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Abstract: This paper presents an alternative to Google's PageRank, i.e., it presents an algorithm used to 

calculate the score for a webpage using complex numbers that overcomes the problems inherent in Google's 

method. This algorithm was inspired by eigenvector centrality in social network analyses and is designed to 

reproduce the ranking results of Google's PageRank and to satisfy the condition of soundness. This 

algorithm can be developed further to achieve more desirable outcomes. 
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1. Introduction 

 This paper proposes a non-ad hoc alternative to Google's PageRank, an algorithm that is widely used by 

search engines on the Internet. PageRank gives high scores to popular sites and low scores to unpopular 

sites. Google's algorithm uses hyperlink relationships between Internet websites. PageRank models the 

hyperlink relationships between websites as a directed graph and expresses them as an adjacency matrix 

using real numbers. To produce a strongly connected directed graph, this algorithm requires a damping 

factor, which ranges in value from 0 to 1. However, there are practical problems associated with 

determining specific damping factor values. This paper proposes a method that does not require a damping 

factor and produces results similar to those of PageRank and can be developed systematically for a specific 

purpose. The Hermitian adjacency matrix is used to express the link relationships of the nodes in a directed 

graph. This method only requires that the directed graph be weakly connected and can be applied to a non-

weakly connected graph. 

2. PageRank 

Definition 2.1  A semi path is a collection of distinct nodes, 𝑣1, 𝑣2, … , 𝑣𝑛, together with 𝑛 − 1 links, one 

from  each 𝑣1𝑣2 or 𝑣2𝑣1, 𝑣2𝑣3 or 𝑣3𝑣2, …, 𝑣𝑛−1𝑣𝑛 or 𝑣𝑛𝑣𝑛−1. 

Definition 2.2  A path is a collection of distinct nodes, 𝑣1, 𝑣2, … , 𝑣𝑛, together with the links,  𝑣1𝑣2, 𝑣2𝑣3,…, 

𝑣𝑛−1𝑣𝑛. 

Definition 2.3  A directed graph 𝐺 = (𝑉, 𝐸) is called weakly connected if for all nodes 𝑣1, 𝑣2 ∈ 𝑉 there 

     exists a semi path between 𝑣1 and 𝑣2.  

Definition 2.4  A directed graph 𝐺 = (𝑉, 𝐸) is called unilaterally connected if for all nodes 𝑣1, 𝑣2 ∈ 𝑉 

there exists a path from 𝑣1 to 𝑣2 or from 𝑣2 to 𝑣1. 

Definition 2.5 A directed graph 𝐺 = (𝑉, 𝐸) is called strongly connected if for all nodes 𝑣1, 𝑣2 ∈ 𝑉 there 
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exists a path from 𝑣1 to 𝑣2.  

 PageRank has three characteristics [1], [2] that can be summarized as follows. First, a page receives a 

high score when it has an inlink from a node with a high score. Second, a page receives a high score when it 

has many inlinks. Third, a page receives a high score when it has an inlink from a node with few outlinks. 

The PageRank scores of the nodes of a directed graph are defined as follows [3]. Let |𝑃𝑖| be the number of 

outlinks from a node 𝑖. We define the 𝑛 × 𝑛 matrix 𝐻𝑖𝑗 as follows: 𝐻𝑖𝑗 = 1/|𝑃𝑖| if there is a link from node 𝑖 

to node 𝑗 and equals 0 otherwise. We define the matrix 𝑆 as follows using 𝑒𝑇 to designate a row vector of all 

1s. 𝑆 = 𝐻 + 𝑎((1/𝑛)𝑒𝑇), where 𝑎𝑖 = 1 if node 𝑖 has no outlink and 0 otherwise. We define the matrix 𝐺 as 

follows: 𝐺 = 𝛼𝑆 + (1 − 𝛼)(1/𝑛)𝑒𝑒𝑇. The PageRank scores are the elements of the normalized dominant 

left-hand eigenvector of 𝐺 corresponding to the real dominant eigenvalue, 1. The dominant eigenvalue is 

the absolute maximum eigenvalue of a square matrix. The coefficient 𝛼 in the equation is called the 

damping factor. We need this factor to ensure that the matrix 𝐺 is a matrix of a strongly connected directed 

graph. A square matrix 𝐴 is irreducible if and only if its directed graph is strongly connected [4]. According 

to the Perron–Frobenius theorem, if 𝐴 ≥ 0 is irreducible, 𝑟 = 𝜌(𝐴) > 0, 𝑟 ∈ 𝜎(𝐴), and the multiplicity of the 

eigenvalue is 1. Here, 𝜌(𝐴) is the spectral radius of 𝐴, and 𝜎(𝐴) is the spectrum of 𝐴 [4]. Therefore, a real 

positive dominant eigenvalue exists. In addition, this value is unique because the multiplicity is 1. 

Otherwise, a dominant eigenvalue cannot be determined. In this model, the damping factor, 𝛼, can be 

understood as a parameter that controls the proportion of time that a user follows the hyperlinks, as 

opposed to randomly jumping to new webpages. If, for example, 𝛼 = 0.85, then 85% of the time, the user 

follows the hyperlink structure of the Web, and the other 15% of the time, the user jumps to a random new 

page [3]. 

3. Problem Description 

 The following three problems associated with the damping factor have been noted. First, the choice of a 

damping factor value is eminently empirical, and in most cases, the value of 0.85 suggested by Brian and 

Page is used [5]. Second, a network has inconsistent rankings when using different damping factor values 

[6]. Third, a specific damping factor value could be used to create spam against a search engine [7]. To 

overcome these problems, we need a PageRank-like and non-ad hoc ranking score algorithm that is not 

dependent on a damping factor.  

4. Hermitian Adjacency Matrix 

Let 𝑎 and 𝑏 be real numbers, and let 𝑖 = √−1. According to these definitions, 𝑧 = 𝑎 + 𝑏𝑖 is a complex 

number [8]. The complex numbers 𝑎 + 𝑏𝑖 and 𝑎 − 𝑏𝑖 are conjugates of each other, where the conjugate of 𝑧 

is denoted 𝑧. A Hermitian matrix is a square matrix 𝐻 = [ℎ𝑖𝑗], such that𝐻′ = 𝐻. Thus, 𝐻 is Hermitian, 

provided that 𝑎𝑖𝑗 = 𝑎𝑗𝑖 for all values of 𝑖 and 𝑗. An eigenvalue of a Hermitian matrix is always a real number 

[9]. For a directed graph 𝑋 = (𝑉, 𝐸), the Hermitian adjacency matrix is defined as follows [9] using 𝑢𝑣 to 

designate the ordered pair < 𝑢, 𝑣 >:  

 

𝐻𝑢𝑣 = {

1 𝑖𝑓𝑢𝑣𝑎𝑛𝑑𝑣𝑢 ∈ 𝐸;
𝑖 𝑖𝑓𝑢𝑣 ∈ 𝐸𝑎𝑛𝑑𝑣𝑢 ∉ 𝐸;

−𝑖 𝑖𝑓𝑢𝑣 ∉ 𝐸𝑎𝑛𝑑𝑣𝑢 ∈ 𝐸;
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                                                    (1) 

5. Hermitian Score 

Definition 5.1 The node-induced subgraph of directed graph 𝐺 = (𝑉, 𝐸) is a graph 𝐺𝑠 = (𝑉𝑠, 𝐸𝑠), where 
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    𝑉𝑠 ∈ 𝑉 and 𝐸𝑠 includes all lines from 𝐸 that are from one node to another node in 𝑉𝑠.     

Definition 5.2  The adjacency matrix of a directed graph 𝐺 = (𝑉, 𝐸) is defined as follows. 

 

𝐴𝑢𝑣 = {
1 𝑖𝑓𝑢𝑣 ∈ 𝐸;

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
                                                                              (2) 

 
Definition 5.3 The adjacency matrix of an undirected graph 𝐺 = (𝑉, 𝐿), using (𝑢𝑣) to express the 

unordered pair (𝑢, 𝑣), is defined as follows. 

 

𝐴𝑢𝑣 = {
1 𝑖𝑓(𝑢𝑣) ∈ 𝐿;
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                                                                            (3) 

 
Because (𝑢𝑣) is an unordered pair, the adjacency matrix of an undirected graph is always a symmetric 

matrix. 

Definition 5.4 The startin g node of a unilaterally connected directed graph is defined as the origin of 

the longest path in the graph. If there is more than one longest path, label the longest-path origin with the 

most outlinks as the starting node. If there is more than one longest-path origin with the same number of 

most outlinks, add a node as a dummy to the graph, add the links from the dummy to the origins, and label 

the dummy the starting node. 

Definition 5.5 In a directed graph 𝐺 = (𝑉, 𝐸), if there is a path from 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉, 𝑢 is said to be 

reachable to 𝑣 and 𝑣 is said to be reachable from 𝑢.   

5.1. The Basic Idea of the Hermitian Score from Eigenvector Centrality 

Let us focus on social network analysis [10] and centrality analysis. Eigenvector centrality is defined for a 

node of a connected undirected graph [11]. Eigenvector centrality suggests that the score of node 𝑖, denoted 

by 𝑥𝑖, is the sum of all of the scores of all of the nodes that have undirected links to that node. Based on this 

concept, we can establish the following matrix equation, where 𝐴 denotes the adjacency matrix of the 

undirected graph. We know that multiplying the right-hand term by a real coefficient does not change the 

interest of this equation.  

 

𝑋 = 𝐴𝑋, [

𝑥1

𝑥2

⋮
𝑥𝑛

] = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] [

𝑥1

𝑥2

⋮
𝑥𝑛

]                                                    (4) 

 

𝑋 =
1

𝜆
𝐴𝑋, 𝜆 [

𝑥1

𝑥2

⋮
𝑥𝑛

] = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] [

𝑥1

𝑥2

⋮
𝑥𝑛

] , 𝐴𝑋 = 𝜆𝑋                                 (5) 

 
The equation is the eigenvalue and eigenvector problem of the matrix, where 𝜆 is an eigenvalue of 𝐴. 

Because 𝐴 is the adjacency matrix of an undirected graph, it is a real symmetric matrix. Therefore, 𝜆 is 

always a real number. In addition, there exists a positive dominant eigenvalue for 𝐴 with a multiplicity of 1 

[4], [11]. The eigenvector centrality score of the 𝑖th node is the 𝑖th element of the dominant eigenvector for 

the positive dominant eigenvalue. We would like to apply the idea of eigenvector centrality for an 

undirected graph to a directed graph to reproduce the three characteristics of PageRank using the 

Hermitian adjacency matrix described above. 

The results of trials suggest that, if a directed graph is weakly connected, the dominant eigenvalue of the 

graph’s Hermitian adjacency matrix, 𝐻, is a positive number with a multiplicity of 1, a negative number with 

a multiplicity of 1, or a positive number with a multiplicity of 1 and a negative number with a multiplicity of 
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1. According to the results of the trials, these conditions are satisfied when we derive the Hermitian matrix 

from 𝐻´ from 𝐻 using the method described below and when we create the Hermitian matrix 𝐻´´ from 𝐻´ 

using the method described subsequently in this paper. 

5.2. Algorithm for the Hermitian Score 

 The algorithm for Hermitian scores of nodes a directed graph 𝐺 is defined as follows. There are four 

stages with sub-stages included for Stage 3 and sub-sub-stages included for Stage 3-3. 

The algorithm for Hermitian scores of nodes of a directed graph: Stage1to Stage 4 

Stage 1: For the entire directed graph 𝐺, which may not be weakly connected, let each maximal weakly 

connected directed graph 𝐺1, 𝐺2, … , 𝐺𝑖, … 𝐺𝑁. 

Stage 2: For each 𝐺𝑖, label the number of the nodes of the graph 𝑛(𝐺𝑖), and, designate the maximum 𝑛(𝐺𝑖) 

as 𝑚𝑎𝑥(𝑛(𝐺𝑖)). 

Stage 3: For each 𝐺𝑖, apply the following algorithm to determine the Hermitian scores of nodes of a 

weakly connected graph (Stages 3-1 to 3-3). 

The algorithm for Hermitian scores of nodes of a weakly connected graph: Stage 3-1 to 3-3 

Stage 3-1: For each 𝐺𝑖, label nodes with more than one inlink, without counting the inlinks of  pairs of 

mutual links, as the separating node 𝑠𝑖1, 𝑠𝑖2, . . . , 𝑠𝑖𝑝, . . . , 𝑠𝑖𝑆.   

Stage 3-2: For each separating node 𝑠𝑖𝑝, designate the number of other separating points that are 

reachable to separating and that are reachable from a node without an inlink as 𝑛(𝑠𝑖𝑝): 0,1,2 … , 𝑘, …. 

Stage 3-3: Repeat the following algorithm for Hermitian scores of nodes of a unilaterally connected 

subgraph, in the ascending order of  𝑛(𝑠𝑖𝑝) (Stage 3-3-1 to 3-3-11).  

The algorithm for Hermitian scores of nodes of a unilaterally connected subgraph: Stage 3-3-1 to 3-3-11   

I: For the nodes that are reachable from the node without an inlink and that are reachable to a 

separating node, complete Stages 3-3-1–3-3-10. 

Stage 3-3-1: For the separating node 𝑠𝑖𝑝 for 𝑛(𝑠𝑖𝑝) = 𝑘, induce the maximal subgraph(s)  using nodes that 

are reachable to the separating node and that are reachable from the separating node(s) for 𝑛(𝑠𝑖𝑝) ≤ 𝑘, 

excluding the separating node. For 𝑘 = 0, consider the node without an inlink as the previous  separating 

point. Designate the set of the subgraph(s) as 𝑆(𝑠𝑖𝑝). 

Stage 3-3-2: For each induced subgraph in 𝑆(𝑠𝑖𝑝), if (tentative) the starting node has mutual links with a 

node, add a dummy and an outlink from the dummy to the starting node and recognize the dummy as the 

starting node.  

Stage 3-3-3: For each subgraph in 𝑆(𝑠𝑖𝑝), if a node has no outlink, add a loop link to the node. 

Stage 3-3-4: For each subgraph in 𝑆(𝑠𝑖𝑝), create the Hermitian adjacency matrix 𝐻 of the subgraph. 

Stage 3-3-5: For 𝐻 of the subgraph, convert each element of 𝑖 to 𝑠(𝑡 + 𝑖) and convert each element −𝑖 to 

  𝑠(𝑡 − 𝑖),  thereby deriving 𝐻´, where 𝑠 = 𝑠𝑖𝑛{𝜋/(2 × 𝑛)}, 𝑡 = 𝑐𝑜𝑠{𝜋/(2 × 𝑛)}/𝑠𝑖𝑛{𝜋/(2 × 𝑛)}  and 

𝑛 = 𝑚𝑎𝑥(𝑛(𝐺𝑖)). 

Stage 3-3-6: For 𝐻´ of the subgraph, in each row, divide each 𝑠(𝑡 + 𝑖) by the number of appearances of 

𝑠(𝑡 + 𝑖)  and 1 in the row and divide each diagonally corresponding 𝑠(𝑡 − 𝑖) by the same number, creating 

𝐻´´.  

Stage 3-3-7: For each 𝐻′′  of the subgraph, label the dominant eigenvalue 𝜆1 and label each element of 

the dominant eigenvector  𝑥1, 𝑥2, … , 𝑥𝑠, … , 𝑥𝑛, where 𝑥𝑠 denotes the element corresponding to the starting 

node of the subgraph. If the dominant eigenvalues include a positive and a negative real  value, choose the 

positive eigenvalue. 

Stage 3-3-8: For each 𝐻´´, divide each term of the series 𝑥1, 𝑥2, … , 𝑥𝑠, … , 𝑥𝑛 by 𝑥𝑠, deriving the series 
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𝑥1/𝑥𝑠, 𝑥2/𝑥𝑠, … , 𝑥𝑠/𝑥𝑠, … , 𝑥𝑛/𝑥𝑠.  

Stage 3-3-9: For 𝐻´´, locate each term of 𝑥1/𝑥𝑠, 𝑥2/𝑥𝑠, … , 𝑥𝑠/𝑥𝑠, … , 𝑥𝑛/𝑥𝑠 on a complex plane, and consider 

each term to be a two-dimensional vector on the plane, and define 𝜃 as the angle to the vector from the  real 

axis in the clockwise direction and 𝑙 to be the length of that vector.   

Stage 3-3-10: For the Hermitian scores of nodes of the subgraph in 𝑆(𝑠𝑖𝑝) having 𝐻´´, rotate each of the 

vector 𝑥1/𝑥𝑠, 𝑥2/𝑥𝑠, … , 𝑥𝑠/𝑥𝑠, … , 𝑥𝑛/𝑥𝑠 in the clockwise direction by 𝜃 of 𝑠𝑖𝑝 for  𝑛(𝑠𝑖𝑞) ≤ 𝑘, driving 𝜃′  of 

 the element of the term 𝑥1/𝑥𝑠, 𝑥2/𝑥𝑠, … , 𝑥𝑠/𝑥𝑠, … , 𝑥𝑛/𝑥𝑠. For 𝑘 = 0, set 𝜃 to 0. For each node, excluding 

the separating node of 𝑛(𝑠𝑖𝑝) = 𝑘, the Hermitian score of the node is defined as 𝜃 × 𝑙 on the complex plane. 

For the Hermitian score of the separating node 𝑠𝑖𝑝 for 𝑛(𝑠𝑖𝑝) = 𝑘, compose all the 2-dimensional vectors of 

𝑠𝑖𝑝 for 𝑛(𝑠𝑖𝑝) = 𝑘 by setting all the angles of the 2-dimensional vectors to the the maximal angle of all of the 

vectors. 

II: For the nodes that do not appear in I, including nodes which are reachable from the separating node 

and which are reachable to the node without an outlink, complete Stage 3-3-11.   

Stage 3-3-11: For the Hermitian scores of these nodes, induce the maximal subgraph(s) induced by the 

nodes that  are  reachable to the node and reachable from the separating node(s) and apply the above 

method(3-3-1 to 3-3-10). 

Stage 4: To determine the Hermitian score of a node in the entire directed graph 𝐺,  use the Hermitian 

score of that node calculated for the weakly connected graph 𝐺𝑖 as the score. 

Note that using the value 𝑚𝑎𝑥(𝑛𝑖) in Stage 3-3-5 for all weakly connected directed graphs with different 

numbers of nodes makes it possible to compare and rank the Hermitian scores of nodes belonging to more 

than one weakly connected graph.  

 Let us confirm that the algorithm for Hermitian score of a directed graph satisfies the three 

characteristics of PageRank: the first characteristic of PageRank is satisfied by Stage 3-3-7. The second 

characteristic of PageRank is satisfied by Stage 3-3-7 and Stage 3-3-10. The third characteristic of PageRank 

is realized by Stage 3-3-6. 

6. Soundness of the Algorithm 

Let us focus on soundness of the algorithm used to calculate Hermitian scores. Soundness of an algorithm 

is proposed as the following [12]. Let us focus on vote by committee. 

Definition 6.1. Let 𝐴 be some set. A relation 𝑅 ⊆ 𝐴 × 𝐴 is called an ordering on 𝐴 if it is reflexive, 

transitive, complete and anti-symmetric. Let 𝐿(𝐴) denote the set of ordering on 𝐴. 

Notation: Let ⪯ be an ordering, then ≃ is the equality predicate of ⪯. Formally, 𝑎 ≃ 𝑏 if and only if 𝑎 ⪯

𝑏 and 𝑏 ⪯ 𝑎.  

Definition 6.2. Let 𝔾𝑉 be the set of all weakly connected graphs with node set 𝑉. A ranking system 𝐹 is a 

functional that, for every finite node 𝑉, maps every weakly connected graph 𝐺 ∈ 𝔾𝑉  to an ordering ⪯𝐺
𝐹∈

𝐿(𝑉).  

Definition 6.3. Let 𝐺 = (𝑉, 𝐸) be a directed graph, and let 𝑣 ∈ 𝑉 be a node in 𝐺. Then, the successor set 

of 𝑣 is 𝑆𝐺(𝑣) = {𝑢|(𝑣, 𝑢) ∈ 𝐸} and the predecessor set of 𝑣 is 𝑃𝐺(𝑣) = {𝑢|(𝑣, 𝑢) ∈ 𝐸}. 

Definition 6.4. Let 𝐺 = (𝑉, 𝐸) be some weakly connected directed graph, and assume 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}. 

The Hermitian score 𝐻𝐺(𝑣𝑖) of a node 𝑣𝑖 ∈ 𝑉 is defined as the score of the node using the algorithm defined 

above. The Hermitian ranking system is a ranking system that, for the node set 𝑉, maps 𝐺 to ⪯𝐺
𝐻,  where ⪯𝐺

𝐻 

is defined as follows: for all 𝑣𝑖, 𝑣𝑗 ∈ 𝑉: 𝑣𝑖 ⪯𝐺
𝐻 𝑣𝑗 if and only if 𝐻𝐺(𝑣𝑖) ⪯ 𝐻𝐺(𝑣𝑗). 

6.1. Vote by Committee 
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Axiom 6.1. Let 𝐹 be a ranking system. 𝐹 satisfies vote by committee if, for every node set 𝑉, for every 

node 𝑣 ∈ 𝑉, for every graph 𝐺 = (𝑉, 𝐸) ∈ 𝔾𝑉, for every 𝑣1, 𝑣2 ∈ 𝑉, and for every 𝑚 ∈ ℕ: let  

𝐺 ´ = (𝑉 ∪ {𝑢1, 𝑢2, ⋯ , 𝑢𝑚}, 𝐸 ∖ {(𝑣, 𝑥)|𝑥 ∈ 𝑆𝐺(𝑣)} ∪ {(𝑣, 𝑢𝑖)}, |𝑖 = 1, ⋯ , 𝑚} ∪ {(𝑢𝑖 , 𝑥)|𝑥 ∈ 𝑆𝐺(𝑣), 𝑖 = 1, ⋯ , 𝑚}}) 

, where {𝑢1, 𝑢2, ⋯ , 𝑢𝑚} ∩ 𝑉 = ∅. Then, 𝑣1 ⪯𝐺
𝐹 𝑣2𝑖𝑓𝑓𝑣1 ⪯

𝐺´ 
𝐹 𝑣2.  

6.2. Soundness 

Proposition 6.1 The Hermitian ranking system 𝐻 satisfies vote by committee. This is shown in the 

appendix. 

7. Conclusions 

This paper presents an algorithm for calculating the Hermitian scores of the nodes of a directed graph. 

The Hermitian rankings of the nodes of the directed graphs is designed to reproduce the three 

characteristics of Google’s PageRank. The primary advantage of this method for determining Hermitian 

scores is that it does not require a damping factor, whereas PageRank requires a damping factor with a 

specific value. The Hermitian scores determined by the proposed method are therefore unaffected by the 

problems with PageRank that are associated with the damping factor. The algorithm for the Hermitian 

scores satisfies soundness for an algorithm. We foresee the following future research efforts as being 

necessary to further develop the proposed method. We need to develop methods to achieve a desired score 

for a node by adding a loop link of a specific width to the target node. We can develop these methods 

theoretically and systematically using the Hermitian adjacency matrix because these methods do not 

require the use of a damping factor. We also need to show that the algorithm satisfies a variety soundness 

conditions. 

Appendix 

The following is the proof for the vote by committee axiom. 

 Let 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} be a node set, let 𝐺 = (𝑉, 𝐸) ∈ 𝔾𝑉 be a graph, and let 𝑣𝑠, 𝑣𝑡 ∈ 𝑉 be nodes, and let  

𝑚 ∈ ℕ be a natural number. Assume  𝑣𝑠 ⪯𝐺
𝐻 𝑣𝑡. 

Let 

𝐺´ = (𝑉 ∪ {𝑣𝑛+1, 𝑣𝑛+2, ⋯ , 𝑣𝑛+𝑚}, 𝐸 ∖ {(𝑣1, 𝑥)|𝑥 ∈ 𝑆𝐺(𝑣1)} ∪ {(𝑣1, 𝑣𝑛+𝑗)|𝑗 = 1, … , 𝑚},∪ {(𝑣𝑛+𝑗, 𝑥)|𝑥 ∈

𝑆𝐺(𝑣1), 𝑗 = 1, ⋯ , 𝑚}}). In 𝐺 , each of 𝑣: 𝑣 ∈ 𝑆𝐺(𝑣1) has an inlink from 𝑣1 . In 𝐺´ , all of the inlinks to 

𝑣𝑛+1, 𝑣𝑛+2, … 𝑣𝑛+𝑚  are only from 𝑣1  and each 𝑣: 𝑣 ∈ 𝑆𝐺(𝑣1)  only has  an inlink from each of 

𝑣𝑛+1, 𝑣𝑛+2, … 𝑣𝑛+𝑚. Therefore, based on Stage:3-3-6 of the algorithm, in 𝐺 and 𝐺 ´, the rankings between 

𝑣: 𝑣 ∈ 𝑆𝐺(𝑣1) are same. Therefore, 𝑣𝑠 ⪯𝐺
𝐻 𝑣𝑡 implies 𝑣𝑠 ⪯𝐺´

𝐻 𝑣𝑡. 
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