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Abstract: Traditional classification methods cannot well capture the characteristics of complex problems, 

thus leading to poor performance. In this paper, we propose a new framework named Partition based LAzy 

Classification (PLAC) to better characterize complex problems by dividing the training data space into 

smaller and easier-to-learn partitions. In PLAC, only the nearest partition of a new instance is used to train 

a local classifier that is finally used to classify the new instance. As the partitioning is performed based on 

information gain before receiving a new instance, the resulting partitions are groups of similar instances 

and the chance of the nearest instances of the new instance coming from different regions by accident is 

reduced. Moreover, our method uses only one partition to conduct a prediction and employs the caching 

mechanism to avoid work replication during classification, thus efficiency is improved. An extensive 

experimental evaluation on 40 real world data sets shows that PLAC effectively improves the performance 

of base classifiers and outperforms existing mainstream ensemble methods.   
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1. Introduction 

  As an important type of machine learning task, classification has been fully investigated. Most 

classification methods follow a two-stage process: induction and deduction. In the inductive stage, the 

classifier(s) is built over the training data; during the deduction stage, the classifier(s) is applied to the new 

data and the class label is assigned. In literature, many different types of methods have been proposed, 

including tree-based C4.5 [1], CART [2], and LAZYDT [3]; rule-based RIPPER [4], PART [5], and OneR [6]; 

instance-based IB1 [7], [8]; probability-based naive Bayes NB [9] and support vector machines SVM [10]. 

  Depending on the time of the classifier(s) was constructed, present classification methods can be roughly 

divided into two groups: eager learning and lazy learning. An eager learning method uses the training data 

to build a uniform classifier at the inductive stage and finally the classifier is employed to classify all new 

instances. However, a uniform classifier cannot well characterize complex problems (see Section 3) and 

thus may lead to poor performance. In contrast, a lazy learning method does not build a specific classifier 

with a subset of the training data for each new instance until the deductive stage. Hence, a lazy learning 

method may better capture the specific characteristics of a new instance and provides an approach to 

learning classifiers of complex phenomena and dealing with large amounts of data [3], [11], [12]. However, 

overfitting may occur in lazy learning due to the lack of “global” view of the training data. 
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  Aiming to bridge the gap between eager learning and lazy learning, we propose a new classification 

framework named Partition based LAzy Classification PLAC. PLAC follows a divide-and-conquer approach 

by “globally” dividing the training data space into smaller and easier-to-learn partitions, where only the 

nearest partition of a new instance is used to train the local classifier that is finally used to classify the new 

instance. As a generic framework, existing classification methods can be incorporated into PLAC to build 

base classifiers. More specifically, we employ information gain to discriminate the features of the training 

data and build a hierarchy tree of data partitions. Given a new instance for classification, PLAC sorts it down 

the hierarchy tree and locates its nearest partition. With this partition, a classifier is built to predict the 

class label for this new instance. Since some new instances' nearest partition may be the same, we cache 

new classifiers after they have been built, so as to avoid rebuilding a classifier multiple times. Hence, the 

classification efficiency of PLAC can be improved.   

  To evaluate the effectiveness of PLAC, we conduct extensive experiments over 40 real world data sets. In 

the experiments, we employ five eager learning methods as the base learner of PLAC, including NB, C4.5, 

SVM, IB1, and OneR. For comparison, we also run a lazy learning algorithm named LAZYDT and two 

ensemble methods, e.g., Bagging and Boosting. According to the experiments, PLAC greatly improves the 

accuracy of the five eager learning methods by up to 14.70%. As for most of the base learners, PLAC 

outperforms LAZYDT and two ensemble methods Bagging and Boosting in terms of accuracy and running 

time. In addition, as to the performance validation by the nonparametric Friedman test and Nemenyi 

post-hoc test, PLAC performs best among all the methods in this paper. 

  In summary, this paper makes the following main contributions: 1) We propose a new method named 

PLAC to build classifiers for complex problems. As a generic framework, PLAC can employ existing 

classification algorithms as base learners; 2) We conduct extensive experiments on 40 real world data sets 

and validate the effectiveness and efficiency of PLAC; 3) All the source codes are publicly available for 

academic usages. 

  The rest of this paper is organized as follows: Section 2 provides an overview of the related work; Section 

3 presents basic concepts and foundation of our method; Section 4 details our proposed classification 

method; Section 5 reports and analyzes the experimental results; and Section 6 draws the conclusion. 

2. Related Work 

  In this section, we present the studies related to our work, including lazy learning and ensemble learning.  

Our work is related to lazy learning. k-Nearest Neighbor (k-NN) [8] classification is a typical lazy learning 

method, where the training data are simply stored and the inductive stage is deferred until an unseen 

instance is given. The lazy decision tree algorithm LAZYDT [3] builds a “best” decision tree for each new 

instance at classification time. Obviously, LAZYDT is very different from C4.5 [1] and CART [2], which create 

a single decision tree for all new instances during the inductive stage. The lazy associative classification 

method [13] focuses on the features that actually occur within the test instance while generating the rules, 

thus overcoming the large rule-set problem of traditional associative classifiers. The lazy bagging 

classification method [14] builds bootstrap replicate bags based on the characteristics of the test instances. 

Upon receiving a test instance, this method trims bootstrap bags by taking into consideration the new 

instance's nearest neighbors in the training data. The aforementioned methods postpone the classifier 

construction to the classification time and only store training instances at the inductive stage. Although our 

method also defers the construction of the classifier, we divide the training data into partitions during the 

inductive stage, which quickens up classifier construction and avoids the chance of the nearest instances of 

a new instance coming from different regions by accident. 
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  Our work is also related to ensemble learning, which consists of building base classifiers and combining 

their predictions. Accurate and diverse base classifiers are critical for gaining a high performing ensemble 

[15], [16]. Diversity can be obtained by partitioning the training data at instance-level and feature-level, or 

with mixture strategy (i.e., at both instance and feature levels). Both Bagging [17] and Boosting [18] create 

diversity at instance-level. The difference is that the former achieves this purpose by generating multiple 

bootstrap samples, the latter by making the succeeding samples biased towards the misclassified instances 

of the built classifier(s) via adaptive resampling. Random subspace method [19] and attribute bagging 

[20]-[21] are examples of the feature-level partitioning, whose effectiveness has been demonstrated by 

Cherkauer [22] in 1996. Breiman [23] combined Bagging with a random subspace method to improve 

diversity, thus is a mixture strategy. The resulting partitions of these strategies are similar and generally 

highly correlated [24]. Our method employs a different mixture strategy, one that guarantees the instances 

are similar to one another within the same partition and are dissimilar to the instances in other partitions. 

Moreover, our method uses only the nearest partition to build the classifier, so efficiency can be improved. 

3. Preliminaries and Motivation 

  In this section, we first present some definitions related to classification. Then, we introduce our 

motivation for the new method PLAC. 

3.1. Preliminaries 

  Suppose D is a data set consisting of n instances 𝑑1, 𝑑2,⋯, 𝑑𝑛, i.e., 𝐷 = {𝑑1, 𝑑2, ⋯ , 𝑑𝑛} (𝑛 ∈ 𝑁+); and Y 

denotes its target concept with limited discrete values, e.g., for a binary classification problem, 𝑌 = {+, −}, 

where ‘+’ and ‘−’ are class labels. Each instance 𝑑𝑖 ∈ 𝐷 is characterized by features 𝐹1, 𝐹2, ⋯ , 𝐹𝑚(𝑚 ∈ 𝑁+) 

and target concept Y, that is, 𝑑𝑖 =< 𝑋𝑖 , 𝑦𝑖 >, where 𝑋𝑖 and 𝑦𝑖  are the value-assignments of 𝐹1 × 𝐹2 × ⋯ ×

𝐹𝑚 and target concept Y, respectively; 𝑋 = 𝑈𝑖=1
𝑛 𝑋𝑖. With these notations, classification related concepts can 

be defined as follows. 

Definition 1. (Classifier). A classifier is a function 𝑓𝐷: 𝑋 → 𝑌 built from the given data set D such that 

for a new instance 𝑋𝑛𝑒𝑤 its target concept 𝑦𝑛𝑒𝑤 can be obtained via 𝑦𝑛𝑒𝑤 = 𝑓𝐷(𝑋𝑛𝑒𝑤) with satisfied 

classification performance. 

  Definition 1 indicates that the main task of classification is to build the classifier, which must be evaluated 

to determine its goodness before using it to make predictions. 

Definition 2. (Classifier Error). Let 𝑓𝐷 be the classifier learned from data set D, 𝑑𝑖 =< 𝑋𝑖 , 𝑦𝑖 > (1 ≤

𝑖 ≤ 𝑛) be an instance whose target concept is 𝑦𝑖 , and 𝑓𝐷(𝑋𝑖) be the predicted target concept of 𝑋𝑖 with 

𝑓𝐷, the classification error of 𝑓𝐷 upon instance 𝑑𝑖 can be defined as 

 

                     ∂(𝑓𝐷(𝑋𝑖), 𝑦𝑖) = {
0  𝑖𝑓 𝑓𝐷(𝑋𝑖) = 𝑦𝑖

1  𝑖𝑓 𝑓𝐷(𝑋𝑖) ≠ 𝑦𝑖 .
                          (1) 

 

Summing up the classification error ∂(𝑓𝐷(𝑋𝑖), 𝑦𝑖) of each instance 𝑑𝑖 ∈ 𝐷 gives us the classification 

error Err of 𝑓𝐷 on data set D. That is, 

 

                         Err(𝑓𝐷) = ∑  𝜕(𝑓𝐷(𝑋𝑖), 𝑦𝑖).
|𝐷|
𝑖=1                             (2) 

   

Since our proposed method is based on data partitioning, we formally define the related concepts and lay 

the foundation for further discussion. 

Definition 3. (Partition Set). For a given data set D, the non-empty subsets 𝐷1, 𝐷2, ⋯ , 𝐷𝑘(𝑘 ∈ 𝑁+) 
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constitute a partition set of data D if and only if 

 

𝐷 = (⋃ 𝐷𝑖
𝑘
𝑖=1 )⋀(𝐷𝑖⋂𝐷𝑗≠𝑖 = ∅, 1 ≤ 𝑗 ≤ 𝑘),                      (3) 

 

where, 𝐷𝑖 ∈ 𝐷 is referred as a partition. 

3.2. Motivation 

Although many classification methods perform well over simple problems, their performances on 

complex matters are usually reduced. Fig. 1 illustrates this situation with a moderate complex binary 

classification problem. 

In Fig. 1, ‘+’ and ‘−’ denote two different types of instances, which lie in the upside and downside of the 

boundary that can be viewed as the true classifier 𝑓𝐷, respectively; the solid straight line stands for the 

classifier 𝑓𝐷
′  learned from the given data with a linear classification method. Obviously, the true classifier 

𝑓𝐷 is a curve and the learned classifier 𝑓𝐷
′  is a straight line, the difference between the two is obvious, thus 

the latter can incur bigger classification error and can be further improved. 

 

 
Fig. 1. A complex classification problem. 

 
Generally, in order to get better classification performance, the learned classifier 𝑓𝐷

′  should approximate 

the true classifier 𝑓𝐷 as much as possible, since the latter effectively characterizes the underlying structure 

of the given data. Unfortunately, limited to both the internal rationale of classification algorithms and the 

data sets themselves, it is hard to directly learn the intrinsic characteristics of complex problems. 

However, taking a closer look at Fig. 1, a complicated problem may consist of various simple problems. 

In Fig. 1, the four dashed vertical lines divide the problem space into five regions that constitute a partition 

set of the original data; each partition of the set is relatively simple and can be easily handled with a 

classification algorithm.  

Hence, it is reasonable to learn multiple classifiers over the partition set of the given data and use the 

learned classifiers to approximate the true classifier. Since the partition set consists of small pieces of data 

whose complexity is much smaller than that of the original data, and learning classifiers from small simple 

data is much easier than that from bigger more complicated data, our proposed classification method can 

be based on data partitioning. Since every partition in our method should contain enough information such 

that it is able to distinguish different types of instances within itself. Therefore, a suitable data partitioning 

method is needed to guarantee the effectiveness of the partition set, and further to lay a solid foundation for 
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our proposed classification method. 

4. PLAC 

4.1. Framework 

  From the above analysis, we now have a rough idea of the framework of our method: to split the data into 

multiple partitions and only use one of them to train a classifier, with the classifier training delayed until a 

classification task is issued. Everything seems to be in place, but how do we implement this in a more 

specific way? Let's now look into the k-NN classification algorithm [7] for some inspirations. 

  As we know, k-NN is one type of lazy learning, where the classifier is approximated locally only with the 

instances in the nearest neighborhood of a new instance. This means that if we only view one of the 

multiple partitions as the nearest neighbor of an unseen instance, the underlying mechanism of k-NN can 

help make our method work. More specifically, we first divide the training data into a set of partitions that 

can well characterize the training data, for obvious reasons; then upon receiving a new instance to classify, 

we build the classifier on its nearest partition, and eventually use this classifier for classifying the new 

instance. This forms the framework of our proposed classification method, Fig. 2 shows the details. 

 

 
Fig. 2. Framework of the proposed classification method. 

 
  From Fig. 2 we know that our proposed classification method is a generic framework, which is not limited 

to any specific classification algorithm. In the following subsections, we will focus on introducing the data 

partitioning technique and the classification strategy, respectively. 

4.2. Data Partitioning 

  Data partitioning is the process of dividing the given data into multiple small partitions that constitute a 

partition set. The true complex classifier can be approximated with the simpler classifiers learned from the 
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partition set. Obviously, it is easier to train classifiers from small partitions than from the entire data. 

Therefore, the effectiveness of these partitions is a must. For this purpose, we need to address the following 

three problems: (1) What should be used to partition the data? (2) How to perform the partitioning? and (3) 

When to stop the partitioning process? 

  As we know, each instance of a data set is characterized by a set of features, generally the feature values 

of different instances are dissimilar. This means features can be used to differentiate distinct instances, and 

the richer the information a feature contains, the stronger its discriminability. This kind of ability can be 

computed with information gain, which is based on entropy. 

Definition 4. (Entropy). Let D be a data set and 𝑌 = {𝑦1, 𝑦2, ⋯ , 𝑦𝑟}(𝑟 ∈ 𝑁+) be its target concept, the 

entropy of D relative to Y is defined as 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) = ∑ −
|𝐷𝑦𝑖

|

|𝐷|
𝑙𝑜𝑔2

𝑟
𝑖=1

|𝐷𝑦𝑖
|

|𝐷|
                           (4) 

where 𝐷𝑦𝑖
 is the subset of D for which Y takes value yi, and 

|Dyi
|

|D|
 is the proportion of the instances whose 

target concept is 𝑦𝑖  in D. 
  Entropy characterizes the impurity of a data set, a greater value implies higher impurity. Based on 

entropy, the information gain, which indicates how well a feature separates the instances according to their 

target concepts, can be defined. 

Definition 5. (Information Gain). The information gain Gain (D, F) of feature F relative to data D is 

define as 

 

𝐺𝑎𝑖𝑛(𝐷, 𝐹) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − ∑
|𝐷𝑣|

|𝐷|𝑣∈𝑉𝑎𝑙𝑠(𝐹) 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑣)                 (5) 

 
where 𝑉𝑎𝑙𝑠(𝐹) is the set of all possible values2 for feature F, and 𝐷𝑣 is the subset of D for which F has 

value v. 

From Definition 5 we observe that the first term of the expression 𝐺𝑎𝑖𝑛(𝐷, 𝐹) is the entropy of data D, 

and the second term is the expected value of the entropy after D is partitioned with F. Therefore, 

𝐺𝑎𝑖𝑛(𝐷, 𝐹) represents the expected reduction in entropy caused by partitioning 𝐷 using 𝐹; greater values 

indicate purer/simpler partitions, which are what we desire. 

From the above introduction we know that 𝐺𝑎𝑖𝑛(𝐷, 𝐹) can help us with choosing the appropriate 

features for getting simple partitions of the given data. Once a feature is selected, the current data is 

partitioned into smaller pieces. Thus, the feature selection process is also a data partitioning process, in 

which the current best feature 𝐹𝑠𝑝𝑙𝑖𝑡 is chosen according to 

 

𝐹𝑠𝑝𝑙𝑖𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝐹∈𝐹𝑐𝑢𝑟𝑟

𝐺𝑎𝑖𝑛(𝐷𝑐𝑢𝑟𝑟 , 𝐹)                              (6) 

 

where 𝐷𝑐𝑢𝑟𝑟 is the current data set and is characterized with feature set 𝐹𝑐𝑢𝑟𝑟. 

  Feature selection is just one of the many things we need to do, the complete data partitioning process is 

as follows: 

1. for current data 𝐷𝑐𝑢𝑟𝑟, the information gain 𝐺𝑎𝑖𝑛(𝐷𝑐𝑢𝑟𝑟 , 𝐹) of each feature 𝐹 ∈ 𝐹𝑐𝑢𝑟𝑟 is computed, 

and the maximum one is chosen as the current best feature 𝐹𝑠𝑝𝑙𝑖𝑡. 

2. use 𝐹𝑠𝑝𝑙𝑖𝑡  to divide current data 𝐷𝑐𝑢𝑟𝑟  into multiple partitions 𝐷1 , 𝐷2 , ..., 𝐷𝑘  according to its 

values, each partition 𝐷𝑖(i=1,2,...,k) results from a distinct feature value. This means within each 

partition, 𝐹𝑐𝑢𝑟𝑟 has an identical value. 

3. view each partition 𝐷𝑖(i=1,2,...,k) as current data 𝐷𝑐𝑢𝑟𝑟, repeat steps 1 and 2 until the termination 
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condition is met. The final partitions consist of the partition set. 

This process can be viewed as the process of building a hierarchical tree, illustrated in Fig. 3. Firstly, 

𝐹𝑟𝑜𝑜𝑡 ∈ 𝐹𝑐𝑢𝑟𝑟 is chosen as the split feature from current data 𝐷𝑐𝑢𝑟𝑟, and the root of the tree is created. As 

feature 𝐹𝑟𝑜𝑜𝑡 has 𝑚 values 𝑣1,𝑣2,⋯,𝑣𝑚, 𝑚 branches are grown, and each one corresponds to a temporary 

partition of 𝐷1, 𝐷2, ..., 𝐷𝑚, respectively. Because partition 𝐷𝑚 meets the termination condition, leaf 𝐿𝑚 is 

formed. For each of the remaining partitions 𝐷𝑖(i=1,2,...,m-1), the split feature 𝐹𝑖  is chosen as the root of a 

subtree. Repeat the above process for each root until all subtrees meet the termination condition, finally the 

set of leaf nodes {𝐿1, 𝐿2, ⋯ , 𝐿𝑚} constitutes the partition set we want. 

 

 
Fig. 3. Data partitioning. 

 

Since only one partition of {𝐿1, 𝐿2, ⋯ , 𝐿𝑚} will be used to train a classifier, the number of instances in a 

partition should be big enough to avoid overfitting. In our method, the size of a partition is controlled with a 

threshold. Specifically, if the number of instances in a partition is less than the threshold, the partitioning on 

this partition will be terminated. 

4.3. Classification 

  In our proposed method, the classification of a new instance is very similar to that of the 𝑘-NN method. 

That is, the nearest partition is first located for the new instance, then a single classification algorithm is 

applied to that nearest partition to train the classifier, which will finally be used to classify the new instance. 

The search of the nearest partition is very straightforward. PLAC traverses down the hierarchy tree that 

was built in the data partitioning process with respect to the feature values of the new instance until a leaf 

(partition) is located. Due to the fact that the nearest partition of some unseen instances can be identical, it 

is possible to build the same classifier multiple times, thus lowering the classification efficiency. We avoid 

this situation by caching new classifiers after they have been built. In this way, next time when the same 

partition is located by a new instance, the cached classifier is invoked to make a prediction. 

4.4. Pseudo Code of PLAC 

  Our proposed classification method is implemented as a three-step process. In the first step, the training 

data is partitioned into a set of partitions, with the method presented in Section 4.2. The second step 

searches for the nearest partition from the partition set for a new instance waiting to classify. Finally, in the 

third step, the classifier specialized to the new instance is built over the nearest partition and used to 

classify the new instance. Algorithm 1 shows the details. 

Algorithm 1. PLAC 
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INPUT: dataset – the training data set 

      featureSet – the features characterizing the dataset 

      classificationAlg - the algorithm used to classify new instances 

      partitionSize - the predefined minimum size of a partition 

      newInstance - the instance to be classified 

OUTPUT: classLabel - the predicted class label of newInstance 

//== Step 1: Data partitioning ==  

1. tree ← Partitioning(dataSet, featureSet, partitionSize); 

    /* Leaves of the tree consist of the partition set*/ 

2. //== Step 2: The nearest partition search == 

3. currNode ← tree.root; /* Get the current split feature currNode*/ 

4.   

5. While currNode is NOT a leaf do 

6.    v ← Value of the feature newInstance.currNode; 

7.    currNode ← Root of the subtree whose parent feature currNode has value v; 

8. nearPart ← The partition corresponding to currNode; 

9. if nearPart has NOT been used to build a classifier then 

10.   classifier ← Train classifier on nearPart with classificationAlg; 

11.   Cache the classifier classifier; 

12. Else 

13.   classifier ← Cached classifier for the partition nearPart; 

14. classLabel ← Classify newInstance with classifier; 

15. return classLabel; 

Function Partitioning 

INPUT: dataset –the given data set 

      featureSet –the features characterizing the dataset 

      partitionSize - the minimum size of a partition 

      newInstance - the instance to be classified 

OUTPUT: treeRoot - the tree whose leaves consist of the partition set 

1. if | dataset | ≤ partitionSize then 

2.   return treeRoot 

3. else 

4.   best ← argmax
𝐹∈𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑡

𝐺𝑎𝑖𝑛(𝑑𝑎𝑡𝑎𝑆𝑒𝑡, 𝐹); 

5.   treeRoot ← Create a new tree with root best; 

6.   for each value v of the feature best do 

7.     d ← { Instances of dataSet with best=v } ; 

8.     subTree ← Partitioning(d, featureSet-best,partitionSize); 

9.     Add subTree as a subtree to treeRoot; 

10.    return treeRoot 

 

  Line 1 of Algorithm 1 partitions the training data dataSet, which is characterized by featureSet, into a 

partition set using Function Partitioning, and the size of each partition in the set is no less than the 

predefined partitionSize. Function Partitioning uses information gain based method to split the training data 

dataset into small pieces, where the smaller ones have higher purity. Here, partitioning is actually the 

process of constructing a hierarchy tree, where the internal nodes are split features and the leaf nodes are 

made up of the partition set. 

Line 2 to 6 search for the nearest partition nearPart for the unseen instance newInstance from the 

hierarchy tree returned by Function Partitioning. Starting at the root node, the algorithm traverses the tree 

according to the feature values of the instance newInstance, the leaf node encountered is the nearest 

partition nearPart.   

Line 7 to 12 classify the new instance newInstance. Specifically, if the nearest partition nearPart of the 

new instance newInstance has been used to build a classifier, the classifier must have been cached, the 

cached classifier classifier is then invoked to classify the new instance. Otherwise, the specified algorithm 

classificationAlg is applied to the nearest partition nearPart to train the classifier, which will be employed to 
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classify the unseen instance newInstance and finally be cached for use of next time. 

Time complexity. The computational cost of data partitioning is𝑂(𝑚̃ × 𝑛 × 𝑙𝑜𝑔 (𝑛))for data with n 

instances and m features, where 𝑚̃ ≪ 𝑚 is the number of features used to partition the data. 𝑂(ℎ) and 

𝑂(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐴𝑙𝑔(𝑛𝑒𝑎𝑟𝑃𝑎𝑟𝑡)) are the computational cost of locating the nearest partition for a new 

instance from the hierarchy tree whose maximum depth is h and classifying the new instance with 

classification algorithm 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐴𝑙𝑔, respectively. Since 𝑚̃ and h do not exceed 25 and 10 according 

to our experiments on 40 real world data sets, respectively, the time complexity of this algorithm is  

𝑂(𝑛 × 𝑙𝑜 𝑔(𝑛)) + 𝑂(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐴𝑙𝑔(𝑛𝑒𝑎𝑟𝑃𝑎𝑟𝑡)). Usually |𝑛𝑒𝑎𝑟𝑃𝑎𝑟𝑡| ≪ 𝑛, therefore, this algorithm can 

be very efficient in classifying large data sets. Moreover, if the complexity of algorithm 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐴𝑙𝑔 

is less than 𝑂(𝑛 × 𝑙𝑜 𝑔(𝑛)), our proposed method is even faster than 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐴𝑙𝑔 as a single 

method, this can be demonstrated by the experiments in Section 5. 

5. Experimental Results and Analysis 

  A large variety of experiments was performed to evaluate the performance of our proposed PLAC and 

other representative classification methods. In this section, we present the data and the experimental 

procedure, and report and analyze the experimental results. 

5.1. Data Description 

  To evaluate the performance of PLAC, verifying whether or not it is potentially useful in practice, and 

allowing other researchers to confirm our results, 40 publicly available data sets were employed to compare 

PLAC and its competitors. The statistics of these data sets are summarized in Table 1. 

Of the 40 data sets, 36 come from UCI Machine Learning Repository [25] that cover a range of application 

domains such as life sciences, physical sciences, social sciences, engineering, game, and business. The 

remaining 4 are KDD Cup data sets, which involve areas of fund raising and computer network. The number 

of instances, features, and target concepts of these data sets vary from 303 to 67557, from 5 to 61, and from 

2 to 26, respectively. 

Table 1. Summary of the 40 Publicly Available Data Sets 

ID Data Set I F T ID Data Set I F T 

1 adult-census 32561 15 2 21 kdd-ipums-99 8844 61 9 

2 anneal 898 39 6 22 kdd-Japanese 4274 15 9 

3 anneal-ORIG 898 39 6 23 kr-vs-kp 3196 37 2 

4 balance-scale 625 5 3 24 letter 20000 17 26 

5 breast-w 699 10 2 25 liver-disorders 345 7 2 

6 car 1728 7 4 26 monks-1 432 7 2 

7 cmc 1473 10 3 27 monks-2 432 7 2 

8 colic 368 23 2 28 monks-3 432 7 2 

9 connect-4 67557 43 3 29 nursery 12960 9 5 

10 credit-a 690 16 2 30 pendigits 10992 17 10 

11 credit-g 1000 21 2 31 poker-hand 25010 11 10 

12 cylinder-bands 540 40 2 32 segment 2310 20 7 

13 dermatology 366 35 6 33 solar-flare-1 323 13 2 

14 diabetes 768 9 2 34 solar-flare-2 1066 13 3 

15 ecoli 336 8 8 35 soybean 683 36 19 

16 EEG Eye State 14980 15 2 36 tic-tac-toe 958 10 2 

17 heart-disease 303 14 5 37 vehicle 846 19 4 

18 ionosphere 351 35 2 38 vote 435 17 2 

19 kdd-ipums-97 7019 61 9 39 vowel 990 14 11 

20 kdd-ipums-98 7485 61 10 40 wdbc 569 31 2 

Note: I, F, and T denote the number of instances, the number of features, and the number of classes, respectively. 

5.2. Experimental Setup 
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5.2.1. Benchmark methods 

  Since PLAC is a generic framework, existing classification algorithms could be used as its subordinate 

algorithm. For the purpose of thoroughly evaluating our proposed method PLAC, a series of classification 

algorithms are incorporated into PLAC respectively, including probability-based naive Bayes NB [9], 

tree-based C4.5 [1], support vector machines SVM [10], rule-based OneR [6], and instance-based IB1 [7]-[8]. 

In such a way, we could evaluate the effectiveness of PLAC against its subordinate algorithms. Since 

ensembling methods also employ some subordinate classification algorithms, for fair comparison, we also 

compare PLAC against Bagging [17] and Boosting [18]. Meanwhile, we also employ the lazy decision tree 

algorithm LAZYDT as a comparative algorithm, in which a path in a ``best'' tree for a given new instance is 

constructed to predict the label of the new instance. 

5.2.2. Experimental procedure 

In order to make the best use of the data and obtain stable results, a (M=10)×(N=10)-cross-validation is 

used for estimating the performance of each classification method. That is, each data set is first divided into 

N bins, after that, a classifier is trained using (N-1) bins, and then tested on the remaining one. This 

procedure is repeated for the N folds, so that each bin is used for training and testing while minimizing 

sampling bias. To overcome any ordering effect and to achieve reliable statistics, each holdout experiment is 

also repeated M times, and in each repetition the data sets are randomized. Hence in general, M×N 

classifiers are all built during the period of evaluation, thus M×N results are obtained on each data set 

about the performance of each classification method. The Experimental Process above shows the details of 

the experimental procedure. 

 

Function Experimental Process 

1. M ← 10: /*the number of repetitions */ 

2.   

3. N ← 10: /*the number of repetitions */ 

4.  

5. DATA ← {D1, D2, ..., D40}; 

6. Learners ← {SVM, OneR, NB, C4.5, IB1,LAZYDT}; 

7. for each data ∈ DATA do 

8.   for each times ∈ [1, M] do 

9.     data’ ← randomize instance-order for data; 

10.     binData ← generate numFolds bins from data’; 

11.     for each fold ∈ [1,N] do 

12.       testData ← binData[fold]; 

13.       trainingData ←data’- testData; 

14.       for each learner ∈ Learners do classifier ← learner(trainingData); 

15.          Accuracy ← classifier(testData); 

 

5.3. Accuracy Comparison 

  Tables 2, 3, 4, 5, and 6 show the classification accuracy and the corresponding Win/Draw/Loss records of 

single learning methods NB, C4.5, SVM, IB1, OneR, and LAZYDT, and our PLAC and ensemble learning Bagging 

and Boosting with these single methods excluding LAZYDT as the base learner(s), respectively. 

  From Tables 2 - 6 we observe that 

1) The classification accuracy of our PLAC varies from 82.06% to 86.8% with different single learning 

methods as its base learner. When SVM is chosen (as the base learner), PLAC achieves the best 

accuracy 86.8% that outperforms all the other classification methods over the 40 data sets. Since PLAC 

is not specific to any individual classification algorithm, SVM should be selected as its base learner if 

accuracy is most concerned. 
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2) Compared to the five eager learning methods, our PLAC performs best over the 40 data sets. 

Specifically, PLAC improved the classification accuracy of NB, C4.5, SVM, IB1, and OneR by 6.81%, 

1.93%, 4.20%, 3.66%, and 14.70% on average, respectively. Surprisingly, the accuracy of C4.5 was 

enhanced as well. This is because C4.5 induces a single decision tree for all the new instances with the 

entire training data, which means it does not take into account the specific characteristics of a new 

instance. When using C4.5 as the base learner, PLAC builds a classifier for each new instance with the 

most relevant part of the training data. Since PLAC customizes the classifier for each new instance, it 

could be more accurate. 

   

Table 2. Accuracy of LAZYDT, NB, and Bagging, Boosting and PLAC with NB as the Base Learner over the 40 

Data Sets 

Data LAZYDT NB Bagging Boosting PLAC 
adult-census 84.74 83.43 83.35 83.43 83.37 

anneal 98.40 86.61 87.64 93.85 98.31 

anneal-ORIG 90.29 75.34 78.17 80.02 94.92 

balance-scale 77.86 90.62 90.08 91.81 90.62 

breast-w 94.96 96.05 96.05 95.51 96.40 

car 92.34 85.6 85.20 90.35 89.63 

cmc 51.12 50.42 49.83 50.42 54.89 

colic 84.61 78.65 79.03 77.17 83.38 

connect-4 80.91 72.14 72.21 72.14 75.34 

credit-a 84.41 77.83 77.77 81.36 84.78 

credit-g 71.42 75.30 75.46 75.26 75.30 

cylinder-bands 57.89 73.96 72.81 77.59 76.19 

dermatology 93.94 97.49 97.43 96.77 97.49 

diabetes 74.69 75.68 75.83 75.89 76.00 

ecoli 82.86 85.48 85.59 85.48 85.48 

EEG Eye State 57.58 46.77 47.05 46.77 74.56 

heart-disease 76.14 83.29 83.35 83.63 83.29 

ionosphere 92.66 82.40 82.34 90.61 91.34 

kdd-ipums-97 77.11 70.17 70.93 69.58 76.78 

kdd-ipums-98 76.26 72.68 73.01 66.49 76.32 
kdd-ipums-99 86.02 83.03 83.45 80.10 85.95 

kdd-Japanese 86.86 83.74 83.69 86.13 91.43 

kr-vs-kp 99.44 99.44 99.37 99.61 99.44 

letter 86.50 64.12 64.30 64.12 83.97 

liver-disorders 64.60 54.80 54.96 65.23 67.98 

monks-1 97.13 75.01 75.01 73.80 89.22 

monks-2 67.13 66.16 65.28 65.70 66.16 

monks-3 100.00 97.22 97.22 99.81 100.00 

nursery 97.16 90.32 90.23 91.82 94.05 

pendigits 96.56 85.75 85.74 85.75 96.21 

poker-hand 57.94 49.88 49.81 49.88 54.22 

segment 95.23 80.12 80.29 80.12 92.75 

solar-flare-1 97.84 92.95 93.88 96.41 97.59 

solar-flare-2 99.54 97.58 97.75 99.20 99.61 

soybean 91.33 93.00 92.82 92.97 93.47 

tic-tac-toe 84.97 69.52 70.19 81.57 83.63 

vehicle 69.90 44.42 45.39 44.42 73.03 

vote 96.55 90.02 89.88 94.89 94.21 

vowel 80.59 62.59 62.95 79.90 82.81 

wdbc 93.50 93.19 93.26 95.78 95.08 

Mean 83.72 78.32 78.47 80.28 85.13 

Win/Draw/Loss 18/2/20 1/7/32 3/0/37 8/1/31  

Note: A Win/Draw/Loss record indicates how many data sets the learner in a column has accuracy higher 

than/equal to/lower than that of PLAC. 
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Table 3. Accuracy of LAZYDT, C4.5, and Bagging, Boosting and PLAC with C4.5 as the Base Learner over the 40 

Data Sets 

Data LAZYDT C4.5 Bagging Boosting PLAC 
adult-census 84.74 86.23 86.12 83.58 86.49 

anneal 98.40 98.51 98.84 99.69 98.89 

anneal-ORIG 90.29 91.85 94.26 95.19 95.28 

balance-scale 77.86 77.89 83.13 78.58 78.21 

breast-w 94.96 95.02 96.25 95.91 95.11 

car 92.34 92.34 93.32 95.93 92.34 

cmc 51.12 51.57 51.93 50.41 53.57 

colic 84.61 85.10 85.42 81.95 85.15 

connect-4 80.91 80.90 82.71 82.73 80.97 

credit-a 84.41 85.88 86.38 84.41 86.41 

credit-g 71.42 71.30 73.42 70.20 74.70 

cylinder-bands 57.89 57.78 58.04 57.78 70.48 

dermatology 93.94 94.11 96.01 95.90 94.11 

diabetes 74.69 74.85 75.42 72.13 75.05 

ecoli 82.86 83.34 84.29 82.63 85.01 

EEG Eye State 57.58 84.50 90.51 91.70 85.13 

heart-disease 76.14 76.97 79.59 78.29 78.67 

ionosphere 92.66 89.63 92.54 92.60 89.80 

kdd-ipums-97 77.11 77.11 77.11 68.22 77.11 

kdd-ipums-98 76.26 76.25 76.25 76.25 76.25 
kdd-ipums-99 86.02 86.02 86.02 83.23 86.11 
kdd-Japanese 86.86 87.37 93.22 96.75 87.88 
kr-vs-kp 99.44 99.44 99.37 99.61 99.44 
letter 86.50 87.98 92.57 95.54 88.11 
liver-disorders 64.60 66.38 70.61 69.03 67.25 
monks-1 97.13 97.13 100.00 100.00 97.13 
monks-2 67.13 67.14 56.95 59.40 67.14 
monks-3 100.00 100.00 100.00 100.00 100.00 
nursery 97.16 97.05 97.31 99.51 97.05 
pendigits 96.56 96.58 98.07 99.07 96.73 
poker-hand 57.94 54.65 58.70 57.56 55.19 
segment 95.23 96.76 97.22 98.18 96.92 
solar-flare-1 97.84 97.84 97.65 96.29 97.84 
solar-flare-2 99.54 99.53 99.53 98.97 99.53 
soybean 91.33 91.33 92.56 92.53 91.68 
tic-tac-toe 84.97 84.97 92.90 96.43 85.30 
vehicle 69.90 71.87 74.66 75.93 74.30 
vote 96.55 96.55 96.27 95.25 96.55 
vowel 80.59 80.04 89.33 93.03 80.34 
wdbc 93.50 93.11 95.68 95.64 94.27 
Mean 83.72 83.51 86.25 85.90 85.44 
Win/Draw/Loss 6/7/27 0/12/28 23/4/13 22/2/16  

 

Table 4. Accuracy of LAZYDT, SVM, and Bagging, Boosting and PLAC with SVM as the Base Learner over the 

40 Data Sets 

Data LAZYDT SVM Bagging Boosting PLAC 
adult-census 84.74 84.91 84.50 84.89 82.74 

anneal 98.40 97.46 97.84 99.36 99.24 

anneal-ORIG 90.29 87.46 89.06 90.00 91.91 

balance-scale 77.86 87.78 87.42 87.68 89.31 

breast-w 94.96 96.71 96.74 96.65 97.00 

car 92.34 93.68 93.50 94.29 95.74 

cmc 51.12 48.56 49.22 48.68 55.52 

colic 84.61 82.49 83.09 79.13 85.11 

connect-4 80.91 NA NA NA 79.16 

credit-a 84.41 85.01 85.42 83.45 86.78 
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credit-g 71.42 75.06 75.44 75.06 75.08 

cylinder-bands 57.89 81.52 80.41 82.04 82.81 

dermatology 93.94 96.11 97.1 96.06 96.11 

diabetes 74.69 76.85 77.37 76.85 76.85 

ecoli 82.86 83.57 84.28 85.00 83.93 

EEG Eye State 57.58 55.13 55.95 55.77 84.44 

heart-disease 76.14 83.69 83.49 83.82 83.69 

ionosphere 92.66 88.10 88.50 89.23 90.37 

kdd-ipums-97 77.11 69.10 75.29 69.64 72.96 

kdd-ipums-98 76.26 70.97 75.26 70.85 73.31 

kdd-ipums-99 86.02 82.79 85.80 82.05 84.89 

kdd-Japanese 86.86 94.9 94.15 94.57 93.24 

kr-vs-kp 99.44 95.76 96.07 97.00 99.50 

letter 86.50 82.34 81.05 82.34 89.01 

liver-disorders 64.60 58.04 58.80 64.09 67.96 

monks-1 97.13 75.01 75.01 85.14 90.51 

monks-2 67.13 67.14 67.14 72.47 78.99 

monks-3 100.00 100.00 99.81 100.00 100.00 

nursery 97.16 93.08 93.00 93.07 98.46 

pendigits 96.56 97.91 97.73 98.20 96.62 

poker-hand 57.94 46.93 46.44 46.93 48.15 

segment 95.23 92.94 92.88 92.98 96.09 

solar-flare-1 97.84 97.53 97.41 95.98 97.53 

solar-flare-2 99.54 99.51 99.50 99.08 99.51 

soybean 91.33 93.03 93.03 92.76 93.53 

tic-tac-toe 84.97 98.33 98.33 98.14 98.33 

vehicle 69.9 74.37 74.73 74.35 77.09 

vote 96.55 95.72 96.18 95.67 96.23 

vowel 80.59 70.71 70.38 78.38 86.59 

wdbc 93.50 97.54 97.65 97.19 97.54 

Mean 83.72 82.60 1900/3/23 84.33 86.80 

Win/Draw/Loss 11/1/28 3/8/29 11/1/28 6/2/32  

 

Table 5. Accuracy of LAZYDT, IB1, and Bagging, Boosting and PLAC with IB1 as the base Learner over the 40 

Data Sets 

Data LAZYDT IB1 Bagging Boosting PLAC 
adult-census 84.74 79.42 80.04 78.36 81.12 

anneal 98.40 99.11 98.71 99.26 99.51 

anneal-ORIG 90.29 95.50 95.25 96.55 97.21 

balance-scale 77.86 78.4 81.95 72.00 80.13 

breast-w 94.96 95.37 95.45 95.28 95.79 

car 92.34 77.37 87.59 88.67 82.59 

cmc 51.12 43.93 44.92 43.92 48.61 

colic 84.61 79.52 80.01 79.14 82.17 

connect-4 80.91 66.35 77.58 NA 69.71 

credit-a 84.41 81.71 82.70 80.52 82.06 

credit-g 71.42 71.98 71.76 67.76 71.98 

cylinder-bands 57.89 75.41 74.07 73.93 78.37 

dermatology 93.94 94.69 94.8 92.23 94.69 

diabetes 74.69 70.88 71.74 67.91 72.13 

ecoli 82.86 80.78 82.98 79.47 81.56 

EEG Eye State 57.58 83.65 90.97 81.88 94.53 

heart-disease 76.14 76.25 76.65 73.67 78.15 

ionosphere 92.66 87.24 87.64 87.35 91.05 

kdd-ipums-97 77.11 65.53 68.52 61.55 65.85 

kdd-ipums-98 76.26 64.34 67.91 59.93 64.53 

kdd-ipums-99 86.02 80.16 82.30 76.12 80.16 

kdd-Japanese 86.86 99.84 99.68 99.51 99.84 

kr-vs-kp 99.44 90.49 94.83 95.92 96.98 

letter 86.50 96.00 95.93 94.89 95.97 
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liver-disorders 64.60 61.88 61.23 62.45 63.12 

monks-1 97.13 72.04 89.44 91.85 75.88 

monks-2 67.13 57.28 57.65 47.37 59.54 

monks-3 100.00 79.12 95.42 96.57 97.50 

nursery 97.16 78.72 94.16 82.21 89.77 

pendigits 96.56 99.36 99.39 99.17 99.34 

poker-hand 57.94 45.32 45.84 44.88 46.13 

segment 95.23 97.13 96.81 96.66 97.48 

solar-flare-1 97.84 95.62 96.73 95.50 95.8 

solar-flare-2 99.54 99.21 99.29 99.14 99.23 

soybean 91.33 90.24 90.89 90.86 91.42 

tic-tac-toe 84.97 81.06 95.45 94.57 85.32 

vehicle 69.90 70.00 70.35 68.70 73.00 

vote 96.55 92.09 92.73 92.50 95.31 

vowel 80.59 99.07 98.61 98.77 99.07 

wdbc 93.50 95.75 96.17 94.73 95.96 

Mean 83.72 80.05 84.10 82.10 83.71 

Win/Draw/Loss 22/0/18 2/5/33 16/0/24 3/0/37  

 

Table 6. Accuracy of LAZYDT, OneR, and Bagging, Boosting and PLAC with OneR as the Base Learner over the 

40 Data Sets 

Data LAZYDT OneR Bagging Boosting PLAC 
adult-census 84.74  80.91  74.71  74.96  84.23  

anneal 98.40  83.63  83.63  84.95  98.84  

anneal-ORIG 90.29  83.63  83.63  84.95  95.75  

balance-scale 77.86  56.99  69.06  73.50  76.86  

breast-w 94.96  92.11  92.91  95.34  95.05  

car 92.34  70.02  70.02  73.13  80.85  

cmc 51.12  47.68  46.15  43.91  54.57  

colic 84.61  81.51  81.51  78.40  84.28  

connect-4 80.91  66.14  66.14  66.14  70.18  

credit-a 84.41  85.51  85.51  78.58  87.04  

credit-g 71.42  66.20  68.04  63.80  72.76  

cylinder-bands 57.89  50.11  47.96  51.59  80.93  

dermatology 93.94  50.16  50.39  46.44  91.03  

diabetes 74.69  71.51  71.80  69.16  74.77  

ecoli 82.86  67.73  65.19  65.76  81.38  

EEG Eye State 57.58  62.60  62.56  66.46  73.57  

heart-disease 76.14  72.86  77.21  73.22  79.89  

ionosphere 92.66  81.99  84.90  87.35  89.46  

kdd-ipums-97 77.11  72.27  70.75  67.28  72.27  

kdd-ipums-98 76.26  73.44  74.04  73.10  74.78  

kdd-ipums-99 86.02  84.99  85.01  84.88  85.34  

kdd-Japanese 86.86  31.18  34.53  27.88  75.67  

kr-vs-kp 99.44  66.92  66.23  93.02  96.01  

letter 86.50  17.24  17.56  16.64  62.22  

liver-disorders 64.60  54.89  58.78  60.32  67.25  

monks-1 97.13  75.01  75.01  75.01  90.70  

monks-2 67.13  67.14  67.14  65.79  67.14  

monks-3 100.00  79.94  80.54  98.80  100.00  

nursery 97.16  70.97  70.97  83.16  89.39  

pendigits 96.56  38.91  41.65  38.20  89.20  

poker-hand 57.94  49.95  49.94  49.35  53.67  

segment 95.23  64.16  67.70  79.52  94.90  

solar-flare-1 97.84  97.65  97.84  97.28  97.65  

solar-flare-2 99.54  99.44  99.50  99.27  99.53  

soybean 91.33  39.91  40.41  40.44  87.70  

tic-tac-toe 84.97  69.94  69.94  72.98  80.11  

vehicle 69.90  52.60  51.85  50.38  70.38  

vote 96.55  95.63  95.49  95.36  95.63  
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vowel 80.59  32.61  36.34  31.09  67.35  

wdbc 93.50  88.44  91.21  91.99  94.06  

Mean 83.72  67.36  68.10  69.23  82.06  

Win/Draw/Loss 25/1/14 0/4/36 1/1/38 1/0/39  

 

As we know, mean is a central tendency statistical measure, and is often used to compare the general 

performance of different learning methods. Here, it distinguishes the 21 learners viewing all the 40 data 

sets as a whole. To compensate this, we further employ statistics Win/Draw/Loss record [26] to 

differentiate these learners based on one-tone comparison from another perspective. A Win/Draw/Loss 

record presents three values, the number of data sets for which one learner obtained better, equal, or worse 

performance than another learner in terms of a given measure. 

The last rows of Tables 2 - 6 shows the Win/Draw/Loss records of the corresponding learners, where 

each record indicates how many data sets the learner in a column has accuracy higher than/equal to/lower 

than that of PLAC. The Win/Draw/Loss records reveal that the classification accuracy of PLAC is better than 

those of the five eager learners on 32, 28, 29, 33 and 36 out of 40 data sets, respectively. This confirmed the 

conclusion drawn from the classification accuracy. 

1) As for the lazy learning method LAZYDT, its classification accuracy was improved by PLAC with NB, C4.5, 

and SVM as its base learners by 1.41%, 1.72%, and 3.08%, respectively. In contrast, LAZYDT 

outperforms PLAC with IB1 and OneR as base learners by 0.01% and 1.66%. It indicates that PLAC 

performs better than LAZYDT in most cases. This finding is also consistent with the fact that no method 

can perform better than others in all settings [27]. 

2) PLAC defeats ensemble learning method Bagging with NB, SVM, and OneR as the base learner in terms 

of classification accuracy, this is consistent with the Win/Draw/Loss records. PLAC also wins ensemble 

learning method Boosting with NB, SVM, IB1, and OneR as the base learner in terms of classification 

accuracy. Again, this is supported by the Win/Draw/Loss records. An exception occurs when C4.5 is 

chosen as the base learner, the classification accuracy of PLAC becomes slightly lower than those of 

Bagging and Boosting. 

3) For very simple classification algorithms such as OneR, the classification accuracy was greatly 

improved by lazy learning method PLAC by 14.70%, while ensemble learning methods Bagging and 

Boosting were only able to improve it by at most 1.87%. This reveals that the first choice for enhancing 

the performance of very simple algorithms should be lazy learning methods, even if they are often used 

as the base learners in ensemble learning such as Bagging and Boosting [28]. 

5.4. Runtime Comparison 

  Tables 7, 8, 9, 10, and 11 show the classification time and the corresponding Win/Draw/Loss records of 

the single learning methods NB, C4.5, SVM, IB1, OneR, and LAZYDT, and our PLAC and ensemble learning 

Bagging and Boosting with these single methods excluding LAZYDT as the base learner(s), respectively. 

 

Table 7. Runtime of LAZYDT, NB, and Bagging, Boosting and PLAC with NB as the Base Learner over the 40 

Data Sets 

Data LAZYDT NB Bagging Boosting PLAC 
adult-census 3420.02 68.08 341.96 1458.96 291.28 

anneal 38.54 4.88 31.05 468.94 5.86 

anneal-ORIG 73.13 2.73 18.40 238.80 4.74 

balance-scale 10.59 0.49 3.49 26.06 0.42 

breast-w 17.83 0.84 6.69 36.27 1.91 

car 4.32 0.69 5.71 64.43 1.07 

cmc 25.74 0.97 8.41 35.50 1.33 

colic 15.18 0.46 3.82 25.77 2.10 
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connect-4 3962.60 141.81 1045.45 11566.84 2039.42 

credit-a 7.48 1.08 6.56 35.55 3.09 

credit-g 18.49 1.16 10.97 89.36 1.24 

cylinder-bands 9.25 1.34 12.65 101.31 4.98 

dermatology 2.20 0.87 8.52 124.46 0.97 

diabetes 23.57 0.77 7.27 38.31 2.27 

ecoli 10.36 0.86 7.98 33.22 0.80 

EEG Eye State 746.62 36.88 264.87 115.46 175.61 

heart-disease 7.91 0.89 7.42 94.00 0.83 

ionosphere 42.65 1.77 12.90 86.23 6.03 

kdd-ipums-97 379.01 32.67 303.49 2457.76 37.59 

kdd-ipums-98 172.58 36.86 370.29 3317.41 49.04 

kdd-ipums-99 208.80 40.66 406.59 3708.29 54.54 

kdd-Japanese 298.36 17.25 164.93 1596.79 115.59 

kr-vs-kp 25.82 13.05 81.34 178.56 6.87 

letter 7116.95 211.29 1680.94 15795.45 600.44 

liver-disorders 14.75 0.28 2.59 12.63 0.49 

monks-1 1.53 0.15 1.20 9.56 0.46 

monks-2 1.89 0.13 1.14 3.10 0.15 

monks-3 1.12 0.15 1.16 9.64 0.39 

nursery 43.19 11.79 63.47 751.17 13.70 

pendigits 1510.68 60.86 506.07 4301.14 181.91 

poker-hand 1958.39 61.28 485.46 396.29 163.64 

segment 140.57 12.02 110.24 356.93 47.12 

solar-flare-1 1.51 0.17 1.39 13.31 0.37 

solar-flare-2 2.30 0.57 5.10 63.90 0.80 

soybean 12.44 4.17 38.37 628.79 4.11 

tic-tac-toe 3.99 0.32 2.98 30.24 0.93 

vehicle 80.09 2.39 22.10 12.03 9.71 

vote 2.85 0.23 2.15 21.78 0.77 

vowel 52.32 3.62 33.51 432.06 24.24 

wdbc 43.31 2.20 20.38 123.48 11.10 

Mean 512.72 19.47 152.73 1221.49 96.70 

Win/Draw/Loss 6/0/34 35/0/5 1/0/39 1/0/39  

Note: A Win/Draw/Loss record indicates how many data sets the learner in a column has time less than/ equal to/greater 

than that of PLAC. 

 

Table 8. Runtime of LAZYDT, C4.5, and Bagging, Boosting and PLAC with C4.5 as the Base Learner over the 40 

Data Sets 

Data LAZYDT C4.5 Bagging Boosting PLAC 
adult-census 3420.02  1481.30  8331.87  17248.19  455.90  

anneal 38.54  10.81  60.55  54.33  5.11  

anneal-ORIG 73.13  11.45  90.04  71.45  5.80  

balance-scale 10.59  1.97  17.20  26.52  1.50  

breast-w 17.83  2.57  16.27  27.59  1.73  

car 4.32  1.21  11.70  23.29  1.16  

cmc 25.74  9.34  83.68  96.15  5.68  

colic 15.18  2.76  23.22  42.26  2.73  

connect-4 3962.60  3118.18  24451.09  33185.64  2405.84  

credit-a 7.48  3.81  30.38  47.89  3.44  

credit-g 18.49  6.96  57.18  77.15  5.95  

cylinder-bands 9.25  1.55  17.55  5.28  6.74  

dermatology 2.20  1.27  10.15  14.48  1.08  

diabetes 23.57  4.39  53.36  65.49  3.89  

ecoli 10.36  1.94  15.66  25.19  1.61  

EEG Eye State 746.62  771.66  5311.33  9097.05  357.72  

heart-disease 7.91  1.53  12.94  19.92  1.49  

ionosphere 42.65  11.65  80.39  105.98  7.67  

kdd-ipums-97 379.01  88.52  1682.68  1053.68  49.74  

kdd-ipums-98 172.58  57.84  609.46  197.36  65.70  
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kdd-ipums-99 208.80  80.03  767.21  1224.49  92.35  

kdd-Japanese 298.36  197.53  1503.60  2129.97  158.45  

kr-vs-kp 25.82  13.05  81.34  178.56  6.87  

letter 7116.95  1267.86  6722.09  8810.25  381.74  

liver-disorders 14.75  1.69  17.53  15.31  1.59  

monks-1 1.53  0.32  3.62  1.97  0.38  

monks-2 1.89  0.51  5.49  6.85  0.53  

monks-3 1.12  0.15  1.48  0.37  0.31  

nursery 43.19  26.27  133.06  267.04  15.70  

pendigits 1510.68  362.92  1767.21  2268.89  164.31  

poker-hand 1958.39  1916.52  7563.29  9849.47  283.44  

segment 140.57  40.80  314.91  461.13  31.84  

solar-flare-1 1.51  0.24  1.71  3.43  0.24  

solar-flare-2 2.30  0.45  3.36  7.67  0.48  

soybean 12.44  4.18  35.17  54.77  3.69  

tic-tac-toe 3.99  1.21  11.73  15.67  1.18  

vehicle 80.09  14.22  133.51  166.46  12.28  

vote 2.85  0.71  5.17  9.60  0.93  

vowel 52.32  29.29  215.95  309.70  24.37  

wdbc 43.31  11.62  85.60  128.56  9.27  

Mean 512.72  239.01  1508.49  2184.88  114.51  

Win/Draw/Loss 1/0/39 8/1/32 0/0/40 1/0/39  

 

Table 9. Runtime of LAZYDT, SVM, and Bagging, Boosting and PLAC with SVM as the Base Learner over the 40 

Data Sets 

Data LAZYDT SVM Bagging Boosting PLAC 
adult-census 3420.02  513229.69  964630.97  3714043.61  4223.91  

anneal 38.54  70.27  447.75  418.53  27.01  

anneal-ORIG 73.13  62.02  409.49  494.40  49.65  

balance-scale 10.59  6.81  68.00  55.33  9.24  

breast-w 17.83  3.03  28.62  63.26  3.87  

car 4.32  94.43  933.74  1694.70  38.07  

cmc 25.74  208.58  2077.69  548.63  96.27  

colic 15.18  27.02  267.18  268.38  18.66  

connect-4 3962.60  NA NA NA 6690.74  

credit-a 7.48  144.98  724.78  560.55  18.10  

credit-g 18.49  198.50  2211.58  1912.95  100.92  

cylinder-bands 9.25  280.01  2040.18  1233.07  103.84  

dermatology 2.20  30.23  293.34  44.36  29.82  

diabetes 23.57  4.99  53.19  31.03  5.13  

ecoli 10.36  27.77  253.01  154.10  43.05  

EEG Eye State 746.62  1107.81  3038.84  1460.33  1904.19  

heart-disease 7.91  6.06  68.18  69.07  6.19  

ionosphere 42.65  6.90  72.78  74.04  13.50  

kdd-ipums-97 379.01  51787.50  90337.50  409065.63  3523.02  

kdd-ipums-98 172.58  250957.81  434540.63  1965918.75  14348.35  

kdd-ipums-99 208.80  271725.00  449712.50  2139904.69  18935.24  

kdd-Japanese 298.36  400.00  2000.00  2809.38  693.85  

kr-vs-kp 25.82  528.28  5493.94  9734.90  31.13  

letter 7116.95  5823.44  34660.09  14493.94  10932.67  

liver-disorders 14.75  1.94  19.97  22.20  12.29  

monks-1 1.53  7.67  87.62  101.18  14.23  

monks-2 1.89  6.81  77.99  64.22  5.82  

monks-3 1.12  6.18  55.33  6.56  3.39  

nursery 43.19  14967.19  33113.67  200901.65  273.59  

pendigits 1510.68  946.88  6681.26  10471.40  963.95  

poker-hand 1958.39  210950.00  391813.47  96273.90  8710.99  

segment 140.57  61.10  612.54  495.73  54.79  

solar-flare-1 1.51  3.34  25.75  38.76  3.38  

solar-flare-2 2.30  8.80  64.53  83.84  6.23  
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soybean 12.44  256.08  2445.59  2933.19  140.14  

tic-tac-toe 3.99  78.96  769.96  832.41  83.17  

vehicle 80.09  26.25  273.67  144.70  29.09  

vote 2.85  5.39  54.65  70.94  5.92  

vowel 52.32  183.80  1924.57  1734.22  169.37  

wdbc 43.31  2.92  31.04  46.89  3.10  

Mean 512.72  33954.98  62369.63  219981.42  1808.15  

Win/Draw/Loss 25/0/15 17/0/23 0/0/40 1/0/39  

 

From Tables 7 - 11 we achieve the following findings. 

1) The runtime of PLAC differs when different single learning methods are used as its base learner. 

With OneR and SVM as the base learner, PLAC achieves its shortest runtime of 78.90 and longest 

runtime of 1808.15 milliseconds, respectively, with the difference of up to 1729.25 milliseconds, 

which is about 22 times of the shortest one. The reason behind this huge difference is that of PLAC’s 

time complexity O(n×log(n)) + O(classificationAlg(nearPart)), the latter O(classificationAlg(nearPart)) 

is contributed by the base learner, and the time complexity of OneR and SVM are O(m) and O(n3), 

respectively. Thus, the time complexity of PLAC with OneR and SVM as the base learner are 

O(n×log(n)) + O(m) and O(n×log(n)) + O(n3), respectively. Since m ≤ n, O(m)≤O(n3), further 

O(n×log(n)) + O(m) ≤ O(n×log(n)) + O(n3). 

2) Compared to eager learning methods SVM, IB1, and C4.5, the runtime of PLAC with them as the base 

learner is only 5.33%, 10.79%, and 47.91% of those that are used as a single learning method, 

respectively. This means that PLAC can be faster than a single learning method, which could be 

interpreted as follows. Because the time complexity of PLAC consists of two parts, the first part 

O(n×log(n)) is intrinsic to PLAC itself while the second part O(classificationAlg(nearPart)) depends 

on the base learner classificationAlg. Considering that the data partitioning of PLAC is applied in the 

entire training data and base learner classificationAlg utilizes only a very small part to build a 

classifier, the   main part of the complexity is O(n×log(n)). This means if classificationAlg’s 

complexity O(classificationAlg) is greater than O(n×log(n)), then PLAC with classificationAlg as the 

base learner is faster than classificationAlg as a single method. For instance, SVM’s time complexity 

O(n3) is greater than O(n×log(n)), and as PLAC’s  base learner, SVM is only used to build a classifier 

with the nearest partition of a new instance, thus PLAC is more efficient than SVM. 

With the above explanation we can easily understand why PLAC with NB and OneR as the base 

learner is slower than NB and OneR used as a single learner, respectively. Fortunately, with NB and 

OneR as the base learner of PLAC, the longest runtime is only 96.7 milliseconds, which is still very 

efficient 

3) Both the mean runtime and the Win/Draw/Loss records demonstrate that PLAC with three base 

learners, namely NB, C4.5, and OneR, are much more efficient than LAZYDT . 

4) Both PLAC and ensemble learning methods employ a single method as the base learner, but the 

former is much more efficient than the latter and this conclusion is confirmed by the 

Win/Draw/Loss records. For example, if C4.5 is used as the base learner, PLAC’s runtime is only 7.59% 

of Bagging and 5.24% of Boosting, separately. Therefore, the efficiencies of Bagging and Boosting are 

greatly improved. The reason is that compared with ensemble learning that builds several classifiers, 

PLAC only uses one of the multiple partitions to construct a single classifier, thus significantly 

reducing the induction and deduction time. 

5.5. Performance Validation and Summary 

5.5.1. Validation method 
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  The nonparametric Friedman test [29] is often used to compare k algorithms over N data sets by ranking 

each algorithm on each data set separately. The algorithm achieving the best performance gets the rank of 1, 

the second best ranks 2, and so on. In case of ties, average ranks are assigned. Then the average ranks of all 

algorithms on all data sets are calculated and compared. If the null hypothesis, which is that all algorithms 

are performing equivalently, is rejected under the Friedman test statistic, post-hoc tests such as the 

Nemenyi test [30] can be used to determine which algorithms perform statistically different. 

 

Table 10. Runtime of LAZYDT, IB1 and Bagging, Boosting and PLAC with IB1 as the Base Learner over the 40 

Data Sets 

Data LAZYDT IB1 Bagging Boosting PLAC 
adult-census 3420.02  19327.50  149871.55  2047935.76  1120.71  

anneal 38.54  16.96  166.08  2898.60  0.99  

anneal-ORIG 73.13  11.09  119.72  2065.59  0.94  

balance-scale 10.59  1.32  13.24  236.02  0.85  

breast-w 17.83  3.34  35.11  303.69  0.95  

car 4.32  16.09  153.26  2794.47  0.84  

cmc 25.74  14.87  142.82  2626.31  0.60  

colic 15.18  2.38  20.94  221.22  0.81  

connect-4 3962.60  157766.84  1416972.46  NA 10789.69  

credit-a 7.48  5.27  50.59  757.98  0.82  

credit-g 18.49  14.72  146.30  2763.12  0.66  

cylinder-bands 9.25  7.64  74.07  1372.94  0.77  

dermatology 2.20  3.10  29.94  492.18  0.97  

diabetes 23.57  3.88  40.09  752.31  0.69  

ecoli 10.36  0.94  7.49  132.02  0.88  

EEG Eye State 746.62  4270.69  29608.60  846608.68  556.74  

heart-disease 7.91  1.00  9.65  175.40  0.78  

ionosphere 42.65  2.77  27.11  504.09  0.89  

kdd-ipums-97 379.01  542.75  5250.70  54228.09  109.44  

kdd-ipums-98 172.58  805.48  6800.84  75491.21  30.78  

kdd-ipums-99 208.80  1210.78  10423.03  117102.15  1309.40  

kdd-Japanese 298.36  218.00  2096.20  37637.42  201.45  

kr-vs-kp 25.82  247.91  2328.36  41415.79  0.97  

letter 7116.95  8390.73  66542.06  2131676.24  6220.10  

liver-disorders 14.75  0.68  6.65  120.09  0.62  

monks-1 1.53  1.07  10.32  187.60  0.76  

monks-2 1.89  1.05  10.09  189.68  0.54  

monks-3 1.12  1.07  10.28  186.35  0.97  

nursery 43.19  1604.18  12158.34  971552.86  152.39  

pendigits 1510.68  2147.57  18528.94  903302.84  1309.40  

poker-hand 1958.39  9000.32  64560.96  1885927.93  386.24  

segment 140.57  85.46  825.37  14942.21  0.99  

solar-flare-1 1.51  0.87  8.01  116.31  0.34  

solar-flare-2 2.30  8.56  82.87  1221.24  0.27  

soybean 12.44  9.41  90.52  1451.89  0.95  

tic-tac-toe 3.99  7.18  66.73  1235.43  0.83  

vehicle 80.09  10.75  106.61  1967.18  0.82  

vote 2.85  2.43  20.75  316.56  0.95  

vowel 52.32  11.42  108.04  1905.44  0.99  

wdbc 43.31  8.47  76.06  1430.21  0.96  

Mean 512.72  5144.66  44690.02  234775.52  555.24  

Win/Draw/Loss 5/0/35 1/0/39 0/0/40 0/0/40  
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Table 11. Runtime of LAZYDT, OneR and Bagging, Boosting and PLAC with OneR as the Base Learner over the 

40 Data Sets 

Data LAZYDT OneR Bagging Boosting PLAC 
adult-census 3420.02  121.32  416.64  595.90  279.50  

anneal 38.54  1.61  5.15  8.06  4.22  

anneal-ORIG 73.13  1.93  5.19  7.85  2.72  

balance-scale 10.59  0.28  1.77  2.20  1.04  

breast-w 17.83  0.56  3.66  5.49  1.25  

car 4.32  0.53  1.75  4.48  0.58  

cmc 25.74  0.85  3.57  0.98  1.53  

colic 15.18  0.68  2.45  3.53  0.62  

connect-4 3962.60  664.19  3531.38  2537.77  1962.21  

credit-a 7.48  1.01  4.32  6.07  0.91  

credit-g 18.49  1.15  5.82  8.84  2.09  

cylinder-bands 9.25  1.17  7.69  8.69  4.02  

dermatology 2.20  0.20  1.48  0.50  1.04  

diabetes 23.57  0.82  5.33  7.50  3.45  

ecoli 10.36  0.35  2.04  2.60  1.06  

EEG Eye State 746.62  53.35  191.40  275.11  171.81  

heart-disease 7.91  0.34  1.84  2.73  0.74  

ionosphere 42.65  2.29  11.17  10.90  7.90  

kdd-ipums-97 379.01  7.75  22.44  21.03  2.87  

kdd-ipums-98 172.58  5.64  33.00  37.28  15.76  

kdd-ipums-99 208.80  7.84  35.87  47.71  30.72  

kdd-Japanese 298.36  12.08  87.48  11.29  104.09  

kr-vs-kp 25.82  2.41  13.90  19.63  6.42  

letter 7116.95  77.05  232.32  69.11  240.25  

liver-disorders 14.75  0.29  1.78  2.74  1.08  

monks-1 1.53  0.06  0.51  1.60  0.35  

monks-2 1.89  0.07  0.52  1.60  0.14  

monks-3 1.12  0.06  0.50  1.68  0.33  

nursery 43.19  6.46  31.11  87.33  13.77  

pendigits 1510.68  32.84  140.09  29.30  115.92  

poker-hand 1958.39  57.09  128.13  58.85  111.55  

segment 140.57  6.07  44.70  54.04  24.24  

solar-flare-1 1.51  0.06  0.53  1.40  0.15  

solar-flare-2 2.30  0.19  1.44  4.07  0.44  

soybean 12.44  0.33  2.22  0.78  2.23  

tic-tac-toe 3.99  0.12  1.18  3.70  0.92  

vehicle 80.09  1.24  11.43  8.19  8.11  

vote 2.85  0.09  0.82  1.92  0.19  

vowel 52.32  1.88  15.47  2.15  18.25  

wdbc 43.31  2.20  19.02  17.35  11.45  

Mean 512.72  26.86  125.68  99.30  78.90  

Win/Draw/Loss 0/0/40 37/0/3 4/0/36 8/0/32  

 

The Nemenyi post-hoc test compares algorithms in a pairwise manner. According to this test, the 

performances of two algorithms are significantly different if the distance of the average ranks exceeds the 

critical distance 𝐶𝐷𝛼 = 𝑞𝛼√
𝑘(𝑘+1)

6𝑁
, where 𝑞𝛼  is based on the Studentized range statistic [31] divided by 

√2. 

To validate the statistical significance of PLAC performance improvement, we performed a nonparametric 

Friedman test followed by Nemenyi post-hoc test, as advised by Demsar [32] and Garcia and Herrerato [33] 

to statistically compare algorithms on multiple data sets. Both tests were applied at the significance level of 

α = 0.05 on all the evaluated data sets.   
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The comparison results are depicted using Demsar’s significance diagrams [32]. The diagram plots 

classifiers against average performance ranks, where all classifiers are sorted according to their ranks, the 

‘∗’ denotes the respective average rank of each classifier and the line segment to the right of each classifier 

represents its critical difference, which means the classifiers whose ‘∗’ on the right end of the line segment 

are outperformed significantly. The critical difference is highlighted with a vertical dotted line. If the vertical 

line locates at the leftmost end of a line segment representing a classifier, then all classifiers right to this line 

perform significantly worse than the classifier. Otherwise. if the line locates at the rightmost end of a line 

segment, all classifiers left to this line perform significantly better than this classifier. 

5.5.2. Accuracy validation 

  The first experiment employed Friedman test to validate the statistical significance of accuracy 

improvements by PLAC. The null hypotheses are that, LAZYDT, each of the five single learning methods (NB, 

C4.5, SVM, IB1 and OneR), and the methods (Bagging, Boosting and PLAC) with these single methods as the 

base learner are equivalent in terms of classification accuracy. The test results are all p = 0. This means at α 

= 0.05, there is evidence to reject the null hypotheses and the classification methods are different in terms 

of classification accuracy. 

  In order to further explore classification methods whose accuracy have statistically significant differences, 

we performed a Nemenyi test. Fig. 4 shows the results. 

  From Fig. 4 we see that 

1) Each of the five single learning methods is on the right side of the line associated with PLAC. This 

reveals that PLAC performs significantly better than the five single learners NB, C4.5, SVM, IB1, and 

OneR in terms of classification accuracy.  

2) Ensemble learning methods Bagging and Boosting are on the right side of the lines associated with 

PLAC when base learners are NB, SVM, and OneR, respectively. This means the accuracy 

improvements of PLAC have statistical significance. However, when IB1 and C4.5 are used as the 

base learners, the accuracy differences among Bagging, Boosting, and PLAC are not significantly 

important except for PLAC with IB1 as the base learner which performs significantly better than 

Boosting. 

3) PLAC is better-ranked than lazy learning method LAZYDT in four out of five cases, and performs 

significantly better than LAZYDT when C4.5 or SVM is chosen as the base learner. Since PLAC is not 

limited to any particular single learner, C4.5 and SVM are recommended to be used as PLAC’s base 

learner if classification accuracy is being pursued. 

5.5.3. Runtime validation 

  The second experiment used Friedman test to validate the statistical significance of runtime 

improvement by PLAC. The null hypotheses are that, LAZYDT, each of the five single learning methods (NB, 

C4.5, SVM, IB1 and OneR), and the methods (Bagging, Boosting and PLAC) with these single methods as the 

base learner are equivalent in terms of classification time. The test results are all p = 0. This means at α = 

0.05, there is evidence to reject the null hypotheses and the classification methods are different in terms of 

runtime. 

In order to further explore classification methods whose runtime have statistically significant differences, 

we performed a Nemenyi test. See Fig.5 for the results. 

  From Fig. 5 we observe that 

1) PLAC is better-ranked than three out of five single learning methods, and performs significantly faster 

than IB1. However, PLAC is on the right side of the line associated with OneR, which means it is 

significantly outperformed by OneR in terms of runtime. The reason is that OneR is a very simple 
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method, its time complexity is O(m), thus is much efficient. Unfortunately, its accuracy is just 82.09% of 

PLAC with OneR as the base learner. 

2) Ensemble learning methods Bagging and Boosting are on the right side of the line associated with 

PLAC when each of the five single learning method is used as the base learner. This discloses that the 

runtime improvements of PLAC for these two ensemble learning methods have statistical significance.  

3) Lazy learning method LAZYDT is on the right side of the line associated with PLAC when four out of five 

single learning methods are employed as the base learner. This means PLAC performs significantly faster 

than LAZYDT except when SVM is chosen as the base learner. The underlying reason is that although SVM is 

only used to build the classifier on a very small part of the training data, it is still time consuming due to its 

high time complexity (O(n3)). Even so, its average runtime is decreased by PLAC by 94.67%.  

5.5.4. Performance summary 

  In order to provide a holistic view on the performance of classification methods used in this paper, for 

each single learning method, we ranked it with LAZYDT, and Bagging, Boosting and PLAC with this single 

method as the base learner according to classification accuracy and runtime, respectively. Then the ranks of 

accuracy and runtime were summarized, and the final ranks were computed in accordance with the 

summation. See Table 12 for the results. From it we observe that, PLAC ranks 1 in each case, thus should be 

an undisputed first choice. 

 

Table 12. Performance Ranks of Classification Methods over 40 Data Sets 

   NB+ 

 LDT NB Bag Bst PLAC 

Accuracy 2 5 4 3 1 

Runtime 4 1 3 5 2 

Sum 6 6 7 8 3 

Rank 2 2 4 5 1 

   C4.5+ 

 LDT C4.5 Bag Bst PLAC 

Accuracy 5 4 1 3 2 

Runtime 3 2 4 5 2 

Sum 8 6 5 8 3 

Rank 4 3 2 4 1 

   SVM+ 

 LDT SVM Bag Bst PLAC 

Accuracy 2 5 3 4 1 

Runtime 1 3 4 5 2 

Sum 3 8 7 9 3 

Rank 1 4 3 5 1 

   IB1+ 

 LDT IB1 Bag Bst PLAC 

Accuracy 3 4 2 5 1 

Runtime 3 2 4 5 1 

Sum 6 6 6 10 2 

Rank 2 2 2 5 1 

   OneR+ 

 LDT OneR Bag Bst PLAC 

Accuracy 1 4 3 5 2 

Runtime 5 1 3 4 2 

Sum 6 5 6 9 4 

Rank 3 2 3 5 1 

Note: LDT, Bag, and Bst denote LAZYDT, Bagging, and Boosting, respectively. 
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5.6. Sensitivity Analysis 

  The minimum size threshold partitionSize of a partition is the only parameter of PLAC. It should be 

predefined and its value definitely affects the classification performance of PLAC. Thus, we analyzed its 

effect by enforcing a wide range of different size values, i.e., 1/2, 1/3, 1/4, ..., 1/30 of a data set size, on all 

the 40 evaluated data sets. Fig. 6 shows the accuracy variation of PLAC with five different types of 

classification algorithms NB, OneR, C4.5, IB1, and SVM as the base learner with respect to partitionSize for 

the 40 real world data sets. 

From Fig. 6 we observe that 

1) For PLAC with SVM, NB, and IB1 as base leaner, each of the accuracy curves starts from a bigger point, 

and climbs to the peak with fluctuation, then decreases much slowly. Moreover, when partitionSize is 

0.054 times the data set size, all the three curves achieve their peak points. This means if classification 

algorithms SVM, NB, and IB1 are chosen as the base learner, partitionSize should be predefined as 

0.054 times of the number of instances for a classification problem. 

2) For PLAC with C4.5 as its base learner, the accuracy curve gradually increases from a small value, then 

quickly decreases after reaching the peak point when partitionSize is 0.44 times the data set size. 

Clearly, 0.44 times of the number of instances should be predefined as the value of partitionSize. 

3) For PLAC with OneR as the base learner, the accuracy curve starts from the peak point, then falls 

sharply to a much smaller point at the end. This reveals that partitionSize should be predefined as 0.03 

times of the number of instances for the problems to be solved. 

 

 
(a)LAZYDT, NB/NB as the base learner  (b)LAZYDT, C4.5/C4.5 as the base learner 

 
 (c) LAZYDT, C4.5/C4.5 as the base learner  (d) LAZYDT, IB1/IB1 as the base learner 

 

(e) LAZYDT, OneR/OneR as the base learner 

Fig. 4. Pairwise accuracy comparisons of the classification methods using Nemenyi’s post hoc test with α = 

0.05. 
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(a) LAZYDT, NB/NB as the base learner  (b)LAZYDT, C4.5/C4.5 as the base learner 

 
(b) LAZYDT, C4.5/C4.5 as the base learner  (d) LAZYDT, IB1/IB1 as the base learner 

 
(e) LAZYDT, OneR/OneR as the base learner 

Fig. 5. Pairwise accuracy comparisons of the classification methods using Nemenyi’s post hoc test with α = 

0.05. 

 

 
Fig. 6. Accuracy when varying the minimum size of a partition. 
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6. Conclusion 

  In this paper, we have presented a novel lazy learning method named PLAC. PLAC transforms a 

complicated problem into multiple smaller and easier-to-learn partitions with an effective data partitioning 

approach, then upon receiving a new instance, its nearest partition is located and employed to build a 

classifier that is finally used to classify the new instance. In PLAC, the built classifier is customized with the 

particular characteristics of the new instance, and only one of the multiple partitions is used, thus 

classification performance is increased. Moreover, since the caching mechanism is designed to avoid work 

replication during classification, efficiency is further improved.    

  We have compared the performance of PLAC with those of three different types of well-known 

classification methods including eager learning methods SVM, OneR, NB, and C4.5, lazy learning methods 

IB1 and LAZYDT, and ensemble learning methods Bagging and Boosting on 40 publicly available real world 

data from two different aspects of the classification accuracy and runtime. Generally, PLAC performs better 

than the other methods. 

  We have also conducted the performance validation through the nonparametric Friedman test followed 

by the Nemenyi post-hoc test. By combining the results of accuracy validation and runtime validation, we 

found that PLAC ranks best out of all the comparative methods. 

Acknowledgment 

This study is partially supported by National Natural Science Foundation of China under Grant 61370144. 

References 

[1] Quinlan, J. R. (2014). C4.5: Programs for Machine Learning. Elsevier. 

[2] Breiman, L., Friedman, J., Olshen, R., Stone, C., Steinberg, D., & Colla, P. (1983). Cart: Classification and 

Regression Trees. Wadsworth: Belmont, C. 

[3] Friedman, J. H., Kohavi, R., & Yun, Y. (1996). Lazy decision trees. Proceedings of the National Conference 

on Artificial Intelligence. 

[4] Cohen, W. W. (1995). Fast effective rule induction. Proceedings of the 12th International Conference on 

Machine Learning. 

[5] Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization. Proceedings 

of the 15th International Conference on Machine Learning. 

[6] Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. 

Machine learning, 11(1), 63–90. 

[7] Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information 

Theory, 13, 21–27. 

[8] Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 

37–66. 

[9] John, G. H., & Langley, P. (1995). Estimating continuous distributions in bayesian classifiers. Proceedings 

of the Eleventh Conference on Uncertainty in Artificial Intelligence. 

[10] Platt, J. (1999). Using analytic qp and sparseness to speed training of support vector machines. 

Proceedings of the Advances in Neural Information Processing Systems. 

[11] Atkeson, C., Moore, A., & Schaal, S. (1997). Locally weighted learning for control. Lazy Learning. 

[12] Garcia, E. K., Feldman, S., Gupta, M. R., & Srivastava, S. (2010). Completely lazy learning. Knowledge and 

Data Engineering. 

[13] Veloso, A., Meira,W., & Zaki, M. J. (2006). Lazy associative classification. Data Mining. 

[14] Zhu, X., & Yang, Y. (2008). A lazy bagging approach to classification. Pattern Recognition, 41(10), 2980–

Journal of Software

89 Volume 14, Number 2, February 2019



  

2992. 

[15] Sharkey, A. J., & Sharkey, N. E. (1997). Combining diverse neural nets. The Knowledge Engineering 

Review, 12(3), 231–247. 

[16] Dietterich, T. G. (2002). Ensemble learning. The Handbook of Brain Theory and Neural Networks. 

[17] Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2). 

[18] Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation. 

[19] Ho, T. K. (1998). The random subspace method for constructing decision forests. Pattern Analysis and 

Machine Intelligence. 

[20] Bryll, R., Gutierrez-Osuna, R., & Quek, F. (2003). Attribute bagging: Improving accuracy of classifier 

ensembles by using random feature subsets. Pattern Recognition. 

[21] Zheng, X., Shen, J., Cox, C., Wakefield, J. C., Ehm, M. G., Nelson, M. R., & Weir, B. S. (2014). Hibaga  a ťhla 

genotype imputation with attribute bagging. The Pharmacogenomics Journal, 14(2), 192–200. 

[22] Cherkauer, K. J. (1996). Human expert-level performance on a scientific image analysis task by a system 

using combined artificial neural networks. Working Notes of the AAAI Workshop on Integrating Multiple 

Learned Models. 

[23] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.  

[24] Zhou, Z.-H. (2012). Ensemble Methods: Foundations and Algorithms.  

[25] Lichman, M. (2013). UCI Machine Learning Repository. 

[26] Webb, G. I. (2000). Multiboosting: A technique for combining boosting and wagging. Machine Learning. 

[27] S. C. (1994). A conservation law for generalization performance. Proceedings of the 11th International 

Conference on Machine Learning. 

[28] Reyzin, L., & Schapire, R. E. (2006). How boosting the margin can also boost classifier complexity. 

Proceedings of the 23rd International Conference on Machine Learning. 

[29] Friedman, M. (1940). A comparison of alternative tests of significance for the problem of m rankings. 

The Annals of Mathematical Statistics, 11(1), 86–92. 

[30] Nemenyi, P. (1962). Distribution-free multiple comparisons. 

[31] Newman, D. (1939). The distribution of range in samples from a normal population, expressed in terms 

of an independent estimate of standard deviation. Biometrika, 20–30. 

[32] Demˇsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine 

Learning Research. 

[33] GarcA ŋa, S., Herrera, F., & Shawe-taylor, J. (2008). An extension on statistical comparisons of classifiers 

over multiple data sets” for all pairwise comparisons. Journal of Machine Learning Research. 

 

Wei Song received her B.A. in computer science from UC Berkeley in Dec 2016. She is 

currently a software engineer at Microsoft working on the Azure Cloud. Before Microsoft, 

she was a software development engineer at Amazon working on the Amazon 

Marketplace Seller Platform. Aside from her work in the software engineering industry, 

her research is intended towards machine learning and cloud security. 

 

 

 He Jiang is an awardee of the NSFC Excellent Young Scholars Program in 2017. He is 

currently a professor with Dalian University of Technology and an adjunct professor 

with Beijing Institute of Technology. His current research interests include search-based 

software engineering and mining software repositories. He has published over 60 

referred papers on journals and international conferences, including IEEE Trans. 

Journal of Software

90 Volume 14, Number 2, February 2019



  

Software Engineering, IEEE Trans. Knowledge and Data Engineering, ICSE, SANER, etc., supported by the 

Program for New Century Excellent Talents in University and the National Science Fund for Excellent Young 

Scholars. In addition, he serves as the guest editors of some journals and magazines, including IEEE 

Computational Intelligence, Journal of Computer Science and Technology, Frontiers of Computer Science, 

etc. 

 
Fan Ma is a first-year Phd candidate at Centre for Artificial Intelligence, University of 

Technology Sydney (UTS). He received the BE and ME degree from Xi’an Jiaotong 

University in 2014 and 2017 respectively. His research interests include machine 

learning and computer vision, especially on semi-supervised learning, self-paced 

learning and video analysis. 

 
 
 

 
Qinbao Song received his PhD degree in computer science from Xi’an Jiaotong University 

in Xi’an, China, in 2001. He is a professor in software technology at the Department of 

Computer Science and Technology, Xi’an Jiaotong University. He is also an adjunct 

professor in the State Key Laboratory of Software Engineering, Wuhan University. He has 

authored and coauthored more than 100 referred papers in the areas of machine learning 

and software engineering. In addition, he serves as a board member of the Open Software 

Engineering Journal. His research interests include data mining/machine learning, 

empirical software engineering, and trustworthy software. 

 
Guangtao Wang received the PhD degree in computer science from Xi'an Jiaotong 

University, Xi'an, China, in 2013. He is currently an assistant professor in the 

Department of Computer Science and Technology, Xian Jiaotong University. His research 

focuses on data mining and machine learning. 

 

Journal of Software

91 Volume 14, Number 2, February 2019




