
  

Method of Refactoring a Monolith into Micro-services 

 

Qing-hui Ren*, Sheng-lin Li, Han Qiao 

Army Logistical University of PLA, Chongqing, China. 
 
* Corresponding author. Tel.: +8613290006306; email: renqinghui007@163.com 
Manuscript submitted September 29, 2018; accepted November 2, 2018. 
doi: 10.17706/jsw.13.12.646-653 
 

Abstract: Micro-service architecture, a new cloud deployment technique for applications and services, 

provides an effective means to build an integrated system and helps to realize the universality and 

compatibility between information systems. Targeted at refactoring a monolithic system, this paper 

proposes Spring Cloud Framework as a solution to the micro-service architecture. The construction process 

of the system was detailed with an example of inventory management system. The system was constructed in 

the following steps: 1) service classification and seam recognition; 2) service development and packaging; 3) 

Spring Cloud Framework configuration; 4) service deployment. Through the verification of the system 

functionality, it is confirmed that the micro-service architecture system has stronger robustness than the 

monolithic system.  

 
Key words: Micro-service architecture, integrated system, spring cloud framework, monolithic system.  

 
 

1. Introduction 

The micro-service architecture structures an application as a collection of loosely coupled services, and 

defines services corresponding to business capabilities [1], [2]. Featuring effective management complexity, 

independent service deployment, and flexible technology stacks [3], micro-service architecture has been 

adopted by many enterprises, e.g. Amazon and Netflix, as the development framework for their information 

system [4]. Despite these advantages, it is not easy for enterprises still using monolithic system to develop a 

new micro-service architecture system [5]. To solve this problem, this paper proposes the use of Spring 

Cloud Framework as a solution to the micro-service architecture [6]. 

Compared with prior efforts, this paper makes the following contributions:  1) the creation of a complete 

splitting of a monolithic system. The division between program and database makes it possible to construct 

the system at a granular level; 2) the application of advanced technology such as Spring Cloud Framework, 

docker container, etc. These technologies simplify the entire development and 3) the verification of the 

robustness of micro-service architecture system. Through single node load monitoring and overall testing of 

the system, the robustness was verified based on the simulated delay of service response. 

The remainder of this paper is organized as follows: Section 2 shows the splitting process of a monolithic 

system. Section 3 constructs the micro-service architecture system. Section 4 verifies the system; finally, 

Section 5 draws some meaningful conclusions. 

2. Splitting  a  Monolithic  System 

Taking inventory management system as an example, this section shows the splitting process of a 

monolithic system. The main steps are as follows: 

646 Volume 13, Number 12, December 2018

Journal of Software



  

Step 1 Physical layering of three-tier architecture 

This step realizes the transformation of logical layer to the physical layer. The decoupling of coarse 

granularity can lay the foundation for the functional decomposition and the elimination of integrated 

database. 

Step 2 Identifying bounded context 

With the use of seams, developers are allowed to extract code blocks from the original system. The blocks 

can relatively independently implement modifications with little effect on other parts of the code [7]. Before 

building a new system, it must accurately identify the capabilities of each business module. Table 1 shows the 

main features and details of the system. 

 

Table 1. Features and Details of the System 

Name Function Description 

Account GET/PUT/POST Account data management 

Iomanagement GET/PUT/POST Service of issue and receipt 

Details GET Data query service. 

Inventory GET/PUT/POST Inventory management. 
Notification GET/PUT Notification service 

Auth GET/PUT Authentication mechanism 

Gateway -- Service routing 

Monitoring -- Monitoring service 

Config -- Configuration center 

Registry -- Service registration 

 
In Table 1, the function GET is used to read data information, PUT is used to upload the data information, and 

POST is used to update the data information [8]. 
Step 3 Elimination of integrated database 

The key to eliminate the integrated database lies in breaking the foreign key relationship between the 

tables. In contrast, the service-oriented splitting of the integrated database is effectively enabling each 

service to form its own database [9]. Other services can access the data through the API exposed by one 

service instead of accessing the database directly.  

3. Construction of Micro-service Architecture System 

Spring Cloud Frame is a comprehensive solution to the implementation of micro-service architecture. The 

solution is grounded on spring boot for configuration management, service governance, circuit breaker, 

intelligent routing, control bus, global lock, decision making, distributed session, and cluster state 

management, etc. In view of the above characteristics and the separation of the monolithic system, this 

section creates the docker image and deploys the services into the docker container, aiming to use the Spring 

Cloud Framework to construct the micro-service architecture system. 

3.1. Configuration of the Spring Cloud Framework 

This system uses some of the core components of the Spring Cloud Framework [10]. 

Spring Cloud Config: It is a distributed configuration center component that provides scalable 

configuration services and uses the configuration center to centrally manage various configuration files for 

all services. 

Eureka: The service governance component, including the service registry, mainly implements the 

registration and discovery mechanism of the service. 

Ribbon: The client operated a load balancing service invocation component. 

Hystrix: Fault tolerant management component can realize circuit breaker mode and provide good fault 

tolerance for the delay. 

647 Volume 13, Number 12, December 2018

Journal of Software



  

Feign: The declarative service invocation component is based on the Ribbon and Hystrix. 

Zuul: Gateway components  provide intelligent routing, access filtering and other functions.  

Turbine: Monitoring the metrics of Hystrix on each node in the cluster environment.  

Figure 1 shows the component architecture of the system. 

 

Call
Client

FEIGN

Gateway

ZUUL

HYSTRIX

Account

RIBBON

HYSTRIX

Iomanagem
ent

RIBBON

HYSTRIX

Notification

RIBBON

HYSTRIX

Inventory

RIBBON

HYSTRIX

Details

RIBBON

SPRING CLOUD CONFIG

Registry

Auth

Monitoring

EUREKA TURBINE
 

Fig. 1. System component architecture. 

 

It can be seen from Figure 1 that: 1) the account service calls other services through the remote client 

Feign. The services realize each other through the registration centre Eureka. Then the unified gateway 

provided by Zuul and all open circuit information is unified through the aggregator Turbine according to the 

business logic; 2) the services use ribbon aims to realize load balancing and to realize circuit breaker 

function with Hystrix; 3) Spring Cloud Config as the configuration centre manages all the configuration files 

in the business process; 4) Auth service operates the basic authentication mechanism.  

3.2. Deploy Services to Docker Container 

All the services of the micro-service architecture system run independently in their respective docker 

containers; each service is accessed through the process of inter-process communication [11]. So the 

service needs to be deployed to the container. Taking Account service as an example, the process is de scribed 

in details as follows. 

1. Service packaging 

Figure 2 shows the Account service packaged as a jar package. 

ren@ren-X550LD:~/DigitalBarracks/account-service$  mvn package -DskipTests

[INFO] Scanning for projects...

[INFO] 

[INFO] ------------------------------------------------------------------------

[INFO] Building account-service 0.0.2-SNAPSHOT

[INFO] ------------------------------------------------------------------------

......

[INFO] ------------------------------------------------------------------------

[INFO] BUILD SUCCESS

[INFO] ------------------------------------------------------------------------

[INFO] Total time: 21.767 s

[INFO] Finished at: 2017-09-25T09:17:52+08:00

[INFO] Final Memory: 31M/299M

 
Fig. 2. Service packaging. 

 

2. Pulling docker images 

The docker image, similar to the virtual machine image, is a read-only template, including the file system 

that satisfies the data required for the container. A docker image can be built on top of another docker image; 

each container is an image instance; starting the container is equivalent to an increase in the imag e on a 

writable layer. With theses, it can write applications [12]. Therefore, it should first pull the underlying images 

648 Volume 13, Number 12, December 2018

Journal of Software



  

needed to run the container. Figure 3 shows the Account service base image from Docker Hub 

(https://hub.docker.com). 

 

root@ren-X550LD:/home/ren/DigitalBarracks/account-service# docker pull 

digitalbarracks0/account-service

Using default tag: latest

latest: Pulling from digitalbarracks0/account-service

......

Digest: 

sha256:b271b32d4de2a973994cd5e2ff419e875cc2af1edea5f9954e53ea7af0551a1a

Status: Downloaded newer image for digitalbarracks0/account-service:latest

 

Fig. 3. Pulling Docker Images. 

 

3. Creation of custom images 

With successful underlying images pulling, custom images are created and the container is operated on 

top of these images. There are two ways to create a custom image. One is to manually start the container 

with the docker run command, and then to commit the newly configured container as an image [13]. The 

method is complex for each modification needs to be committed again. The second method is m uch easier, 

by applying the Dockerfile to generate the images [14]. Figure 4 shows Dockerfile configuration. 

FROM java:8-jre
MAINTAINER SZYQ_YZGL <xxx@xxx.com>
ADD ./target/account-service.jar /app/
CMD ["java", "-Xmx200m", "-jar", "/app/account-service.jar"]

EXPOSE 6000

 
Fig. 4. Dockerfile Configuration. 

 

The FROM keyword specifies the image template for the custom image; the MAINTAINER keyword 

indicates the author and contact information of the document; the ADD keyword copies the previously 

packaged jar package to the / app directory of the container; the CMD keyword indicates the time when 

starting the container running the jar package; the EXPOSE keyword specifies the port in the container. 

According to the above analysis, the relationship between basic image, custom image, container, and 

account service can be obtained. Custom image is built on top of the basic mirror with the contain er as a 

running instance, and the account service is operated in the container. With the configured Dockerfile, the 

image can be created and the container can be operated simply by the docker build command.  

4. Configuration of multiple containers 

A micro-service architecture system usually consists of multiple services. The one-by-one docker build 

command manually is time-consuming and laborious. Therefore, it uses the Docker Compose service 

orchestration tool to manage multiple containers, the command is as follows. 

docker-compose -f docker-compose.yml -f docker-compose.dev.yml up –d 

Among them, docker-compose is the base command; -f specifies the optional yaml configuration file, which 

are docker-compose.yml and docker-compose.dev.yml; up represents the boot; -d represents the background 

operation. 

In the two yaml files, docker-compose.dev.yml writes all service build commands and open ports, and 

docker-compose.yml specifies the boot mode based image, custom environment variable, container and log 

649 Volume 13, Number 12, December 2018

Journal of Software

https://hub.docker.com/


  

file attribute. 

With the execution of the docker-compose command; Figure 5 shows the building process of the account 

service. 

 

root@ren-X550LD:/home/ren/DigitalBarracks# docker-compose -f docker-compose.yml -f 

docker-compose.dev.yml up -d

Building account-service

Step 1/5 : FROM java:8-jre

 ---> e44d62cf8862

Step 2/5 : MAINTAINER SZYQ <xxx@xxx.com>

 ---> Running in 3d312b392196

 ---> 9a5b31cf5b97

Removing intermediate container 3d312b392196

Step 3/5 : ADD ./target/account-service.jar /app/

 ---> 1ebe6096c304

Step 4/5 : CMD java -Xmx200m -jar /app/account-service.jar

 ---> Running in 3399b2e6d443

 ---> 5c7bc4fa72f7

Removing intermediate container 3399b2e6d443

Step 5/5 : EXPOSE 6000

 ---> Running in f398695c9b21

 ---> 8aff21abe965

Removing intermediate container f398695c9b21

Successfully built 8aff21abe965

Successfully tagged digitalbarracks0/account-service:latest  
Fig. 5. The Execution Process of the docker-compose Command. 

 

Figure 5 shows the build process of the service executing the statements in the Dockerfile one by one. So 

far, the whole micro-service architecture system development, deployment and operation have been 

completed. 

4. Micro-Service Architecture System Testing 

To make the system meet the requirements, it is necessary to verify mainly system function and 

simulation service delay. 

4.1. Function Test 

When starting all containers, it can see all the running containers through the  docker ps command. Figure 

6 shows the running container.  

 
root@ren-X550LD:/home/ren/DigitalBarracks# docker ps

CONTAINER ID        IMAGE                                   COMMAND                  CREATED             STATUS                  PORTS                                                                                        

NAMES

7067afd305c1        digitalbarracks0/account-service        "java -Xmx200m -ja..."   3 weeks ago         Up Less than a second   

0.0.0.0:6000-

>6000/tcp                                                                      digitalbarracks_account-service_1

6e2ac945b4cd        digitalbarracks0/auth-service           "java -Xmx200m -ja..."   3 weeks ago         Up Less than a second   

0.0.0.0:5000->5000/tcp                                                                      digitalbarracks_auth-service_1

6d0f8595b0ed        digitalbarracks0/mongodb                "/init.sh"               3 weeks ago         Up Less than a second   

0.0.0.0:25000->27017/tcp                                                                     digitalbarracks_auth-mongodb_1

6a1e6fae43f9        digitalbarracks0/inventory-service      "java -Xmx200m -ja..."   3 weeks ago         Up Less than a second   

0.0.0.0:7000->7000/tcp                                                                      digitalbarracks_inventory-service_1

b8573233d675        digitalbarracks0/details                "java -Xmx200m -ja..."   3 weeks ago         Up Less than a second   

0.0.0.0:3000->3000/tcp                                                                      digitalbarracks_details_1

f46fb1dec520        digitalbarracks0/iomanagement           "java -Xmx200m -ja..."   3 weeks ago         Up Less than a second   

0.0.0.0:2000->2000/tcp                                                                      digitalbarracks_iomanagement_1

39cb9e14835f        digitalbarracks0/gateway                "java -Xmx200m -ja..."   3 weeks ago         Up Less than a second   

0.0.0.0:80->4000/tcp                                                                      digitalbarracks_gateway_1

5369b88c8b3e        digitalbarracks0/config                 "java -Xmx200m -ja..."   3 weeks ago         Up Less than a second   

0.0.0.0:8888->8888/tcp                                                                      digitalbarracks_config_1

b59bb648119e        digitalbarracks0/monitoring             "java -Xmx200m -ja..."   3 weeks ago         Up Less than a second   

0.0.0.0:8989->8989/tcp, 0.0.0.0:9000->8080/tcp                                              digitalbarracks_monitoring_1

25c609eddb0a        digitalbarracks0/registry               "java -Xmx200m -ja..."   3 weeks ago         Up Less than a second   

0.0.0.0:8761->8761/tcp                                                                      digitalbarracks_registry_1

1251888c2867        rabbitmq:3-management                   "docker-entrypoint..."   3 weeks ago         Up Less than a second   

4369/tcp, 5671/tcp, 0.0.0.0:5672->5672/tcp, 15671/tcp, 25672/tcp, 0.0.0.0:15672->15672/tcp    digitalbarracks_rabbitmq_1

bc403c49eb44        digitalbarracks0/mongodb                "/init.sh"               3 weeks ago         Up Less than a second   

0.0.0.0:26000->27017/tcp                                                                     digitalbarracks_account-mongodb_1

7b197c47e2d8        digitalbarracks0/mongodb                "/init.sh"               3 weeks ago         Up Less than a second   

0.0.0.0:27000->27017/tcp                                                                     digitalbarracks_inventory-mongodb_1

443ff0c46ef5        digitalbarracks0/mongodb                "/init.sh"               3 weeks ago         Up Less than a second   

0.0.0.0:28000->27017/tcp                                                                     digitalbarracks_notification-mongodb_1

de7bb36e7968        digitalbarracks0/mongodb                "/init.sh"               3 weeks ago         Up Less than a second   

0.0.0.0:24000->27017/tcp                                                                     digitalbarracks_details-mongodb_1

a63b4a5597de        digitalbarracks0/mongodb                "/init.sh"               3 weeks ago         Up Less than a second   

0.0.0.0:23000->27017/tcp                                                                     digitalbarracks_iomanagement-mongodb_1

b25d7a787535        digitalbarracks0/notification-service   "java -Xmx200m -ja..."   3 weeks ago         Up Less than a second   

0.0.0.0:8000->8000/tcp                                                                      digitalbarracks_notification-service_1

 

Fig. 6. Running containers. 

650 Volume 13, Number 12, December 2018

Journal of Software



  

Fig. 6 shows that all containers are started normally. CONTAINER ID is the number of container, IMAGE is 

the basic image, COMMAND is the operation instruction, CREATED is the time container created, NAMES is 

the container name, and PORTS is the port number. In addition to the business logic and database, there is a 

digitalbarracks_rabbitmq_1 with its basic image is rabbitmq: 3-management. RabbitMQ is an advanced 

message queuing protocol (AMQP) based on the complete, reusable enterprise information system [15], 

which can be used for efficient communication between modules of large software.  

4.2. Delay Simulation 

The new system and the original monolithic system are basically consistent with the business functions 

provided. It is difficult to differentiate the difference for the users. But people engaged in development, 

deployment and management can easily tell the difference between the two systems. This paper describes 

the development and deployment process in details. What’s more, the business function and configuration 

information of the new system is verified. From the perspective of service management, the differences 

between the two systems are further elaborated, and the behavior characteristics of the system under load 

are tested. 

Hystrix can push the monitoring indexes of each service to Turbine, and display the system behavior 

through the Hystrix dashboard. Fig. 7 shows the timeout threshold for setting the request response is 

1000ms. When the different simulation responses are delayed, the system behavior of the account service 

invokes the inventory service. 

 

 

Fig. 7. System behavior under simulated delay. 

 

In Fig. 7, when the analogue delay is 0ms, the median response time is about 50ms, the throughput is 

about 23 requests per second, with the inventory service in the small number of active threads and the 

circuit breaker closed. So, the request is in good condition. When the analogue delay is 800ms, the median 

time response is about 850ms, the ratio of fault request reached 50%, the inventory service is in a large 

number of active threads and the circuit breaker is of frequent switching between the shutdown and startup 

state. So, the request response is in poor state. When the analogue delay is 1000ms, 100% of the request fails 

with no active thread for Inventory service and the permanently open circuit breaker. As a result inventory 

service no longer processes the request. At this time, the request failure information can be timely returned, 

which is basically the same throughput and 0ms. 

The above results show that: 1) when the system runs, if the response delay of the service is too high, the 

circuit breaker will automatically start to return the request failure information quickly to prevent cascading 

651 Volume 13, Number 12, December 2018

Journal of Software



  

failure; 2) when the response delay reaches a certain critical point, the circuit breaker controls the number of 

requests allowed through frequent opening/closing; 3) the failure of one service in the micro-service 

architecture system does not affect the normal operation of other services. 

5. Conclusion 

This paper probes into the functional characteristics and architecture characteristics of the inventory 

system. First, the split method of the monolithic system was proposed and the process was summarized 

into three steps: physical layering of three-tier architecture, identification of bounded context and 

elimination of integrated database. Then, the micro-service architecture system is constructed through four 

steps: service packaging, pulling docker images, configuration of multiple containers and creation of custom 

images. Finally, the new system was simulated and tested. The results show that the micro-service 

architecture system works normally with a stronger robustness than the monolithic system.  

References 

[1] Newman, S. (2015). Microservices, building microservices, loukides M., MacDonald B. (Eds.): O’Reilly 

Media, Inc., Sebastopol, 1-11. 

[2] Dragoni N., Giallorenzo S., & Lafuente A. L. (2016). Microservices: yesterday, today, and tomorrow, 1-16. 

[3] Namiot D., & Sneps-Sneppe, M. (2014). On micro-services architecture. International Journal of Open 

Information Technologies, 2(9), 24-27. 

[4] Thönes, J. (2015). Microservices, software IEEE. 

[5] Levcovitz, A., Terra, R., & Valente, M. T. (2016). Towards a technique for extracting microservices from 

monolithic enterprise systems, 1-8. 

[6] Dautov, R., Paraskakis, I., & Stannett, M. (2014). Utilising stream reasoning techniques to underpin an 

autonomous framework for cloud application platforms. Journal of Cloud Computing. 

[7] Uddin, I., Haque, H. M. U., Rakib, A., & Rahmat, M. R. S. (2016). Resource-bounded context-aware 

applications: A survey and early experiment. International Conference on Nature of Computation and 

Communication. 

[8] Quiter, B. J., Ramakrishnan, L., & Bandstra, M. S. (2015). Grdc. a collaborative framework for radiological 

background and contextual data analysis. 

[9] Verma, V., & Bhaskar, R. (2012). The research paper published by ijser journal is about an analysis of 

vertical splitting algorithms in telecom databases. International Journal of Computer Applications, 30-36. 

[10] Cosmina, I. (2017). Spring microservices with spring cloud. Pivotal Certified Professional Spring 

Developer Exam. Apress. 

[11] Lamport, L. (2016). On interprocess communication. Part I: Basic formalism. Distributed Computing. 

[12] Marwick, B. (2017). Computational reproducibility in archaeological research: Basic principles and a 

case study of their implementation. Journal of Archaeological Method & Theory. 

[13] Xu, Q., Jin, C., Rasid, M. F. B. M., Veeravalli, B., & Aung, K. M. M. (2017). Decentralized content trust for 

docker images. International Conference on Internet of Things, Big Data and Security, 431-437. 

[14] Boettiger, C. (2015). An introduction to docker for reproducible research. Acm Sigops Operating Systems 

Review, 71-79. 

[15] Ionescu, V. M. (2015). The analysis of the performance of RabbitMQ and ActiveMQ. Roedunet. 

 

 

 

652 Volume 13, Number 12, December 2018

Journal of Software



  

Qinghui Ren received his master’s degree in PLA University of Science and Technology, 

China, in 2016, and studying for a Ph. D. degree in science of military logistics. He is 

interested in software engineering & big data and computer science. 

 

 

 

 
Shenglin Li received his B.S. degree in mathematics from Southwest University, China, in 

1986, and Ph.D. degree in logistical engineering University of P.L.A China, in 2008. He is 

interested in information management engineering and computer science.  

 
 
 
 

 
Han Qiao received his B. S. degree in PLA University of Science and Technology, China, in 

2013, and studying for a Master’s degree in Science of Military Logistics. He is interested in 

Computer Science. 

 

 

 

 
 
 

653 Volume 13, Number 12, December 2018

Journal of Software




