

Using Code Coverage Metrics for Improving Software
Defect Prediction

Bilal Al-Ahmad*

Computer Information Systems Department, Faculty of Information Technology and Systems,
The University of Jordan, AqabaBranch, Jordan

*Corresponding author; Email: b.alahmad@ju.edu.jo
Manuscript submitted September 29, 2018; accepted November 2, 2018.
doi: 10.17706/jsw.13.12.654-674

Abstract: Software defect prediction enables software developers to estimate the most defective code parts

in order to reduce testing efforts. As the size of software project becomes larger, software defect prediction

becomes an urgent need. While static product metrics have been extensively investigated as a static means

to predict software defects, coverage analysis of the software has been abandoned due to the expected

complexities. This paper proposed a novel hybrid approach that leverages code coverage metrics to

improve software defect prediction. We build and compare software defect prediction results for four

distinct scenarios: static product, code coverage, hybrid, and feature selection. First scenario resembles

static analysis and acts as baseline model. Second scenario addresses coverage issues of the associated test

cases for the source code. Third and fourth scenarios are derived from combinations of stati c product and

code coverage scenarios. Each scenario has been modeled and examined using thirteen different machine

learning classifiers. Two rounds of experiments have been done. First round employs real data extracted

from 23 successive releases of Apache Lucene, whereas second round applies oversampling technique for

the same releases. The results indicate that code coverage scenario attains a significant improvement in

software defect prediction, especially when there is a high-coverage ratio for software modules. In general,

hybrid scenario outperforms the other three scenarios. Naive Bayes classifier attains the best results among

all classifiers at the first round, while IBK performs well for the second round. The second round

experiment exhibits a superior performance compared to the first round because it approaches two times

better recall. Further, we notice a steady improvement in the latest releases of Apache Lucene project

compared to the earlier ones.

Key words: Code coverage metrics, Machine learning classifier, Software defect prediction, Software quality,
Static product metrics

1. Introduction

Software defects prediction is one of the most important research areas in software engineering [1]–[6].

Software development strives to improve the quality of software systems without assigning too many

resources in the quality assurance activities. Software quality strongly influences the overall system

performance because it involves improving the software quality by reducing the number of defects. Defects

may be existed in various stages of the software development life cycle, defects detection in the later stage s

of the software life cycle is considered to be complex to fix more than those found in earlier stages. The

ability to predict defects is useful to create efficient resources for software testing. The earlier prediction of

defects can improve testing management and quality of software.

Several studies [7]-[11] discussed the use of software defect prediction models with machine learning for

654 Volume 13, Number 12, December 2018

Journal of Software

mailto:b.alahmad@ju.edu.jo

various purposes in software testing process. The studies [7]–[10] used machine learning-based defect

prediction models to classify each software module as “buggy” or “buggy free”. The study [11] created three

defect prediction models for three different testing phases in order to monitor defects on large enterprise

software.

Also, the study [12] proposed an empirical approach that integrates machine learning, statistical

technique, and defect reports to support software testing management. It built predictive models for defects

repair times and evaluated software testing quality over three large medical software releases. Moreover,

other studies [13]–[15] focused on using the software defect data to capture the buggy software modules

during testing process by using the number of residual defects in order to improve software reliability

prediction. While the research study [16] proposed prediction model to estimate defects number in the

recent version of software by referring to the prior stable version, such the recent version includes changes

that are related to adding new metrics or fixing the defective lines of code . So, perceiving such features

changes through software versions lead to decrease testing times and direct developers for developing a

higher quality software.

All the current approaches overlooked the aspects of coverage analysis of the source code in their

experiments and considered only the baseline product metrics: C&K metrics [17] Henderson-Sellers

metrics [18], Martin metrics [19], QMOOD metrics [20], Tang metrics [21], McCabe metrics [22], and Lines

of Code (LOC) metric. As a result, this paper proposes various defect prediction models that take into

account the code coverage metrics which enable testing teams to manage software testing effectively.

This study investigates the significance use of coverage code metrics with regard to defect prediction.

Four distinct scenarios (static product, code coverage, hybrid, and feature selection) were built by applying

13 various machine learning classifiers in order to investigate the relation between the software metrics

and the defects. Subsequently, the results of constructing four different defect prediction models were

analyzed. The constructing procedure utilized by applying 10 folds cross validation and overs ampling

techniques over 23 successive releases of Apache Lucene1 project. Finally, two rounds of experiments were

conducted on the same investigated releases in order to determine the power of combining both of static

product and code coverage metrics in classifying Java classes as defective or defect free. The results of the

two rounds were compared and the most important metrics were recommended with regard to defect

prediction. In this research, there are four contributions that answer the following research questions:

(1) Demonstrate the value of code coverage metrics in software defect prediction, according to our

experiments, hybrid scenario attains best recall values compared to the other scenarios.

RQ1. Do the code coverage metrics improve the software defect prediction?

(2) Show how machine learning classifiers exhibit an increasing performance regardless of the used

scenarios, NB and IBK are the best two classifiers in our experiments.

RQ2. What are the most appropriate machine learning classifiers for software defect prediction?

(3) Prove the effectiveness of the selected sampling technique over imbalanced data as in the second

round of the experiment, increasing the defective software modules leads to obtain two times

better recall rather than first round.

RQ3. Does the oversampling of minority software modules improve the software defect

prediction?

(4) Identify the positive behavior of the investigated releases which reflects steady improvement

from the earlier releases to the later ones.

RQ4. How is the behavior of the software releases by using different evaluation measures?

1https://mvnrepository.com/artifact/org.apache.lucene/lucene-core

655 Volume 13, Number 12, December 2018

Journal of Software

https://mvnrepository.com/artifact/org.apache.lucene/lucene-core

The rest of this paper is organized as follows: section 2 discusses the related work by stating the most

related studies in the literature, section 3 presents the proposed methodology, section 4 shows results and

discussions, and section 5 presents conclusion and perspectives.

2. Related Work

Software defect prediction plays an important role in classifying the defective modules of software

projects. Many research studies in literature apply machine learning techniques using static product

metrics in order to predict software defects [23]–[28]. Those metrics are classified as: C&K metrics,

Henderson-Sellers metrics, Martin metrics, QMOOD metrics, Tang metrics, McCabe metrics, and Lines of

Code (LOC) metric. Later on, Jureczko [24] applied an empirical analysis to measure the influences of

product and process metrics upon defect prediction models.Jureczko and Madeyski [25] used Kohonens

neural network and k-means clustering to determine the software projects that have the same defect

prediction characteristics. All the investigated product metrics were calculated using Ckjm2tool.

Quite recently, Madeyski and Jureczko [29] performed an empirical assessment which includes statistical

tests and multi-collinearity analysis over industrial and open source software projects. The result s

recommended the most significant product and process metrics in respect to software defects. Tomar

andAgarwal [28] applied Weighted Least Squares Twin Support Vector Machine (WLSTSVM) for defect

prediction process. In addition, the study [26] showed how the distribution of imbalance data affects the

software prediction process. Consequently, the study applied an oversampling to the minority modules (i.e.

defective classes) in the investigated project. The results show how the proposed algorithm achieves better

prediction performance.

Further, Tang et al. [27] proposed a merged static defect analysis with software defect prediction to build

software prediction model. Their study restricted only to 14 static product metrics. He et al. [2] proposed

using group of simplified metrics for software defect prediction through several cases using six machine

learning classifiers. The results indicated that within project defect models are able to capture higher

precision than cross-projects defect models. Also, among all classifiers, Naive Bayes is the most suitable

classifier to select the most useful set of simplified metrics. Similarly, Jacob et al. [23] proposed an effective

framework for software defect prediction, where three feature selection techniques used to select the most

important attributes that give an indication of defect existence.

All the aforementioned studies considered only the static baseline metrics and overlooked the role of

code coverage metrics in software defect prediction due to complexities. This proposed approach addresses

this critical limitation in order to improve the overall software quality by highlighting the coverage aspects

of the source code. This proposed approach is the first approach which explores the impact of using

coverage metrics software defect prediction.

3. The Proposed Methodology

In our methodology, four software defects prediction models are built using 13 machine learning

classifiers that were implemented in Weka. Machine learning classifiers [30] have multiple forms: artificial

neural network, linear regression, rule-based, and trees. Hence, in order to cover the diversity of the most

common forms, the proposed approach uses classifiers from five different families. In particular, the

selected classifiers are: (1) Bayes: Naive Bayes (NB), (2) Functions: Multi-layer Perceptron (MLP), Simple

Logistic (SL), SMO, Logistic (L), (3) Lazy: IBk, KStar, LWL, (i4) Meta: AdaBoost (AB), Bagging (B), LogitBoost

(LB) and(5) Trees: Decision Tree (J48), Random Forest (RF). Bayes family is a direct method that estimates

2http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm

656 Volume 13, Number 12, December 2018

Journal of Software

http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm

the probability of the best hypothesis using Bayes theorem by building a rule based model. In the functional

family, the classifier builds a function (or hypothesis) of input domain (i.e. Features) and maps it into an

output of range (i.e. Labels). Lazy learners simply classify a new instance by calculating the similarity

between the instances against the instances in the training set and assign the label of most similar ones to

that instance.

In contrast, eager learners construct a machine learning model before testing process as a ready t o use

classifier models such: (1) Bayes, (2) Functions, (3) Meta, and (4) Trees families. In Meta families, the idea is

to learn an expert classifier of ensemble weak classifiers combined in a way to predict a label using

averaging or voting methods. Finally, in the tree family, each classifier is a form of a hierarchical tree where

a node at each level represents the best attribute at that level while the arcs represent the values of that

attributes.

In the training phase, the proposed approach used 10-fold cross-validation method for each experiment

by repeating it 10 times for each process of building a classifier. A set of evaluation metrics were used which

are precision, recall, and Receiver Operating Characteristic (ROC) area as in [31]. Precision is the ratio of

relevant instances among the retrieved ones, while recall is the ratio of retrieved and relevant instances to

the total amount of relevant ones. The ROC area (curve) [32] is used to check whether a classifier can

separate positive and negative instances and identify the best threshold for separating them. In particular,

the ROC curve is a graph plot that relates recall in function of the false positive rate on different threshold

points. Each point on the ROC curve represents a recall/false positive rate pair corresponding to a particular

decision threshold. Each release is used for training and testing purposes. Hence, the evaluation process is

conducted on a training set of each release using 10-fold cross-validation to maintain a better accuracy for

the goal of improving the performance on a particular release. The cross-validation method divides a given

data into two sub-sets; training and testing sets. The building classifier uses the training set and evaluates

the model using the testing set. The partitioning process on the given data is repeated several times into

training and testing sets (90% for training and 10% for testing) to randomly divides the data into a form of

10 equally sized sub-sets that assures data randomness where the estimated accuracy is the average over

these repetitions. The k-1 (90%) sets are used for training phase while one fold (10%) is used for testing.

Consequently, the advantage of 10-fold cross-validation is inherited in that all software classes are used for

both training and validation, and each class is used for validation exactly once.

This reduces the variance of the resulting estimations in increasing the value of k. In ou r experiments, the

proposed approach sets k =10, as concluded in [33]. In contrast, the studies [4] and [25] built classifier

models on a training set of initial releases while the other remaining releases of the same project are used

for testing. In particular to this study, the reason behind using 10-fold cross-validation is to reduce the

variance in building the classifier models in comparison to the hold-out method. The best model of these

partitions is used as a final model which is less sensitive to the data partitions.

3.1. Unit Testing

Unit testing is one of the most popular regressions testing that can be implemented in Java code using

JUnit3 testing framework. It is a good practice to separate the testing code from the actual application code.

EclEmma4 is a free Java code coverage tool which is available under the Eclipse5 public license; it is

integrated with JUnit to execute test cases for Java program. It applies code coverage analysis int o the

3http://junit.org/junit4
4https://marketplace.eclipse.org/content/eclemma-java-code-coverage

5https://eclipse.org

657 Volume 13, Number 12, December 2018

Journal of Software

http://junit.org/junit4
https://marketplace.eclipse.org/content/eclemma-java-code-coverage
https://eclipse.org/

Eclipse workbench. JaCoCo6 has been created by the EclEmma. It is a free Java code coverage library that

runs JUnit test cases and provides a visual coverage report by providing information for each single test

case that associated with each particular software module. As in the study [34], JaCoCo is the most popular

testing model that gives higher visibility and easier integration for testing Java modules. The coverage

information is most desirable when applying test cases optimization during regression testing because it

highlights the covered code portions through running the test cases.

3.2. Imbalance Data and Oversampling

Software quality aims to develop high quality software by implementing machine learning classifiers on

software metrics in order to discover the possible software defects modules. Machine learning [35] is

frequently encountered with two main bottlenecks: working with imbalanced data and selecting the best

features for machine learning techniques. Class imbalance [36]–[37] is a very common issue that occurs

among several application domains such in software quality estimation. To overcome the difficulties

associated with learning from imbalanced data, various techniques have been developed such as sampling.

Data sampling is the primary technique for handling imbalanced distributions of software modules on a

given dataset. According to this particular context, there are two types of data sampling: under-sampling of

majority software modules and oversampling the minority ones as in [38]–[39]. In respect of the proposed

approach, minority modules are buggy classes and majority are the buggy free ones. As a result, it is very

essential to oversample the minority classes to make a better balancing with majority software modules.

3.3. Metrics and Tools

3.3.1. Static product metrics

Code metrics, also known as product metrics, measure the complexity of source code. This study uses

code metrics to build several defects prediction models. All metrics are directly collected from an existing

Java source code and calculated using Ckjm tool. The main reason behind using these metrics is to reflect

good software quality attributes [1], [23], [40]. The static product metrics are selected from several metrics

suites as follows:

A. The metrics suite are suggested by C&K:

1. Weighted method per class (WMC): Represents sum of the cyclomatic complexities of all declared

local methods within a class.

2. Depth of inheritance tree (DIT): Measures class level in the inheritance tree, root class is considered

as zero.

3. Number of children (NOC): Represents to the number of immediate children’s or sub classes of a

given class in the hierarchy.

4. Coupling between object classes (CBO): Measure the total number of new or redefined methods to

which all the inherited methods are coupled.

5. Response for a Class (RFC): Measures the total number of local methods plus the number of non-local

methods called by local methods.

6. Lack of cohesion in methods (LCOM): Measures the dissimilarity of methods in a particular class that

shared at minimum one particular field or attribute. Lack of cohesion increases the likelihood of

getting more defects.

B. Henderson-Sellers metric:

7. Lack of cohesion in methods (LCOM3): It is an extension from LCOM metric; it represents the

connected components in the graph.

6http://eclemma.org/jacoco/

658 Volume 13, Number 12, December 2018

Journal of Software

http://eclemma.org/jacoco/

C. QMOOD metrics suite:

8. Number of Public Methods (NPM): Measures total number of all the public methods in a given class.

9. Data Access Metric (DAM): Represents proportion of the number of private or protected attributes to

the overall number of declared attributes within a class.

10. Measure of Aggregation (MOA): Measures the total number of aggregation relationship between the

class attributes.

11. Measure of Functional Abstraction (MFA): Represents percentage of number of inherited methods of

an investigated class to the total number of methods that accessed by member methods of the class.

12. Cohesion Among Methods of Class (CAM): Computes the relatedness among methods of a class based

on the parameters or specifications list of the methods.

D. Tang metrics:

13. Inheritance Coupling (IC): Indicates the number of parent or super classes that is coupled to a

particular investigated class.

14. Coupling Between Methods (CBM): It represents the number of classes to which the investigated

class is coupled.

15. Average Method Complexity (AMC). This metric measures the average method size for each class such

as Java byte code length in the method.

E. Martin coupling metrics:

16. Afferent couplings (CA): Counts the number of classes that calling the investigated class.

17. Efferent couplings (CE): Counts the number of classes that called by the investigated class.

F. One McCabe’s metric which represents class level complexity metrics:

18. McCabe’s cyclomatic complexity (CC): Total number of all potential various paths for a given method

within a class. It represents method’s control flow and it defined as in (1).

 CC = E − N + P (1)

where E represents the number of edges of a graph, N represents the number of nodes of a graph, and P

denotes the number of connected components. In addition, both of Max (CC) and Avg (CC) metrics have

been derived from CC and stated as follows:

19. Max (CC): the maximum value of CC among all methods within a particular class.

20. Avg (CC): the arithmetic mean of all CC methods within a particular class.

G. Lines of Code

21. Line of code (LOC): Refers to the number of code lines for each class except the comments. Generally,

a class with higher LOC number tends to contain higher defects than other classes.

3.3.2. Code Coverage Metrics

JUnit is one of the most popular regressions testing framework used by developers to execute unit testing

for java source code. Our approach uses JaCoCo model which generates five code coverage7 metrics named

as: instruction, branch, line, complexity, and method. All these metrics are calculated by JaCoCo, the

description of these metrics captured as follows:

A. Instructions coverage: Counts instructions into a single Java byte code. Instruction coverage

represents the amount of code that has been executed by implementing JUnit test.

7http://www.eclemma.org/jacoco/trunk/doc/counters.html

659 Volume 13, Number 12, December 2018

Journal of Software

http://www.eclemma.org/jacoco/trunk/doc/counters.html

B. Branches coverage: Counts branch coverage for all if and switch statements. This metric counts the

total number of executed branches in a method within each class through implementing JUnit test.

C. Cyclomatic Complexity coverage: Measures all possible control flows within each concrete method

within each class. It represents the number of test cases that required to fully covering the class code

during the running of a particular JUnit test.

D. Lines coverage: For all class files that have been compiled with debug information, coverage

information for individual lines can be calculated. A source line is considered executed when at least

one instruction that is assigned to this line has been executed. It reflects the amount of cod e that has

been exercised based on the number of Java byte code instructions called by the JUnit test.

E. Methods coverage: Each concrete method contains at least one instruction. A method is considered as

executed when at least one instruction has been executed by implementing JUnit test.

All the above metrics are derived from Java byte code instructions and debug information which is existed

in classes’ files. We calculate the coverage ratio for each of code coverage metric by using (2).

 Coverage Ratio = 𝐶𝑜𝑣𝑒𝑟𝑒𝑑 𝐶𝑜𝑑𝑒/(𝐶𝑜𝑣𝑒𝑟𝑒𝑑 𝐶𝑜𝑑𝑒 + 𝑀𝑖𝑠𝑠𝑒𝑑 𝐶𝑜𝑑𝑒) (2)

Where 𝐶𝑜𝑣𝑒𝑟𝑒𝑑 𝐶𝑜𝑑𝑒- represents the amount of code that covered by running a given JUnit test case,

and 𝑀𝑖𝑠𝑠𝑒𝑑 𝐶𝑜𝑑𝑒- represents the amount of code that uncovered by executing a given JUnit test case. In

order to find the most powerful metrics that correlated with the software bugs, , the proposed approach

applies Pearson correlation on the all 21 static product and five code coverage metrics. For static product

metrics, the recommended metrics are: WMC, CC, RFC, NPM, CBO, LCOM, CA, and CE correspondingly. On

the other side, the highest correlated code coverage metrics are: Branch coverage, Instruction coverage,

Method coverage respectively.

3.3.3. Bugs labeling

A bug, also known as defect, may lead to a total failure of software and eventually decrease the overall

software quality. Therefore, this study identifies the bugs for each single class in each release of Apache

Lucene project. Our proposed approach uses developers commenting guidelines that were stored in the

source code repository (i.e. GitHub). As in the research study [25], a class is determined to be buggy if it

contains at least one defect. So, our methodology pulls all the commits and their related comments for each

release and consequently counts bugs for each class based on historical information that archived in

software repository. GitHub8 obviously includes information about all developers’ commits description.

During the interim development, our approach counts the number of defects for a given class within each

current release by considering the number of repaired defects within the same class of the previous release.

3.4. The Proposed Approach

In the context of our study, four essential datasets are created as shown in Fig. 1. As a result, four

essential scenarios are used with the purpose of building software defects prediction models:

(1) Static product scenario (Scenario 1). This scenario mainly concentrates on using only static product

metrics with the associated bugs to produce static product prediction model.

(2) Code coverage scenario (Scenario 2). This scenario essentially focuses on using only code coverage

metrics with the associated bugs to get code coverage prediction model .

(3) Hybrid scenario (Scenario 3). This scenario combines both of scenario 1 and scenario 2 metrics with

their corresponding bugs to create hybrid prediction model.

8https://developer.github.com/v3/repos/commits/

660 Volume 13, Number 12, December 2018

Journal of Software

https://developer.github.com/v3/repos/commits/

(4) Feature selection scenario (Scenario 4). This scenario considers the key features of the hybrid

scenario with the related bugs to obtain feature selection prediction model.

The 26 independent variables (input) for both static product and code coverage metrics, the only

dependent variable is the bug (output). The purpose of defect prediction is to determine defective

classes in each software release.

Fig. 1. Dataset creation.

Our proposed methodology consists of seven ordered phases, it combines the strength of static and

dynamic aspects of the source code, static aspect focuses on static product metrics while dynamic aspect

highlights the code coverage metrics, Fig. 2 summarizes the steps:

Phase1: Collect Java open source code. Our approach collects 23 successive releases from Apache Lucene

project, Lucene is the standard Java libraries [41] that used for different purposes such as searching,

indexing, and tokenizing.

Phase2: Measure static product metrics for each module. All 21 static product metrics are directly

collected from an existing source code by using Ckjm. One of the most important key features of this tool is

to report the key quality indicators in the body of Java source code.

Phase3: Measure software code coverage metrics for each module by using JaCoCo.

Phase4: Classify software modules into defective and non-defective by using an attribute called bug count,

the value of bug count attribute is assigned to true (i.e. if the module contains bug) or false otherwise.

Software tester should begin the software testing with a software module that contains a high number of

defects in order to avoid extra cost. Our approach determines if the module is defective or not by analyzing

the historical information that archived in GitHub.

Phase5: Combine all the dataset (static product, code coverage, hybrid, and features selection) by

applying 10 folds cross validation over all 23 investigated releases. The proposed approach uses 13 various

machine learning classifiers.

Phase6: Oversample all the datasets to obtain more balanced distribution between defective and

661 Volume 13, Number 12, December 2018

Journal of Software

non-defective software modules.

Phase7: Evaluate the proposed methodology for two rounds of experiments by using recall, precision,

F-measure, and ROC.

4. Results and Discussions

4.1. Dataset Description

In our study, 23 successive releases of Apache Lucene project have been investigated in order to evaluate

the proposed software defects prediction models. Apache Lucene is one of the most popular Java open

source projects as well as it is accompanied with JUnit test cases which can be executed via JaCoCo. Table 1

presents the statistical information about our collected datasets, where the last column is the ratio of buggy

modules for each release. Each module in this dataset represents a class file in a Lucene rel ease and it

contains 26 metrics (independent variables) and bug (only one dependent variable).

The bug value is converted into binary labels; a module is non-buggy if it has zero bugs. Otherwise, it is

buggy. All static product and code coverage metrics that are involved in our approach are described

previously in section 3.3.

Fig. 2. The proposed approach.

4.2. Experimental Setup

Our experiments have two rounds, first round considers without sampling and second round applies

oversampling of the buggy software modules. Each experiment applies 13 machine learning classifiers on

the 23 investigated Apache Lucene releases. These classifiers belong to five different classification families

and named as: AdaBoostM1, Bagging, IBK, J48, KStar, LWL, Multi Layers Perceptron (MLP), Na ive Bays (NB),

Random Forest, SGD, Simple Logistic, SMO, and logitBoost.

4.3. Performance Measures

In this approach, binary classification approach is used to predict classes that are likely to contain defects.

A binary classifier can make two potential errors: False Positive (FP) and False Negative (FN). Also, a

properly classified buggy class is a True Positive (TP) and properly classified non-buggy class is a True

Negative (TN). We evaluated binary classification results in terms of recall, precision, F-measure and ROC.

662 Volume 13, Number 12, December 2018

Journal of Software

Table 1. Dataset Statistics

Apache Lucene Release No.of defect modules No. of all modules Defective ratio

5.2.0 278 3079 9.0%

5.2.1 278 3082 9.0%

5.3.0 277 3192 8.6%

5.3.1 277 3193 8.6%

5.3.2 277 3193 8.6%

5.4.0 299 3255 9.1%

5.4.1 300 3255 9.2%

5.5.0 317 3282 9.6%

5.5.1 317 3282 9.6%

5.5.2 319 3282 9.7%

5.5.3 319 3282 9.7%

5.5.4 319 3282 9.7%

6.0.0 425 3113 13.6%

6.0.1 425 3113 13.6%

6.1.0 438 3162 13.8%

6.2.0 448 3187 14.0%

6.2.1 448 3194 14.0%

6.3.0 450 3232 13.9%

6.4.0 445 3297 13.4%

6.4.1 445 3297 13.4%

6.4.2 447 3297 13.5%

6.5.0 454 3339 13.5%

6.5.1 455 3339 13.6%

Recall: calculates the number of defective classes that are actually estimated by a prediction model. A

higher recall indicates a lower number of defective classes that have been missed by the prediction model

as in (3).

 Recall = TP/(TP + FN) (3)

Precision: calculates the number of defective classes that are estimated by a prediction model. The higher

precision indicates a lower non-defective class on instances as in (4).

 Precision = TP/(TP + FP) (4)

F-measure: calculates the accuracy of prediction model based on both precision and recall, which can be

interpreted as a weighted average of both precision and recall. The higher the F-measure indicates better

performance for classification results as in (5).

 F − measure = (2 ∗ Precision ∗ Recall)/(Precision + Recall) (5)

Receiver Operating Characteristic (ROC): is used typically to calculate the performance of prediction

models by comparing the true positive metric to false positive metric on a threshold value (depends on

number of instances). The area under curve of two metrics is considered as a value of evaluation.

4.4. Experimental Results

663 Volume 13, Number 12, December 2018

Journal of Software

The results of both investigated experiments are reported in order to answer the four stated research

questions above. The detailed description of both experiments is shown as in the following subsections

4.4.1, 4.4.2 respectively.

4.4.1. Without sampling

Fig. 3. Performance of NB classifier on all scenarios in terms of recall.

We build our research questions based on adapting different scenarios that potentially reflect the effect of

combining code coverage metrics with the previous static product metrics in order to predict the software

defects. Fig. 3 shows box-plots of the recall values over all 23 releases of the NB classifier by investigating

the four stated scenarios. NB is marked as the best machine learning classifiers based on the achieved recall

values. The feature selection scenario superiors others scenarios where approximately 50% of recall values

are more than 35% of a graph skewed to the left. The hybrid scenario has comparable performance to static

product scenario where the median recall values for both are between 28% and 33%. While the code

coverage scenario shows the worst results due to the few metrics as input for the learning classifier and the

executed test cases achieve partial or even no coverage, low code coverage ratio reflect s that the code is not

tested and classified as buggy code while high coverage modules reflect higher quality of source code.

However, the code coverage metrics have an improvement effect when they are used as features in hybrid

scenario.

The results of the first experiment raise RQ1 where the code coverage metrics have significant

improvement in software defect prediction especially when there is high coverage ratio. Our further

discussions have to focus on other three scenarios: static product, hybrid, and feature selection. To address

RQ2, the three suggested scenarios for software prediction are investigated by analyzing the performance of

classifiers using the picked dataset without sampling. Fig. 4(a), 4(b), and 4(c) illustrate prediction

algorithms performance for the static, hybrid, and feature selection scenarios respectively.

The static product scenario as shown in Fig. 4(a) nominates NB, IBK, and KS as a top three performing

classifiers, the recall mean values are 0.38, 0.34, and0.32respectively. The hybrid scenario is presented in

Fig. 4(b) nominates NB, IBK, and KS as top three performing classifiers as in the static product scenario. The

exact mean values are 0.40, 0.35, and 0.34 respectively. Similarly, feature selection as shown in Fig. 4(c)

nominates the top three classifiers: NB, IBK, and KS with recall mean of 0.35, 0.35, and 0.33 respectively.

Adding code coverage metrics to static product metrics leveraged the prediction accuracy and improves

664 Volume 13, Number 12, December 2018

Journal of Software

overall software quality as illustrated in the hybrid scenario.

(a) (b)

(c)

Fig. 4. Top seven classifiers in terms of prediction performance: (a) Static product scenario,

(b) Hybrid scenario and (c) Feature selection scenario.

Such improvement in software quality leads to assert that using of code coverage metrics is important to

obtain better prediction of software defects. It is apparent that NB, IBK, and KS surpass significantly the rest

of all classifiers. In essence, NB is considered as the most suitable classifier in the software defect prediction

models over the three selected scenarios. The suitability of using NB for software defect prediction model

agrees with the characteristics of the algorithm itself, it can be better than several classifiers under default

configurations as well as it is appropriated for binary classification problems as concluded by the study [42].

The overall analysis of the results provides the following answers: (1) in response to RQ1, the hybrid

scenario improves software defect prediction since it considers code coverage metrics, (2) in terms of RQ2;

all scenarios agreed that the most appropriate classifiers are NB, IBK, and KS.

In fact, according to the recall, the top seven classifiers are: (1) NB, IBK, KS, MLP, J48, RF, and B for hybrid

scenario; (2) NB, IBK, KS, RF, MLP, J48, and B for static product metrics scenario; and (3) NB, IBK, KS, RF, J48,

MLP, and B for feature selection scenario. Among all classifiers, NB was the most efficient classifier that

used in software defect prediction.

665 Volume 13, Number 12, December 2018

Journal of Software

(a) (b)

(c) (d)

Fig. 5. The behavior of all 23 Lucene releases under NB classifier in respect to the

measures: (a) Recall, (b) Precision, (c) F-measure, and (d) ROC.

In general, most of the later releases show a steady improvement with comparing to the prior releases in

terms of all four evaluation measures as shown in Fig. 5 (a), Fig. 5 (b), Fig. 5 (c), and Fig. 5 (d) respectively.

According to our perspective, recall is considered to be the most key measure among all used measures

because our goal is to predict False Negative (i.e. non-buggy classes that predicted as buggy). In particular

to NB classifier recall of hybrid scenario, there is a steady significant improvement except from release 6

(Apache Lucene 5.4.0) to release 12 (Apache Lucene 5.5.4). This occurs due to many reasons such: very few

classes that have been added to these particular releases, modification lines of code within certain classes,

and possibility of low coverage ratio existence. On other side, there is new remarkable milestones between

release 12 (Apache Lucene 5.5.4) and release 13 (Apache Lucene 6.0.0) as well as between release 5

(Apache Lucene 5.3.2) and release 6 (Apache Lucene 5.4.0) that happens for significant updates between

these exact releases. Our proposed approach uses 10-fold cross validation technique. Through all

investigated Lucene releases, hybrid outperforms the performance of the other scenarios because it has the

best recall as shown in Fig. 5 (a).

To capture the releases behavior under different measures as stated in RQ4, three different releases are

explored: release 2 (Apache Lucene 5.2.1), release 17 (Apache Lucene 6.2.1), and release 22 (Apache

Lucene 6.5.0). First, the recall values of hybrid scenario are 38%, 41%, 43% for release 2, release 17, and

release 22 respectively. Second, the F-measure values of hybrid scenario are 29%, 38%, 39% for release 2,

release 17, and release 22 respectively. In general, there is monotonic increasing for software releases in all

666 Volume 13, Number 12, December 2018

Journal of Software

evaluation measures.

(a) (b)

(c)

Fig. 6. Correlation coefficient between two different scenarios with no sampling experiment:

(a) Hybrid vs. Feature selection scenarios; (b) Static vs. Feature Selection scenarios; and, (c)

Static vs. Hybrid scenarios.

Also, based on the recall values of NB classifier, it is very important to study the correlations between the

discussed scenarios and see their strength in predicting of the software defects. As a result, in order to

compare the quality of predicting defects by picking certain machine learning classifiers and evaluation

measure, this study examines the relationship among our scenarios to discover the behavior of releases by

moving from one release to another. Fig. 6 shows a scattered plot which represents the correlation

relationship among different scenarios in without-sampling experiment. Each plot contains a linear

regression equation that relates the recall values of the first scenario with the second scenario. In addition,

it clarifies the R2 correlation coefficient. The R2 is a statistical measure of how close the real data points are

fitted by the linear regression model. This means that if the R2 value is close to 1, the data is highly fitted to

the regression line and there is no difference in their effects on software defects prediction and has the

same impacts. In particular, as shown in Fig. 6, the static and hybrid scenarios have high R2 values which

approximately 0.94 and a line slop value 0.724 where the data is almost on the regression line.

This indicates that the metrics used in the hybrid scenario are close in term of effectiveness to the static

product metrics and also ensures the importance of using the code coverage metrics. On the other hand,

feature selection scenario has no relation with other two scenarios; hybrid in (a) R2 value 0.51454 and

static in (b) R2 value 0.655528. In addition to that, on each scatters plot the recall values are monotonically

667 Volume 13, Number 12, December 2018

Journal of Software

increased (positive slope) from earlier releases to the later ones.

4.4.2. With sampling

Fig. 7. Performance of IBK classifier on all scenarios in term of recall.

Due to imbalanced dataset, since the buggy classes are the minor classes, the proposed approach applies

oversampling on the four primary datasets, Fig. 7 shows box-plots of recall values of the IBK classifier using

the four proposed scenarios. The IBK classifier achieved the highest recall value among all 13 classifiers.

The results concluded that feature selection and hybrid scenarios outperform the static product and cod e

coverage scenarios, the mean recall values are 73% and 72% correspondingly. In respect to RQ1, the code

coverage scenario in this experiment shows two time’s better recall rather than the first experiment. Such

improvements refer to increase the buggy classes that manipulated through the oversampling process.

Obviously, the code coverage metrics improve the performance of both hybrid and feature selection

scenarios. In regards with RQ1, the results raise that using of code coverage metrics mirror remarkable

improvement in software defect prediction. Undoubtedly, the oversampling methodology improves the

prediction of software defects in comparison with the first round of experiment, which obviously defends

the issue of RQ3. Fig. 8 illustrates the performance of the top seven classifiers in terms of recall. In particular,

Fig. 8(a), Fig. 8(b), and Fig. 8(c) illustrate the classifiers performance for static product, hybrid, and feature

selection scenarios respectively.

Across the three scenarios, IBK has a highest accuracy with comparing to the other classifiers. Fig.8 (a),

8(b), and 8(c) show that the recall average values of IBK are 71.98%, 72.91%, and 72.22% respectively. Also,

in comparison with the first experiment, all the three scenarios have significant increase in recall value. IBK

shows the best performance in this experiment, it outperforms other classifiers due to: (1) more balanced

training, (2) it relatively requires less time to classify modules as in [43], and (3) in particular, it almost

shows a good classification performance for numeric and nominal datasets [44].

On the other hand, standard NB behaves differently in this experiment as concluded in the study [45]. But

it performs better if PCA-based preprocessing is applied to the training data, or re-weighted NB is used. At

the end, the experimental results show that NB is the most appropriate classifier in first experiment, while

IBK is the most suitable one in the second experiment, this conclusion clearly answers RQ2. Moreover, in

response to RQ1, using code coverage metrics strengthen software defect prediction as it appears in hybrid

668 Volume 13, Number 12, December 2018

Journal of Software

and feature selection scenarios.

(a) (b)

(c)

Fig. 8. Top seven performing classifiers with sampling in term of Recall measure: (a) Static

product scenario; (b) Hybrid scenario; and, (c) Feature selection scenario.

 (a) (b)

669 Volume 13, Number 12, December 2018

Journal of Software

 (c) (d)

Fig. 9. Behavior of all 23 Lucene releases under IBK classifier with sampling in terms of: (a)

Recall, (b) Precision, (c) F-measure, and (d) ROC.

In contrast to the first experiment, oversampling experiment has skewed behavior through releases

because there is no noticeable harmony as shown in Fig. 9(a), Fig. 9(b), Fig. 9(c), and Fig. 9(d). However,

hybrid and feature selection scenarios superior the other scenarios such interesting findings happen due to

the fact that oversampling methodology handles random flavor of normal distribution of the datasets. As a

result, we cannot predict the class replacements that occur through the sampling. For example, we cannot

track the replacement nature of a certain class through all software releases.

In conclusion, there is a random behavior of Lucene releases in respect to the four used evaluation

measures. First, the recall values of feature selection scenario are 71.9%, 74.9%, 72% for release 2, release

17, and release 22 respectively as in Fig. 9(a). Second, the precision values of feature selection scenario are

72.4%, 78%, 73% for release 2, release 17, and release 22 subsequently as in Fig. 9(b). Third, the F-measure

values of feature selection scenario are 72%, 76.4%, 73% for release 2, release 17, and release 22

consequently as in Fig. 9(c). Fourth, the ROC values of feature selection scenario are 85.5%, 87%, 85% with

respect to release 2, release 17, and release 22 as in Fig. 9(d). The results answer RQ4 by expressing the

detection behavior for the releases in the second round of experiments. The sampling techniques, no doubt,

tackle the problems of imbalance data inherited in training dataset to consolidate learning methods in

estimating the defective classes. The question comes up here; is there any effect of using sampling method

on the correlations with the scenarios in the releases.

This study clearly shows the relationship among scenarios to investigate the behavior of releases as

discussed earlier in the first experiment. Fig. 10 shows a scattered plot that presents the correlation among

the three scenarios in oversampling experiment.

Notably, as shown in Fig. 10, the static product and hybrid scenarios have the highest R2 values of

approximately 0.91 and a line slop of 0.96 where the data is almost on the regression line as in first round,

this denotes that the features used in the hybrid scenario are also close in the effectiveness to the static

product metrics and asserts the value of using code coverage metrics within hybrid scenario. Besides, the

feature selection scenario has no relation with other two scenarios; Hybrid scenario in (a) of R2 value is

approximately 0.82 and static product scenario in (b) of R2 value is 0.77. Furthermore, the results show that

the slopes seem to be ideal to ensure the closeness of relations between scenarios with little differences

between Hybrid vs. Feature selection and Static product vs. Feature Selection scenarios. As comparison with

first round, the results clearly show that the Hybrid vs. Feature selection correlation has better performance

rather than in the first round.

670 Volume 13, Number 12, December 2018

Journal of Software

(a) (b)

 (c)

Fig. 10. Correlation coefficient between two different scenarios with sampling: (a) Hybrid vs.

Feature selection scenarios; (b) Static vs. Feature Selection scenarios; and, (c) Static vs. Hybrid

scenarios.

Several studies [46]–[48] investigate Lucene in order to predict software defects. These studies, however,

do not tackle the code coverage features. Instead, they consider only baseline metrics. This paper explores

five code coverage metrics over 23 consecutives releases of Lucene in order to emphasize the coverage role

of the source code in software defect prediction. With regarding to the first experiment, the recall values for

the approaches in [46]–[47] are 37.8%, 31.5% respectively, while the recall of the proposed approach is

43%. Also, in respect to the second experiment, the recall of their approach in the study [48] is 64.1%,

whereas the recall of the proposed approach is 71.9%. Our results show a noticeable improvement of

software defect prediction due to the use of code coverage metrics through considering JUnit testing for all

investigated software modules.

This proposed approach differs from the previous approaches [23]–[29] in the literature because it adds

code coverage metrics to the past used metrics. The results show the significant role of combining code

coverage metrics with static product metrics will improve the accuracy of software defect predication. Our

experiments shows that using sampling can attain better prediction because it allows machine learning

classifiers to obtain rich information that increase the prediction accuracy as suggested in [49]–[50].

5. Conclusion and Perspectives

This study explored the possibilities to improve software defect prediction. Better prediction of software

defects improves overall software quality. Additionally, it facilitates an efficient resource allocation for

671 Volume 13, Number 12, December 2018

Journal of Software

software testing. In order to achieve this goal, this research proposed a novel approach that leverages

capabilities of code coverage metrics to consolidate the conventional static characteristics of source code.

The quality of code coverage enables quantifying the amount of changes that happened to the source code.

In order to validate the proposed approach, four distinct scenarios for software defect prediction have

been employed. First scenario maintains static product metrics, second scenario maintains metrics

conveying code coverage results while the other two scenarios are built based on aggregation of the metrics

obtained by the first two scenarios. Results indicate a significant improvement in the prediction rates due to

the consideration of code coverage. Further, it exhibits the superiority of both NB and IBK as machine

learning classifiers among thirteen distinct classifiers investigated. Due to imbalanced, an oversampling

technique is applied on minority software modules, it significantly improves the prediction of software

defects by obtaining two times better recall comparing with the first round of experiment. Finally, across all

four used evaluation measures, there is a steady improvement from earlier releases to later ones and the

promising results from our evaluation show that our approach can be applied into practice. As a future

work, we aim to apply the proposed approach to industrial projects.

6. References

[1] Carlson, R., Do, H., & Denton, A. (2011). A clustering approach to improving test case prioritization: An

industrial case study. Proceedings of the 27th IEEE International Conference on Software Maintenance

(pp. 382–391).

[2] He, P., Li, B., Liu, X., Chen, J., & Ma, Y. (2015). An empirical study on software defect prediction with a

simplified metric set. Information and Software Technology.

[3] Hewett, R. (2011). Mining software defect data to support software testing management. Applied

Intelligence, 34(2), 245–257.

[4] Jureczko, M. (2011). Significance of different software metrics in defect prediction. Software

Engineering: An International Journal.

[5] Meneely, A., Williams, L., Snipes, W., & Osborne, J. (2008). Predicting failures with developer networks

and social network analysis. Proceedings of the 16th ACM SIGSOFT International Symposium on

Foundations of Software Engineering (pp. 13–23).

[6] Stringfellow, C., & Andrews, A A. (2002b). An empirical method for selecting software reliability growth

models. Empirical Software Engineering, 7(4).

[7] Menzies, T., Greenwald, J., & Frank, A. (2007). Data mining static code attributes to learn defect

predictors. IEEE Transactions on Software Engineering.

[8] Nagappan, N., & Ball, T. (2007). Using software dependencies and churn metrics to predict field failures:

An empirical case study. Empirical Software Engineering and Measurement.

[9] Ostrand,T. J., Weyuker, E. J., & Bell, R. M. (2005). Predicting the location and number of faults in large

software systems. IEEE Transactions on Software Engineering.

[10] Turhan, B., & Bener, A. (2007). A multivariate analysis of static code attributes for defect prediction.

Seventh International Conference on IEEE.

[11] Caglayan, B., Misirli, A. T., Bener, A. B., Miranskyy, A. (2015). Predicting defective modules in different

test phases.Software Quality Journal.

[12] Hewett, R. (2011).Mining software defect data to support software testing management. Applied

Intelligence, 34(2), 245–257.

[13] Andrews, A., & Stringfellow, C. (2001). Quantitative analysis of development defects to guide testing: A

case study. Software Quality Journal, 9(3), 195–214.

[14] Khoshgoftaar, T. M., Szabo, R. M., & Woodcock, T. G. (1994). An empirical study of program quality

672 Volume 13, Number 12, December 2018

Journal of Software

during testing and maintenance. Software Quality Journal, 3(3), 137–151.

[15] Stringfellow, C., & Andrews, A. (2002a). Deriving a fault architecture to guide testing. Software Quality

Journal 10(4), 299–330.

[16] Kastro, Y., & Bener, A. B. (2008).A defect prediction method for software versioning. Software Quality

Journal.

[17] Chidamber, S. R., & Kemerer, C. F. (1994). Ametrics suite for object oriented design. IEEE Transaction

Software Engineering.

[18] Henderson-Sellers, B. (1996).Object-oriented Metrics: Measures of Complexity. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA.

[19] Martin, R. (1994). OO design quality metrics.An analysis of dependencies.

[20] Bansiya, J., & Davis, C. G. (2002). A hierarchical model for object-oriented design quality assessment.

IEEE Transactions on Software Engineering,.

[21] Tang, M. H., Kao, M. H., & Chen, M. H. (1999). An empirical study on object-oriented metrics.

Proceedings of the Sixth International IEEE on Software Metrics Symposium (pp. 242–249).

[22] McCabe, T. J. (1976). A complexity measure. IEEE Transactions on software Engineering.

[23] Jacob, S. G.,et al. (2015).Improved random forest algorithm for software defect prediction through data

mining techniques. International Journal of Computer Applications.

[24] Jureczko, M. (2011). Significance of different software metrics in defect prediction. Software

Engineering. An International Journal.

[25] Jureczko, M., & Madeyski, L. (2010). Towards identifying software project clusters with regard to defect

prediction. Proceedings of the 6th International Conference on Predictive Models in Software

Engineering.

[26] Shatnawi, R. (2012).Improving software fault-prediction for imbalanced data. International Conference

on IEEE: Innovations in Information Technology (IIT), (pp. 54–59).

[27] Tang, H., Lan, T., Hao, D., & Zhang, L. (2015). Enhancing defect prediction with static defect analysis.P

roceedings of the 7th Asia-Pacific Symposium on Internetware.

[28] Tomar, D., & Agarwal, S. (2016). Prediction of defective software modules using class imbalance

learning. Applied Computational Intelligence and Soft Computing.

[29] Madeyski, L., & Jureczko, M. (2015). Which process metrics can significantly improve defect prediction

models? An empirical study.Software Quality Journal.

[30] Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and

Techniques.

[31] Davis, J., & Goadrich, M. (2006). The relationship between precision-recall and roc curves.

Proceedings of the 23rd International Conference on Machine Learning.

[32] Lusted, L. B. (1971). Signal delectability and medical decision-making. Science.

[33] Kohavi, R. (1995).The power of decision tables. Proceedings of the European Conference on Machine

Learning.

[34] Horv áth, F., Gergely, T., Besz édes, A., Tengeri, D., Balogh, G., Gyim óthy, T. (2017). Code coverage

differences of java byte code and source code instrumentation. Software Quality Journal.

[35] Khoshgoftaar, T M. Gao, K., & Seliya, N. (2010). Attribute selection and imbalanced data: Problems in

software defect prediction. Proceedings of the 22nd IEEE International Conference,Tools with Artificial

Intelligence.

[36] Jiang, Y., Lin, J., Cukic, B., & Menzies, T. (2009). Variance analysis in software fault prediction models.

Proceedings of the 20th International Symposium on Software Reliability Engineering.

[37] Khoshgoftaar, T. M. Rebours, P., & Seliya, N. (2009). Software quality analysis by combining multiple

673 Volume 13, Number 12, December 2018

Journal of Software

projects and learners. Software quality journal, 17(1), 25–49.

[38] Chawla, N. V., Bowyer, K. W. Hall, L. O., & Kegelmeyer, W. P. (2002). Smote: Synthetic minority

oversampling technique. Journal of Artificial Intelligence Research.

[39] Seiffert, C., Khoshgoftaar, T. M., Van, H., J. (2009). Improving software quality predictions with data

sampling and boosting. IEEE Transactions on Systems, 39(6), 1283–1294.

[40] Paramshetti, P., & Phalk, D. (2015). Software defect prediction for quality improvement using hybrid

approach. International Journal of Application or Innovation in Engineering & Management.

[41] Azzopardi, L., Moshfeghi, Y., Halvey, M., Alkhawaldeh, R. S., Balog, K., Di, B. E., Ceccarelli, D.,

Fern ández-Luna, J. M., Hull, C., Mannix, J., & Palchowdhury, S. (2017). Lucene4ir: Developing

information retrieval evaluation resources using lucene, 50(2), 58–75.

[42] Amancio, D. R., Comin, C. H., Casanova, D., Travieso, G., Bruno, O. M., Rodrigues, F. A., Fontoura, C. L.

(2014). A systematic comparison of supervised classifiers.

[43] Yıldırım, P. (2016). Pattern classification with imbalanced and multiclass data for the prediction of

albendazoleadverse event outcomes. Procedia Computer Science, 83, 1013–1018.

[44] Bostanci, B., & Bostanci, E. (2013). An evaluation of classification algorithms using mc nemars test.

Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications.

[45] Turhan, B., & Bener, A. (2009). Analysis of naive bayes assumptions on software fault data: An empirical

study. Data & Knowledge Engineering.

[46] Wang, S., Liu, T., & Tan, L. (2016). Automatically learning semantic features for defect prediction.

Proceedings of the 38th International Conference on Software Engineering (pp. 297–308).

[47] Tan, M., Tan, L., Dara, S., & Mayeux, C. (2015). Online defect prediction for imbalanced data. Proceedings

of the 37th International Conference on Software Engineering.

[48] Li, M., Zhang, H., Wu, R., & Zhou, Z.-H. (2012).Sample-based software defect prediction with active and

semi-supervised learning. Automated Software Engineering Journal.

[49] Hassan, E. (2009). Predicting faults using the complexity of code changes. Proceedings of the 31th

International Conference on Software Engineering, Canada).

[50] Zimmermann, T., & Nagappan, N., (2008). Predicting defects using network analysis on dependency

graphs. Proceedings of the 30th International Conference on Software Engineering, Germany (pp. 531–

540).

Bilal Al-Ahmad received B.Sc. degree in computer information systems from Jordan University of Science &

Technology, Jordan, in 2006, M.Sc degree in computer information systems from Yarmouk University, Jordan,

in 2009, PhD in software engineering from North Dakota State University, USA, in 2015. Currently, he is an

assistant professor in Computer Information Systems department at The University of Jordan, Aqaba branch.

His research interests include requirements engineering, software testing, software design, and machine

learning.

674 Volume 13, Number 12, December 2018

Journal of Software

