are measured in experiments and M is the total number of testing samples,

which equals 8. Table 2 presents the experimental results in terms of RE and ARE of all five models.

4. Predict the Performance of Whole System with Gprof

We use gprof, a popular UNIX profiling tool, for our experiments. In order to use gprof, we need to enable

profiling while compile our programs, and then execute the programs on the host computer to produce the

profiling data. Finally run gprof on the profiling data file to produce the analysis information, which includes

function call graph and an overview of the execution time for all the functions. We use the called times of the

major functions generated by gprof and the predicted clock cycles for these functions to compute the

predicted performance of the whole system. Equation (7) shows how the predicted execution time of all

major functions is computed. Comparing it with the actual measured system execution time, we can calculate

the relative prediction errors for all five models. The results for both the predicted execution time of all major

functions and the relative prediction errors for all five models are presented in Table 3.

The predicted execution time of all major functions

 = ∑ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒𝑛
𝑖=1 i*called timesi (7)

where called timesi is the number of time the ith function gets called.

5. Related Work

 Reference [6] uses analytical modeling to predict the execution times of parallel programs. Reference [21]

builds DDGs of basic blocks of DSP assembly code generated from C statements, uses list scheduling to

determine their clock cycles, and then multiplies the number of execution time of those C statements collected

by a host computer to predict the performance of a DSP processor. Based on programs ran on many different

machines, [16] gathers program characteristics such as instruction mix, distribution of operands, and basic

block size, then makes use of the squared Euclidean distance to identify the similarities among programs and

Journal of Software

252 Volume 14, Number 6, June 2019

uses the result to predict the performance of these programs on different hardware. Reference [3] collects

certain static and dynamic microarchitecture-independent characteristics including instruction mix and

cache miss rate from SPEC 2000 benchmark programs and uses their similarity to predict program

performance on different hardware using three different analytical models.

Many articles use various statistical approaches to predict the performance of software on target computers. For example,

[20] uses various types of instructions as attributes for multiple linear regression, [17] uses a regression-tree-based

modeling, and [1] uses a nonlinear regression model. References [10] and [8] use various machine training approaches

to predict software performance on multi-core processors. Reference [7] uses both static attributes such as numbers of

different types of instructions and dynamic attributes such as number of cache misses for regression. Reference [2]

proposes cross-architecture performance prediction. It is a machine training based technique using both static and

dynamic attributes from many programs from some/different benchmarks. They use R package to implement the

regression and predict the execution time on a GPU from a single thread CPU with an average error of 26.9%. Using a

constrained locally sparse linear regression algorithm, [15] proposes a training-based analytical cross-platform

performance prediction.

Table 3. Performance Prediction of Whole System

Actual

execution

t ime

called

t imes

from

gpro f

To tal

execution

t ime
1

pred icted

execution

t ime

To tal

execution

t ime in

who le

sys tem

pred icted

execution

t ime

To tal

execution

t ime in who le

sys tem

pred icted

execution

t ime

To tal

execution

t ime in

who le

sys tem

pred icted

execution

t ime

To tal

execution

t ime in

who le

sys tem

mf 70 ,431 24 1,690 ,344 20 ,400 489 ,600 44 ,400 1,065,600 57,620 1,382 ,880 46 ,122 1,106 ,917

so ft_demap 10 ,374 ,917 1 10 ,374 ,917 3 ,758 ,484 3 ,758 ,484 11,016 ,252 11,016 ,252 12 ,009 ,870 12 ,009 ,870 9 ,399 ,476 9 ,399 ,476

ifft 110 ,922 60 6 ,655,320 119 ,000 7,140 ,000 119 ,000 7,140 ,000 137,486 8 ,249 ,160 117,073 7,024 ,391

ches t 3 ,423 24 82 ,152 5,400 129 ,600 5,400 129 ,600 3 ,322 79 ,728 2 ,656 63 ,749

fft 109 ,975 24 2 ,639 ,400 119 ,000 2 ,856 ,000 119 ,000 2 ,856 ,000 137,480 3 ,299 ,520 118 ,700 2 ,848 ,802

ant_comb 479 ,246 36 17,252 ,856 34 ,803 1,252 ,908 104 ,403 3 ,758 ,508 250 ,806 9 ,029 ,016 479 ,124 17,248 ,473

matrix_a_a_herminte_ ... 3 ,143 2 ,400 7,543 ,200 522 1,252 ,800 1,566 3 ,758 ,400 2 ,048 4 ,915,200 2 ,253 5,406 ,724

matrix_mult_4xX_com... 1,569 2 ,400 3 ,765,600 316 758 ,400 940 2 ,256 ,000 1,458 3 ,499 ,200 1,169 2 ,806 ,475

to tal 50 ,003 ,789 17,637,792 31,980 ,360 42 ,464 ,574 45,905,008

Relat ive p red ict ion erro r comparing with to tal 8 functions -64 .73% -36 .04% -15.08% -8 .20%

Relative p red ict ion erro r comparing with who le PHY sys tem -67.50% -41.70% -21.75% -15.41%

note:1 To tal measured CK o f 8 kernel funcitons = 50 ,003 ,789 . Actual execution t ime o f who le PHY = 54 ,266 ,642 .

Function

Actual measured values Simple anlytic model Ad jus ted analytic model Precise analytic model Comprehensive model

6. Discussion

1) Table 2 summarizes the experimental results of all five models investigated in this paper. From it we

observe that the simple analytical model has large under-prediction errors, which is caused by large

overhead in assembler code especially when those samples involve many function calls. However, we

also observe that some samples have over-prediction problem. This is due to the shortened inner loop

body of assembly code generated by the loop optimization of compiler. The enhanced analytical model

can reduce the under-prediction errors if we can get the length ratio between Linner of assembly code

and source code.

2) To further improve the accuracy of performance prediction, even the precise analytical model needs

detailed information of hardware. Nevertheless, its predicted errors, as shown in Tables 2 and 3, is

much improved to reach the acceptable level.

Journal of Software

253 Volume 14, Number 6, June 2019

3) Table 2 shows that the prediction errors of the statistical model are very large because the number of

training samples used in the paper is small. Also, the values of attributes among different samples vary

over a wide range.

4) The comprehensive model combines statistical and analytical approaches; it also adds some sample

from PHY to the training set. As shown in Table 3, its prediction error becomes reasonably small to be

in practice to predict the performance of the entire PHY system; this is shown in Table 3. It is the best

among the five models investigated in this paper for predicting the DSP performance at source level.

5) Both the precise analytical and the comprehensive models can be combined with other works [14] to

predict the performance of source code running on different hardware.

6) Currently we are working on a project using machine learning techniques to predict DSP performance

at source code level.

Acknowledgment

Su would like to thank the ART awards of William Paterson University. We would like to thank CS major

students Adam Herzog, Eduardo Avila, and Beata Zaluska of William Paterson University for their testing data.

References

[1] Garland, J., & Bradley, E. (2013). On the importance of nonlinear modeling in computer performance

prediction, Advances in Intelligent Data Analysis XII, Lecture Notes in Computer Science, Springer.

[2] Ardalani, N., Lestourgeon, C., Sankaralingam, K., & Zhu, X. (2015). Cross-architecture performance

prediction (XAPP) using CPU code to predict GPU performance. Proceedings of the MICRO-48.

[3] Hoste, K., et al. (2006). Performance prediction based on inherent program similarity. Proceedings of the

PACT’06.

[4] Hu, E., Ku, C., Russo, A., Su, B., & Wang, J. (2006). New DSP benchmark based on selectable mode vocoder

(SMV). Proceedings of the 2006 International Conference on Computer Design (pp. 175-181).

[5] Hu, E., Su, B., & Wang, J. (2017). Software performance prediction at source level. Proceedings of the

SERA2017.

[6] Kuhnemann, M., Rauber, T., & Runger, G. (2004). A source code analyzer for performance prediction.

Proceedings of the 18th Parallel and Distributed Processing Symposium.

[7] Lee, S., & Wu, C. (2017). Performance characterization, prediction a and optimization for heterogeneous

systems with multi-level memory interference. Proceedings of the HSWC.

[8] Namin, A., Sridharan, M., & Tomar, P. (2010). Predicting multi-core performance: A case study using

solaris containers. Proceedings of the IWMSE’10.

[9] Rai, J., Negi, A., Wankar, R., & Nayak, K. (2010). Performance prediction on multi-core processors.

Proceedings of the Int. Conf. on Computational Intelligence and Communication Networks.

[10] Sjalander, M., McKee, S., Brauer, P., Engdal, D., & Vajda, A. (2012). An LTE uplink receiver PHY benchmark

and subframe-based power management. Proceedings of the 2012 IEEE International Symposium on

Performance Analysis of Systems and Software.

[11] Su, B., Wang, J., & Esguerra, A. (1999). Source-level loop optimization for DSP code generation.

Proceedings of the ICASSP 99.

[12] Su, B., et al. (2003). A new source-level benchmarking for DSP processors. Proceedings of the ISPC2003.

[13] Su, B., et al. (2005). Analysis of loop behavior of selectable mode Vocoder (SMV) and its impact of

instruction level parallelism. Proceedings of the GSPx 2005.

[14] Ould-Ahmed-Vall, E., Woodlee, J., Yount, C., & Doshi, K. (20070. On the comparison of regression

algorithms for computer architecture performance analysis of software applications.

Journal of Software

254 Volume 14, Number 6, June 2019

[15] Zheng, X., Ravikumar, P., John, L., & Gerstlauer, A. (2015). Leaning-based analytical cross-platform

performance prediction. Proceedings of the 2015 SAMOS.

[16] Saavedra, R., & Smith, A. (1996). Analysis of benchmark characteristics and benchmark performance

prediction. ACM Tran. on Computer System, 14(4).

[17] Li, B., Rng, L., & Ramadass, B. (2009). Accurate and efficient processor performance prediction via

regression tree based modeling. Journal of System Architecture, 55, 457-467.

[18] Tele bench, an eembc bench. Retrieved from: http://www.eembc.org/benchmark/telecom_sl.php

[19] LTE uplink receiver PHY benchmark. (2011). http://sourceforge.net/projects/lte-benchmark

[20] Martin, G. (2006). Statistically based estimate of embedded software execution time.

[21] Pegatoquel, A., et al. (2003). Assembly code performance evaluation apparatus and method. US Patent,

US 6598221 B1.

Erh-Wen Hu received his bachelor of science degree in electrical engineering from Cheng

Kung University, Taiwan in 1967; the master’s degree in materials science from SUNY US

in 1972 and the master’s degree in EE from University of Cincinnati US in 1973; and the

Ph.D. degree from Polytechnic Institute of NY US in 1976.

From 1976 to 1978 he worked at Polytechnic Institute of NY as a research assistant

professor. In 1978 he joined William Paterson University of New Jersey where he was one

of the founders of a new Department of Computer Science in the early 1980s and served two terms as the

Chairperson of the Department. He is currently a professor in Computer Science Department of William

Paterson University of New Jersey US. His current research interests include instruction level parallelism,

hardware and software optimization and benchmarking, software performance evaluation and prediction on

DSP processors. He has authored or coauthored 50 research publications.

Weihua Liu earned her Ph.D. in computer science from University of Kentucky in 2016.

Her research interests include data analysis and machine learning applications,

cryptography and security, information security. She joined William Paterson University

in New Jersey in 2016. She is currently an assistant professor in computer science

Department of William Paterson University of New Jersey US.

Bogong Su got his bachelor degree in computer technology from Tsinghua University

China in 1959 and Ph. D equivalency certification by Spantran Services, US in 1991.

He had worked with Tsinghua University China from 1959 to 1990, and City University

of New York, NY US from 1991 to 1994. In 1994, he joined William Paterson University of

New Jersey US, and he is currently a professor in computer science Department of William

Paterson University of New Jersey. His research interests include instruction level

parallelism, compiler optimization, software pipelining and de-pipelining, distributed

artificial intelligence, DSP and embedded systems, benchmarking, system performance evaluation and

prediction, and machine learning techniques. He has authored or coauthored more than 100 research

publications.

Dr. Bogong Su is a life senior member of IEEE.

Journal of Software

255 Volume 14, Number 6, June 2019

Jian Wang received his bachelor, master and Ph. D degrees of computer science from

Tsinghua University China in 1986, 1989 and 1991, respectively.

 He had done research and development work in INRIA France, from 1992 to 1993;

Technology University of Vienna Austria, from 1993 to 1995; McGill University Canada,

from 1995 to 1997; and BNR/Nortel Canada from 1997 to 2009. Since 2010, he has been

working for Ericsson Canada. His research interests include software optimization,

performance evaluation and prediction, benchmarking, instruction level parallelism and

DSP/embedded systems. He has authored or coauthored more than 50 research publications.

 Dr. Jian Wang was elected to IEEE senior member in 2004.

Journal of Software

256 Volume 14, Number 6, June 2019

