
Strengths and Weakness of Traditional and Agile
Processes  A Systematic Review

Mahrukh Sameen Mirza, Soma Datta*

University of Houston-Clear Lake, Houston, Texas, USA.

* Corresponding author. Tel.: 12182833838 email: datta@uhcl.edu, mahrukh.smirza@gmail.com
Manuscript submitted February 25, 2019; accepted April 10, 2019.
doi: 10.17706/jsw.14.5.209-219

Abstract: In the software industry, there are several processes and methodologies that exist. The traditional

processes and Agile methodologies have their own strengths and weaknesses. Agile methodologies

overcome some of the weaknesses of traditional processes. Although in the recent years Agile

methodologies have been used by software development companies, there is still a high ratio of software

failures when compared with core engineering processes. The adoption of these processes in software

development could alleviate software failures. This systematic study reviews the strengths and weaknesses

of both traditional processes and Agile processes. The search strategy resulted in 91 papers, of which 25

primary studies are investigated between 2012 and 2019. The detailed search strategy has been presented

in this study along with future directions.

Key words: Agile, core engineering processes, extreme programming, feature driven development, Kanban,
lean, scrum, systematic review, test driven development, traditional.

1. Introduction

Before 2001[1]-[13], the software industry used traditional software development processes (i.e.,

Classical waterfall model, iterative waterfall model, spiral model, RAD model). While these traditional

models are known to be cost saving for bigger, off-shore projects, there is criticism that exists [13]-[25]. Due

to these criticisms and the high ratio of software failures that used traditional models, it led to a change in

software process development in 1999. This evolution started to encourage lightweight processes and a

broader approach for better software development.

In 2001 [1], the original contributors of this evolution met and tried to identify the areas that these

existing software methodologies had in common. Focusing on this common ground, led to the “Agile

Manifesto”.

Since the introduction of the “Agile Manifesto” in 2001, Agile methodologies have gained much popularity

and success. The software industry had a huge shift from practicing traditional software development to

now adopting Agile methodologies. There are several reasons why the software industry has chosen Agile

over traditional models. Some of the reasons are faster product delivery, iterations, customer satisfaction,

high product quality, etc. In general, the shift in Agile methodologies focuses more on individuals and

interactions over processes and tools, working process over detailed documentation, customer

collaboration over contact negotiation and responding to change rather than following a plan [20], [22]. It

was also seen that Agile software development could handle changing requirements flexibly [15]. This

Journal of Software

209 Volume 14, Number 5, May 2019

method basically put more focus on quality product development, simplicity and enhancing knowledge

from change incorporation. Several Agile methodologies such as Scrum, eXtreme programing (XP), and Lean

work well with the organization but also have potential risks associated with them. These Agile

methodologies are often easily misunderstood. It is also difficult to manage methods like Scrum in an

organization because it requires all team players to be motivated.

The core engineering processes are well defined and followed properly because they are usually life

critical products. Consider an example of the civil engineering discipline, it is important that the engineers

properly design and deliver whatever they make. People think software development is different from the

engineering design practice. While every other discipline follows almost the same engineering process,

software development has different approaches towards development. If these engineering design

approaches are integrated in the present software development practices, then there would be less failure

and the process would turn out to be more advantageous.

The rest of the paper is organized as follows – section 2 consists of the research process that was used to

do this systematic review. It provides keywords that were used to search for research papers and the

inclusion and exclusion criteria used to select important papers. Section 3 consists of the research question.

Section 4 has the related work and section 5 is the conclusion and future directions.

2. Research Process

There were 91 papers found by using the search keywords as in Table 1. Of these 91 papers, 72 papers

were selected by reading the abstract. 25 papers were selected for primary study by using the inclusion and

exclusion criteria. The search process which involved identifying the relevant papers was done by using

different combinations of keywords. The search took place in steps in which the very first step was to

search papers using the search keywords. The quality of the papers was determined after reading the

papers in detail. Both the authors searched and downloaded the papers. Author 2 was responsible for

reading the abstract and deciding if a particular paper was relevant or not by using the inclusion and

exclusion criteria. Author 1 was responsible for determining the quality of the papers by reading them in

detail. A summary of each paper after detailed reading was created by author 1.

The search keywords used to find the papers are show in Table 1 and Fig. 1 shows the phases that were

involved in the searching process.

 Table 1. Search Keywords

Subject Search keywords

Traditional

processes

Traditional software development OR traditional Agile OR software development life cycle

OR SDLC OR traditional models OR traditional model OR traditional software model OR

traditional software models OR waterfall Agile

Agile

methodologies

Agile methodologies OR Agile software OR Agile development OR XP Agile OR eXtreme

programming Agile OR Scrum Agile OR Crsytal Agile OR DSDM Agile OR dynamic system

development method Agile OR FDD Agile OR feature driven development Agile OR Lean

Agile OR Kanban Agile OR Agile manifesto

Engineering Core engineering design process

The inclusion criteria was as follows –

1) Papers were published between 2012 to 2019

2) Papers written in English

3) Papers that were scholarly & peer reviewed and journal articles

4) Papers having computer science and engineering discipline

Journal of Software

210 Volume 14, Number 5, May 2019

5) Papers having search terms software engineering, software and engineering

6) Papers where the search terms were found in the abstract

7) Papers that spoke about Agile, traditional or core engineering design process

The exclusion criteria was –

1) Papers that are duplicates of papers that were already included

2) Papers that did not talk about traditional, Agile or core engineering design process

3) Papers that were older than 2012

Table 2 below shows the papers that were included in the study. The table provides a brief description of

each paper along with the year they belong to.

Fig. 1. Systematic search process.

Fig. 2. Publication by year.

The fig above shows that there was one paper from 2019, six papers from 2018, ten papers from 2017,

three papers from 2016, three from 2015, one from 2013, and one from 2012 and there were none from

2014.

Journal of Software

211 Volume 14, Number 5, May 2019

Table 2. Brief Description of each Paper with Year

Year Title Brief description

2019 Lean and Agile software

process improvement in

traditional and Agile

environment

The main objective of this paper is to show that both Lean and Agile approaches

can be used depending upon what type of environment we are working on. The

paper provides an overview of these approaches and identifies the well-known

practices of both.

2018 Kanban in Software

Engineering : A systematic

mapping study

This paper conducts a systematic mapping of Kanban in software engineering

between the years 2006 to 2016. From experience reports and primary studies,

both the benefits and challenges of Kanban are identified.

The Proposed L-Scrumban

Methodology to Improve the

Efficiency of Agile Software

Development

In this paper, a new methodology of L-Scrumban is proposed which integrates

Scrum, Lean and Kanban. The paper also validates this methodology which

confirms its efficiency.

Do Pair Programming

Approaches Transcend Coding?

Measuring Agile Attitudes in

Diverse Information Systems

Courses

In this paper, a tailored programming challenge is applied to a group of first year

students through senior Information Systems (IS) and non – IS majors. This is to

analyze how the attitudes of participants and perceived benefits of

programming language change. It also determines whether the quality and

functionality of the solutions differ across educational levels and disciplines.

Back to the future: origins and

directions of the “Agile

Manifesto” – views of the

originators

A survey and an interview study with the original contributors of Agile

manifesto are presented in this paper. The paper talks about today’s perspective

and the outlook on future of the manifesto.

What Do We (Really) Know

About Test – Driven

Development

This paper talks about Test Driven Development. It answers questions like Is

TDD better than any other development method? Does it really fulfill all

promises it makes? How do you decide whether or not to use TDD? And what

are TDDs secondary effects?

On the benefits and challenges

of using Kanban in software

engineering: a structured

synthesis study

The goal of this paper was to present the benefits and challenges of Kanban for

the practitioners so that they can understand and analyze them for real-time

projects.

2017 SXP: Simplified Extreme

Programming Process Model

In this paper, a simplified version of XP is presented which promises to

overcome its drawbacks.

Agile Software Development

Models TDD, FDD, DSDM, and

Crystal Methods: A Survey

This paper gives a review about TDD, FDD, Crystal and DSDM. It talks about

phases that are involved in these processes, about misconceptions, advantages

and disadvantages of each.

Can FOSS projects benefit from

integrating Kanban: a case

study

There is a lack of research in integration of Free and Open Source Software

(FOSS) and Agile Software Development (ASD). This paper attempts to integrate

both and reports its benefits.

Applicability and issues in

traditional model of ERP

implementations: an industry

perspective

This paper presents a literature review of the ERP model and the real-time

scenarios of practitioners when they work with this model.

A Study of Software

Development Life Cycle Process

Models

A complete explanation of the SDLC models is given in this paper. The paper

talks about Waterfall model, Iterative Model, Spiral Model, V-Model, Big Bang

Model, Agile Model, Rapid Application Development Model and Software

Prototype. The advantages and disadvantages are stated along with situations in

which the model will best fit.

Investigating Agile Adoption for

Project Development

The main goal of this paper is to highlight Agile transition in companies along

with project management challenges. It also presents a comparison of

traditional and Agile software development

Journal of Software

212 Volume 14, Number 5, May 2019

Year Title Brief description

Simplified FDD Process Model The main problems in FDD are that it is less responsiveness towards changing

requirements, inappropriate for small scale projects and reliant on experienced

staff. To overcome these limitations, this paper proposes a Simplified FDD

Process Model.

Assisting the continuous

improvement of Scrum projects

using metrics and Bayesian

networks

In order to provide a quality assessment of Scrum projects, a process has been

presented in this paper followed by Bayesian network. This process can be used

by the Scrum masters for the improvement of business value delivery.

Evaluating the Quality of

Proposed Agile XScrum Model

XP and Scrum processes are integrated in this paper in order to enrich the

strengths of both and overcome their limitations. The paper also validates the

XScrum process by performing three case studies of industrial projects.

Managing the requirements

flow from strategy to release in

large scale Agile adoption: a

case study at Ericsson

An in-depth study of the Ericson telecommunications node development

organization is presented in this paper. The study describes how the

requirements flow beginning with strategy to release. Its related benefits and

problems are also highlighted in the paper.

2016 Perceived barriers to effective

knowledge sharing in Agile

software teams

Based on an in-depth multi case study, this paper investigates how the project

manager, developers, testers and user representatives think about barriers to

effective knowledge sharing in Agile development.

The impacts of Agile and lean

practices on project

constraints: a tertiary study

A tertiary study with 13 secondary studies is presented in this paper. It

discusses how Agile and lean practices have their impact on projects. It also

indicates that TDD has positive impact on external quality.

Agile Methodologies in

Software Maintenance: A

Systematic Review

This paper presents a systematic review of 30 research papers between the

years 2001 and 2015. It talks about the use of Agile in software maintenance in

order to increase software quality.

2015 The Kanban approach, between

agility and leanness: a

systematic review

A systematic review of Kanban is presented in this paper. A total of 37 primary

studies were selected and there are 20 different elements of Kanban that are

considered and reported.

Achieving agility through

BRIDGE process model : an

approach to integrate the Agile

and disciplined software

development

The main goal of this paper is to show that agility can also be achieved by

traditional development process. This paper uses the BRIDGE model to depict

the same. It integrates the traditional and Agile software development and

establishes compatibility between these approaches.

A systematic review of

distributed Agile software

engineering

Distributed human resources in Agile come with a number of challenges that

needs to be considered and mitigated. Firstly, this paper talks about the

conditions that lead to adopting Distribute Agile Software Engineering (DASE).

Secondly, it talks about the risks associated to DASE and the strategies that exist

to mitigate these risks. Lastly, it talks about the approaches that have been

successfully adopted by the organizations.

2013 Evaluating the impacts of an

Agile transformation: a

longitudinal case study in a

distributed context

This paper talks about what impact the introduction of Agile practices had in

large software development organizations. The study concluded with two

results. First, Agile practices has beneficial effects that were expected and

second, with such a longitudinal study, it is possible to evaluate both the impact

of Agile and its effects at very early stages in an organization.

2012 Agile software development for

medium and large projects

Despite several benefits, there are few limitations to XP which are weak

documentation, lack of strong architecture, ignorance of risk awareness and

inappropriateness for medium and large projects. An extended XP model has

been proposed in this paper which promises to provide equal benefits for

medium and large projects like that of its benefits in small projects. Three

industrial case studies are conducted to evaluate the proposed model. The

results indicate that XP is equally beneficial to medium and large projects.

Journal of Software

213 Volume 14, Number 5, May 2019

Only Journal articles were selected for this study. Table 3 below shows the publication channel and the

number of articles related to that publication channel.

Table 3. Papers by Publishers

Publication channel
Number of

papers

Springer 7

Informatica 1

Wiley online library 4

Journal of software engineering and development 1

International journal of electrical and computer science 1

Modern education and computer science 4

Institute of Engineering and Technology (IET) Software 1

Journal of information system education 1

Journal of system and software 2

Institute of Electrical and Electronic Engineers (IEEE) 1

International journal of multidiscipline science and engineering 1

International journal of advanced computer research 2

3. Research Question

This review has been done in order to address the strengths and weaknesses of traditional vs. Agile

software development. Hence, the research question is can an ensemble method help in achieving a higher

success rate in software development?

4. Related Works

According to Mandal et al. [16] the primary perceived weaknesses of traditional software development

processes are as follows – excessive documentation, too sequential, excessive planning, a lack of results

until the end, late communication to stakeholders, delays in project delivery and increased project costs.

Agile methodologies were developed to overcome these weaknesses. Mandal et al. [16] also said that “Agile

was a significant departure from the heavyweight document driven traditional software methodologies”.

There are 12 principles of Agile manifesto [1] whose detailed description is out of the scope of this paper.

However, summarization of these principles was done by Mandal et al. [1] and are presented as follows –

Customer satisfaction, incorporation of rapid system change, frequent working software delivery, continues

corporation of client and developer, motivated trusted individuals, continuous improvement, arrangement

of face-to-face conversation, progress measurement, sustainable development, attention to technical

excellence, simplicity, self-organizing teams, internal assessment for knowledge enhancement, quality

assurance and economic development.

The meaning of these principles is often misunderstood, wrongly interpreted and commercialized [1].

Many people claim to be Agile in the present software industry only because it is fashionable to be Agile [1].

There is a difference between “doing Agile” and “being Agile” [1]. Agile methods and practices are often

poorly implemented [1]. There are still several organizations who are struggling to adopt Agile methods

successfully [8, 10].

In spite of the fact that Agile has been accepted well by the software industry, it still has strengths and

weakness which are highlighted by Tarwani et al. [25]. According to them, the strengths of Agile

methodologies are early warning of risk, constant testing, iterations, small teams, customer feedback,

quality, on time and on budget. Tarwani et al. [25] said that “the main strength of Agile due to which it had

Journal of Software

214 Volume 14, Number 5, May 2019

gained popularity over traditional and sequential waterfall model is that it is based on the concept of

iterations”. The weakness of Agile methodologies as presented by Tarwani et al. [25] are

miscommunication, resource increase, overall cost increase, inappropriateness for large projects and lack of

coordination.

Specifically talking about individual Agile methodologies, Scrum is one most of the widely used Agile

methodologies. This methodology mainly relies on effective and efficient communication among the team

members [22]. It is one of the best in management practices. The core values as stated by Qureshi in [22]

are daily inspections, self-organized teams, the Scrum master, every sprint having a delivery and product

owner setting priorities to the product backlog. According to [3], Scrum has short iterations which involve

continuous feedback from the customer that makes it easy to cope with the changing needs and

requirements of the industry. This in turn helps in delivering a quality product with customer satisfaction.

Daily Scrum meetings and sprint meetings make it easier to measure the growth and productivity of a

product and an individual working in that team. Also, testing is done at the end of each sprint which

guarantees the quality and bugs are fixed right away. With several Scrum meetings, it becomes easier to

follow the schedule and deliver the product on time. In spite of having several known strengths in Scrum

methodology, it has its own weaknesses. Scrum software development is suitable for small projects and it

becomes comparatively difficult to follow Scrum in large organizations. One of the main weaknesses of

Scrum is reported in [23] that many employees in the software industry lack the knowledge of Scrum. They

complete one simple course on Scrum and call themselves as Scrum masters. Another weakness is it

lacks engineering practices [22] and so there were many attempts to combine Scrum with other

methodologies; Scrum is simple to understand but difficult to master[19].

Another famous Agile methodology is eXtreme programming (XP). Like any other Agile methodology, XP

also consists of iterations and in return gives quality products with customer satisfaction. XP can also

handle unclear and changing requirements in the industry [5]. Many researchers have made attempts to

integrate XP with Scrum or XP with any other methodology. Pair programming and continuous integration

are the most used practices in XP and results in improving the productivity [25]. XP works well with simple

and small scale projects and focuses more on coding than on the design [10]. The weaknesses of XP as

stated in [5] are lack of documentations, poor architectural structure and less focus on design. There were

18 papers reviewed in [5] that showed that there were several attempts made to overcome these

weaknesses. Some of them had solutions to a few weaknesses but not all. In [5], a simplified XP model has

been proposed which overcomes all the weaknesses stated above but there is no validation done for the

same. There are several studies which show that simply placing two programmers in front of the computer

is not enough (pair programming in XP) [7]. Pair programming requires mutual understanding of both the

programmers and a common skillset. It requires much knowledge and expertise of that domain by both

programmers [5].

Lean is an Agile toolkit which has principles mainly focused on elimination of waste and maximization

of value [3, 24]. The Lean methodology has been claimed as the fastest growing methodology for product

development in the past decade [2]. It has a very behavioral approach [1]. However, Lean does not cover the

technical and managerial issues. Its concerns are mostly about minimizing the wastage and hence

improving the quality [3]. One of the most popular principles of Lean approach is Kanban [2]. Kanban is a

visual method that helps in managing the production of a product [3]. This methodology can not only be

used for development but also has its strengths in teaching, like used in [9]. With the usage of Kanban there

is a positive increase in interaction and communication between the teams and stakeholders [9]. A total of

37 primary studies have been investigated in [2] which gives details about the strengths and weaknesses of

Kanban. Although there are several definitions that have been defined in [18] for Kanban and lean, there is

Journal of Software

215 Volume 14, Number 5, May 2019

still lack of guidelines that say how both should be applied in software industry [2]. There is very limited

research that gives guidelines in implementation of Kanban to the practitioners [2]. There is a strong need

for systematic studies in the area of Lean and Kanban [2].

Table 4. Strengths and Weakness of Software Processes

Process Strengths Weaknesses

Scrum

Effective and efficient communication among team
members
One of the best management practices
Continuous feedback from the customers
Produces quality product with customer satisfaction
Measuring the growth and productivity of the team
and individual is easier with daily Scrum meetings and
sprint meetings

Employees lack knowledge of Scrum
Scrum lacks engineering practices
Simple to understand but difficult to
master
Suitable for small projects

EXtreme programming

Quality product with customer satisfaction
Can easily handle unclear and changing requirements
Pair programming and continuous integration
improves productivity
Works well with simple and small scale projects

Lack of documentation
Poor architectural structure
Less focus on design
Pair programming requires mutual
understanding and common skillset
between two programmers

Lean
Eliminate waste

Maximize value of the product

Does not cover technical and
managerial issues
Lack of details about its implementation

Kanban
Helps in managing production of a product
Increase in communication between the team and
stalk holders

Lack of details about its implementation

Test driven development

Positive impact on external quality of the system
Writes test cases and test code first using the
requirements
Writes Lean code, removes duplicates

Sometimes very time consuming due to
repeated test failures
Specific knowledge and skill set
required

Crystal
Effective communication among team members
Projects can be clearly classified using Crystal methods

Only two type of crystals are defined in
details (Crystal clear and Crystal
orange)
Lacks system validation practices

Feature driven
development

Adaptive and incremental in nature
Emphasis more on quality

Needs special training to write
requirement/user stories
Less responsiveness to change
Need of experienced and trained staff
Less appropriate for small scale
projects

Waterfall
Simple to understand and use [14]
Each phase is clearly defined and well understood
Detailed documentation [14]

Working software is delivered very late
and hence it has lots of risks associated
to it
It is difficult to accommodate changes
using waterfall [14]
Measuring progress is difficult [14]
Not suitable for projects with changing
requirements [14]

Rational Unified Process
(RUP)

Produces quality product
Less time for integration
Less development time

Needs expert team members trained in
RUP
Complex development process
Development process is difficult to
manage

Spiral
Requirements change is manageable
Frequent delivered of working software
Lower risk of failure [14]

Not suitable for small projects
Process is difficult to manage
Can continue indefinitely [14]

In a tertiary study done in [18], it has been revealed that test driven development (TDD) has a very

positive impact on external quality of a product. The quality attribute included external quality, complexity,

code size, etc. However, no conclusion was made on the impacts of TDD on code size. Test driven

development is one of the most advantageous approaches that has produced several successful products

Journal of Software

216 Volume 14, Number 5, May 2019

because of its approach of writing the test cases and test code first by using the requirements. This reduces

defect rate and improves quality of the product. It also helps in writing clean code and removing duplicates

in each iteration [6]. Sometimes, TDD can be very time consuming due to repeated test failures [6]. Specific

knowledge and special skills are required in order to implement TDD [6], [12].

Depending upon the size, complexity and team size, Crystal methodology can be used. There are several

strengths and weaknesses about Crystal that are highlighted in [6]. Projects can be clearly classified using

Crystal. It provides good risk control. However, out of four Crystal methods available, only two (Crystal clear

and Crystal orange) of them are defined in detail. Life critical systems are difficult to develop using Crystal

because it lacks system validation practices [6].

Like any other Agile methodologies, Feature driven development (FDD) has adaptive and incremental

nature [17]. The emphasis of FDD is quality. It focuses more on designing and building aspects of the

software development. As the name says, FDD has more focus on its feature development [6]. FDD does not

provide any guidance about requirements gathering, analysis and risk management [6]. A simplified FDD

process model was introduced in [17] to overcome its limitations (i.e., less responsiveness to changes,

reliance on experienced staff and less appropriateness for small scale projects). There were 14 research

papers that were discussed in [17]. Several processes were proposed in those papers but none overcame all

of its limitations. However, this simplified FDD was not validated.

There are several methodologies that exist for software development. Each of these have their own

strengths and shortcomings. No particular process exists that satisfies all the weaknesses of a project and

gives the best result. A new process can be developed by integrating all these methodologies and core

engineering practices so that this new process uses all of their strengths, overcomes the weaknesses of each

other and yields the best results.

5. Conclusion and Future Work

In this study a systematic review of 25 papers were done. The findings from this study show that there

does not exist a one-size-fits-all methodology in software development which does not have any limitation.

Every methodology including Agile or traditional has its own limitation as shown in table IV. This

systematic review discusses about several strengths and weaknesses of the two methodologies. Many

organizations use a combination of processes. Usage of such combinations has helped the organizations

overcome weaknesses of a single process. For future directions, this study suggests that a new process be

worked upon which integrates all the simple and value added features of all the processes that were

discussed in Section 4. By integrating the traditional and Agile with the core engineering design process a

new process can be developed. The new process can also undergo double validation (i.e. validating it twice).

References

[1] Hohl, P., Klünder, J., Van, B. A., Lockard, R., Gifford, J., Münch, J., Stupperich, M., & Schneider, K. (2018).

Back to the future: Origins and directions of the “Agile Manifesto” – Views of the originators. Journal of

Software Engineering Research and Development.

[2] Ahmad, M. O., Dennehy, D., Conboy, K., & Oivo, M. (2018). Kanban in software engineering: A systematic

mapping study. Journal of Systems and Software, 137, 96–113.

[3] Al-Baik, O., & Miller, J. (2015). The kanban approach, between agility and leanness: A systematic review.

Empirical Software Engineering.

[4] Albarqi, A. A., & Qureshi, R. (2018). The proposed l-scrumban methodology to improve the efficiency of

agile software development. International Journal of Information Engineering and Electronic Business.

[5] Korhonen, K. (2013). Evaluating the impact of an agile transformation: A longitudinal case study in a

Journal of Software

217 Volume 14, Number 5, May 2019

distributed context. Software Quality Journal.

[6] Anwer, F., & Aftab, S. (2017). SXP: Simplified extreme programing process model. International Journal

of Modern Education and Computer Science.

[7] Anwer, F., Aftab, S., Waheed, U., & Muhammad, S. S. (2017). Agile software development models TDD.

FDD, DSDM, and Crystal Methods: A Survey.

[8] Chen, K., & Rea, A. (2018). Do pair programming approaches transcend coding? measuring agile

attitudes in diverse information systems courses. Journal of Information Systems Education; West

Lafayette, 29(2), 53–64.

[9] Ghobadi, S., & Mathiassen, L. (2016). Perceived barriers to effective knowledge sharing in agile

software teams. Information Systems Journal.

[10] Harzl, A. (2017). Can FOSS projects benefit from integrating Kanban: A case study. Journal of Internet

Services and Applications.

[11] Heikkilä, V. T., Paasivaara, M., Lasssenius, C., & Damian, D. (2017). Managing the requirements flow

from strategy to release in large-scale Agile development: a case study at Ericsson. Empirical Software

Engineering.

[12] Karac, I., & Turhan, B. (2018). What do we (really) know about test-driven development? IEEE

Software.

[13] Kaushik, S., Bharadwaj, A., Awasthi, V., & Sharma, R. (2017). Applicability and issues in traditional

model of ERP implementations: an industry perspective. International Journal of Advanced Computer

Research.

[14] Kazim, A. (2017). A study of software development life cycle process models. International Journal of

Advanced Research in Computer Science; Udaipur.

[15] Kulkarni, R. H., Padmanabham, P., Harshe, M., Baseer, K. K., & Patil, P. (2017). Investigating agile

adaptation for project development. International Journal of Electrical and Computer Engineering;

Yogyakarta.

[16] Mandal, A., & Pal, S. C. (2015). Achieving agility through BRIDGE process model: An approach to

integrate the Agile and disciplined software development. Innovations in Systems and Software

Engineering.

[17] Nawaz, Z., Aftab, S., & Anwer, F. (2017). Simplified FDD process model. International Journal of Modern

Education and Computer Science.

[18] Nurdiani, I., Borstler, J., & Fricker, S. A. (2016). The impacts of Agile and lean practices on project

constraints: A tertiary study. Journal of Systems and Software..

[19] Perkusich, M., Gorgônio, K. C., Almeida, H., & Perkusich, A. (2017). Assisting the continuous

improvement of Scrum projects using metrics and Bayesian networks: Assisting the continuous

improvement of Scrum projects using metrics and Bayesian networks. Journal of Software: Evolution

and Process.

[20] Poth, A., Sasabe, S., Mas, A., & Mesquida, A. L. (2019). Lean and Agile software process improvement in

traditional and Agile environments. Journal of Software: Evolution and Process.

[21] Qureshi, M. R. J. (2012). Agile software development methodology for medium and large projects. IET

Software.

[22] Qureshi, M. R. J. (2017). Evaluating the quality of proposed agile XScrum model. International Journal of

Modern Education and Computer Science.

[23] Rizvi, B., Bagheri, E., & Gasevic, D. (2015). A systematic review of distributed Agile software

engineering. Journal of Software: Evolution and Process.

[24] Santos, P. S. M. D. (2018). Link to external site, this link will open in a new window. Journal of Software

Journal of Software

218 Volume 14, Number 5, May 2019

Engineering Research and Development.

[25] Tarwani, S., & Chug, A. (2016). Agile methodologies in software maintenance: A systematic review.

Informatica; Ljubljana.

Mahrukh Sameen Mirza is a graduate student at University of Houston, Clearlake (UHCL)

in Houston, Texas, USA. She has completed her bachelors in computer science in the year

2016 from Osmania University, Hyderabad, India. Her research interests are agile software

development, data mining, artificial intelligence and software testing. She is currently doing

her research in agile software development.

Soma Datta joined University of Houston Clear Lake (UHCL) as assistant professor in

software engineering in the College of Science and Engineering. She received her Ph.D. in

computer science from Texas Tech University. Her research interest are in data mining,

developing pedagogies to teach engineering to middle school, undergraduate, and graduate

classes for better concept retention. Her teaching interests include software processes, data

science and R in software engineering, testing, verification and validation, agile software

development, software engineering tools, reuse and reengineering, fundamental software development,

introduction to engineering.

Journal of Software

219 Volume 14, Number 5, May 2019

